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Abstract: The offline reinforcement learning (RL) paradigm provides a general
recipe to convert static behavior datasets into policies that can perform better than
the policy that collected the data. While policy constraints, conservatism, and
other methods for mitigating distributional shifts have made offline reinforcement
learning more effective, the continuous action setting often necessitates various
approximations for applying these techniques. Many of these challenges are greatly
alleviated in discrete action settings, where offline RL constraints and regularizers
can often be computed more precisely or even exactly. In this paper, we propose
an adaptive scheme for action quantization. We use a VQ-VAE to learn state-
conditioned action quantization, avoiding the exponential blowup that comes with
naïve discretization of the action space. We show that several state-of-the-art offline
RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks
when combined with our proposed discretization scheme. We further validate our
approach on a set of challenging long-horizon complex robotic manipulation tasks
in the Robomimic environment, where our discretized offline RL algorithms are
able to improve upon their continuous counterparts by 2-3x. Our project page is at
saqrl.github.io
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1 Introduction

Offline reinforcement learning (RL) aims to learn policies from static databases of previously collected
experience. As opposed to pure imitation, offline RL holds the promise to transform logged datasets
into policies that perform better than the behavior policy that collected the dataset by maximizing
task rewards. The key challenge in offline RL is the overestimation of the value of actions that were
not seen in the dataset, which destabilizes training and leads to policies that perform much worse
than their value function estimates would suggest. To address this issue, a wide variety of methods
have been proposed recently [1, 2, 3, 4, 5]. Typically, these methods employ some mechanism to stay
“close" to behavior policies, such as policy constraints or value conservatism.

While these methods in principle address overestimation and distributional shift, in practice im-
plementing these approaches requires various approximations (depending on the method) that can
lead to hyperparameter sensitivity or performance that is worse than their theoretical formulation
might suggest. This issue is particularly pronounced on “narrow” datasets that consist of relatively
deterministic behavior, such as the demonstration data that is often used in robotic learning. Our key
observation is that these issues can be mitigated by properly discretizing continuous action spaces,
and then employing discrete action versions of these methods, where many of these approxima-
tions are unnecessary. For example, policy constraints or any conservatism regularizer that requires
expectations over actions can be computed exactly with discrete actions.

Unfortunately, naïvely discretizing the action space can result in an exponential blowup in the
number of actions, while coarse adaptive discretization methods can lead to imprecise actions. In this
paper, we propose an adaptive scheme, state-conditioned action quantization (SAQ), for discretizaing
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continuous action spaces. We perform state-conditioned action discretization by utilizing a VQ-VAE
model. SAQ is based on a simple insight: given a particular dataset, there are often only a few
in-distribution options available in each state, corresponding roughly to the “primitives” that are
supported under the data. This allows us to use comparatively very small discrete action spaces,
without suffering from the curse of dimensionality, while still enjoying the benefits of discrete action
spaces and simpler offline RL algorithm implementations.

The main contribution of this work is a practical approach, SAQ, for learning quantized action
representations for improving continuous-action offline RL methods on a variety of robotic learning
tasks. We present a general method for learning state-conditioned action discretizations and then apply
this method with three offline RL methods: conservative Q-learning (CQL) [3], implicit Q-learning
(IQL) [4], and behavior regularized actor-critic (BRAC) [1]. All of these methods require some
sort of approximation with continuous actions, while the discrete version provides for a convenient
implementation that avoids such approximations. We find that the discrete version of each method
implemented with SAQ generally yields improved performance on commonly used benchmark
tasks over each method’s continuous-action counterpart, particularly on “narrow” datasets (e.g.,
expert data). We also evaluate these methods on a set of challenging robotic manipulation tasks
from the Robomimic environment [6], where continuous offline RL methods struggled to get good
performance, and find that our approach outperforms both prior offline RL methods in this setting by
a large margin.

2 Related Work

Offline RL. Some offline RL methods use a policy constraint to mitigate overestimation from
distributional shift, constraining the learned policy to stay close to the data via density modeling or
some other divergence measure [1, 2, 7, 8, 9, 10, 11, 12, 13, 4, 5, 14]. Another line of work directly
regularizes Q values of unseen actions, which we refer as conservative value function methods
[3, 15, 16, 17, 18, 19, 20]. While both types of methods can be formulated in ways that in principle
address distributional shift, in practice they require some kind of approximation to be applied with
continuous actions, either in estimating the behavior policy, or in computing integrals or expectations
over the action space to formulate pessimism penalties. This introduces approximation errors and
complexity. We show that our approach can avoid the need for such approximations for three
representative methods from both categories, leading to improved performance.

Discretizing continuous action space for control. Recent work has shown discretizing continuous
actions can yield good performance, and several discretization strategies have been introduced. To
address the issue of exponential growth of actions in the naïve discretization scheme, one line of
methods assumes independence of action dimensions [21, 22, 23, 24, 25, 26], or perform discretization
in an autoregressive way [27, 28, 29]. Our work is different in that we perform state-dependant
discretization, which adaptively controls the precision of the discretization scheme. Perhaps the
closest to our work is Dadashi et al. [30], which also learns a state-dependant discretization. It
assumes access to a human demonstration dataset. Given the current state, it uses a neural network to
index a set of plausible continuous actions and trains the network by comparing its output with the
demonstration data. Our work differs in that we focus on the offline RL setting, where discretization
could enforce conservatism and policy constraints exactly. To our knowledge, our work is the first to
propose adaptive action discretization with VQ-VAEs for offline RL.

3 Preliminaries

The RL problem is formally defined by a Markov decision processes (MDPs) M = (S,A, T, r, µ0, γ),
where S and A denote the state and action spaces, and T (s′|s,a), r(s,a) represent the dynamics and
reward function, respectively. µ0(s) denotes the initial state distribution, and γ ∈ (0, 1) denotes the
discount factor. The objective of RL is to learn a policy that maximizes the return (discounted sum of
rewards): maxπ J(π) := E(st,at)∼π[

∑
t γ

tr(st,at)]. In offline RL, we are provided with an offline
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dataset D = {(s,a, r, s′)} of transitions collected using a behavior policy πβ , and our goal is to find
the best possible policy only using the given dataset, without any additional online data collection. In
this paper, we focus on three offline RL methods, conservative Q-learning (CQL), implicit Q-learning
(IQL), and behavior regularized actor-critic(BRAC); though our approach could likely be extended to
other methods also.

Conservative Q-learning. Naïvely learning a Q-value function from the offline dataset (e.g., via
Q-learning or FQI) suffers from OOD actions [31, 2, 32], and the CQL algorithm [3] applies a
regularizer R(θ) to prevent querying the target Q-function on unseen actions. R(θ) minimizes the
Q-values under the policy π(a|s), and counterbalances this term by maximizing the values of the
actions in D. Formally, we have the following objective during Bellman backup:

min
θ

1

2
E

s,a,s′∼D
a′∼π

[(
Qθ(s,a)− r − γQ̄(s′,a′)

)2]
+ α

(
E

s∼D,a∼π
[Qθ(s,a)]− E

s,a∼D
[Qθ(s,a)]

)
, (1)

where Q̄ denotes the target Q-function.

Behavior regularized actor-critic. The specific version BRAC-v explicitly subtracts the divergence
D(π(·|s′), πβ(·|s′)) from the target value while performing the Bellman update. Additionally, since
the divergence between the learned policy and the behavior policy at the current state is not a part of
the Q-function, BRAC-v also explicitly adds the divergence value at the current state to the policy
update. We instantiate the version of BRAC that uses the KL-divergence:

DKL(π(·|s), πβ(·|s)) = Ea∼π(·|s) [log π(a|s)− log πβ(a|s)] . (2)

To estimate the second term log πβ(a|s), BRAC trains an additional behavior policy, that we denote
as π̂β . Denoting the policy and the Q-function as πϕ andQθ, the BRAC-v perform following Bellman
update:

min
θ

Es,a∼D

[(
r(s,a) + γEa′∼πϕ(·|s′)[Q̄θ(s

′,a′) + β log π̂β(a
′|s′)]−Qθ(s,a)

)2]
, (3)

then extracts a policy by:

max
ϕ

E
s∼D

a∼πϕ(·|s)

[Qθ(s,a) + β log π̂β(a|s)− α log πϕ(a|s)] (4)

Implicit Q-Learning. Instead of applying policy constraints or critic regularizations, IQL uses
expectile regression to learn a value function to approximate an expectile τ over the distribution of
actions by optimizing the value objective

LV (ψ) = E(s,a)∼D[L
τ
2(Qθ̂(s,a)− Vψ(s))],

where Qθ̂(s,a) is a parameterized target critic and Lτ2(u) = |τ − I(u < 0)|u2. This value function
is then used to update the Q-function with TD error following the objective function

LQ(θ) = E(s,a,s′)∼D[(r(s,a) + γVψ(s
′)−Qθ(s,a))

2]

With the value function Vψ and Q-function Qθ̂(s,a), the policy is learned using advantage weighted
regression following the loss below:

Lπ(ϕ) = E(s,a)∼D[exp(α(Qθ̂(s,a)− Vψ(s))) log πϕ(a|s)].

Vector quantized variational autoencoders. Our method uses the VQ-VAE [33] as part of the
discretization process. The VQ-VAE consists of an encoder and a decoder. The encoder network
parameterizes a posterior distribution qϕ(z|x) over discrete latent variables z given the input data
x. The decoder that parameterizes the distribution pθ(x|z) then reconstructs the observations from
these discrete variables. Specifically, the encoder first outputs a continuous embedding eϕ(x) ∈ RD.
Discretization is done with a codebook defined on RK×D, composed of K vectors ej ∈ RD, where
j = 1, 2, 3...K. The embedding eϕ(x) is compared with all the vectors in the codebook, and the
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Figure 1: Left: Training SAQ. Right: Discrete policy training/evaluation with SAQ. SAQ learns a
scalar discrete representation of continuous actions using state-conditioned VQ-VAE. During policy
training and evaluation time, we use the decoder of SAQ to reconstruct the continuous actions from
the discrete policy actions.

discrete state z is chosen to correspond to the nearest codebook entry. The discrete posterior is then
defined as:

q(z = k|x) =
{
1, if k = argminj∥e(x)− ej∥2
0, otherwise

(5)

Let’s denote zqϕ(x) as the final latent code from the encoder, i.e., zqϕ(x) = ek. The decoder will
reconstruct the original input x based on zqϕ(x). Additionally, a codebook loss and a commitment
loss are added to move codebook vectors and encoder embeddings close to each other. The overall
training objective is as follows:

L(θ, ϕ, x) = E
e∈ej ,j=1,2,3...K

[
− log pθ(x|zqϕ(x)) + ∥sg[eϕ(x)]− e∥22 + ∥eϕ(x)− sg[e]∥22

]
, (6)

where sg stands for the stop gradient operator. We can then optimize the parameters of the encoder
and decoder with this objective.

4 State Conditioned Action Quantization for Offline RL

The central premise of this paper is that carefully and efficiently discretizing the action space of a
continuous-action RL problem can make it significantly simpler to implement offline RL methods
based on critic or actor regularization, and that such discretized methods can attain better performance
on especially difficult data distributions, such as narrow datasets. How should we discretize a
continuous action space? Discretizing too coarsely can make it difficult to perform delicate tasks
that require fine control, and can collapse in-distribution and out-of-distribution actions into the same
bin, making offline RL more difficult. On the other hand, naïvely using a very fine discretization
can be intractable due to the curse of dimensionality. Our key observation is that we can construct a
discretization with relatively few discrete actions but with minimal loss of resolution if we employ a
learned state-conditioned discretization, which we can accomplish by means of a VQ-VAE model. In
this section, we will describe this approach, and discuss how it can be combined with simple and
effective discrete-action offline RL methods.

4.1 State-Conditioned Action Discretization via Scalar-Quantized Auto-Encoders

Abstractly, we aim to learn a state-conditioned action discretization (SAQ) scheme that can map a
continuous action a at a given state s to a discrete variable â for training, and then given a choice of
the discrete variable â also map it back to the original action space A for evaluation.

Given this requirement, a natural choice is to utilize auto-encoders that can produce state-conditioned
discrete codes for a given action. Therefore, our approach adapts the vector-quantized variational
auto-encoder (VQ-VAEs) [33] framework for performing action discretization, with the difference
that unlike conventional VQ-VAEs that typically learn a multi-dimensional discrete latent code for an
input, we only aim to learn a scalar discrete latent code for a given input action as this is sufficient for
performing downstream RL.
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More formally, denoting the parameters of the VQ-VAE encoder with ϕ and the decoder with θ,
we wish to learn an encoder qϕ(·|s, a) that produces a one-dimensional discrete latent action, and a
decoder to map the discrete action code back to the original action space, pθ(a|s, â). Following the
training procedure of VQ-VAEs, we first obtain a latent embedding zqϕ(s, a) from the approximate
posterior qϕ(·|s, a) and then compare it within the codebook, and obtain the nearest vector ek. Next,
we run this latent action code through the decoder to obtain an approximate reconstructed action,
ã ∼ p(·|s, ek), which is further trained to minimize the reconstruction error against the original
action a passed as input to the encoder. Following the training procedure proposed by Van den Oord
et al. [33], the overall training objective for SAQ is shown in Equation 7, where sg is the operator of
stopping gradient, D is the offline dataset:

min
θ,ϕ

E
s,a∼D

e∈ej ,j=1,2,3...K

[
− log pθ(a|zqϕ(s,a)) + ∥sg[eϕ(s,a)]− e∥22 + ∥eϕ(s,a)− sg[e]∥22

]
(7)

4.2 Offline RL with Discretized Actions

After training VQ-VAE to obtain a discrete action representation, we can transform the original
problem with continuous action into a discrete problem by learning policies and value functions in
the discrete action space.

SAQ-CQL. For CQL, we follow the discrete variant of CQL [3], where we learn the Q-function
with a conservatism penalty and parameterize the policy as π(a|s) ∝ Q(s,a). Specifically, we
employ the maximum entropy variant of CQL and replace the sampled log-integral-exp with log-
sum-exp by summing over all discrete actions. This allows us to compute the CQL conservatism loss
exactly, without having to rely on the samples from policy to estimate the integral of Q-function. Our
overall objective of SAQ-CQL is therefore

min
θ

1

2
E

s,a,s′∼D
a′∼π

[(
Qθ(s,a)− r − γQ̄(s′,a′)

)2]
+ α E

s,a∼D

[
log

∑
i

exp(Qθ(s,ai))−Qθ(s,a)

]
.

We note that in this specific variant of discrete CQL, the conservative penalty term
Es,a∼D [log

∑
i exp(Qθ(s, âi))−Qθ(s, â)] is exactly equivalent to the discrete negative log-

likelihood behavioral cloning loss:

E
s,a∼D

[
log

∑
i

exp(Qθ(s, âi))−Qθ(s, â)

]
= − E

s,a∼D

[
log

exp(Qθ(s, â))∑
i exp(Qθ(s, âi))

]
= − E

s,a∼D
[log πθ(â|s)] . (8)

SAQ-IQL. For IQL, we follow the original problem formulation in Kostrikov et al. [4], then derive
its closed-form solution in the discrete case. We denote the advantage asAπ(s, â) = Qπ(s, â)−V π(s)
for a given policy π, which can be obtained by the same procedure detailed in Kostrikov et al. [4].
The policy extraction step in IQL objective is to find a policy π⋆ so that Aπ(s,a) can be maximized
while staying close to behavior policy πβ :

π⋆ = argmaxEâ∼π(·|s) [A
π(s, â)] s.t. DKL(π(·|s), πβ(·|s)) ≤ ϵ. (9)

We can solve this constrained optimization in Eq. 9 by using the Lagrangian method, and the solution
is given by:

π⋆(â|s) ∝ exp

[
(
1

λ
Aπ(s, â) + log πβ(â|s))

]
, (10)

where λ is the Lagrangian multiplier, which controls the amount of constraint deviation. We refer
readers to Appendix A for detailed derivation. In practice, we can obtain πβ by training an additional
BC policy on the behavior dataset.
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SAQ-BRAC For SAQ-BRAC, we first learn a categorical discrete-action behavior policy πβ(a|s)
on the discretized actions by maximizing the log-likelihood of the offline dataset. We then implement
discrete BRAC by exactly following Eq. 3 and Eq. 4, where we compute the KL-divergence between
the learned policy and behavior policy by simply summing over all discrete actions.

4.3 Diagnosing offline RL performance with constraint enforcement

As conjectured in Sec. 1, we associate inexact constraint enforcement with the degradation of
performance of offline RL methods. To verify this hypothesis, in this section, we conduct an
experiment in a pointmass navigation environment (maze2d-large from Fu et al. [34]), where the RL
agent controls a point mass to navigate through the maze from a fixed starting point to the goal point,
as shown on the left side of Figure 2. We collect three optimal demonstration trajectories as the offline
dataset and run both continuous CQL and SAQ-CQL on this domain. We visualize the average return
in the middle as well as the sample estimated (shown in blue) and the exact CQL conservatism penalty
(shown in green) on the right of Figure 2. We observe that the performance of continuous CQL rapidly
degrades with more training steps, with the estimated conservative penalty R(θ) diverging from the
exact value in the period where the performance degrades. The error in estimation causes the policy
training to overly penalize the wrong action samples, resulting in degraded performance. On the
contrary, SAQ-CQL computes the penalty exactly, which enables the optimizer to smoothly minimize
the penalty, leading to robust policy performance. While it may be that with more hyperparameter
tuning the baseline continuous-action version would perform better, the results suggest that poor
performance in this case corresponds to the inexact estimate of the CQL regularizer, which is largely
mitigated by our discretization approach.
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Figure 2: Left: visualization of the maze2d environment. Middle: the average return of SAQ-CQL
and continuous CQL over the course of offline training. Right: estimated and exact CQL conservatism
penalty values. The estimated conservative penalty for continuous-action CQL diverges significantly
from the true value during training, resulting in rapid performance degradation, while the SAQ-CQL
enjoys stable training by optimizing the exact penalty value. As a result, the training process (middle)
is significantly more stable with SAQ, which we expect should make the algorithm easier to use,
simplifying checkpoint selection and tuning.

5 Experiments

Our experiments compare three continuous-action offline RL methods to their discretized variants
instantiated with SAQ, both on standard offline RL benchmarks and the Robomimic robotic manipu-
lation environment [6]. We combine SAQ with: CQL [3], IQL [5], and BRAC [1]. We first evaluate
on the D4RL [35] suite of tasks, and then use the Robomimic tasks [6], which prior work has found
to present a particular challenge for offline RL methods. Appendix B presents a detailed analysis and
ablation study of SAQ to understand how it affects offline RL training, which we encourage readers to
examine for a more detailed study of the method. We also present a comparison with Aquadem [30]
in Appendix C.

5.1 D4RL Benchmark Evaluations

We present the results on the D4RL benchmark suite [34] in Table 5, with illustrations of the evaluation
domains shown in Figure 3. Some of the benchmark tasks consist of narrow data distributions, while
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Figure 3: D4RL benchmark tasks: locomotion, antmaze, adroit and kitchen.

Figure 4: Robomimic tasks: lift, can, square, tool-hang, transport. Among these
tasks, square features multi-modal behavior, tool-hang requires high-precision manipulation,
transport is particularly challenging because its long-horizon complex multi-modal nature.

others contain high-coverage data. For example, the “kitchen-” domains consist of data from expert
human teleoperators controlling a robotic arm to perform a variety of manipulation skills, which
must then be sequenced and recombined by the algorithm to solve specific tasks. The “-expert”
and “-medium-expert” datasets for the locomotion tasks also contain narrow expert data, possibly
in combination with broad but suboptimal data, with the “-medium-expert” version presenting a
particular challenge in terms of picking out the narrow but high-performing expert mode from the
noisier overall distribution. The “adroit” dexterous manipulation tasks also contain narrow expert
demonstration data from humans controlling the simulated robotic hand with a data glove. The
narrow datasets are particularly challenging for prior continuous-action methods, as the narrow
behavior policies exacerbate challenges due to imperfect approximations for policy constraints and
conservative regularizers. This is particularly pronounced for high-dimensional domains, such as the
24-DoF “adroit” robotic hand, where methods that require integrals or expectations over the action
space (such as the regularizer in CQL) must sample and average over a high-dimensional action space.
We see that for each algorithm (BRAC, IQL, and CQL), the version of each algorithm discretized with
SAQ improves with respect to the average score in each of the domain types (locomotion, antmaze,
adroit, and kitchen). Although in some cases the improvement is small, in other cases it is very
significant, particularly for narrow-data adroit and kitchen tasks, and the “-medium-expert” versions
of the halfcheetah and hopper task. We hypothesize that SAQ performs well in these domains because
the discretization can capture the individual (narrow) modes, while the discrete-action RL algorithm
can then select from among these modes to attain the best performance.

While SAQ can lead to significant improvements over the continuous-action counterpart of each
method, the main benefit of SAQ is not in raw performance, but in terms of the simplification of the
downstream RL problem. Our experiments provide an “apples to apples” comparison for each RL
method, comparing its discrete (SAQ) version to its original continuous formulation, but of course,
other offline RL methods might perform better on some tasks, and we do not aim to show that SAQ
achieves state-of-the-art performance over all possible offline RL techniques. However, we expect
that the simple discrete-action RL problem that is presented via our proposed discretization will in
the long run make it easier to scale offline RL to harder and more complex problem domains, and
provide a valuable tool to the RL practitioner. RL methods tend to be complex and difficult to tune,
so any improvement that simplifies the RL part of the problem is likely to improve practical utility.

5.2 Robomimic Evaluation

Robomimic [6] is a set of environments and demonstration datasets that require controlling a 7-DoF
robot arm to perform a variety of manipulation tasks. Prior work [6] reported that these environments
are particularly challenging for offline RL algorithms, with the best-reported results obtained by
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Task BRAC SAQ-BRAC IQL SAQ-IQL CQL SAQ-CQL BC SAQ-BC

locomotion avg 64.16 66.98 75.14 76.67 75.6 77.35 38.86 60.77
antmaze avg 18.84 29.5 55.34 55.92 55.15 56.87 0 0
adroit avg 23.86 40.09 20.32 22.82 10.58 21.37 12.35 21
kitchen avg 15.78 36.11 50.83 58.61 48.67 65.89 17.22 57

Table 1: Averaged normalized scores across locomotion, Adroit, AntMaze, and kitchen domains from
D4RL. The version of each algorithm discretized with SAQ generally improves over the average
score of the original algorithm in each class of domains, with particularly pronounced improvements
on narrow dataset domains such as adroit and kitchen. The full results are deferred to Appendix C

Task IQL SAQ-
IQL

CQL Robomimic
CQL

SAQ-
CQL

BC Robomimic
BC

SAQ-
BC

lift 58 90 64.2 92.7 90.8 59.47 100 90.13
can 33.73 68 19.6 38 71.2 31.73 95.3 66.4
square 26.93 46.67 0 5.3 44.27 19.33 78.7 45.33
tool-hang 2.67 28 0 0 3.87 1.87 17.3 3.47
transport 0 2 0 0 3.47 0.27 29.3 3.2

average 24.27 46.93 16.76 27.2 42.72 22.53 64.12 41.71

Table 2: Average success rates on Robomimic tasks using the Proficient Human dataset for each task.

simpler imitation learning methods. Using the “proficient human” (PH) datasets, which each consist
of 200 successful trajectories with a binary reward, we trained policies with the continuous version of
IQL, CQL, and BC, as well as discrete-action policies using the discretization from SAQ. The results,
presented in Table 2, show that SAQ indeed improves continuous offline RL by large margins on all
the tasks considered. It’s worthwhile to mention that our continuous BC results don’t exactly match
the original paper [6], as the authors point out, they adopt a Gaussian Mixture Model (GMM) for
the policy class and extensively optimize parameters then perform checkpoint selection, whereas we
directly train unimodal BC policies.

While the D4RL results suggest that discretization with SAQ can consistently improve the perfor-
mance of each offline RL algorithm, these results further suggest that domains that are especially
challenging for offline RL, such as narrow demonstration datasets, are particularly amenable for
SAQ, where it can enable offline RL methods that were previously outperformed by simple imitation
learning to attain significantly better results. This suggests that SAQ can be a particularly effective
tool in robotic learning, where narrow demonstration datasets might be commonplace.

6 Discussion, Limitations, and Future Work

We presented a method for state-conditioned action quantization to improve continuous offline
RL algorithms. Our approach allows offline RL methods to enforce policy constraints or value
conservatism more exactly as compared to their continuous counterparts. This is particularly relevant
and important in the robotic learning setting where we usually assume narrow datasets of expert
demonstrations where function approximation errors get even more exaggerated. However our
approach does have a number of limitations. First, we require sufficient state-action coverage to
be able to perform state-conditioned action quantization. This is a common assumption in offline
RL and is true in many curated datasets; however, it might be challenging to obtain such datasets
in real-world robotic settings. That said, our approach is able to achieve impressive performance in
the Robomimic environment which largely composed of real human teleoperation data. Second, it is
not clear the best way to adopt our method in the online finetuning setting, where new data might
invalidate the learned discretization. Adaptively adjusting the discretization during online training
could be a valuable topic to explore in future work.
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Appendix

A Detailed SAQ-IQL derivation

In this section, we describe in detail the derivation for the SAQ-IQL algorithm. We start with the
original optimization objective from IQL that employs an explicit policy constraint w.r.t. to a behavior
policy

π∗ = argmax
π∈Π

Ea∼π(·|s)[A
π(s,a)]

s.t. DKL(π(·, s)||πβ(·|s)) ≤ ϵ∑
a

π(a|s) = 1

(11)

We can write down the Lagrangian of 11 and expand it out:

L(π, λ, α) = Ea∼π(·|s)[A
π(s,a)] + λ(ϵ−DKL(π(·|s)||πβ(·|s))) + α(1−

∑
a

π(a|s))

L(π, λ, α) =
∑

a∼π(·|s)

(π(a|s)Aπ(s,a))+λ(ϵ−
∑

a∼π(·|s)

(π(a|s) log( π(a|s)
πβ(a|s)

)))+α(1−
∑
a

π(a|s))

Differentiating L(π, λ, α) with respect to π(a|s) results in

∂L(π, λ, α)

∂π
= Aπ(s,a)− λ(log(π(a|s))− log(πβ(a|s)) + 1)− α

We divide the differentiated Lagrangian by the constant λ

∂L(π, λ, α)

∂π
· 1
λ
=
Aπ(s,a)

λ
+ log(πβ(a|s))− log(π(a|s))− 1− α

λ

and set the resulting expression to 0 to arrive at π∗(a|s),

π∗(a|s) = exp[
Aπ(s,a)

λ
+ log(πβ(a|s))− 1− α

λ
]

π∗(a|s) = 1

z(s)
exp[

Aπ(s,a)

λ
+ log(πβ(a|s))]

where z(s) is a normalizing term.

12



B Ablation Studies for SAQ

Task No
State

State
No
State

State
No
State

State

SAQ- SAQ- SAQ- SAQ- SAQ- SAQ-
CQL CQL IQL IQL BRAC BRAC

halfcheetah-
medium-replay-v2

1.56 47.07 1.56 36.2 -1.6 40.25

hopper-medium-
replay-v2

15.24 94.73 11.74 59.43 21.56 68.87

walker2d-medium-
replay-v2

4.67 81.72 6.89 45.64 -
0.25 53.52

average 7.16 74.51 6.73 47.09 6.57 54.21

Table 3: Comparing the performance of state-conditioned action discretization against unconditioned
action discretization with CQL. The state-conditioned discretization scheme significantly outperforms
the unconditioned one since unconditioned action discretization cannot compress the action space
into few number of bins.

Comparing discretization methods. To understand the importance of the state-conditioned dis-
cretization method, we compare it against a naive discretization method where the VQ-VAE discretizes
the actions without conditioning on the states and present the results in Table 3. We see that the
state-conditioning allows is indeed highly important in compressing the action space into a small
number of bins, resulting in much higher performance than a state-agnostic discretization scheme.

Codebook size robustness. One key design choice we make in this paper is the use of a VQ-VAE,
one natural question is then our method’s robustness against the codebook size in the VQ-VAE; since
that can be crucial in determining the quality of the performed discretization through it. Towards this
end, we empirically experiment with varying codebook sizes across all three algorithms. We present
the results in Table 4, and we found that our method’s performance is consistent across codebook
sizes; which further resonates with the practical utility of adopting our method.

Codebook Size 16 32 64 128

SAQ-CQL 108.7 111.6 110.8 103.2
SAQ-IQL 106.9 104.8 104.2 94.42
SAQ-BRAC 106.5 108.3 105.7 107

Table 4: Comparing the performance of SAQ-IQL, SAQ-CQL, and SAQ-BRAC on hopper-expert-v2
while varying the codebook size. It can be observed that the discretized algorithms are invariant to
codebook size changes.

Figure 5: Increasing policy constraint
levels on hopper-expert-v2 environment
from Gym locomotion.

Controlling policy constraint levels. As stated in Sec.4.1,
one key premise of SAQ is that we can enforce policy
constraint or value conservatism exactly; which associates
with the practical performance of offline RL methods. To
further verify this hypothesis empirically; we pick one
task from the Gym locomotion suite and vary the weight
coefficients for policy constraint or value conservatism to
observe the resulting performance. We present our results
in Fig. 5, we can see that small constraint enforcement
leads to poor performance initially; then the performance
ramps up when we increase the coefficients; finally con-
verges with sufficient large coefficients. This observation
confirms our conjecture in the paper.
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C Additional Experiment Results

Task BRAC SAQ-
BRAC

IQL Aquadem-
IQL

SAQ-
IQL

CQL Aquadem-
CQL

SAQ-
CQL

BC Aquadem-
BC

SAQ-
BC

halfcheetah-expert-v2 67.99 64 94.78 92.73 90.3 43.9 92.66 92.65 91.53 92.69 108.4
halfcheetah-medium-expert-v2 73.07 90.31 88.06 80.75 89.05 50.32 88.3 91.69 48.81 74.17 57.65
halfcheetah-medium-replay-v2 -3.3 35.28 44.24 35.12 36.2 47.07 40.5 40.25 35.16 35.62 3.76
halfcheetah-medium-v2 47.08 43 47.3 42.39 42.52 48.56 44.5 43.89 42.32 41.93 47.02

hopper-expert-v2 67.34 110 108.8 109 100.3 100.5 110.3 109.9 98.8 110.1 92.63
hopper-medium-expert-v2 50.74 98.75 32.85 54.57 81.56 67.08 86.7 98.47 44.48 57.9 58.94
hopper-medium-replay-v2 36.81 32.54 61.75 38.05 59.43 94.73 90.3 68.87 17.96 20.94 32.93
hopper-medium-v2 57.06 54.16 54.3 49.2 50.53 70.32 58.5 38.25 50.31 52.98 42.47

walker2d-expert-v2 108.4 107.5 110.12 108.5 107.6 109.2 108.2 107.3 108.3 108.3 104.5
walker2d-medium-expert-v2 109 102.9 109.56 108 100.3 110.7 108.1 108.6 91.79 83.55 103.2
walker2d-medium-replay-v2 73.72 0.4 68.71 32.66 45.64 81.72 80.8 53.52 12.98 27.86 15.27
walker2d-medium-v2 81.94 64.8 81.25 68.06 68 83.11 82.1 74.77 70.18 27.86 62.52

locomotion average 64.16 66.98 75.14 71.01 76.67 75.6 82.58 77.35 59.39 61.16 60.77

antmaze-medium-diverse-v2 26 47.6 76.67 40 68.33 72.75 22.67 75.47 0 0 0
antmaze-medium-play-v2 48.67 56.93 78.67 46 74.33 67.04 30.67 68.67 0 1.3 0
antmaze-large-diverse-v2 0.66 9.73 31.67 33.67 41 35.62 22.67 36 0 0 0
antmaze-large-play-v2 0 3.73 34.33 14.33 40 45.18 25.33 47.33 0 0 0

antmaze average 18.84 29.5 55.34 33.5 55.92 55.15 25.34 56.87 0 0.33 0

door-human-v0 −1.01 35.42 1.79 2.15 9.26 0.84 6.09 2.12 3.29 3.24 9.28
hammer-human-v0 −1.42 20.52 1.41 1.56 1.57 0.27 2.64 0.6 0.8 2.09 1.38
pen-human-v0 98.15 98.41 69.69 73.91 80.25 41.24 85.66 82.73 45.28 72.12 73.3
relocate-human-v0 −0.28 6 8.38 0.55 0.2 −0.05 0.28 0.02 0.04 0.48 0.02

adroit average 23.86 40.09 20.32 19.54 22.82 10.58 23.67 21.37 12.35 19.48 21

kitchen-mixed-v0 10.33 53.33 48.92 56.94 52.92 62 0 57.67 37.9 58.89 34
kitchen-complete-v0 31.67 10 66 70.92 76.76 14 21.5 47.67 39.13 68 90.33
kitchen-partial-v0 5.33 45 37.58 44.83 46.25 70 50 92.33 37.33 43.56 46.67

kitchen average 15.78 36.11 50.83 57.56 58.61 48.67 23.83 65.89 38.12 56.82 57

Table 5: Comparison of our method and Aquadem on various D4RL tasks. SAQ in general improves
over its continuous counterpart, especially in the narrow dataset setting; also outperforms Aquadem
in most tasks.
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