
Self-Improving Robots: End-to-End Autonomous
Visuomotor Reinforcement Learning

Archit Sharma∗ Ahmed M. Ahmed∗ Rehaan Ahmad Chelsea Finn
Stanford University

Abstract: In imitation and reinforcement learning (RL), the cost of human super-
vision limits the amount of data that the robots can be trained on. While RL offers
a framework for building self-improving robots that can learn via trial-and-error
autonomously, practical realizations end up requiring extensive human supervi-
sion for reward function design and repeated resetting of the environment between
episodes of interactions. In this work, we propose MEDAL++, a novel design for
self-improving robotic systems: given a small set of expert demonstrations at the
start, the robot autonomously practices the task by learning to both do and undo
the task, simultaneously inferring the reward function from the demonstrations.
The policy and reward function are learned end-to-end from high-dimensional
visual inputs, bypassing the need for explicit state estimation or task-specific pre-
training for visual encoders used in prior work. We first evaluate our proposed
system on a simulated non-episodic benchmark, EARL, finding that MEDAL++
is both more data efficient and gets up to 30% better final performance compared
to state-of-the-art vision-based methods. Our real-robot experiments show that
MEDAL++ can be applied to manipulation problems in larger environments than
those considered in prior work, and autonomous self-improvement can improve
the success rate by 30% to 70% over behavioral cloning on just the expert data.
Code, training and evaluation videos along with a brief overview is available at:
https://architsharma97.github.io/self-improving-robots/

Keywords: reinforcement learning, autonomous, reset-free, manipulation

1 Introduction

Figure 1: A robot resets the environment
from the goal state to the initial state (top),
in contrast to a human resetting the environ-
ment for the robot (bottom). While latter is
the norm in robotic reinforcement learning,
a robot that can reset the environment and
practice the task autonomously can train on
more data, and thus, be more competent.

While imitation learning methods have shown promis-
ing evidence for generalization via large-scale teleoper-
ated data collection efforts [1, 2], human supervision is
expensive and collected datasets are still incommensu-
rate for learning robust and broadly performant control.
In this context, the aspirational notion of self-improving
robots becomes relevant: robots that can learn and im-
prove from their own interactions with the environment
autonomously. Reinforcement learning (RL) is a natural
framework for such self-improvement, where the robots
can learn from trial-and-error autonomously in principle.
However, RL deployment requires domain expertise and
extensive supervision in practice for state estimation, de-
signing reward functions, and repeated resetting of the en-
vironments after every episode of interaction.

In particular, the human supervision for repeatedly reset-
ting the environment through training is an impediment to

∗Authors contributed substantially to real-robot results. Correspondence to architsh@stanford.edu.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://architsharma97.github.io/self-improving-robots/

building autonomous robots, visualized in Figure 1. Several prior works [3, 4, 5] show that standard
RL algorithms can fail catastrophically when the reset frequency is decreased. While recent works
address the lack of supervision for repeated resetting [4, 6, 7, 8, 9], learning efficiently in the absence
of frequent environment resets remains a challenge in the real-world. Task-relevant states constitute
only a small subset of all possible states, especially in larger real-world environments, and the robot
can drift far from these task-relevant states when learning without repeated resets. In view of this,
using a small set of demonstrations can be an effective choice to construct self-improving systems.
Expert demonstrations can alleviate challenges related to exploration [10] and enable efficient au-
tonomous RL by encouraging agent to stay close to task-relevant states in the demonstrations [11].
And since the human supervision required for collecting the demonstrations is front-loaded, i.e.,
before the training begins, the robot can collect data autonomously and self-improve thereon. Im-
portantly, we make the observation that the terminal states in expert trajectories effectively represent
the goal distribution. This allows us to learn a goal-reaching reward function without any additional
data collection or reward engineering.

In this work, our main contribution is MEDAL++, a carefully designed system that can train au-
tonomously in the real-world with minimal task-specific engineering. MEDAL++ builds upon [11]
with several crucial components that enable efficient end-to-end autonomous training in the real-
world: First, we learn an encoder for high-dimensional visual inputs end-to-end using DrQ-v2 [12],
bypassing the need for state estimation or task-specific pre-training of visual encoders. Second, we
judiciously use expert demonstrations by learning a goal-reaching reward function [13, 14], elimi-
nating the need for engineered reward functions. Finally, we improve the sample efficiency by using
an ensemble of Q-value functions and increasing the update steps per sample collected [15], using
BC regularization on expert data to regularize policy learning towards demonstration data [16], and
oversampling transitions from demonstration data when training the Q-value function [10]. We eval-
uate MEDAL++ on a pixel-based control version of EARL [5], a non-episodic learning benchmark
and observe that MEDAL++ is more data efficient and gets up to 30% better performance compared
to competitive methods [4, 11]. Most importantly, we conduct real-robot evaluations using a Franka
Panda robot arm on four manipulation tasks, such as hanging a cloth on a hook, covering a bowl
with a cloth and peg insertion, all from RGB image observations. We observe that MEDAL++ can
improve the success rate of the policy by 30% to 70% over a behavioral cloning policy learned only
on the expert data, suggesting that MEDAL++ is a step towards self-improving robotic systems.

2 Related Work
Several works have demonstrated the emergence of complex skills on a variety of problems using
reinforcement learning on real robots [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], However, these
prior works require the environment to be reset to a (narrow) set of initial states for every episode of
interaction with the environment. Such resetting of the environment either requires repeated human
interventions and constant monitoring [28, 29, 30, 31, 32] or scripting behaviors [19, 23, 33, 34, 24,
35] which can be time-intensive while resulting in brittle behaviors. Some prior works have also
designed the task and environment to bypass the need for resetting the environment [36, 37, 21], but
this applies to a restricted set of tasks.

More recent works have identified the need for algorithms that can work autonomously with min-
imal supervision required for resetting the environments [38, 4, 5]. Several recent works propose
to learn a backward policy to undo the task, in addition to learning a forward policy that does the
task [38, 6, 7, 8, 39, 40]. In this work, we build upon MEDAL [11], where the backward policy
learns to match the distribution of states visited by an expert to solve the task. While the results
from these prior papers are restricted to simulated settings, some recent papers have demonstrated
autonomous training on real robots [4, 41, 42, 43]. However, the results on real robots have either re-
lied on state estimation [41, 42], pre-specified reward functions [43] or task-specific decomposition
into subgoals [44]. R3L [4] also considers the setting of learning from image observations without
repeated resets and specified reward functions, similar to our work. It uses a backward policy that
optimizes for state-novelty while learning the reward function from a set of goal images collected
prior to training [14]. However, R3L relies on frozen visual encoders trained independently on data

2

collected in the same environment, and optimizing for state-novelty does not scale to larger environ-
ments, restricting their robot evaluations to smaller, easier to explore environments. Our simulation
results indicate that MEDAL++ learns more efficiently than R3L, and real robot evaluations in-
dicate the MEDAL++ can be used on larger environments. Overall, our work proposes a system
that can learn end-to-end from visual inputs without repeated environment resets, with real-robot
evaluations on four manipulation tasks.

3 Preliminaries
Problem Setting. We consider the autonomous RL problem setting [5]. We assume that the agent
is in a Markov Decision Process represented by (S,A, T , r, ρ0, γ), where S is the state space,
potentially corresponding to high-dimensional observations such as RGB images, A denotes the
robot’s action space, T : S ×A× S → R≥0 denotes the transition dynamics of the environment,
r : S ×A → R is the (unknown) reward function, ρ0 denotes the initial state distribution, and γ
denotes the discount factor. The objective is to learn a policy that maximizes E [

∑∞
t=0 γ

tr(st, at)]
when deployed from ρ0 during evaluation. There are two key differences from the standard episodic
RL setting: First, the training environment is non-episodic, i.e., the environment does not periodi-
cally reset to the initial state distribution after a fixed number of steps. Second, the reward function
is not available during training. Instead, we assume access to a set of demonstrations collected by
an expert prior to robot training. Specifically, the expert collects a small set of forward trajectories
D∗

f = {(si, ai) . . .} demonstrating the task and similarly, a set of backward demonstrations D∗
b

undoing the task back to the initial state distribution ρ0.

Autonomous Reinforcement Learning via MEDAL. To enable a robot to practice the task au-
tonomously, MEDAL [11] trains a forward policy πf to solve the task, and a backward policy πb

to undo the task. The forward policy πf executes for a fixed number of steps before the control
is switched over to the backward policy πb for a fixed number of steps. Chaining the forward and
backward policy reduces the number of interventions required to reset the environment. The for-
ward policy is trained to maximize E [

∑∞
t=0 γ

tr(st, at)], which can be done via any RL algorithm.
The backward policy πb is trained to minimize the Jensen-Shannon divergence JS(ρb(s) || ρ∗(s))
between the stationary state-distribution of the backward policy ρb and the state-distribution of the
expert policy ρ∗. By training a classifier Cb : S 7→ (0, 1) to discriminate between states visited by
the expert (i.e. s ∼ ρ∗) and states visited by πb (i.e., s ∼ ρb), the divergence minimization problem
can be rewritten as maxπb

−E[
∑∞

t=0 γ
t log (1− Cb(st))] [11]. The classifier used in the reward

function for πb is trained using the cross-entropy loss, where the states s ∈ D∗
f are labeled 1 and

states visited by πb online are labeled 0, leading to a minimax optimization between πb and Cb.

Learning Reward Functions with VICE. Engineering rewards can be tedious, especially when
only image observations are available. Since the transitions from the training environment are not
labeled with rewards, the robot needs to learn a reward function for the forward policy πf . In
this work, we consider VICE [45], particularly, the simplified version presented by Singh et al.
[14] that is compatible with off-policy RL. VICE requires a small set of states representing the
desired outcome (i.e., goal images) prior to training. Given a set of goal states G, VICE trains a
classifier Cf : S 7→ (0, 1) where Cf is trained using the cross entropy loss on states ∈ G labeled
as 1, and states visited by πf labeled as 0. The policy πf is trained with a reward function of
logCf (s)− log (1− Cf (s)), which can be viewed as minimizing the KL-divergence between the
stationary state distribution of πf and the goal distribution [46, 47, 48]. VICE has two benefits over
pre-trained frozen classifier-based rewards: first, the negative states do not need to be collected by a
person and second, the VICE classifier is harder to exploit as the online states are iteratively added
to the label 0 set, continually improving the goal-reaching reward function implicitly.

4 MEDAL++: Practical and Efficient Autonomous Reinforcement Learning
The goal of this section is to develop a RL method that can learn from autonomous online interaction
in the real world, given just a (small) set of forward D∗

f and backward demonstrations D∗
b without

reward labels. Particularly, we focus on design choices that make MEDAL++ viable in the real

3

world in contrast to MEDAL: First, we describe how to learn from visual inputs without explicit state
estimation. Second, we describe how to learn a reward function from the expert demonstrations to
eliminate the need for ground truth rewards when training the forward policy πf . Third, we describe
the algorithmic modifications for training the Q-value function and the policy π more efficiently.
Finally, we describe how to construct MEDAL++ using all the components described here, training
a forward policy πf and a backward policy πb to learn autonomously.

Encoding Visual Inputs. We embed the high-dimensional RGB images into a low-dimensional
feature space using a convolutional encoder E . The RGB images are augmented using random crops
and shifts (up to 4 pixels) to regularize Q-value learning [12]. While some prior works incorporate
explicit representation learning losses for visual encoders [49, 50], Yarats et al. [12] suggest that reg-
ularizing Q-value learning using random crop and shift augmentations is both simpler and efficient,
allowing end-to-end learning without any explicit representation learning objectives. Specifically,
the training loss for Q-value function on an environment transition (s, a, s′, r) can be written as:

ℓ(Q, E) =
(
Q (E (aug(s)) , a)− r − γV̄

(
E(aug(s′))

))2

(1)

where aug(·) denotes the augmented image, and r + γV̄ (·) is the TD-target. Equation 2 describes
the exact computation of V̄ using slow-moving target networks Q̄ and the current policy π.

Learning the Reward Function. To train a VICE classifier Cf , we need to specify a set of goal
states that can be used as positive samples. Instead of collecting a separate set of goals, we observe
that the last K states of every trajectory in D∗

f approximate the goal distribution, and thus, can be
used as the goal set G. The trajectories collected by the robot’s policy πf will be used to generate
negative states for training Cf . The policy is trained to maximize − log (1− Cf (·)) as the reward
function, encouraging the policy to reach states that have a high probability of being labeled 1 under
Cf , and thus, similar to the states in the set G. The reward signal from the classifier can be sparse
if the classifier has high accuracy on distinguishing between the goal states and states visited by
the policy. Since the classification problem for Cf is easier than the goal-matching problem for πf ,
especially early in the training when the policy is not as successful, it becomes critical to regularize
the discriminator Cf [51]. We use spectral normalization [52], mixup [53] to regularize Cf , and
apply random crop and shift augmentations to input images to create a broader training distribution.

As we have access to expert demonstrations D∗
f , why do we match the policy’s state distribution

to the goal distribution, instead of GAIL [13, 54], which matches policy’s state-action distribution
to that of the expert? In a practical robotic setup, actions demonstrated by an expert during tele-
operation and optimal actions for a learned neural network policy will be different. The forward
pass through a policy network introduces a delay, especially as the visual encoder E becomes larger.
Matching both the state and actions to that of the expert, as is the case with GAIL, can lead to sub-
optimal policies and be infeasible in general. In contrast, VICE allows the robotic policies to choose
actions that are different from the expert as long as they lead to a set of states similar to those in G.
The exploratory benefits of matching the actions can be recovered, as described in the next section.

Improving the Learning Efficiency. To improve the learning efficiency over MEDAL, we incor-
porate several changes in how we train the Q-value function and the policy π. First, we train an
ensemble of Q-value networks {Qn}Nn=1 and corresponding set of target networks {Q̄n}Nn=1. When
training an ensemble member Qn, the target is computed by sampling a subset of target networks,
and taking the minimum over the subset. The target value V̄ (s′) in Eq 1 can be computed as

V̄ (s′) = Ea′∼π min
j∈M

Q̄j(s
′, a′), (2)

where M is a random subset of the index set {1 . . . N} of size M . Randomizing the subset of
the ensemble when computing the target allows more gradient steps to be taken to update Qn on
ℓ(Qn, E) [15] without overfitting to a specific target value, increasing the overall sample efficiency
of learning. The target networks Q̄n are updated as an exponential moving average of Qn in the
weight space over the course of training. At iteration t, Q̄(t)

n ← τQ
(t)
n + (1− τ)Q̄

(t−1)
n , where

τ ∈ (0, 1] determines how closely Q̄n tracks Qn.

4

Importantly, we want to leverage the expert demonstrations to counteract the exploration challenge,
especially because the training signal from VICE reward can be sparse. Q-value networks are typi-
cally updated on minibatches sampled uniformly from a replay bufferD. However, the transitions in
the demonstrations are generated by an expert, and thus, can be more informative about the actions
for reaching successful states [10]. To bias the data towards the expert distribution, we oversample
transitions from the expert data such that for a batch of size B, ρB transitions are sampled from
the expert data uniformly and (1 − ρ)B transitions are sampled from the replay buffer uniformly
for ρ ∈ [0, 1). Finally, we regularize the policy learning towards expert actions by introducing a
behavior cloning loss in addition to maximizing the Q-values [16, 10]:

L(π) = Es∼D,a∼π(·|s)

[
1

N

N∑
n=1

Qn(E(aug(s)), a)

]
+ λE(s∗,a∗)∼ρ∗

[
log π

(
a∗ | E(aug(s∗))

)]
,

where λ ≥ 0 denotes the hyperparameter controlling the effect of BC regularization. Note that the
parameters of the encoder are frozen with respect to L(π), and are only trained through ℓ(Qn, E).

Putting it Together: MEDAL++. MEDAL++ trains a forward policy that learns to solve
the task and a backward policy that learns to undo the task towards the expert state distribu-
tion. The parameters and data buffers for the forward policy are represented by the tuple F ≡(
πf , Ef , {Qf

n}Nn=1, {Q̄f
n}Nn=1, Cf ,D∗

f ,Df ,Gf
)

, where the symbols retain their meaning from the
previous sections. Similarly, the parameters and data buffers for the backward policy are repre-
sented by the tuple B ≡

(
πb, Eb, {Qb

n}Nn=1, {Q̄b
n}Nn=1, Cb,D∗

b ,Db,Gb
)

. Noticeably, F and B have
a similar structure: Both πf and πb are trained using with − log(1 − C(·)) as the reward function
(using their respective classifiers Cf and Cb), with both classifiers trained to discriminate between
the states visited by the policy and their target states. The primary difference is the set of positive
target states Gf and Gb used to train Cf and Cb respectively, visualized in Figure 8. The VICE
classifier Cf is trained to predict the last K states of every trajectory from D∗

f as positive, whereas
we train the MEDAL classifier Cb to predict all the states of forward demonstrations except the last
K states as positive. Optionally, we can also include the last K states of backward demonstrations
fromD∗

b as positives for training Cb. The pseudocode for training is given in Algorithm 1, and more
detailed description is available in Appendix A.1. Some key details: the control switches between
the forward πf and the backward policy πb after a fixed number of steps. When executing in the
real world, humans are allowed to intervene and reset the environment intermittently, switching the
control over to πf after the intervention to restart the forward-backward cycle.

5 Experiments
The goal of our experiments is to determine whether MEDAL++ can be a practical method for
self-improving robotic systems. We benchmark MEDAL++ against competitive methods [11, 4] on
EARL [5] benchmark for non-episodic RL to evaluate the learning efficiency from high-dimensional
observations, in Section 5.1. Our primary experiments in Section 5.2 evaluate MEDAL++ on
four real robot manipulation tasks, primarily tasks with soft-body objects such as hanging a cloth
on a hook and covering a bowl with cloth. The real robot evaluation considers the question of
whether self-improvement is feasible via MEDAL++, and if so, how much self-improvement can
MEDAL++ obtain? Finally, we run ablations to evaluate the contributions of different components
to MEDAL++ in Section 5.3.

5.1 Benchmarking MEDAL++ on EARL
First, we benchmark MEDAL++ on continuous-control environment from EARL against state-of-
the-art non-episodic autonomous RL methods. To be consistent with the benchmark, we use the
ground truth reward functions for all the environments.

Environments. We consider three sparse-reward continuous-control environments from EARL
benchmark [5], shown in Appendix, Fig 6. Tabletop organization is a simplified manipulation en-
vironment where a gripper is tasked to move the mug to one of the four coasters from a wide set
of initial states, sawyer door closing task requires a sawyer robot arm to learn how to close a door
starting from various positions, and finally the sawyer peg insertion task requires the sawyer robot

5

Figure 2: Comparison of autonomous RL methods on vision-based manipulation tasks in simulated environ-
ments from EARL [5]. MEDAL++ is both more efficient and learns a similarly or more successful policy
compared to other methods.

arm to grasp the peg and insert it into a goal. Not only does the robot have to learn how to do the
task (i.e. close the door or insert the peg), but it has to learn how to undo the task (i.e. open the door
or remove the peg) to try the task repeatedly in a non-episodic training environment. All tasks are
setup to return 84× 84 RGB observations with sparse goal reaching reward functions. The training
environment is reset to s0 ∼ ρ0 every 25,000 steps of interaction with the environment. This is ex-
tremely infrequent compared to episodic settings where the environment is reset to the initial state
distribution every 200-1000 steps. EARL comes with 5-15 forward and backward demonstrations
for every environment to help with exploration in these sparse reward environments. We report the
average success of the forward policy every 10, 000 training steps over 10 trials. More details can
be found in Appendix A.3.

Comparisons. We compare MEDAL++ to four methods: (1) MEDAL [11] uses a backward policy
that matches the expert state distribution by minimizing JS(ρb(s) || ρ∗(s)), similar to ours. How-
ever, the method is designed for low-dimensional states and policy/Q-value networks and cannot be
naı̈vely extended to RGB observations. For a better comparison, we improve the method to use a
visual encoder with random crop and shift augmentations during training, similar to MEDAL++.
(2) R3L [4] uses a perturbation controller as backward policy which optimizes for state-novelty
computed using random network distillation [55]. Unlike our method, R3L also requires a sepa-
rately collected dataset of environment observations to pre-train a VAE [56] based visual encoder,
which is frozen throughout the training thereafter. (3) We consider an oracle RL method that trains
just a forward policy and gets a privileged training environment that resets every 200 steps (i.e., the
same episode length as during evaluation) and finally, (4) we consider a control method naı̈ve RL,
that similar to oracle trains just a forward policy, but resets every 25,000 steps similar to the non-
episodic methods. We additionally report the performance of a behavior cloning policy, trained
on the forward demonstrations used in the EARL environments. The implementation details and
hyperparameters can be found in Appendix A.2.

Results. Figure 2 plots the evaluation performance of the forward policy versus the training sam-
ples collected in the environment. MEDAL++ outperforms all other methods on both the sawyer
environments, and is comparable to MEDAL on tabletop organization, the best performing method.
While R3L does recover a non-trivial performance eventually on door closing and tabletop organi-
zation, the novelty-seeking perturbation controller can cause the robot to drift to states farther away
from the goal in larger environments, leading to slower improvement in evaluation performance on
states starting from s0 ∼ ρ0. While MEDAL and MEDAL++ have the same objective for the
backward policy, optimization related improvements enable MEDAL++ to learn faster. Note, BC
performs worse on tabletop organization environment with a 45% success rate, compared to the
sawyer environments with a 70% and 80% success rate on peg insertion and door closing respec-
tively. So, while BC regularization helps speed up efficiency and can lead to better policies, it can
hurt the final performance of MEDAL++ if the BC policy itself has a worse success rate (at least,
when true rewards are available for training, see ablations in Section 5.3). While we use the same
hyperparameters for all environments, reducing the weight on BC regularization when BC policies
have poor success can reduce the bias in policy learning and improve the final performance.

6

5.2 Real Robot Evaluations

In line with the main goal of this paper, our experiments aim to evaluate whether self-improvement
through MEDAL++ can enable real-robots to learn more competent policies autonomously. On
four manipulation tasks, we provide quantitative and qualitative comparison of the policy learned
by behavior cloning on the expert data to the one learned after self-improvement by MEDAL++.
We recommend viewing the results on our anonymized website in the supplementary material for
training and evaluation videos, which provides a more comprehensive overview.

Figure 3: The training setup for
MEDAL++. The image observations
include a fixed third person view and a first
person view from a wrist camera mounted
above the gripper. The evaluation tasks
going clockwise: cube grasping, covering a
bowl with a cloth, hanging a cloth on the
hook and, peg insertion.

Robot Setup and Tasks. We use Franka Emika Panda
arm with a Robotiq 2F-85 gripper for all our experiments.
We use a RGB camera mounted on the wrist and a third
person-camera, as shown in Figure 3. The final obser-
vation space includes two 100 × 100 RGB images, 3-
dimensional end-effector position, orientation along the
z-axis, and the width of the gripper. The action space is
set up as either a 4 DoF end-effector control, or 5 DoF
end-effector control with orientation along the z-axis de-
pending on the task (including one degree of freedom for
the gripper). Our evaluation suite consists of four ma-
nipuation tasks: grasping a cube, hanging a cloth on a
hook, covering a bowl with a piece of cloth, and a (soft)
peg insertion. Real world data and training is more perti-
nent for soft-body manipulation as they are harder to sim-
ulate, and thus, we emphasize those tasks in our evaluation suite. The tasks are shown in Figure 3.

Training and Evaluation. For every task, we first collect a set of 50 forward demonstrations and 50
backward demonstrations using a Xbox controller. We chain the forward and backward demonstra-
tions to speed up collection and better approximate autonomous training thereafter. After collecting
the demonstrations, the robot is trained for 30 hours using MEDAL++, collecting about 300, 000
environment transitions in the process. For the first 30 minutes of training, we reset the environment
to create enough (object) diversity in the initial data collected in the replay buffer. After the initial
collection, the environment is reset intermittently approximately every hour of real world training on
an average, though, it is left unattended for several hours. More details related to hyperparameters,
network architecture and training can be found in Appendix A.2. For evaluation, we roll-out the
policy from varying initial states, and measure the success rate over 50 evaluations. To isolate the
role of self-improvement, we compare the performance to a behavior cloning policy trained on the
forward demonstrations using the same network architecture for the policy as MEDAL++. For both
MEDAL++ and BC, we evaluate multiple intermediate checkpoints and report the success rate of
the best performing checkpoint.

Task Behavioral Cloning MEDAL++

Cube Grasping ID 0.85 1.00
OOD 0.08 0.82

Cloth Hanging 0.26 0.62

Bowl Cloth Cover 0.12 0.46

Peg Insertion 0.04 0.52

Figure 4: Evaluation performance of the best check-
point learned by behavior cloning and MEDAL++. Ta-
ble shows the final success rates over 50 trials from ran-
domized initial states, normalized to [0, 1]. MEDAL++
substantially improves the final performance compared
to behavior cloning, validating the self-improvement.

Results. The success rate of the best per-
forming BC policy and MEDAL++ policy is
reported in Table 4. MEDAL++ substan-
tially increases the success rate of the learned
policies, with approximately 30-70% improve-
ments. We provide an abridged version of
the analysis here, and defer a more detailed
analysis to Appendix A.4: First, we con-
sider a cube-grasping experiment. To iso-
late a potential source of improvement from
autonomous reinforcement learning, forward
demonstrations are collected from a narrow ini-
tial state distribution but the robot is evaluated starting from both in-distribution (ID) states and
out-of-distribution (OOD) states, visualized in Appendix, Figure 7 (only for this experiment).
MEDAL++ improves the ID performance by 15% over the BC policy, but we see a large im-

7

provement of 74% on OOD performance. Autonomous training allows the robot to practice the task
from a diverse set of states, including states that were OOD relative to the demonstration data. This
suggests that we expect improvement in success rate to result partly from being robust to the ini-
tial state distribution, as a small set of demonstrations is unlikely to cover all possible initial states
a robot can be evaluated from. Next, we evaluate MEDAL++ on grasping a cloth and putting it
through a fixed hook. Here, MEDAL++ improves the success rate over BC by 36%, improving the
grasp success, reducing drift and collision with the hook and importantly, reducing memorization as
MEDAL++ learns a policy that re-tries grasping the cloth if it fails the first time, rather than fol-
lowing a memorized trajectory observed in the forward demonstrations. We observe similar trends
on bowl-covering-with-cloth and the peg-insertion (5DoF) where we observe that
MEDAL++ improves 34% and 48% in success rate over BC, with similar sources of improvement
as cloth-on-the-hook. Overall, we observe that not only is MEDAL++ feasible to run in the
real world with minimal task engineering, but it can also substantially improve the policy over BC.
5.3 Ablations

Figure 5: Ablation identifying con-
tributions from different components of
MEDAL++. Improvements from BC reg-
ularization and oversampled expert transi-
tions are important for learning efficiency.

We benchmark four variants on the tabletop organization
and peg insertion tasks in Figure 5: (1) MEDAL++, (2)
MEDAL++ with the true reward function instead of the
learned VICE reward, (3) MEDAL++ without the en-
semble of Q-value functions, but, using SAC [57], and
(4) MEDAL++ with neither BC-regularization nor over-
sampling expert transitions when training Q-value func-
tions. The learned reward in MEDAL++ can recover
or exceed the performance with true rewards. Both en-
semble of Q-values and BC-regularization + oversampled
expert transitions improve the performance, though the
latter makes a larger contribution to the improvement in
performance. Note, when using the true rewards, BC-
regularization/oversampling expert transitions can hurt
the final performance (as discussed in Section 5.1). How-
ever, when using learned rewards, they both become more
important for better performance. We hypothesize that as
the learned reward function becomes noisier, other com-
ponents become more important for efficient learning and better final performance.

6 Discussion
We proposed MEDAL++, a method for learning autonomously from high-dimensional image ob-
servation without engineered reward functions or human oversight for repeated resetting of the en-
vironment. MEDAL++ takes a small set of forward and backward demonstrations as input, and
autonomously practices the task to improve the learned policy, as evidenced by comparison with
behavior cloning policies trained on just the demonstrations.

Limitations and Future Work: Real robot data collection is slow, even when autonomous. While the
control frequency is 10 Hz, training data is collected at approximately 3.5 Hz because policy updates
and collection steps are done sequentially. Asynchronous and parallel data collection and training
can substantially increase the amount of data collected. Several algorithmic extensions can improve
the learning efficiency: sharing the visual encoder and the environment transitions between forward
and backward policies, using better network architectures and exploration specifically designed for
learning autonomously can improve the sample efficiency. Additionally, reducing the number of
demonstrations required per task while learning an effective reward function and minimizing the
exploration challenge would lead to greater autonomy. Our work assumes the environments to
be reversible. Extending MEDAL++ to environments with irreversible states, for example, using
PAINT [40], is an exciting opportunity. Intermittent human interventions to reset the environment
can still be important to learn successfully. The robotic system can get stuck in a specific state when
collecting data autonomously due to poor exploration. Developing and using better methods for
exploration or pretraining on more offline data can further reduce human interventions in training.

8

7 Acknowledgements

We would like to acknowledge Tony Zhao, Sasha Khazatsky and Suraj Nair for help with setting up
robot tasks and control stack, Eric Mitchell, Joey Hejna, Suraj Nair for feedback on an early draft,
Abhishek Gupta for valuable conceptual discussion, and members of IRIS and SAIL for listening
to AS drone about this project on several occasions, personal and group meetings. This project was
funded by ONR grants N00014-20-1-2675 and N00014-21-1-2685 and, Schmidt Futures.

References
[1] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:

Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2022.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. RT-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[3] J. D. Co-Reyes, S. Sanjeev, G. Berseth, A. Gupta, and S. Levine. Ecological reinforcement
learning. arXiv preprint arXiv:2006.12478, 2020.

[4] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The
ingredients of real-world robotic reinforcement learning, 2020. URL https://arxiv.
org/abs/2004.12570.

[5] A. Sharma, K. Xu, N. Sardana, A. Gupta, K. Hausman, S. Levine, and C. Finn. Autonomous
reinforcement learning: Formalism and benchmarking. International Conference on Learning
Representations (ICLR), 2021. URL https://arxiv.org/abs/2112.09605.

[6] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine. Leave no trace: Learning to reset for safe and
autonomous reinforcement learning. International Conference on Learning Representations
(ICLR), 2018. URL https://arxiv.org/abs/1711.06782.

[7] A. Sharma, A. Gupta, S. Levine, K. Hausman, and C. Finn. Autonomous reinforcement learn-
ing via subgoal curricula. Advances in Neural Information Processing Systems, 34:18474–
18486, 2021.

[8] K. Xu, S. Verma, C. Finn, and S. Levine. Continual learning of control primitives: Skill
discovery via reset-games. Neural Information Processing Symposium (NeurIPS), 2020. URL
https://arxiv.org/abs/2011.05286.

[9] J. Kim, J. hyeon Park, D. Cho, and H. J. Kim. Automating reinforcement learning with
example-based resets. IEEE Robotics and Automation Letters, 7(3):6606–6613, 2022.

[10] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration
in reinforcement learning with demonstrations. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[11] A. Sharma, R. Ahmad, and C. Finn. A state-distribution matching approach to non-episodic re-
inforcement learning. In International Conference on Machine Learning, pages 19645–19657.
PMLR, 2022. URL https://arxiv.org/abs/2205.05212.

[12] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning, 2021. URL https://arxiv.org/abs/2107.
09645.

[13] J. Ho and S. Ermon. Generative adversarial imitation learning, 2016. URL https:
//arxiv.org/abs/1606.03476.

9

https://arxiv.org/abs/2004.12570
https://arxiv.org/abs/2004.12570
https://arxiv.org/abs/2112.09605
https://arxiv.org/abs/1711.06782
https://arxiv.org/abs/2011.05286
https://arxiv.org/abs/2205.05212
https://arxiv.org/abs/2107.09645
https://arxiv.org/abs/2107.09645
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476

[14] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-end robotic reinforcement
learning without reward engineering. ArXiv, abs/1904.07854, 2019.

[15] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning
fast without a model, 2021. URL https://arxiv.org/abs/2101.05982.

[16] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[17] S. Lange, M. Riedmiller, and A. Voigtländer. Autonomous reinforcement learning on raw
visual input data in a real world application. In The 2012 international joint conference on
neural networks (IJCNN), pages 1–8. IEEE, 2012.

[18] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[19] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[20] F. Ebert, S. Dasari, A. X. Lee, S. Levine, and C. Finn. Robustness via retrying: Closed-loop
robotic manipulation with self-supervised learning. In A. Billard, A. Dragan, J. Peters, and
J. Morimoto, editors, Proceedings of The 2nd Conference on Robot Learning, volume 87 of
Proceedings of Machine Learning Research, pages 983–993. PMLR, 29–31 Oct 2018. URL
https://proceedings.mlr.press/v87/ebert18a.html.

[21] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation, 2018. URL https://arxiv.org/abs/1806.
10293.

[22] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep
reinforcement learning: Efficient, general, and low-cost, 2018. URL https://arxiv.
org/abs/1810.06045.

[23] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation, 2019. URL https://arxiv.org/abs/1909.11652.

[24] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser. Tossingbot: Learning to throw
arbitrary objects with residual physics, 2019. URL https://arxiv.org/abs/1903.
11239.

[25] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale, 2021.
URL https://arxiv.org/abs/2104.08212.

[26] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1593–1599. IEEE, 2022.

[27] M. Bloesch, J. Humplik, V. Patraucean, R. Hafner, T. Haarnoja, A. Byravan, N. Y. Siegel,
S. Tunyasuvunakool, F. Casarini, N. Batchelor, et al. Towards real robot learning in the wild:
A case study in bipedal locomotion. In Conference on Robot Learning, pages 1502–1511.
PMLR, 2022.

[28] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders
for visuomotor learning. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 512–519. IEEE, 2016.

10

https://arxiv.org/abs/2101.05982
https://proceedings.mlr.press/v87/ebert18a.html
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1810.06045
https://arxiv.org/abs/1810.06045
https://arxiv.org/abs/1909.11652
https://arxiv.org/abs/1903.11239
https://arxiv.org/abs/1903.11239
https://arxiv.org/abs/2104.08212

[29] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017 IEEE international conference on robotics
and automation (ICRA), pages 3389–3396. IEEE, 2017.

[30] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman. Deep predictive policy training using
reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2351–2358. IEEE, 2017.

[31] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine. Combining
model-based and model-free updates for trajectory-centric reinforcement learning. In Interna-
tional conference on machine learning, pages 703–711. PMLR, 2017.

[32] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep
reinforcement learning. arXiv preprint arXiv:1812.11103, 2018.

[33] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep
reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.

[34] A. Sharma, M. Ahn, S. Levine, V. Kumar, K. Hausman, and S. Gu. Emergent real-world robotic
skills via unsupervised off-policy reinforcement learning. arXiv preprint arXiv:2004.12974,
2020.

[35] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. Advances in neural information processing systems,
29, 2016.

[36] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages
3406–3413. IEEE, 2016.

[37] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE, 2017.

[38] W. Han, S. Levine, and P. Abbeel. Learning compound multi-step controllers under unknown
dynamics. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2015, Hamburg, Germany, September 28 - October 2, 2015, pages 6435–6442. IEEE,
2015. doi:10.1109/IROS.2015.7354297. URL https://doi.org/10.1109/IROS.
2015.7354297.

[39] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Reset-free lifelong learning with skill-space
planning. arXiv preprint arXiv:2012.03548, 2020.

[40] A. Xie, F. Tajwar, A. Sharma, and C. Finn. When to ask for help: Proactive interventions in
autonomous reinforcement learning. Neural Information Processing Systems (NeurIPS), 2022.
URL https://arxiv.org/abs/2210.10765.

[41] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free
reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors
without human intervention, 2021. URL https://arxiv.org/abs/2104.11203.

[42] A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, and K. Hausman. Bootstrapped au-
tonomous practicing via multi-task reinforcement learning. arXiv preprint arXiv:2203.15755,
2022.

[43] H. Walke, J. Yang, A. Yu, A. Kumar, J. Orbik, A. Singh, and S. Levine. Don’t start from
scratch: Leveraging prior data to automate robotic reinforcement learning. Conference on
Robot Learning (CoRL), 2022. URL https://arxiv.org/abs/2207.04703.

11

http://dx.doi.org/10.1109/IROS.2015.7354297
https://doi.org/10.1109/IROS.2015.7354297
https://doi.org/10.1109/IROS.2015.7354297
https://arxiv.org/abs/2210.10765
https://arxiv.org/abs/2104.11203
https://arxiv.org/abs/2207.04703

[44] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and S. Levine. Dexterous ma-
nipulation from images: Autonomous real-world rl via substep guidance. arXiv preprint
arXiv:2212.09902, 2022.

[45] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events: A
general framework for data-driven reward definition, 2018. URL https://arxiv.org/
abs/1805.11686.

[46] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

[47] S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using
variational divergence minimization. Advances in neural information processing systems, 29,
2016.

[48] S. K. S. Ghasemipour, R. Zemel, and S. Gu. A divergence minimization perspective on imita-
tion learning methods. In Conference on Robot Learning, pages 1259–1277. PMLR, 2020.

[49] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33:741–752, 2020.

[50] M. Laskin, A. Srinivas, and P. Abbeel. CURL: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, pages 5639–5650.
PMLR, 2020.

[51] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks, 2014. URL https://arxiv.org/abs/
1406.2661.

[52] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[53] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization, 2017. URL https://arxiv.org/abs/1710.09412.

[54] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson. Discriminator-actor-
critic: Addressing sample inefficiency and reward bias in adversarial imitation learning, 2018.
URL https://arxiv.org/abs/1809.02925.

[55] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

[56] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[57] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[58] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn. Vision-based manipulators need to also
see from their hands. arXiv preprint arXiv:2203.12677, 2022.

12

https://arxiv.org/abs/1805.11686
https://arxiv.org/abs/1805.11686
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1809.02925

Figure 6: Environments from the EARL benchmark [5] used for simulated experiments. From left to right,
the environments are: Peg insertion, Door closing and Tabletop organization.

Figure 7: (left) Randomized position of the cube in the grasping task. The position marked by violet boundary
are within the distribution of expert demonstrations, and the rest are outside the distribution. (right) Architecture
overview for MEDAL++.

A Appendix

A.1 Algorithm Overview

The pseudocode for training is given in Algorithm 1. First, the parameters and data buffers in F and
B are initialized and the forward and backward demonstrations are loaded into D∗

f and D∗
b respec-

tively. Next, we update the forward and backward goal sets, as described above. After initializing
the environment, the forward policy πf interacts with the environment and collects data, updating
the networks and buffers in F . The control switches over to the backward policy πb after a fixed
number of steps, and the networks and buffers in B are updated. The backward policy interacts for
a fixed number of steps, after which the control is switched over to the forward policy and this cycle
is repeated thereon. When executing in the real world, humans are allowed to intervene and reset
the environment intermittently, switching the control over to πf after the intervention to restart the
forward-backward cycle.

We now expand on how the networks are updated for πf during training (also visualized in Figure 9);
the updates for πb are analogous. First, the new transition in the environment is added to Df . Next,
we sample a batch of states fromDf and label them 0, and sample a batch of equal size fromD∗

f and
label them 1. The classifier Cf is updated using gradient descent on the combined batch to minimize
the cross-entropy loss. Note, the classifier is not updated for every step collected in the environment.
As stated earlier, the classification problem is easier than learning the policy, and therefore, it helps
to train the classifier slower than the policy. Finally, the policy πf , Q-value networks {Qf

n, Q̄
f
n}Nn=1

and the encoder E are updated on a batch of transitions constructed by sampling (1 − ρ)B tran-
sitions from Df and ρB transitions from D∗

f . The Q-value networks and the encoder are updated
by minimizing 1

N

∑N
n=1 ℓ(Qn, E) (Eq 1), and the target Q-networks are updated as an exponential

moving average of Q-value networks. The policy πf is updated by maximizing L(π). We update

13

Algorithm 1: MEDAL++
initialize F ,B; // forward, backward parameters
F .D∗

f ,B.D∗
b ← load demonstrations()

F .Gf ← get states(F .D∗
f ,−K:) // last K states

// exclude last K states from D∗
f , use only the last K states from D∗

b

B.Gb ← get states(F .D∗
f , :−K) ∪ get states(B.D∗

b ,−K:)
s ∼ ρ0; A ← F ; // initialize environment
while not done do

a ∼ A.act(s); s′ ∼ T (· | s, a);
A.update buffer({s, a, s′});
A.update classifier();
A.update parameters();
// switch policy after a fixed interval
if switch then

switch(A, (F ,B));
// allow intermittent human interventions
if interrupt then

s ∼ ρ0;
A ← F ;

else
s← s′;

Figure 8: Visualizing the positive target states for forward clas-
sifier Cf and backward classifier Cb from the expert demonstra-
tions. For forward demonstrations, last K states are used for
Cf (orange) and the rest are used for Cb (pink). For backward
demonstrations, last K states are used for Cb.

Figure 9: An overview of MEDAL++
training. The classifier is trained to dis-
criminate states visited by an expert from
the states visited online. The robot rein-
forcement learns on a combination of self-
collected and expert transitions, and the
policy learning is regularized using the be-
havior cloning loss.

the Q-value networks multiple times for every step collected in the environment, whereas the policy
network is updated once for every step collected in the environment [15].

A.2 Implementation Details and Practical Tips

An overview of the architecture used by the forward and backward networks is shown in Figure 7.

Visual Encoder: For the encoder, we use the same architecture as DrQ-v2 [12]: 4 convolutional
layers with 32 filters of size (3, 3), stride 1, followed by ReLU non-linearities. The high-dimensional
output from the CNN is embedded into a 50 dimensional feature using a fully-connected layer,
followed by LayerNorm and tanh non-linearity (to output the features normalized to [−1, 1]). For
real-robot experiments, the first person and third person views are concatenated channel wise before
being passed into the encoder. The output of the encoder is fused with proprioceptive information,
in this case, the end-effector position, before being passed to actor and critic networks.

Actor and Critic Networks: Both actor and critic networks are parameterized as 4 layer fully-
connected networks with 1024 ReLU hidden units for every layer. The actor parameterizes a Gaus-

14

sian distribution over the actions, where a tanh non-linearity on the output restricts the actions to
[−1, 1]. We use an ensemble size of 10 critics.

Discriminators: The discriminator for the forward and backward policies use a similar visual en-
coder but with 2 layers instead of 4. The visual embedding is passed to a fully connected network
with 2 hidden layers with 256 ReLU units. When training the network, we use mixup and spectral
norm regularization [53, 52] for the entire network.

Training Hyperparameters: For all our experiments, K = 20, i.e. the number of frames used as goal
frames. The forward policy interacts with the environment for 200 steps, then the backward policy
interacts for 200 steps. In real world experiments, we also reset the arm every 1000 steps to avoid
hitting singular positions. Note, this reset does not require any human intervention as the controller
just resets the arm to a fixed joint position. We use a batch size of 256 to train the policy and critic
networks, out of which 64 transitions are sampled from the demonstrations (oversampling). We use
a batch size of 512 to train the discriminators, 256 of the states come from expert data and the other
256 comes from the online data. Further, the discriminators are updated every 1000 steps collected
in the environment. The update-to-data ratio, that is the number of gradient updates per transition
collected in the environment is 3 for simulated environments and 1 for the real-robot experiments.
We use a linearly decaying schedule for behavior cloning regularization from 1 to 0.1 over the first
50000 steps which remains fixed at 0.1 onwards throughout training.

For real world experiments, we use a wrist camera to improve the overall performance [58], and
provide only the wrist-camera view to both discriminators. We find that this further regularizes
the discriminator. Finally, we provide no proprioceptive information for the VICE discriminator,
but we give MEDAL discriminator the proprioceptive information, as it needs a stronger notion
of the robot’s localization to adequately reset to a varied number of initial positions for improved
robustness.

Teleoperation: To collect our demonstrations on the real robot, we use an Xbox controller that
manipulates the end-effector position, orientation and the gripper state. Two salient notes: (1) The
forward and backward demonstrations are collected together, one after the other and (2) the initial
position for demonstrations is randomized to cover as large a state-space as feasible. The increased
coverage helps with exploration during autonomous training.

A.3 EARL Environments, Training and Evaluation

Environments. We consider three sparse-reward continuous-control environments from EARL
benchmark [5], shown in Appendix, Fig 6). Tabletop organization is a simplified manipulation
environment where a gripper is tasked to move the mug to one of the four coasters from a wide set
of initial states, sawyer door closing task requires a sawyer robot arm to learn how to close a door
starting from various positions, and finally the sawyer peg insertion task requires the sawyer robot
arm to grasp the peg and insert it into a goal. Not only does the robot have to learn how to do the task
(i.e. close the door or insert the peg), but it has to learn how to undo the task (i.e. open the door or
remove the peg) to try task repeatedly in the non-episodic training environment. The sparse reward
function is given by r(s, a) = 1(∥s − g∥ ≤ ϵ), where g denotes the goal, and ϵ is the tolerance for
the task to be considered completed.

Training and Evaluation. The environments are setup to return 84 × 84 RGB images as obser-
vations with a 3-dimensional action space for the tabletop organization (2D end-effector deltas in
the XY plane and 1D for gripper) and a 4-dimensional action space for sawyer environments (3D
end-effector delta control + 1D gripper). The training environment is reset to s0 ∼ ρ0 every 25,000
steps of interaction with the environment. This is extremely infrequent compared to episodic set-
tings where the environment is reset to the initial state distribution every 200-1000 steps. EARL
comes with 5-15 forward and backward demonstrations for every environment to help with explo-
ration in these sparse reward environments. We evaluate the forward policy every 10, 000 training
steps, where the evaluation approximates Es0∼ρ0

[
∑∞

t=0 γ
tr(st, at)] by averaging the return of the

15

Figure 10: An overview of MEDAL++ on the task of inserting the peg into the goal location. (top) Starting
with a set of expert trajectories, MEDAL++ learns a forward policy to insert the peg by matching the goal states
and a backward policy to remove and randomize the peg position by matching the rest of the states visited by
an expert. (bottom) Chaining the rollouts of forward and backward policies allows the robot to practice the task
autonomously. The rewards indicate the similarity to their respective target states, output by a discriminator
trained to classify online states from expert states.

policy over 10 episodes starting from s0 ∼ ρ0. These roll-outs are used only for evaluation, and not
for training.

A.4 Real-world Experiment Analysis

We discuss the four manipulation tasks in detail. We recommend viewing the supplemental website
for training and evaluation videos:
(1) Cube Grasping: The goal in this task is to grasp the cube from varying initial positions and con-
figurations and raise it. For this task, we consider a controlled setting to isolate one potential source
of improvement from autonomous reinforcement learning: robustness to the initial state distribution.
Specifically, all the forward demonstrations are collected starting from a narrow set of initial states
(ID), but, the robot is evaluated starting from both ID states and out-of-distribution (OOD) states,
visualized in Appendix, Figure 7. BC policy is competent on ID states, but it performs poorly on
states that are OOD. However, after autonomous self-improvement using MEDAL++, we see an
improvement of 15% on ID performance, and a large improvement of 74% on OOD performance.
Autonomous training allows the robot to practice the task from a diverse set of states, including
states that were OOD relative to the demonstration data. This suggests that improvement in success
rate results partly from being robust to the initial state distribution, as a small set of demonstrations
is unlikely to cover all possible initial states a robot can be evaluated from.
(2) Cloth on the Hook: In this task, the robot is tasked with grasping the cloth and putting it through
a fixed hook. To practice the task repeatedly, the backward policy has to remove the cloth from
the hook and drop it on platform. Here, MEDAL++ improves the success rate over BC by 36%.
The BC policy has several failure modes: (1) it fails to grasp the cloth, (2) it follows through with
hooking because of memorization, or (3) it hits into into the hook because it drifts from the right
trajectory and could not recover. Autonomous self-improvement improves upon all these issues,
but particularly, it learns to re-try grasping the cloth if it fails the first time, rather than following a
memorized trajectory observed in the forward demonstrations.
(3) Bowl Covering with Cloth: The goal of this task is to cover a bowl entirely using the cloth.
The cloth can be a wide variety of initial states, ranging from ‘laid out flat’ to ‘scrunched up’ in
varying locations. The task is challenging as the robot has to grasp the cloth at the correct location
to successfully cover the entire bowl (partial coverage is counted as a failure). Here, MEDAL++
improves the performance over BC by 34%. The failure modes of BC are similar to previous task,
including failure to grasp, memorization and failure to re-try, and incomplete coverage due to wrong
initial grasp. Autonomous self-improvement substantially helps with the grasping (including re-
trying) and issues related to memorization. While it plans the grasps better than BC, there is room
for improvement to reduce failures resulting from partially covering the bowl.
(4) Peg Insertion: Finally, we consider the task of inserting a peg into a goal location. The location
and orientation of the peg is randomized, in service of which we use 5DoF control for this task. A
successful insertion requires the toy to be perpendicular to the goal before insertion, and the error

16

margin for a successful insertion is small given the size of the peg and the goal. Additionally, the
peg here is a soft toy, it can be grasped while being in the wrong orientation. Here, MEDAL++
improves the performance by 48% over BC. In addition to failures described in the previous tasks,
a common cause of failure is the insertion itself where the agent takes an imprecise trajectory and
is unable to insert the peg. After autonomous self-improvement, the robot employs an interesting
strategy where it keeps retries the insertion till it succeeds. The policy is also better at grasping,
though the failures of insertion often result from orienting the gripper incorrectly before the grasp
which makes insertion infeasible.

17

	Introduction
	Related Work
	Preliminaries
	MEDAL++: Practical and Efficient Autonomous Reinforcement Learning
	Experiments
	Benchmarking MEDAL++ on EARL
	Real Robot Evaluations
	Ablations

	Discussion
	Acknowledgements
	Appendix
	Algorithm Overview
	Implementation Details and Practical Tips
	EARL Environments, Training and Evaluation
	Real-world Experiment Analysis

