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Abstract: Despite great strides in language-guided manipulation, existing work
has been constrained to table-top settings. Table-tops allow for perfect and consis-
tent camera angles, properties are that do not hold in mobile manipulation. Task
plans that involve moving around the environment must be robust to egocentric
views and changes in the plane and angle of grasp. A further challenge is ensur-
ing this is all true while still being able to learn skills efficiently from limited data.
We propose Spatial-Language Attention Policies (SLAP) as a solution. SLAP uses
three-dimensional tokens as the input representation to train a single multi-task,
language-conditioned action prediction policy. Our method shows an 80% success
rate in the real world across eight tasks with a single model, and a 47.5% success
rate when unseen clutter and unseen object configurations are introduced, even
with only a handful of examples per task. This represents an improvement of 30%
over prior work (20% given unseen distractors and configurations). We see a 4x
improvement over baseline in mobile manipulation setting. In addition, we show
how SLAPs robustness allows us to execute Task Plans from open-vocabulary in-
structions using a large language model for multi-step mobile manipulation. For
videos, see the website: https://robotslap.github.io

1 Introduction

Transformers have demonstrated impressive results on natural language processing tasks by be-
ing able to contextualize large numbers of tokens over long sequences, and even show substantial
promise for robotics in a variety of manipulation tasks [1, 2, 3]. However, when it comes to using
transformers for mobile robots performing long-horizon tasks, we face the challenge of representing
spatial information in a useful way. In other words, we need a fundamental unit of representation -
an equivalent of a “word” or “token” - that can handle spatial awareness in a way that is independent
of the robot’s exact embodiment. We argue this is essential for enabling robots to perform manipula-
tion tasks in diverse human environments, where they need to be able to generalize to new positions,
handle changes in the visual appearance of objects and be robust to irrelevant clutter. In this work,
we propose Spatial-Language Attention Policies (SLAP), that use a point-cloud based tokenization
which can scale to a number of viewpoints, and has a number of advantages over prior work.

SLAP tokenizes the world into a varying-length stream of multiresolution spatial embeddings, which
capture a local context based on PointNet++ [4] features. Unlike ViT-style [1], object-centric [5, 3],
or static 3D grid features [2], our PointNet++-based [4] tokens capture free-form relations between
observed points in space. This means that we can combine multiple camera views from a moving
camera when making decisions and still process arbitrary-length sequences.

Our approach leverages a powerful skill representation we refer to as “attention-driven robot poli-
cies” [6, 7, 8, 2, 9] operating on an input-space combining language with spatial information. Unlike
other methods that directly predict robot motor controls [10, 1], these techniques predict goal poses
in Cartesian space and integrate them with a motion planner [6, 8, 2] or conditional low-level pol-
icy [9] to execute goal-driven motion. This approach requires less data but still has limitations, such
as making assumptions about the size and position of the camera in the input scene and long training
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Figure 1: We propose SLAP, which allows us to learn skills for mobile manipulators to accomplish
multi-step tasks given natural language goals. Our system works by training a language-conditioned
interaction prediction module, which will determine which areas of a scene should be interacted
with, in addition to an action policy which operates on predicted interaction points. This allows us
to scale to more complex scenes, while predicting continuous actions.

times [7, 6, 2]. However, these methods fall into a different trap: they make strong assumptions
about how big the input scene is [2], where the camera is [7, 6], and generally take a very long time
to train [7, 6], meaning that they could not be used to quickly teach policies in a new environment.

SLAP uses a hybrid policy architecture. The interaction prediction module determines which parts
of the tokenized environment the robot focuses on, and a relative action module predicts parameters
of continuous motion with respect to the interaction features in the world. SLAP generalizes better
to unseen positions and orientations, as well as distractors, while being unrestricted by workspace
size and camera placement assumption, using fewer demonstrations and training in roughly a day.

We evaluate SLAP on two robot platforms. First, on a Franka Panda we can perform a direct skills
comparison to the current state-of-the-art, PerAct, [2], where we demonstrate better performance
with 80% success rate on 8 static real-world tasks on held-out scene configurations and a 47.5%
success rate tested with out-of-distribution objects. Second, unlike prior work, we move beyond
the stationary camera views and robot arms of a table-top setting, and demonstrate SLAP on the
Hello Robot Stretch RE-2 mobile manipulator with an ego-centric camera and 6-DoF end-effector
configuration. In this setting, we also include task planning to successfully execute natural language
task instructions with ten demonstrations over five learned skills and three heuristic skills (Fig. 1).
When SLAP is compared to the PerAct baseline for four skills in a controlled setting, we see a 4x
improvement in the task success rate (Table 3).

2 Related Work

Attention-Based Policies. Attention-based policies have been widely studied in prior research and
have been found to have superior data efficiency, generalization, and the ability to solve previously
unsolvable problems [11, 9, 6, 12, 2, 13]. However, these approaches often rely on strong assump-
tions about the robot’s workspace, such as modeling the entire workspace as a 2D image [12, 6, 7, 8]
or a 3D voxel cube with predetermined scene bounds [2, 9]. This restricts their applicability and
may lead to issues related to camera positioning, workspace location, and discretization size. Ad-

2



“P
ic

k 
up

 le
m

on
 

fr
om

 b
as

ke
t”

“C
lo

se
 t

he
 

d
ra

w
er

”

2) Predict Actions
Given location from interaction 

prediction module

“P
ic

k 
up

th
e 

b
ot

tle
”

Input Approach Interact RetreatDemonstrations

1) Predict Interaction Point
Given language command, noisy 

observations

Roll-out

Figure 2: Spatial Language Attention Policies (SLAP) learn language-conditioned skills from few
demonstrations in a wide variety of cluttered scenes. SLAP has two components: an “interaction
prediction” module which localizes relevant features in a scene, and an “action prediction” module
which uses local context to predict an executable action.

ditionally, these works can be seen, at least partly, as applications of object detection systems like
Detic [14] or 3DETR [15], but they lack the manipulation component.

Compared to previous works, some recent studies focus on unstructured point clouds [11, 16]. These
approaches demonstrate improved data efficiency and performance compared to traditional behav-
ior cloning. For instance, Where2Act [11] and VAT-Mart [16] predict interaction trajectories, while
UMPNet [17] supports closed-loop 6DoF trajectories. They share a common framework: a general-
izable method to predict the interaction location and then predict local motion for the robot.

Training Quickly with Attention-Based Policies. CLIPort [7] and PerAct [2] are attention-based
policies similar to Transporter Nets [6]. While fitting our definition of attention-based policies,
they confine their workspace, use a rigid grid-like structure and treat action prediction as a dis-
crete classification. While still a limited workspace, SPOT [12], demonstrated the usefulness of 2D
attention-based policies for fast RL training, including sim-to-real transfer, and Zeng et al. [6] have
shown these policies are valuable for certain real-world tabletop tasks like kitting.

Manipulation of Unknown Objects. Manipulation of unknown objects includes segmentation [18,
19], grasping [20, 21], placement [22], and multi-object rearrangement either from a goal image [23,
24] or from language instructions [25, 26]. These approaches rely, generally, on first segmenting
relevant objects out, and then predicting how to grasp them and where to move them using separate
purpose-built models, including for complex task and motion planning [27].

Language and Robotics. Language is a natural and powerful way to specify goals for multi-task
robot systems. Several recent works [10, 1, 28] use a large-language model for task planning to com-
bine sequential low-level skills and assume to learn the low-level skills with IL or RL. To realistically
handle language task diversity, we need to learn these skills quickly. SLAP is more sample-efficient
than prior IL or RL approaches. In PaLM-E [3], textual and multi-modal tokens are interleaved as
inputs to the Transformer for handling language and multimodal data to generate high-level plans
for robotics tasks. Our approach is a spatial extension of this strategy.

Language for Low-Level Skills. A number of works have shown how to learn low-level language-
conditioned skills, e.g. [7, 2, 1, 29]. Like our work, Mees et al. [29] predicts 6DoF end effector goal
positions end-to-end and sequences them with large language models. They predict a 2D affordance
heatmap and depth from RGB; We do not predict depth, but specifically look at robustness and
generalization, where theirs is trained from play data in mostly-fixed scenes. Shridhar et al. [2]
predict a 3D voxelized grid and show strong real-word performance with relatively few examples,
but don’t look at out-of-domain generalization and are limited to a coarse voxelization of the world.
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3 Approach

Most manipulation tasks necessarily involve interacting with environment objects [11]. We define an
‘atomic skill’ as a task that can be specified by an interaction point, and a sequence of relative offsets
from this interaction point. For example, pick(’mug’) is an atomic skill as it can be defined in
terms of an interaction point on the ‘mug’ and subsequent relative waypoints for approach, grasp,
and lift actions. Similarly, open(’drawer’) is an atomic skill for which the interaction point
is on the drawer handle, and relative waypoints from it can be defined for approach, grasp, and
pull. While these examples illustrate the concept, SLAP can handle prediction of variable number
of waypoints per skill.

We train a two-phase language-conditioned policy π(x, l), which takes visual observation x and
a language command l as inputs and predicts an interaction point pI , as well as a set of relative
motions, which are offsets from this point, instead of absolute coordinates.However, any realistic
task given to a home robot by a user typically involves more than one atomic skill. Our system breaks
down a high-level natural language task description (T ) into a sequence of atomic skill descriptions
{lj} and uses them to condition the atomic skill motion policies. Our full paradigm is as follows:

T → {l0, ..., ln} → {πj(xj , lj)}n
∀j ∈ n, πj := (πI , πR), where:

πI(xj , lj) → pI (3D interaction point)
πR(xj , lj , pI) → {a}m (sequence of actions)

The interaction point pI is predicted by an Interaction Prediction Module πI , and the continuous
component of the action by a Relative Action Module πR. The Interaction Prediction Module πI

predicts where the robot should attend to; it is a specific location in the world, where the robot will
be interacting with the object as a part of its skill, as shown in Fig. 2. πR predicts a relative action
sequence with respect to this contact point in the Cartesian space. These actions are then provided
as input to a low-level controller to execute the trajectory. These models are trained using labeled
expert demonstrations; a complete overview of the training process is shown in Fig. 4. Overall, the
system outputs a sequence of end-effector actions a.

3.1 Scene Representation

The input observation x is a structured point-cloud (PCD) in the robot’s base-frame, constructed
by combining the inputs from a sequence of pre-defined scanning actions. This point cloud is then
preprocessed by voxelizing at a 1mm resolution to remove duplicate points from overlapping camera
views. The pointcloud is then used as input into both πI and πR.

For πI , we perform a second voxelization, this time at 5mm resolution. This creates the down-
sampled set of points P , such that the interaction point p̂I ∈ P . This means πI has a consistently
high-dimensional input and action space - for a robot looking at its environment with a set of N
aggregated observations, this can be 5000-8000 input “tokens” representing the scene.

While SLAP discretizes the world similar to prior work [30, 31, 2], our approach ensures fine reso-
lution even in larger scenes. We couple this with a set-based learning formulation which allows us
to attend to fine details in a data-efficient manner.

3.2 Interaction Prediction Module

We use our insight about tasks being shaped around an interaction point to make learning more
robust and more efficient: instead of predicting the agent’s motion directly, we formulate our πI

to solely focus on predicting a specific point pI ∈ P , representing a single 5mm voxel that is
referred to as the “interaction point”. This formulation is akin to learning object affordance and
can be thought of as similar to prior work like Transporter Nets in 2D [6]. We hypothesize that
predicting attention directly on visual features, even for manipulation actions, will make SLAP
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Figure 3: An overview of the architecture of the interaction prediction module. The point cloud is
downsampled to remove duplicates and encoded using two modified set-abstraction layers. The SA
layers generate a local spatial embedding which is concatenated with proprioceptive features - in our
case, the current gripper state. Both spatial and language features are concatenated and input into a
PerceiverIO transformer backbone. We then predict an interaction score per spatial feature and the
argmax is chosen as the interaction site for command l.

more general. We use a PerceiverIO [32] backbone to process the data, based on prior work on
language-conditioned real-world policies [2].

We first pass our input point cloud through two modified set abstraction layers [4] which result in a
sub-sampled point-cloud with each point’s feature capturing the local spatial structure around it at
two different resolutions. This encourages the classifier to pay attention to local structures rather
than a specific point that may not be visible in real-world settings. We concatenate the CLIP [33]
tokenized natural language command with the encoded point cloud to create an input sequence.

Each point i ∈ P in the point cloud is assigned a score with respect to task τj which results in the
interaction point for that task, pjI := argmax

x,y,z
(S(i = pjI |l, x, P,Dj)), where Dj is the set of expert

demonstrations provided for task τj . The IPM architecture overview is provided in Fig. 3. Note
we also use binary semantic features from Detic in the Stretch experiment for training SLAP as an
additional feature channel apart from the color-channels.

Modified Set Abstraction Layer. The default SA layer as introduced by Qi et al. [4] uses farthest
point sampling (FPS) to determine which locations feature vectors are created. FPS ensures that
subsampled point-cloud is a good representation of a given scene, without any guarantees about the
granularity. However, it’s very sensitive to the number of points selected - in most PointNet++-based
policies, a fixed number of points are chosen using FPS [4]. However, SLAP must adapt to scenes
of varying sizes, possibly with multiple views, and still not miss small details.

We propose an alternative PointNet++ set abstraction layer, which computes embeddings based on
the original and an evenly downsampled version of the point-cloud, P . This results in a denser
spatial embedding by considering a subset of all points within a certain radius of each-point in the
downsampled point-cloud. This downsampled set of points guarantees we can attend to even small
features, and allows us to predict an interaction point pI from the PointNet++ aggregated features.

3.3 Relative Action Module

The relative action module relies on the interaction point predicted by the classifier and operates on
a cropped point cloud, xR, around this point to predict the actions associated with this sequence.
As in the interaction prediction module, the model uses a cascade of modified set abstraction layers
as the backbone to compute a multi-resolution encoding feature over the cropped point cloud. We
train three multi-head regressors (described further below) over these features to predict the actions
for the overall task. Specifically, πR has three heads, one for each component of the relative action
space: gripper activation g, position offset δp, and orientation q. Our LSTM-based architecture
(details in B.2) can predict skills with variable number of actions (3,4 in our experiments).
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Figure 4: Illustration of the complete process for training SLAP. Demonstrations are collected and
used to train the Interaction Prediction module and the Action Prediction Module separately.

Also note that the cropped input point-cloud is not perfectly centered at the ground truth interaction
point p̂I , but rather with some noise added: p̂I ′ = p̂I + N (0, σ). This is done to force the action
predictor to be robust to sub-optimal interaction point predictions by the interaction predictor module
during real-world roll-outs. Thus, for each part of the action sequence, the keyframe position is
calculated as: p = pI + δp. When acting, the robot will move to (p, q) via a motion planner, and
then will send a command to the gripper to set its state to g.

3.4 Training SLAP

To collect data, an expert operator guides the robot through a trajectory, pressing a button to record
keyframes representing crucial parts of a task. At each keyframe, we record the associated expert
action â = (δ̂p, q̂, ĝ). We assume that low-level controllers exist - in our case, we use Polymetis [34]
for the Franka arm and Hello Robot’s controllers1 for Stretch. Example tasks are shown in Fig. 5.

Interaction Prediction Module. We train πI with a cross-entropy loss, predicting the interaction
point pI from the downsampled set of coarse voxels P . We additionally apply what we call a
locality loss (Lloc), as per prior work [35]. Conceptually, we want to penalize points the further they
are from the contact point, both to encourage learning relevant features as well as to aid in ignoring
distractors. To achieve this, we define the locality loss as: Lloc =

∑
k∈P softmax(fk)∥p̂I , k∥2,

where fk is the output of the transformer for point k ∈ P . The softmax turns fk into attention
over the points, meaning that Lloc can be interpreted as a weighted average of the square distances.
Points further from p̂I are therefore encouraged to have lower classification scores. Combining our
two losses, we obtain LI = CE(P, p̂I) +

w
|P |Lloc, where w is a scaling constant that implicitly

defines how much spread to allow in our points.

Relative Action Module. To train πR, we use the weighted sum of three different losses. We train
a = (p, q, g) = πR(xR) with an L2 loss over the δp, a quaternion distance metric for the loss on q
based on prior work [36] and binary cross-entropy loss for gripper action classification (Sec. A.3).

3.5 Task Planning

Consider a natural language instruction from a user such as ‘put away the bottle on a table’. We
decompose it to a sequence of atomic skills as: goto(’bottle’), pick up(’bottle’),
goto(’table’), and place on(’table’). We procedurally generate natural language and
code templates for 16 task families. Refer AC. We use LLaMA [37] models for in-context learn-
ing [38, 39] and adapter fine-tuning [40] to learn the mapping between natural language task instruc-
tions to the corresponding sequence of atomic skills.

1https://github.com/hello-robot/stretch_ros
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Figure 5: Examples of tasks executed on a Franka arm through our trained model in a clean setting.
We trained numerous tasks (left) and tested on both seen and unseen objects (right).

4 Experiments

We report the success rate of our model for 8 real-world manipulation tasks in Table 2, and compare
it against prior baselines trained using the same labeling scheme. Overall, we see an improvement
of 1.6x over our best comparative baseline, PerAct [2]. Our robotics code was implemented using
the HomeRobot framework [41]2. We test each model under two different conditions: Seen setting
assumption; i.e. those with seen distractor objects and objects placed roughly in the same range
of positions and orientations as in the training data in any relative arrangement (inlcuding unseen).
Second, we test under unseen setting assumptions; i.e. those with unseen distractor objects and the
implicated object placed significantly out of the range of positions and orientations already seen.
We run 5 tests per scene setting per skill per model and report the percentage success numbers in
Table 2. We compare our model against Perceiver-Actor (PerAct) [2]. We train each model for the
same number of training steps and choose the SLAP model based on the best validation loss. For
PerAct, we use the last checkpoint, per their testing practices [2].

We also run a per-skill evaluation of SLAP and PerAct on Stretch under the unseen setting assump-
tion (see Table. 3). This was accomplished by adding unseen distractor objects to the scene and
moving the robot base position within reachable distance of the object. We needed to increase the
workspace bounds of PerAct (1.5m cube from 1m) to capture the larger observation area for the
mobile manipulator, to keep it consistent with SLAP. Note that demonstrations were collected on a
different robot than the one policies were deployed on.

4.1 Longitudinal Task Execution on Stretch
GT Inferred

Heuristic 66.0 48.5
Learned 80.0 53.2

Total 68.5 58.5

Table 1: End-to-end per-
formance. Learned skills
outperform heuristics ex-
cept when Detic fails.

We trained a multi-task model for the Stretch robot for five skills using
10 demonstrations each. This model was deployed in an end-to-end
system which operates over code-list generated by a task-planner (as in
Sec. 3.5). We ran five prompts end-to-end with four to eight skills each,
using ground truth plans - we verify the viability of generating these
task plans in §4.2. These experiments are done in the unseen setting
with the robot starting anywhere with respect to the objects.

For fair evaluation in the low-data regime, we add some structure by
specifying an orthogonal viewing direction for objects. Once the agent
finds the object of interest, it fires an initial prediction using SLAP to find most promising interaction
point. This prediction happens under any dynamic viewing angle of the object (we assume the robot
can see the object). This dynamic prediction and pre-programmed viewing angle is used to approach
the object at an orthogonal viewing angle where the model fires an actionable prediction for the full
skill execution (details see §C.3). We observe the learned skills suffering significantly when inferred
plans are used to create language prompts for SLAP. This is due to discrepancies between object
descriptions that the LLM generates and Detic’s object detection capabilities. SLAP does not get
the necessary semantic masks thus its predictions suffer. On the other hand, when semantic features

2https://github.com/facebookresearch/home-robot
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Seen Unseen
Skill Name PerAct SLAP PerAct SLAP
Open bottom drawer 00% 80% 00% 60%
Open top drawer 60% 80% 40% 40%
Close drawer 100% 100% 40% 40%
Pick lemon from basket 60% 80% 10% 40%
Pick bottle 60% 60% 60% 40%
Place into the drawer 60% 80% 40% 60%
Place into the basket 40% 100% 10% 60%
Place into the bowl 40% 60% 00% 40%
Average Success Rate 50% 80% 27.5% 47.5%
Improvement 1.6x 1.7x

Table 2: SLAP and PerAct [2] performance on real world
Franka manipulation tasks. We evaluate both seen scenes (seen
object positions and distractors), but in different arrangements,
and unseen scenes with previously-unseen object positions and
distractors. SLAP is notably better overall in both conditions.

Skill Name PerAct SLAP
Open Drawer 0% 60%
Close Drawer 40% 100%
Take bottle 0% 80%
Pour into bowl 40% 80%
Table 3: SLAP on a mobile
manipulator using a multi-task
model across 4 skills, over 5
tries. With semantic predictions
added to our feature space, we
see the model perform better on
unseen scenes with new distrac-
tors and unseen relative position
of the robot with respect to the
scene

from Detic are available IPM performance significantly improves even with unseen distractors (80%
against 47.5% in Table 2). We still see failures when relative position is significantly perturbed.
Please see §E.1 for ablation analysis of our design against PerAct.

4.2 Task planning with in-context learning and fine-tuning LLaMa
Task Lat.

LLaMa Verb Noun Acc. Corr. (sec.)
IC 7B 83 81 76 61 16.4
IC 30B 81 81 76 62 27.6

FT 7B 100 98 99 91 19.5

Table 4: Fine-tuning (FT) outperforms in-
context learning (IC) for same latency.

Previous work has shown the strength of language mod-
els as zero-shot planners [42], a result strengthened
by improved techniques for “in-context learning” or
prompting [43]. To verify that models can produce task
plans with the skills we defined, we experiment with
both in-context learning (IC) [44] of LLaMA [37] and
adapter fine-tuning (FT) [40]. Table 4 presents the mod-
els’ verb, noun, and combined accuracies. Task Correctness is a binary score if the entire prediction
was correct, and finally, latency is measured in seconds on a single A6000 with 16 GB RAM.3 High
Task Correctness from a small model verifies the compatibility of our skills with LLM task planning.

5 Limitations

SLAP has high variance in out-of-distribution situations, resulting in complete failure if πI fails to
correctly identify the context. For πR, multimodal or noisy data still poses issues; replacing πR

with a policy which can better handle this data, e.g. Diffusion Policies [46]. Overall system has
multiple points-of-failure due to heuristic policies, unaligned language and vision models; end-to-
end trainable architectures and cross-modal alignment could help.

6 Conclusion

We propose a new method for learning visual-language policies for decision making in complex
environments. SLAP is a novel architecture which combines the structure of a point-cloud based
input with semantics from language and accompanying demonstrations to predict continuous end-
effector actions for manipulation tasks. We demonstrate SLAP on two hardware platforms, including
an end-to-end evaluation on a mobile manipulator, something not present in prior work. SLAP also
outperforms previous state-of-the-art, PerAct, on both mounted and mobile robot setups.

3Adaptor fine-tuning increases the model size by ∼6%, which accounts for the additional latency compared
to IC. We use standard inference libraries so results are comparable, but not optimized for runtime [45].
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A Training

Below is expanded information on our training, algorithm, and data processing to improve repro-
ducibility.

A.1 Data Collection and Annotation

When collecting an episode with the Franka arm, we first scan the scene with a pre-defined list of
scanning positions to collect an aggregated x. In our case, we make no assumption as to what or how
many these are, or how large the resulting input point cloud x is. With the Hello Robot Stretch [47],
we collect data based on exactly where the robot is looking.

Then, we collect demonstration data using kinesthetic teaching for the Franka arm (demonstrator
physically moves the robot) and via controller teleoperation for the Stretch robot. The demonstrator
moves the arm through the trajectory associated with each task, explicitly recording the keyframes
[48] associated with action execution. These represent the salient moments within a task – the
bottlenecks in the tasks’ state space, which can be connected by our low-level controller.
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A.2 Data Processing

We execute each individual skill open-loop based on an initial observation. We use data augmenta-
tion to make sure even with relatively few examples, we still see good generalization performance.

Data Augmentation. Prior work in RGB-D perception for robotic manipulation (e.g. [18, 49]) has
extensively used a variety of data augmentation tricks to improve real-world performance. In this
work, we use three different data augmentation techniques to randomize the input scene x used to
train pI = πI(x, l):

• Elliptical dropout: Random ellipses are dropped out from the depth channel to emulate
occlusions and random noise, as per prior work [50, 18]. Number of ellipses are sampled
from a Poisson distribution with mean of 10.

• Multiplicative Noise: Again as per prior work [50, 18, 22], we add multiplicative noise
from a gamma process to the depth channel.

• Additive Noise: Gaussian process noise is added to the points in the point-cloud. Param-
eters for the Gaussian distribution are sampled uniformly from given ranges. This is to
emulate the natural frame-to-frame point-cloud noise that occurs in the real-world.

• Rotational Randomization: Similar to prior work [2, 22, 25], we rotate our entire scene
around the z-axis within a range of ±45 degrees to help force the model to learn rotational
invariance.

• Random cropping: with p = 0.75, we randomly crop to a radius around p̂I + δ, where δ is
a random translation sampled from a Gaussian distribution. The radius to crop is randomly
sampled in (1, 2) meters.

Data Augmentation for πR. We crop the relational input xR ⊂ x around the ground-truth pI , using
a fixed radius r = 0.1m. We implement an additional augmentation for learning our action model.
Since pI is chosen from the discretized set of downsampled points P , we might in principle be
limited to this granularity of response. Instead, we randomly shift both pI and the positional action
δp by some uniformly-sampled offset δr ∈ R3, with up to 0.025m of noise. This lets πR adapt to
interaction prediction errors of up to several centimeters.

A.3 Action Prediction Losses

Following [36] for the orientation, we can compute the angle between two quaternions θ as:

θ = cos−1(2⟨q̂1, q̂2⟩2). (1)

We can remove the cosine component and use it as a squared distance metric between 0 and 1. We
then compute the position and orientation loss as:

LR = λp∥δp− δ̂p∥22 + λq(1− ⟨q̂, q⟩) (2)

where λp and λq are weights on the positional and orientation components of the loss, set to 1 and
1e− 2 respectively.

Predicting gripper action is a classification problem trained with a cross-entropy loss. For input we
use the task’s language description embedding and proprioceptive information about the robot as
input, i.e. s = (l, gact, gw, ts) where gact is 1 if gripper is closed and 0 otherwise, gw is the distance
between fingers of the gripper and ts is the time-step. The gripper action loss is then:

Lg = λgCE(g, ĝ) (3)

where λg is the weight on cross-entropy loss set to 0.0001. The batch-size is set at 1 for this
implementation.

We train πI and πR separately for n = 85 epochs. At each epoch, we compare validation per-
formance to the current best - if validation did not improve, we reset performance to the last best
model.
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Figure 6: Regression model architecture with separate heads for each output. The point-cloud is
cropped around the interaction point with some perturbation and passed to a cascade of set ab-
straction layers. Encoded spatial features are then concatenated with language and proprioception
embeddings to predict position offset of action from interaction point, absolute orientation and grip-
per action as a boolean.

A.4 Skill Weighting

In Stretch experiments, we used a wide range of skills with different error tolerances and corre-
sponding variances. As a result, we needed to use two different sets of weights for learning position,
orientation and gripper targets. A more forgiving weight-set for noisier tasks like pouring and han-
dover, and a tighter weight-set for task with more consistent trajectories like opening and closing
the drawer. These weights were empirically determined but can be further optimized via hyper-
parameter tuning methods.

A.5 Training for PerAct and SLAP

In all our experiments we ensure PerAct and SLAP are trained on the same data volume. Data
volume is defined as total number of augmented samples per collected sample. Note this results in
different number of training steps per model. This is due to the LSTM-based model updating once
per trajectory while PerAct updates once per sample in a trajectory.

B Relative Action Module

In our work, the Relative Action Module πR is assumed to be some local policy which predicts
end-effector poses. In our case, we implement two different versions of this policy, one which was
used on the static Franka manipulator and one which was implemented on the Stretch. In both cases:

• The policy predicts an end effector pose relative to the predicted interaction point from πI

• The policy is conditioned on a local crop around this interaction point.

B.1 MLP Implementation

Fig. 6 gives an overview of the MLP version of the regression model. The model takes in the
cropped point cloud (augmented during training as discussed in Sec. A.2. We saw that injecting
random noise to the interaction point during training allowed the policy to, at test time, recover
from failures (because it predicted an interaction point near the correct area, instead of at the correct
position).

B.2 LSTM-based Implementation

We observed the MLP architecture suffer when positional distribution of actions varied widely with
respect to the interaction point position across tasks due to the multi-modality this introduced. Thus
we modified the above model by adding an LSTM to condition each task and action with a hidden-
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Figure 7: LSTM-based regression model architecture based on the regression head and PointNet++
embeddings introduced in Fig. 6. LSTM-based architecture shows higher stability in learning action
distribution with wider distribution due to the conditioning effect.

state. This model exhibited better performance in learning wider action distribution, based on our
initial experiments with the outlined Stretch tasks.

C High-level Task Planning and Execution

C.1 Dataset

We procedurally generated a dataset consisting of more than 500k tuples of language instructions
and the corresponding sequence of atomic skills. The data is created for 16 task families and can be
extended further in the future. For each task family, 10% samples are held-out for evaluation. The
distribution of samples across task families is shown in 5.

For each task family, we define a corresponding template containing the sequence of atomic skills.
This means that the sequence of atomic skill “verbs” is the same among the samples of a task
family. Each sample within a task family differs in terms of language instructions and object(s) of
interaction.

To populate these templates and generate the data, we create a list of more than 150 movable objects
kitchen objects, surfaces like table, kitchen counter and articulated objects like drawer,
cabinets. For pour skill, we create a list of “spillable” items such as cup of coffee, or
bowl of jelly beans. Similarly, for wipe skill, we have a list of items to wipe with such as
sponge, or brush.

C.2 Models

Table 4 shows that in-context learning with 5 examples from the same task family achieves close
to 76% accuracy. There is no training involved with in-context learning, so it can’t overfit. For
finetuning, our evaluation consists of a held-out dataset with unseen variations in the phrasing of
the language instruction and/or object(s) of interaction. The goal of the fine-tuned model is to
demonstrate that it is possible to achieve improved task planning performance with lower latency
than in-context learning with larger models. We do not evaluate the generalization of the fine-tuned
model with unseen task families in this work. The remaining results in this work use the fine-tuned
model for task planning.

16



Table 5: Data Distribution of procedurally generated samples across task families.
Task Family Total number of samples
Bring X From Y Surface To Pour In Z Then Place On W Surface 35640
Bring X From Y Articulated To Wipe Z 612
Move X From Y Surface To Z Surface 16092
Move X From Y Surface To Z Articulated 301400
Take X From Human To Z Articulated 19300
Bring X From Y Surface To Human 5933
Bring X From Y Surface To Wipe Z 3168
Take X From Human To Pour In Z 2184
Take X From Human To Z Surface 8050
Take X From Human To Wipe Z 1458
Move X From Y Articulated To Z Articulated 97923
Bring X From Y Articulated To Human 13617
Bring X From Y Surface To Pour In Z 3960
Bring X From Y Articulated To Pour In Z 8712
Move X From Y Articulated To Z Surface 50060
Take X From Human To Pour In Z And Place On Y Surface 19656

587765

C.3 System Architecture and Plan Executionr

We use SLAP with three heuristic policies: SEARCHFOROBJECT (πsearch), PICKUPOBJECT
(πpick) and PLACEON (πplace). πsearch uses Detic, frontier-based exploration policy and a lan-
guage query to explore the map until object described by the language query is found in the view of
the robot. This is also one of the primary points of failure when LLM is integrated into the pipeline.
LLM expects Detic to be able to handle any freeform query of the object (for example, “detect open
drawer” is a typical output from the LLM however always fails as Detic has no notion of an open
drawer).

πpick is a heuristic picking policy which always grabs given object from the top given its mask from
Detic and depth from camera. This is a generally robust policy but fails when contextual, task-
oriented grasps are required in a task. For example consider a bottle placed within a cabinet, the
only pick policy which will solve this scene is one where gripper grasps bottle laterally and not from
the top. πplace places whatever object is in robot’s gripper on the surface previously detected by
Detic. Another point of failure, since up-close Detic is not able to detect objects like table, counter
surfaces, etc.

SLAP is used after the object is successfully detected by Detic, given language query, and is in the
robot’s field of view. Note the robot at this point can be at any unconstrained orientation and position
with respect to the object, the only condition sufficed here is that the object is within sight. We use
SLAP’s interaction prediction module to estimate the affordance over this object with Detic’s mask
as an additional feature, and predict an interaction point on the object. The robot then uses hand-
engineered standoff orientations to move to a head-on position with respect to the object, where we
use the full SLAP system to predict the action trajectory.

The standoff orientations are used so that SLAP can be tested fairly within reasonable bounds of
the state distribution it was trained for. Training data for all our skills is recorded from a very
narrow range of robot positioning with respect to the objects (see Appendix D.1). This means the
action prediction module’s sense of action orientation is not robust to huge rotational variations over
object’s position around the robot’s egocentric frame. Interaction prediction module on the other
hand is very robust as it does not need to consider directionality, just the local structure of object
and related affordance. See Fig. 8 for details on how regions are assigned to specific objects, and
related stand-off orientations provided to the robot so that it is always facing the object head-on
after estimating the interaction point. Given predicted interaction point pi, pre-determined standoff

17



CounterTable

Table

Human for 
handover

Bowl and 
bottle

Drawer

Ch
ai

r

Figure 8: Diagram showing where immovable objects were placed in the environment (note that
chair can move anywhere within the blue region). The three colored regions signify the placement
assignment for different artifacts involved in the tasks. The circular symbol signifies the robot’s
pre-determined orientation where the beak represents where the robot will be facing. Position for
robot’s placement is determined based on predicted pi

orientation vector vecstandoff and pre-determined 3D standoff distance vector diststandoff , the
robot moves to an orientation vecstandoff and position:

posnext = pi + diststandoff ∗ (−1 ∗ vecstandoff )

The orientation vector is of the form (1, 0, 0) or (0, 1, 0) in this evaluation.

D Experimental Setup for Skills

Here we refer to atomic skills learned by SLAP as simple tasks or “tasks”. This allows us to discuss
corresponding “actions” that are defined in terms of the relative offset from the interaction point.

D.1 In vs. Out Of Distribution

We used a number of objects for our manipulation experiments, which included both in- and out-
of-distribution objects (see Fig. 9 and Fig. 10). One goal of SLAP is to show that our methods
generalize much better than others to different types of scenes and different levels of clutter.

We also randomized the objects with seen and unseen clutter around them, as well as placed them
in unseen environments. Fig. 12 and Fig. 13 show the extent of variation captured in test scenes
against training scenes for Stretch experiments. Fig. 11 shows a range of test scenes from Franka
evaluations.

D.2 Skill Definitions and Success Conditions

Every real-world task scene had a sub-sample of all within-distribution objects. Following describes
skills and their success condition for Franka experiments:
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In-distribution Out of distribution
Figure 9: Within distribution objects used at training time and out-of-distribution objects introduced
during testing in our experiments.

Figure 10: Seen objects and unseen distractors used in longitudinal experiments with Stretch.

Close drawer Close drawer Open bottom 
drawer

Pick lemon 
from basket

Figure 11: Snapshot of test scenes from Franka evaluations to show the range of variation at test-
time

1. Open the top drawer

• Task: Grab the small loop and pull the drawer open. Drawer configuration within
training data is face-first with slight orientation changes

• Action labeling: Approach the loop, grab the loop, pull the drawer out
• Success metric: When the drawer is open by 50% or more

2. Open the bottom drawer

• Task: Grab the cylindrical handle and pull the drawer open. Drawer configuration
within training data is face-first with slight orientation changes. Note significantly
different grasp is required than for top drawer

• Action labeling: Approach the handle, grab it, pull the drawer out
• Success metric: When the drawer is open by 50% or more

3. Close the drawer
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Figure 12: Pour into bowl task: Showing variability and out-of-domain distribution covered by
test against training samples. Top row: Training scenes. Note that the bowl was always placed
somewhere on this particular region (right of sink) on the counter. Bottom row: Test scenes. Note
bowl is surrounded by unseen clutter, placed in novel unseen environment and at relatively different
positioning with respect to the camera and robot. Green boundary signifies successful episode, red
a failed episode.

Figure 13: Close drawer task: Showing variability and out-of-domain distribution covered by test
against training samples. Top row: Training scenes. Note the absence of any clutter and narrow
range of relative positioning of drawer with respect to the camera and robot. Bottom row: Test
scenes. Note presence of objects used in other tests in the same frame. Green boundary signifies
successful episode, red a failed episode.

• Task: This task is unqualified, i.e. the instructor does not say whether to close the top
or bottom drawer instead the agent must determine which drawer needs closing from
its state and close it. Align the gripper with the front of whichever drawer is open
and push it closed. The training set always has only one of the drawers open, in a
front-facing configuration with small orientation changes

• Action labeling: Approach drawer from the front, make contact, push until closed
• Success metric: When the drawer is closed to within 10% of its limit or when arm is

maximally stretched out to its limit (when the drawer is kept far back)
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4. Place inside the drawer

• Task: Approach an empty spot inside the drawer and place whatever is in hand inside
it

• Action labeling: Top-down approach pose on top of the drawer, move to make contact
with the surface and release the object, move up for retreat

• Success metric: Object should be inside the drawer

5. Pick lemon from the basket

• Task: Reach into the basket where lemon is placed and pick up the lemon
• Action labeling:
• Success metric: Lemon should be in robot’s gripper
• Considerations: Since the roll-out is open-loop and a lemon is spherical in nature, a

trial was assigned success if the lemon rolled out of hand upon contact after the 2nd
action. This was done consistently for both PerAct and SLAP.

6. Place in the bowl

• Task: Place whatever is in robot’s hand into the bowl receptacle
• Action labeling: Approach action on top of the bowl, interaction action inside the

bowl with gripper open, retreat action on top of the bowl
• Success metric: The object in hand should be inside the bowl now

7. Place in the basket

• Task: Place the object in robot’s hand into the basket
• Action labeling: Approach action on top of the free space in basket, interaction action

inside the basket with gripper open, retreat action on top of the basket
• Success metric: The object is inside the basket

8. Pick up the bottle

• Task: Pick up the bottle from the table
• Action labeling: Approach pose in front of the robot with open gripper, grasp pose

with gripper enclosing the bottle and gripper closed, retreat action at some height
from previous action with grippers closed

• Success metric: The bottle should be in robot’s gripper off the table

Notably, success for opening drawers is if the drawer is 50% open after execution; this is because
sometimes the drawer is too close to the robot’s base for it to open fully with a fixed-base Franka
arm.

Following describes the skills undertaken in Stretch experiments and their success conditions:

1. Open the drawer

• Task: Grab the handle of the drawer and pull the drawer open
• Action labeling: Approach the handle, grab the handle, pull the drawer out and open

grasp
• Success metric: When the drawer is open by 100%

2. Close the drawer

• Task: Align with the surface of drawer’s face and push the drawer close
• Success metric: When the drawer is closed within 10% of fully-closed configuration

3. Pour into bowl

• Task: Skill starts with a cup filled with candies already in robot’s gripper. Align cup
with the bowl and turn the cup in a pouring motion

• Success metric: When ≥ 50% of candies are in the bowl
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Place in drawer Pick up bottle Open top drawer

Figure 14: Examples of out of distribution predictions made by πI . We show that it is able to handle
heavy clutter around the implicated object to predict interaction points. Note that the prediction for
bottle picking is sub-optimal in this example.

4. Take bottle

• Task: Approach bottle with gripper orientation in the right configuration, grasp the
bottle, lift the bottle up and retract keeping the grasp

• Success metric: The bottle is in robot’s gripper in a stable configuration at the end of
execution

5. Handover to person

• Task: Approach hand of the person with object in hand, align with hand’s surface and
release the object, finally retracting the gripper back

• Success metric: The object is in human’s hand at the end of execution

Note that we count the success for pouring ≥ 50% of the candies because we are comparing this
task to pouring a liquid. Liquid would pour out completely in the intended final configuration due
to different dynamics.

D.3 Language Annotations

In the following, we include the list of language annotations used in our experiments. Table 6 shows
the language that was used to train the model; we’re able to show some robustness to different
language expressions. We performed a set of experiments on held-out, out-of-distribution language
despite this not being the focus of our work; this test language is shown in Table 7.

D.4 Out of distribution Results from SLAP

We show more results for the attention point predicted by πI in Fig. 14. For the placement task,
the agent has never seen a heavily cluttered drawer inside before, but it is able to find flat space that
indicates placement affordance. For the bottle picking task, this sample has a lemon right next to the
bottle which changes the shape of the point-cloud around the bottle. We see that πI is able to find an
interaction point albeit with placement different from expert and lower down on the bottle. Similarly,
the open-top drawer sample has more heavy clutter on and around the drawer to test robustness.

Fig. 15 shows the prediction and generated trajectory for picking up a previously unseen bottle.
Note that while the models are able to detect the out of distribution bottle, the trajectory actually
fails because the bottle is much wider and requires more accuracy in grasping. For the mobile
manipulator domain, we observe SLAP performed better than vanilla PerAct on every count. Our
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time

Figure 15: A generalization example of success for our model. The new bottle has same shape as
the within distribution bottle but is much taller, different in color and wider in girth. The model is
able to predict the interaction site and a feasible trajectory around it. We note though the execution
of this trajectory was a failure; due to wider girth of the bottle the predicted grasp was not accurate
enough to enclose the object.

hypothesis is that SLAP’s better performance is due to the addition of semantic features, more
efficient training, and higher resolution due to a non-grid point-cloud representation.

D.5 Motion Planning Failures

Our evaluation system has a simple motion planner which is not collision aware as a result we saw
a number of task failures for both the models. However, we note that the frequency of task failures
due to motion planning problems was higher for PerAct. We think it is because PerAct predicts each
action of the same task as an entirely separate prediction trial, while SLAP forces continuity on the
relative motions for the same task by centering them around the interaction point (see Fig. 15). That
said, we also note with a collision-aware motion planner PerAct may not run into such issues as seen
during our evaluations. However the planner setting and conditions were same across both models in
these evaluations. The authors note in their own paper their heavy reliance on good motion planning
solutions [2].

E Additional Analysis

E.1 Ablations

Hybrid vs Monolithic Architecture (Table-top). We train SLAP and PerAct such that they observe
same amount of data. SLAP outperforms PerAct on six of eight tasks when tested in in-distribution
settings and five of eight tasks in out-of-distribution settings on Franka. PerAct performs equally
well as our model for two of eight tasks on our in-distribution scenes. Similarly, for our “hard”
generalization scenes, PerAct performed equally well in two cases, and actually outperformed SLAP
when picking up a bottle. Under similar experimentation conditions, SLAP outperforms PerAct in
all four tasks in cluttered scenes for the mobile manipulator environment on Stretch. In failure cases,
πR predicted the correct trajectory, but not with respect to the right part of the object.

Unseen Scene Generalization. We see a drop in the success rate for both PerAct and SLAP when
tested on out-of-distribution settings. PerAct would often predict the correct approach actions, but
then it would fail to grasp accurately. With SLAP, however, we saw that pI was predicted fairly
accurately, but the regressor would fail for out-of-distribution object placements specifically because
of bad orientation prediction. When πI failed, it was because the position and orientation of the
target object was dramatically different, and unseen distractors confused it. We see better results for
SLAP under Stretch setting due to the addition of semantic features from Detic.

E.2 Visualizing the Learned Attention

Since we use scores to choose the final interaction point, our classifier model is naturally inter-
pretable, being able to highlight points of interest in a scene. We visualize this attention by selecting
the points with the highest 5% of interaction score given a language command l.
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Figure 16: Examples of failure cases for our baseline, PerAct, for the “place in drawer” and “place
in bowl” tasks. In the top example, the gripper is moved from drawer’s side towards inside, instead
of from the top as demonstrated by expert. The gripper ends up pushing off the drawer to the side
as our motion-planner is not collision-aware. Note that SLAP does not exhibit such behaviors as πR

implicitly learns the collision constraints present in demonstrated data. In the bottom example, each
action prediction is disjointed from previous and semantically wrong.

Figure 17: An example out-of-distribution SLAP failure where an extreme sideways configuration
of the drawer is paired with unseen distractors for the “open top drawer” skill. Note that the attention
mask ranks other distractors in its top 5% and fails to choose an optimal interaction point.
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E.3 Language Generalization

By using pretrained CLIP language embeddings to learn our spatial attention module πI , our model
can generalize to unseen language to some extent. We tested this by running an experiment where we
evaluate performance on in-distribution scene settings, prompted by a held-out list of language ex-
pressions. We choose three representative tasks for this experiment and run 10 tests with 2 different
language phrasings.

F Additional Related Work

We note some other related work related to the larger language-conditioned, mobile manipulation
domain that SLAP is situated in, but not as directly relevant.

Vision-Language Navigation. Similar representations are often used to predict subgoals for explo-
ration in vision-language navigation [30, 31, 8, 51, 52]. HLSM builds a voxel map [30], whereas
FiLM builds a 2D representation and learns to predict where to go next [31]. VLMaps proposes an
object-centric solution, creating a set of candidate objects to move to [8], while CLIP-Fields learns
an implicit representation which can be used to make predictions about point attentions in responds
to language queries [51], but does not look at manipulation. Similarly, USA-Net [52] generates
a 3D representation with a lot of semantic features including affordances like collision. Such a
representation can naturally be incorporated for collision-aware action plans at prediction time.
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Task Name Training Annotations

pick up the bottle pick up a bottle from the table
pick up a bottle
grab my water bottle

pick up a lemon pick the lemon from inside the white basket
grab a lemon from the basket on the table
hand me a lemon from that white basket

place lemon in bowl place the lemon from your gripper into the bowl
add the lemon to a bowl on the table
put the lemon in the bowl

place in the basket place the object in your hand into the basket
put the object into the white basket
place the thing into the basket on the table

open bottom drawer open the bottom drawer of the shelf on the table
pull the second drawer out
open the lowest drawer

close the drawer close the drawers
push in the drawer
close the drawer with your gripper

open top drawer open the top drawer of the shelf on the table
pull the first drawer out
open the highest drawer

place in the drawer put it into the drawer
place the object into the open drawer
add the object to the drawer

Table 6: Examples of language used to train the model.

Task Name Held-Out Test Annotations

Pick up the bottle Grab the bottle from the table
Pick up the water bottle

Open the top drawer Pull top drawer out
Open the first drawer

Place into the drawer Add to the drawer
Put inside the drawer

Table 7: Examples of out-of-distribution language annotations used for evaluation
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