
Contrastive Value Learning:
Implicit Models for Simple Offline RL

Bogdan Mazoure⇤†1 Benjamin Eysenbach⇤†2 Ofir Nachum3 Jonathan Tompson3

1Apple 2Princeton University 3Google DeepMind

Abstract: Model-based reinforcement learning (RL) methods are appealing in the
offline setting because they allow an agent to reason about the consequences of actions
without interacting with the environment. While conventional model-based methods
learn a 1-step model, predicting the immediate next state, these methods must be
plugged into larger planning or RL systems to yield a policy. Can we model the
environment dynamics in a different way, such that the learned model directly indicates
the value of each action? In this paper, we propose Contrastive Value Learning (CVL),
which learns an implicit, multi-step dynamics model. This model can be learned
without access to reward functions, but nonetheless can be used to directly estimate the
value of each action, without requiring any TD learning. Because this model represents
the multi-step transitions implicitly, it avoids having to predict high-dimensional
observations and thus scales to high-dimensional tasks. Our experiments demonstrate
that CVL outperforms prior offline RL methods on complex robotics benchmarks.

1 Introduction

While control from offline demonstrations is relevant to many real-world applications (e.g. sample-efficient
pre-training for robots, [1]) in case the ability for online data collection is limited, it often requires
the algorithms to find policies that are not well-supported by the training data. Instead of learning via
trial-and-error, offline RL algorithms must leverage logged historical data to learn about the outcome of
different actions, potentially by capturing environment dynamics as a proxy signal. Many prior approaches
for this offline learning setting have been proposed, whether in model-free [2, 3, 4] or model-based [5, 6]
settings. Our focus will be on those that address this prediction problem head-on: by learning a predictive
model of the environment which can be used in conjunction with most model-free algorithms.

Prior model-based methods [7, 8, 5, 6] learn a model that predicts the observation at the next time step.
This model is then used to generate synthetic data that can be passed to an off-the-shelf RL algorithm.
While these approaches can work well on some benchmarks, they can be complex and expensive: the
model must predict high-dimensional observations, and determining the value of an action may require
unrolling the model for many steps. Learning a model of the environment has not made the RL problem
any simpler. Moreover, as we will show later in the paper, the environment dynamics are intertwined with
the policy inside the value function; model-based methods aim to decouple these quantities by separately
estimating them. On the other hand, we show that one can directly learn a long-horizon transition model
for a given policy, which is then used to estimate the value function. A natural use case for learning this
long-horizon transition model (specifically, a state occupancy measure) from unlabelled data is multi-task
pretraining, where the implicit dynamics model is trained on trajectory data across a collection of tasks,
often exhibiting positive transfer properties. As we demonstrate in our experiments, this multi-task
occupancy measure can then be finetuned using reward-labelled states on the task of interest, greatly
improving performance upon existing pretraining methods as well as tabula rasa approaches.

In this paper, we propose to learn a different type of model for learning from offline data, a model which (1)
will not require predicting high-dimensional observations and (2) can be directly used to estimate Q-values
without requiring either model-based rollouts or model-free temporal difference learning. Precisely, we
will learn an implicit model of the discounted state occupancy measure, i.e. a function which takes in
a state, action and future state and outputs a scalar proportional to the likelihood of visiting the future
state under some fixed policy. We will learn this implicit model via contrastive learning, treating it as
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Figure 1: Contrastive Value Learning: A stylized illustration of trajectories (grey) and the rewards at future states
(e.g., +8, -5). (Left) Q-learning estimates Q-values by “backing up” the rewards at future states. (Right) Our method
learns the Q-values by fitting an implicit model to estimate the likelihoods of future states (blue), and taking the
reward-weighted average of these likelihoods.

a classifier rather than a generative model of observations. Once learned, we predict the likelihood of
reaching every reward-labeled state. By weighting these predictions by the corresponding rewards, we
form an unbiased estimate of the Q-function. Whereas methods like Q-learning estimate the Q-function
of a state “backing up” reward values, our approach goes in the opposite direction, “propagating forward”
predictions about where the robot will go.

We name our proposed algorithm Contrastive Value Learning(CVL). CVL is a simple algorithm for
model-free control from offline data which learns the future state occupancy measure using contrastive
learning and re-weights it with the future reward samples to construct a quantity proportional to the true
value function. Because CVL represents multi-step transitions implicitly, it avoids having to predict
high-dimensional observations and thus scales to high-dimensional tasks. Using the same algorithm, we
can handle settings where reward-free data is provided, which cannot be directly handled by classical
offline RL methods such as FQI [9] or BCQ [3]. We compare our proposed method to competitive offline
RL baselines, notably CQL [4] and CQL+UDS [10] on an offline version of the multi-task Metaworld
benchmark [11], and find that CVL greatly outperforms the baseline approaches as measured by the
rliable library [12]. Additional experiments on image-based tasks from this same benchmark show
that our approach scales to high-dimension tasks more seamlessly than the baselines. We also conduct
a series of ablation experiments highlighting critical components of our method.

2 Related works

Prior work has given rise to multiple offline RL algorithms, which often rely on behavior regularization
in order to be well-supported by the training data. The key idea of offline RL methods is to balance
interpolation and extrapolation errors, while ensuring proper diversity of out-of-dataset actions. Popular
offline RL algorithms such as BCQ and CQL rely on a behavior regularization loss [2] as a way to control
the extrapolation error. This regularization term ensures that the learned policy is well-supported by the data,
i.e. does not stray too far away from the logging policy. The major issue with current offline RL algorithms
is that they fail to fully capture the entire distribution over state-action pairs present in the training data.

To directly learn a value function using policy or value iteration, one needs to have information about
the transition model in the form of sequences of state-action pairs, as well as the reward emitted by this
transition. However, in some real-world scenarios, the reward might only be available for a small subset
of data. For instance, in the case of recommending products available in an online catalog to the user, the
true long-term reward (user buys the product) is only available for users who have browsed the item list for
long enough and have purchased a given item. It is possible to decompose the value function into reward-
dependent and reward-free parts, as was done by [13] through the successor representation framework [14].
More recent approaches [15, 16, 17] use a generative model to learn the occupancy measure over future
states for each state-action pair in the dataset; its expectation corresponds to the successor representation.
However, learning an explicit multi-step model such as [15] can be unstable due to the bootstrapping term
in the temporal difference loss. Similarly to model-based approaches, our method will learn a reward-free
representation of the world, but will do so without having to predict high-dimensional observations and
without having to do costly autoregressive rollouts. Thus, while our critic is trained without requiring
rewards, it is much more similar to a value function than a standard 1-step model.

Learning a conditional probability distribution over a highly complex space can be a challenging task,
which is why it is often easier to instead approximate it using a density ratio specified by an inner product
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in a much lower-dimensional latent space. To learn an occupancy measure over future states without
passing via the temporal difference route, one can use noise-contrastive estimation [NCE, 18, 19] to
approximate the corresponding log ratio of densities as an implicit function. Contrastive learning was
originally proposed as an alternative to classical maximum likelihood estimation, but has since then seen
successes in static self-supervised learning [20, 21]. In reinforcement learning, NCE was shown to improve
the robustness of state representations to exogenous noise [22, 23, 24] and, more recently, to be an efficient
replacement for traditional goal-conditioned methods [17].

3 Preliminaries

Reinforcement learning. We assume a Markov decision process M defined by the tuple
hS, S0,A, P[·|s, a], r, �i, where S is a state space, S0 ✓ S is the set of starting states, A is an
action space, P[·|st,at] : S⇥A!�(S) is a one-step transition function2, r : S⇥A! [rmin,rmax] is a
reward function and � 2 [0,1) is a discount factor. The system starts in one of the initial states s0 2S0.
At every timestep t=1,2,3,.., the policy ⇡ :S!�(A), samples an action at⇠⇡(·|ot). The environment
transitions into a next state st+1⇠P[·|st,at] and emits a reward rt = r(st,at). With Markovian policy
⇡(a |s), we define the discounted occupancy measure conditionned on (st,at) to be

P⇡
t:t+K

(st,at)=(1��)
KX

�t=1

�
�t�1P[St+�t |st,at;⇡].

With this notation in place, the objective is to maximize the discounted sum of returns over H steps:

max
⇡2⇧

EP⇡

0:H(S0)

"
HX

t=1

�
t�1

r(st,at)

#
. (1)

We will study this problem in the offline setting: rather than learning by trial and error (by interacting
with the environment), the algorithm instead must learn from an offline dataset of logged trajectories.

Value-based RL algorithms maximize cumulative episodic rewards by estimating the state-action value
function under a policy ⇡, which can equivalently be expressed as an expectation under the discounted
occupancy measure:

Q
⇡(st,at)=EP⇡

t:H(st,at)

"
H�tX

�t=1

�
�t�1

r(st+�t,at+k)

#
=

1

1��Es,a⇠P⇡

t:H(st,at),⇡(s)[r(s,a)]. (2)

Note that the occupancy measure can equivalently be re-written in terms of the geometric distribution
over the time interval [0,1) for infinite-horizon rollouts:

P⇡0:1(s0,a0)=E�t⇠Geom(1��)[P[St+�t |s0,a0;⇡]] (3)

This decomposition of the value function has already been used in previous works based on the successor
representation [14, 13] and, more recently, �-models [15]. We will use it to efficiently learn an implicit
density ratio proportional to the state occupancy measure using contrastive learning.

Noise-contrastive estimation Noise-contrastive estimation [NCE, 18] spans a broad class of learning
algorithms, at the core of which is negative sampling [25]. NCE learns a metric space from positive and
negative examples. Given reference samples, samples from a positive distribution (high similarity with
reference points) and samples from a negative distribution (low similarity with reference points), contrastive
learning methods learn an embedding where positive examples are located closer to the reference points than
negative examples. One of the most well-known and commonly used NCE objectives is InfoNCE [19]:

max
�, 2�

Ex,y,y

ï
log

e
�(x)> (y)

P
y02y[ye

�(x)> (y0)

ò
(4)

over some hypothesis class � :{� :X!Z} for input space X , latent space Z, x⇠P(X ), y⇠Ppositives(X )
and y⇠Pnegatives(X ). Contrastive learning has been widely studied in the static unsupervised/ supervised

2�(X ) denotes the entire set of distributions over the space X .
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learning settings [26, 21, 20], as well as in reinforcement learning [27, 23] for learning state representations
with desirable properties such as alignment and uniformity [28].

Solving Equation (4) for (�⇤, ⇤) yields a ratio estimator f : X ⇥ Y ! R which decomposes as
f
⇤(x,y)=�⇤(x)> ⇤(y) and, at optimality3, captures the log-ratio of Ppositives(X ) and Pnegatives(X ):

f
⇤(x,y)/ logP[y|x]P[y] . (5)

Implicit dynamics models via NCE. Various prior works [30, 23, 31] have studied the use of NCE
to approximate a single-step dynamics model, where triplets (st,at,st+1) have higher similarity than
(st,at,st0 6=t+1), effectively defining positive and negative distributions over trajectory data. More recently,
contrastive goal-conditioned RL [17] used InfoNCE to condition the ratio estimator on goal states sampled
from the replay buffer. These methods use asymetric encoders, using �(st,at) and  (st+�t), where
positive samples of st+�t are sampled from the discounted state occupancy measure for t�0.

The conditional probability distribution of future states given the current state-action pair can be efficiently
estimated using an implicit model trained via contrastive learning over positive and negative feature
distributions, as shown in Equation (6). Within each batch, the states used in positive examples for one
batch element are used as negative examples for every other batch element.

`InfoNCE(�, )=Est,at,�t,�t

ï
�log e

�(st,at)
>
 (st+�t)

P
�t02�t[�t

e
�(st,at)> (st+�t0)

ò
. (6)

Minimizing `InfoNCE over trajectory data yields a ratio estimator which, at optimality, approximates the
future discounted state occupancy measure up to a multiplicative term as per Equation (5),

f
⇤(st,at,st+�t)/ log

P[st+�t |st,at;⇡]
P[st+�t;⇡]

. (7)

Intuitively, f⇤ approximates a H-step dynamics model which has an implicit dependence on policy
⇡ that collected the training data, but is time-independent since Equation (7) is optimized on average
across multiple t,�t. Ordinarily, training state-space models is hard when the dimensions are large, e.g.
image-based domains. However, by using contrastive learning, we can learn this model without having
to require it predict high-dimensional observations, as similarity is evaluated in a lower-dimensional latent
space (observe that in Equation (6) the inner product is computed in Z, whose dimension we control,
instead of X , which is specified externally). An apparent limitation of the approach is that the probability
of future states st+�t is recovered only up to a constant. However, it turns out that we can still use this
model to get accurate estimates of the Q-values, as is described in the next section.

4 Estimating and Maximizing Returns via Contrastive Learning

In this section, we show how NCE can be used to learn a quantity proportional to a value function, and
how the later can be used in a policy iteration scheme.

4.1 Estimating Q-values using the Contrastive Model

As shown in Equation (2), the Q-function at (st,at) can be thought of as evaluating the reward function
at states sampled from the discounted occupancy measure P⇡

t:H(st,at). That is, to estimate a quantity
akin to Q

⇡, we can first estimate the occupancy measure and take a weighted average of rewards
over future states using the probabilities from the log-density ratio learned by the contrastive model.
Precisely, Equation (2) corresponds to using an importance-weighted estimator, where an optimal critic that
minimizes Equation (6) approximates the density ratio from Equation (7). The positive samples come from
the discounted state occupancy measure: we first sample a time offset �t⇠Geometric(1��) (column
in the dataset), and then sample a state from the distribution of states at this given offset (row in the dataset).
Formally, we can view this as applying infoNCE to a positive distribution P[st,at,st+�t] and a negative
distribution formed as the product of the marginal distributions, P[st,at]P[st+�t].

The critic itself can be trained using the occupancy measure formulation specified in Equation (3) over
all state-action pairs in a given episode. However, Equation (3) needs to be re-adjusted to account for
finite-horizon truncation of the geometric mass function presented in Definition 1.

3See [29] for exact derivation.
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Definition 1 (Truncated distribution) Let X be a random variable with distribution function FX . Y

is a called the truncated distribution of X with support [m,M ] s.t. 0<m<M if

P[Y =y]=
FX(y�m)�FX(y�1�m)

FX(M)�FX(m)
,y=m,m+1,m+2,···,M. (8)

We denote the special case of the truncated geometric distribution as TruncGeom(p,m,M).

The contrastive objective to train the ratio estimator to approximate the discounted occupancy measure over
a dataset D is then the dot product of features of current state and action � with future state  , normalized
by the product of negative samples

`InfoNCE(�, )=E st,at⇠D,

�t⇠TruncGeom(1��,t,H),
�t⇠TruncGeom(1��,t0 6=t,H)

ï
�log e

�(st,at)
>
 (st+�t)

P
�t02�t[�t

e
�(st,at)> (st+�t0)

ò
. (9)

It is possible that multiple optimal ratio estimators exist such that the multiplicative proportionality constant
depends on the action. To avoid this, we adopt a similar approach as [17] and introduce a regularization
term over the partition function, making the ratio estimator training objective be

`Contrastive=`InfoNCE+�PartitionEst,at,�t,�t

2

4
 
log

X

�t02�t[�t

e
�(st,at)

>
 (s

t+�t0)

!2
3

5. (10)

Now, suppose we found an optimal ratio estimator f . Combining Equation (3) with Definition 1, we obtain
the following form of the Q-function for an optimal ratio estimator f which minimizes Equation (6):

QNCE(st,at)=
1X

�t=1

�
�t�1

Z

st+�t

r(st+�t)P[st+�t|st,at;⇡]dst+�t

=
1��H�t

1�� E�t⇠TruncGeom(1��,t,H)

ïZ

st+�t

r(st+�t)e
f(st,at,st+�t)P[st+�t;⇡]dst+�t

ò

/ 1��H�t

1�� E�t⇠TruncGeom(1��,t,H)

î
EP⇡

t+�t

î
r(st+�t)e

f(st,at,st+�t)
óó
. (11)

Here, the offset �t is a random variable sampled from TruncGeom(1��,t,H) where H is the horizon
of the MDP. Later on, we show that QNCE(s,a)/Q(s,a) for all s2S and a,a

0 2A, which makes the
contrastive Q-values suitable for policy evaluation.

4.2 Efficient Estimation using Random Fourier Features

A major issue with using QNCE out-of-the-box is that it is computationally expensive, requiring evaluation
of the inner product �(st,at)> (st+�t) with a large number of future states. The underlying cause of
this computational overhead is the RBF kernel term e

�(st,at)
>
 (st+�t). If we instead used a linear kernel,

the constant term �(st,at) would be factored out, and we could separately keep track of reward-weighted
future expected features. This would (1) reduce the computational complexity of N actor updates over
D from O(|D|N) to O(|D|+N) and (2) reduce the variance of the representation if averaging features
of future states using exponential moving average. It turns out that the RBF kernel can be approximately
linearized by using random Fourier features [32, 31].

Lemma 1 (Adapted from [32]) Let x,y 2 Rd be unit vectors, and let FW,b(x) =
»

2e
d
cos(Wx+b)

where W⇠Normal(0,I) and b⇠Uniform(0,2⇡). Then, E[FW,b(x)>FW,b(y)]=e
x>y.

Lemma 1 is a straightforward modification of the result from [32] and allows us to reduce the RBF kernel
to an expectation over d-dimensional random feature vectors:

QNCE(st,at)=
1

1��E�t⇠TruncGeom(1��,t,H)[EP(st+�t;⇡)[e
�(st,at)

>
 (st+�t)r(st+�t)]]

=
1

1��FW,b(�(st,at))
>E�t⇠TruncGeom(1��,t,H)[EP(st+�t;⇡)[FW,b( (st+�t))r(st+�t)]]

=
1

1��FW,b(�(st,at))
>
⇠t(⇡). (12)
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The advantage of using the RFF approximation is that it allows us to split the exponential term inside
the expectation and separately keep track of the policy-dependent, reward-weighted future state probability
term, while the state-action dependence term is learned online. Intuitively, the ⇠t(⇡) term accumulates
the Fourier features of future states re-weighted by the corresponding reward averaged over the geometric
mixture of future states. Since it does not depend on the current state st, it can be tracked using a memory
bank ⇠0(⇡),..,⇠H(⇡), which is updated via an exponential-moving average to reduce variance. 4

4.3 Learning the Policy

Once the policy evaluation phase completes and we have an estimate QNCE, we optimize a policy
to maximize the returns predicted by this Q-value. We can decode the policy by minimizing its
Kullback-Leibler divergence to the Boltzmann Q-value distribution (see [33]), which can be efficiently
done by minimizing the following objective:

`Policy(✓)=Est⇠D

ï
DKL

Å
⇡✓(st)

����

����
e
Q(st,·)/⌧

R
a2Ae

Q(st,a)/⌧da

ãò
. (13)

Note that in discrete action spaces, minimizing Equation (13) leads to a soft version of the greedy
policy decoding ⇡greedy(s)=argmax

a2AQNCE(s,a) for s2S. In practice, we approximate the KL term
in Equation (13) using Na Monte-Carlo action samples {�t}Na

i=1⇠TruncGeom(1��,t,H).

Decoding ⇡ in such a way can lead to sampling out-of-distribution actions in regions with low dataset
coverage, thus making the QNCE estimator less accurate. To mitigate this issue, we follow prior
work [34, 35, 36] and add a policy behavior cloning term which prevents the new policy from straying
too far away from the data:

`BC(✓)=Ea,s⇠D[log⇡✓(a |s)] , (14)
for the entropy estimator H(⇡(s)) =�Ea⇠⇡(s)[log⇡(a | s)]. We add this extra loss to `Policy to learn a
policy ⇡ which prioritizes high Q-values that are well-supported by the offline dataset D. Thus, the final
policy optimization objective becomes

`Policy(✓)=`Policy(✓)+�BC`BC(✓) . (15)

Lemma 2 tells us that using CVL as a surrogate Q-function corresponds to one step of conservative policy
improvement, where ⇡ satisfies soft constraints of Equation (13) and small EDµ[DKL(⇡(s)||µ(s))] via
the BC term. Its proof is located in Section 6.2.

Lemma 2 (Contrastive policy improvement) Let µ be a policy and let Q
µ

NCE =
min�, 2�EDµ[`Critic(�, )]. If

⇡(s)=argmin
⇡2⇧

DKL

Å
⇡(s)

����

����
e
Q

µ

NCE(st,·)/⌧
R
a2Ae

Q
µ

NCE(st,a)/⌧da

ã
(16)

then Q
⇡(s,a)�Qµ(s,a) for all (s,a)2Dµ.

4.4 Practical Implementation

We now present our complete method, which can be viewed as an actor-critic method for offline RL. We
learn the ratio estimator via contrastive learning (Equation (10)) and learn the policy via Equation (15).
We will interleave these steps in most of our experiments, but experiments in Section 6.3 show that the
ratio estimator can be pretrained e.g. in the presence of unlabeled data from related tasks. We summarize
the method in Algorithm 1.

4.5 Interpretations and Connections with Prior work

The main distinction between Contrastive Value Learning and prior works consists specifically in
representing the Q-values in a two-step decomposition: the Q-value is represented as an occupancy measure

4This idea can be adapted to online learning settings as well by clipping policy improvement steps so that ⇠ doesn’t
change too fast under newly collected data.
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Algorithm 1: Contrastive Value Learning (CVL)
Input :Dataset D⇠µ,  ,� networks, temperature parameter ⌧ , exponential moving average

parameter �
1 for epoch j=1,2,..,J do
2 for minibatch B⇠D do

/* Update density ratio estimator using Equation (10) */

3 Update �(j+1)
, 

(j+1) usingr�, `NCE(�(j), (j)) ;
/* Estimate the contrastive Q-function */

4 Q(s,a) Equation (12) if using RFF, otherwise Equation (11);
/* Decode policy from Q-function using Equation (15) */

5 Update ⇡✓ usingr✓{`Policy(✓)} ;
/* Update future state encoder using EMA */

6  
(j+1)
EMA  � 

(j+1)+(1��) (j)
EMA ;

/* Update future state features weighted by rewards */

7 ⇠
(j+1)
EMA   

(j+1)
EMA ·B[rt+�t];

Figure 2: Metaworld benchmark. (Left) We evaluate CVL on 50 tasks from Metaworld, a subset of which are
shown here. (Right) Compared with three offline RL baselines, CVL achieves statistically-significant improvements in
offline performance. Results are reported over 5 random seeds.

weighted by the reward signal; the occupancy measure itself is represented using a powerful likelihood-
based model parameterized using an implicit function. Decoupling the learning of the occupancy measure
from reward maximization allows, among others, for efficient pretraining strategies on unlabeled data, i.e.
trajectory data without reward information, and can be used to learn provably optimal state representations
for any reward function [37]. While CVL is similar in spirit to the successor representation [14, 13], the
occupancy measure learned by CVL is much richer than that of SR, as it captures the entire distribution over
future states instead of only the first moment. Another method, �-models [15], is closely related to CVL,
but uses a surrogate single-step TD objective to learn the occupancy measure, similarly to C-learning [16].

5 Experiments

Our experiments aim to answer three questions. First, we study how CVL compares with baseline
approaches on a large benchmark of state-based tasks. Our second set of experiments look at image-based
tasks, testing the hypothesis that CVL scales to these tasks more effectively than the baselines. We conclude
with ablation experiments. Our main point of comparison will be a high-performing offline RL method,
CQL [4]. While CVL learns an implicit model, that model is structurally more similar to value-based
RL methods than model-based methods, motivating our comparison to a value-based baseline (CQL).

Metaworld. We first test our approach on the MetaWorld benchmark [11], which consists of 50 robotic
manipulation tasks such as open a door, pick up an object, reach a certain area of the table, executed by
a robotic arm (see Figure 2 (left)). This domain is an ideal testbed for CVL, as it allows for both full-state
and image-based experiments, has a dense and informative reward function thus decoupling the problem
of representation learning from exploration, and is challenging for model-free methods which leaves room
for improvement. While the original MetaWorld domain has been used to evaluate online RL agents, we
create an ad hoc dataset suitable for offline learning. To do so, we train Soft Actor-Critic [33] from full
states on each of the 50 tasks separately for 500k frames, and save the resulting replay buffer, which forms
the training dataset. As shown in Figure 2 (right), CVL manages to considerably improve upon strong
baselines such as behavior cloning, CQL and CQL with UDS [10]5. We report the results on all tasks

5For CQL+UDS, we combine all data from the current task with unlabeled data from related tasks with rewards set
to 0. In the absence of related tasks, we pre-train the ratio estimator on the current task with 0 rewards.
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Task BC CQL CVL

door-close 571 ± 9.9 4249 ± 269.9 4480 ± 305.1
door-open 178 ± 4.0 2099 ± 0.9 3389 ± 76.6
drawer-close 2414 ± 1736.5 3964 ± 1634.9 2177 ± 1679.5
drawer-open 1030 ± 104.2 820 ± 56.0 2543 ± 115.0

Table 1: Offline RL with Images. We compare CVL to
baselines on four offline, image-based tasks from Meta-
World offline image-based tasks on 5 random seeds.

Figure 3: RFF ablation. CVL with RFF (orange) per-
forms slightly better than without RFF (blue).

Task medium-r. medium random

walker2d +56 ±10 -43 ±12 +415 ±72

ant +9 ±3 +21 ±6 +23 ±5

hopper +59 ±11 -15 ±5 +40 ±8

Table 2: Offline RL with full states. We compare CVL
to CQL on the robotics suite D4RL [38].

Task medium-r. medium random

walker2d +11 ±3 �83±21 �92±23

ant �66±11 �21±14 �14±7

hopper +21 ±5 -14 ±10 +270 ±54

Table 3: Comparison to successor features. We compare
successor features ([39]) to CQL on D4RL.

Task medium-r. medium random

walker2d �4.27 +8 -

ant - - -

hopper �0.32 +13.3 -
Table 4: Comparison to IQL. We compare IQL ([40]) to
CQL on D4RL.

of the MetaWorld suite over 5 random seeds, according to the aggregation methodology proposed by [12].
Per-environment scores are available in Table 7.

D4RL Table 2 shows the relative improvement in normalized scores of CVL over CQL [4], a strong
offline RL baseline, on the offline RL robotics suite D4RL [38]. Notably, CVL is able to outperform CQL
on data coming from a random policy. Moreover, Table 3 and Table 4 compare two baselines, successor
features (inspired from [39]) and IQL [40], to CQL.

Image-based experiments Our working hypothesis is that contrastive formulation of the value function
acts in itself as a pre-training mechanism via the prism of representation learning. For this reason, we
conduct further experiments on 4 image-based tasks from the MetaWorld suite (similarly to full-states,
the dataset was obtained from the SAC replay buffer trained on rendered images). Results presented
in Section 5 show that CVL is also able to learn meaningful Q-values and achieve good empirical
performance on hard image-based tasks.

Ablations In Section 6.3, we assess the similarity between contrastive and true Q-values on the contin-
uous Mountain Car environment [41] by fitting CVL to the data from SAC’s [33] replay buffer. Figure 8
(left) shows the contrastive Q-values on a log-scale, evaluated on trajectories from the SAC replay; for com-
parison, we also show the Q-values learned by online SAC in Figure 8 (right). Note that the value function
learned by CVL conserves the same topology as the true value function, up to a multiplicative rescaling.

6 Discussion

This paper presented an RL algorithm that learns a contrastive model of the world, and uses that model
to obtain Q values by estimating the likelihood of visiting future states. Our experiments demonstrate
that this approach can effectively solve a large number of offline RL tasks, including from image-based
observations. Our pretraining results hinted that CVL can be pretrained on datasets from other tasks, and
we are excited to pretrain our model on datasets of increasing size.

Limitations. One limitation of our approach is that it corresponds to a single step of policy improvement.
This limitation might be lifted by training the contrastive model using a temporal difference update for
the contrastive model [16, 42]. A second limitation is that the RFF approximation can be poor when
the Fourier dimension is small, which has not been a case in our experiments as CVL+RFF performed
on par with full kernel CVL. We tried to train the contrastive model using non-exponentiated features
(akin to [43]), but failed to achieve satisfactory results. Figuring out how to effectively train these spectral
models remains an important question.
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