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Abstract: While imitation learning methods have seen a resurgent interest for
robotic manipulation, the well-known problem of compounding errors continues
to afflict behavioral cloning (BC). Waypoints can help address this problem by
reducing the horizon of the learning problem for BC, and thus, the errors com-
pounded over time. However, waypoint labeling is underspecified, and requires
additional human supervision. Can we generate waypoints automatically without
any additional human supervision? Our key insight is that if a trajectory segment
can be approximated by linear motion, the endpoints can be used as waypoints. We
propose Automatic Waypoint Extraction (AWE) for imitation learning, a prepro-
cessing module to decompose a demonstration into a minimal set of waypoints
which when interpolated linearly can approximate the trajectory up to a specified
error threshold. AWE can be combined with any BC algorithm, and we find that
AWE can increase the success rate of state-of-the-art algorithms by up to 25% in
simulation and by 4-28% on real-world bimanual manipulation tasks, reducing the
decision making horizon by up to a factor of 10. Videos and code are available at
https://lucys0.github.io/awe/.
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1 Introduction

Figure 1: Our approach reduces the horizon of imitation
learning by extracting waypoints from demonstrations.

The simple supervised learning approach
of behavioral cloning (BC) has enabled a
compelling set of robotic results, from self-
driving vehicles [1] to manipulation [2, 3,
4, 5, 6]. However, due to the lack of cor-
rective feedback, errors grow quadratically
in the length of the episode for behavior
cloning (BC) algorithms [7, 8], colloquially
known as the compounding errors prob-
lem. Waypoints [9, 10, 4, 11] are a rele-
vant proposition in this context: breaking
the demonstration into a subset of states
that can reconstruct the trajectory reduces
the effective length of the decision-making
problem, addressing the compounding er-
rors problem while still allowing the use of simple methods such as BC. Our primary objective is to
select a set of waypoints to reduce the effective horizon of the demonstration, and not necessarily find
key bottleneck states. However, labeling waypoints is both an underspecified problem and requires
additional human supervision.
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Our objective is to develop a method for selecting waypoints for a given demonstration without any
additional human supervision. For a robot arm, if a trajectory segment can be approximated linearly,
a low-level controller can reliably imitate the segment without explicitly learning the intermediate
states. Thus, we can represent that segment just by the endpoints. Extending this argument to
arbitrary trajectories, we can use a subsequence of states as waypoints to represent the trajectory if
the trajectory can be approximated well by linearly interpolating between the selected waypoints.
The BC prediction problem then transforms from predicting the next action to the next waypoint.

How do we select the waypoint sequence that approximates a given a trajectory? Given a budget
for the reconstruction error, where the error is defined as the maximum proprioceptive distance
between the actual and reconstructed trajectory, we want to select the shortest subsequence of
states for which the reconstruction error is within budget. This can be posed as a standard dynamic
programming problem, by iteratively choosing an intermediate state as the waypoint and recursively
selecting waypoints for the two resulting trajectory segments. The recursion terminates whenever the
reconstruction error for the linearly interpolated trajectory between the endpoints is already within
the budget. Importantly, finding the sequence of waypoints relies only on the robot’s proprioceptive
information, which is already collected during teleoperation. AWE makes no additional assumption
about the extrinsic environment (state estimation, point clouds, etc.) and requires no additional label
information from humans.

Overall, our work proposes Automatic Waypoint Extraction (AWE), a preprocessing module that
breaks an expert demonstration into sequence of waypoints. AWE requires minimal additional
information, and thus, can easily be plugged into current BC pipelines. We combine AWE with two
state-of-the-art imitation learning methods, diffusion policy [5] and action-chunking with transformers
(ACT) [6], and study its performance when learning from human-teleoperated demonstrations. On
two existing simulated imitation learning benchmarks and multiple real bi-manual manipulation tasks,
we find that AWE consistently improves performance, with up to 25% increase in success rate in
simulation and 4-28% increase in success rate on real-world tasks.

2 Related Work
Imitation learning is a long-studied approach to training robotic control policies from demonstra-
tions [1, 12, 13]. A central challenge is when compounding errors cause the policy to drift away
from states seen in the demonstration data [8], leading to poor performance with small demonstration
datasets. Prior approaches have aimed to improve imitation learning performance by developing new
policy architectures [14, 11, 15, 16], using policies with expressive distribution classes [17, 18, 5],
introducing modified action spaces [19, 20, 21, 22, 4], constructing modified training objectives [2, 6],
utilizing particular visual representations [23, 24], incorporating data augmentation [25, 26], or col-
lecting online data [8, 27, 28]. We instead aim to tackle the challenge of compounding errors by
extracting waypoints that shorten the horizon. Our approach is orthogonal to and complementary to
many of these prior developments; indeed, our experiments show that AWE can be combined with
two recent, representative methods [5, 6] to improve their performance.

Prior works also attempted to reduce the policy horizon. Some use hand-defined high-level primi-
tives [19, 22, 29, 30, 31, 32, 33, 34], but they lack flexibility and require extra engineering. Belkhale
et al. [35] proposes a hybrid action space that incorporates both sparse waypoints and dense ac-
tions. While innovative, it requires humans to label waypoints either during data collection or
post-processing, which may limit its scalability. Other recent works extract waypoints using various
heuristics [9, 10, 4, 11], such as selecting waypoints at timesteps when the robot is at zero-velocity or
actuating the gripper [4]. We are inspired by the success of these methods: they provide dramatic per-
formance and data-efficiency improvements in some settings. However, we find that the heuristics do
not apply in general, leading to low success on imitation learning benchmarks and fine manipulation
tasks (Sec 5.4). In contrast to these methods, we circumvent the need for human waypoint labelling
or heuristics. Our approach instead automatically extracts waypoints that minimize the trajectory
reconstruction cost, which yields improvements on two existing simulated manipulation benchmarks
and multiple real robot tasks. We discuss more related works in Appendix D.2.
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3 Preliminaries
Problem Setup. We assume an expert collected dataset of demonstrations D = {τ0, τ1 . . . τn},
where each trajectory τi = {(oj , xj)}|τi|j=1 is a sequence of paired raw visual observations o and
proprioceptive information x. The proprioceptive information can either be the end-effector pose or
joint pose, and includes the gripper width. In this work, we use pose-control for the action space,
i.e., proprioceptives x are the action outputs as well. Next, we briefly review two recent successful
methods for BC, which we will use in our experiments.

Diffusion Policy. Diffusion policy [5] models the conditional action distribution as a denoising
diffusion probabilistic model (DDPM) [36], allowing for better representation of the multi-modality
in human-collected demonstrations. Specifically, diffusion policy uses DDPM to model the action
sequence p(At | ot, xt), where At = {at, . . . at+C} represents a chunk of next C actions. The final
action is output of the following denoising process [37]:

Ak−1
t = α

(
Ak

t − γϵθ(ot, xt, A
k
t , k) +N (0, σ2I)

)
, (1)

where Ak
t is the denoised action sequence at time k. Denoising starts fromAK

t sampled from Gaussian
noise and is repeated till k = 1. In Eq 1, (α, γ, σ) are the parameters of the denoising process and ϵθ
is the score function trained using the MSE loss ℓ(θ) = (ϵk − ϵθ(ot, xt, A

k
t + ϵk, k))

2. The noise at
step k of the diffusion process, ϵk, is sampled from a Gaussian of appropriate variance [36].

Action Chunking with Transformers. Action chunking with transformers (ACT) [6] models the
policy distribution p(At | ot, xt) as conditional VAE [38, 39], using a transformer based encoder and
decoder. The decoder output is a chunk of actions of size C. Chunking is particularly important for
high-frequency fine-grained manipulation tasks, with chunk sizes C being as high as 100 [6].

4 Automatic Waypoint Extraction for Imitation Learning
The goal of this section is to develop our method for Automatic Waypoint Extraction (AWE). First,
we define an objective that assesses the quality of the reconstructed trajectory for a given sequence of
waypoints. Next, we show how a simple dynamic programming algorithm can be used to select the
minimal number of waypoints that have a reconstruction error below a specified threshold. Finally, we
discuss how to preprocess a demonstration dataset using AWE before plugging into the BC algorithm,
along with the some practical considerations when training and evaluating a waypoint-based policy.

Reconstruction Loss. For an expert demonstration τ , define the sequence of proprioceptives as
τp = {xj}|τ |−1

j=0 and letW denote a sequence of waypoints such thatW = {w0, . . . wL}, where wi

denotes the proprioceptive information in the waypoint. We reconstruct an approximate trajectory τ̂
by interpolating between the waypoints, i.e., τ̂ = f(W) for an interpolation function f . While we
restrict to linear interpolation in this work, the framework can be extended to incorporate splines.

To measure how well a sequence of waypoints approximates the true trajectory, we measure how
much the interpolated trajectory deviates from the true trajectory. We define the reconstruction loss as
the maximum distance of any state in the original trajectory from the reconstructed trajectory, that is,

L(τ̂ , τ) = max
x∈τp

min
x̂∈τ̂

ℓ(x, x̂) (2)

where ℓ(·, ·) is some distance function (for example, Euclidean ℓ2 distance). The minx̂∈τ̂ ℓ(·, x̂)
denotes shortest distance of a proprioceptive state to the interpolated trajectory τ̂ . How do we
aggregate projection errors for proprioceptives in the true trajectory? While there are several
options, for example, mean projection error over τp, we define the reconstruction loss as the
maximum projection error over all proprioceptives in τp. The success of a trajectory often re-
lies on reaching key states, and the mean error can be low while having a high projection er-
ror for those key states. While a low reconstruction loss with maximum projection error also
does not guarantee downstream success, it encourages minimizing outlier projection errors po-
tentially critical for a successful execution. The reconstruction loss L is visualized in Figure 2.
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Figure 2: Visualizing the loss L.

Waypoint Selection via Dynamic Programming. Given
the reconstruction loss, how do we use it to optimize way-
points? We consider the following optimization problem:

min
W
|W| s.t. L(f(W), τ) ≤ η, (3)

i.e., minimize the number of selected waypoints such that
the reconstruction loss is below the budget η. As presented,
waypoints can be arbitrary points in the proprioceptive
space, but we will restrict waypoint selection to the states
visited in the expert trajectory τ . The problem simplifies
to finding the shortest subsequence of τp such that the reconstruction loss is less than η, which
can be solved efficiently with dynamic programming (DP). For a trajectory segment, either linearly
interpolating between the endpoints sufficiently reconstructs the segment (i.e, reconstruction loss
less than η), in which case the endpoints are returned as waypoints. Or for every intermediate state
between the endpoints: (1) break the trajectory into two segments at that intermediate state and, (2)
recursively find the shortest subsequence for each segment. Finally, choose the intermediate state
resulting in the shortest subsequence when the waypoints from its two trajectory segments are merged,
and return the merged waypoints. The pseudocode for selecting waypoints with DP is in Algorithm 1.

Preprocessing Demonstrations. For an expert trajectory τ = {(o0, x0), . . . (oT , xT )}, denote
the selected waypoints as W = {(w0, t0) . . . (wL, tL)}, where wi denotes the waypoint and ti
denotes the time index in τ . The training problem for a BC algorithm changes from predicting the
next proprioceptive state to next waypoint. However, if done naı̈vely, the training dataset of next
waypoints will be much smaller. But, we can use all observations in τ between two consecutive
waypoints by labeling them with closest waypoint after the observation. This follows from the
intuition that following the waypoints implies the robot tries to reach wk+1 from wk, and therefore,
should target wk+1 from intermediate states between them as well. The final dataset can be written as
Dτ

waypoint = {(ot, xt, wnext wp(t))}T−1
t=0 where next wp(t) = argminj∈{0,1,...L} such that tj > t. The

process of selecting waypoints and constructing the augmented dataset is repeated for every expert
demonstration τ ∈ D, and the resulting datasets are merged to get the final training dataset.

Overview and Practical Considerations. We have proposed AWE, a simple method that can
preprocess a demonstration into sequence of waypoints without any additional supervision. The
training dataset can be relabeled with the next waypoint instead of next propriopceptive state, and
plugged into a BC pipeline. The choice of policy distribution class used with AWE is important;
waypoints introduce increased multi-modality into the conditional action distribution as different
demonstrations may be processed into different waypoints. Using more expressive policy classes
capable of representing multi-modal action distributions is critical, as introducing waypoints can
make the performance worse for less expressive policy classes (Figure 6).

Why does AWE return meaningful waypoints? An intuitive notion of waypoints relies on registering
important events happening in the extrinsic environment (grasping a cup, opening a door, etc.) while
AWE uses just the proprioceptive information to select waypoints. AWE relies on the idea that the
expert demonstrations will naturally deviate from linear motion during such key events. For simpler
parts of the task, such as free-space reaching, demonstrations are more likely to be approximated by
linear motion, resulting in fewer waypoints. Moreover, decreasing the budget η allows for selecting
more waypoints in general, and thus, better reconstruction as visualized in Figure 4.

An important consideration at test-time is to allow more time for position-control to reach waypoints,
as waypoints are farther apart compared to proprioceptive positions in the original expert demon-
strations. The exact instantiation for the low-level controller depends on the whether the robot is
operating in the joint space or end-effector space, which we discuss in Appendix C.1.

5 Experiments
Our experiments seek to answer the following questions: (1) How well does AWE combine with
representative behavioral cloning methods? (2) Can it be used to tackle standard imitation learning
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Table 1: Success rate (%) for simulated bimanual tasks. We report results on both training with scripted
data and training with human data, with 3 seeds and 50 policy evaluations each. Baseline results are obtained
from Zhao et al. [6]. Overall, AWE +ACT significantly outperforms previous methods.

Cube Transfer Bimanual Insertion
scripted data human data scripted data human data

BC-ConvMLP 1 0 1 0
BeT [14] 27 1 3 0
RT-1 [15] 2 0 1 0

VINN [24] 3 0 1 0
ACT [6] 86 50 32 20

AWE +ACT (Ours) 99 71 57 30

benchmarks with real human demonstrations? (3) Can it be effective on a real-robot? (4) How
does the parameterization of the policy affect the performance? (5) How do the selected waypoints
and downstream performance change as we vary the hyperparameters? To answer these questions,
we compare the performance of recent state-of-the-art BC methods with and without AWE on 8
tasks and 10 datasets. First, we evaluate AWE on a set of simulation environments, specifically two
bimanual manipulation tasks from Zhao et al. [6] and three manipulation tasks from the RoboMimic
benchmark [17]. We evaluate AWE on a set of three bimanual manipulation tasks on the real robot:
coffee making, wiping the table and screwdriver handover. Hyperparameter and implementation
details can be found in Appendix B and C respectively.

5.1 Bimanual Simulation Suite

The bimanual simulation suite contains two fine-grained long-horizon manipulation tasks in MuJoCo
[40]. The observation space includes a 480 × 640 image and the current joint positions for both
robots. The 14-dimensional action space corresponds to the target joint positions. Demonstrations
are 400 to 500 steps at a control frequency of 50Hz. In the Cube Transfer task, the right robot arm
needs to pick up the cube from a random position on the table, and then hand it to the left arm mid-air.
For Bimanual Insertion, both the peg and the socket are placed randomly on the table. The arms
need to first pick them up respectively, then insert the peg into the socket mid-air. Both tasks require
delicate coordination between the two arms and closed-loop visual feedback: error in grasping can
directly lead to failure of handover or insertion.

Two datasets are available for each task: one collected with a scripted policy, and one collected
by human demonstrators, both with 50 demonstrations. As shown in Table 1, AWE outperforms
competitive BC baselines on all tasks and datasets in the bimanual simulation suite, where some
of the baselines completely fail due to task difficulty. AWE can increase the success rate of ACT,
the state-of-the-art method on this benchmark 17% on an average, and up to 25% on the scripted
bimanual insertion. The effective length of the training demonstrations reduce by a factor of 7×
to 10×, even allowing for improvements on human data which is fairly multi-modal to begin with.
Notably, the performance improves by 50% when imitating human demonstrations on the bimanual
insertion task. Overall, this suggests that the benefit from reducing the effective training horizon
exceeds any potential downside from the increased multi-modality introduced by AWE.

5.2 RoboMimic Suite

Next, we evaluate on three simulated tasks from the RoboMimic [17] manipulation suite: Lift where
the robot arm has to pick up a cube from the table, Can where the robots are required to pick up a
soda can from a large bin and place it into a smaller target bin, and Square where robots are tasked
to pick up a square nut and place it on a rod. It is challenging due to the high precision needed to
pick up the handle and insert it into a tightly-fitted rod. Episodes start with randomly initialized
object configurations. All environments return RGB observations and the action space is the 6DoF
end-effector pose, with an additional degree for the gripper.

We combine AWE with the state-of-the-art method on this benchmark, Diffusion Policy [5]. Since
diffusion policy achieves a near-perfect success rates on Lift, Can, and Square when training on a
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Table 2: Success rate (%) for behavior cloning benchmark, RoboMimic (Visual Policy). AWE + Diffusion
is more data-efficient than previous methods. We evaluate the policy every 100 epochs across the training,
and report the average of the max performance across 3 training seeds and 30 different environment initial
conditions (90 in total). Results on LSTM-GMM and IBC are obtained from Chi et al. [5] for comparison to
more traditional methods. The performance scaling is visualized in Figure 8.

Task # Demos AWE + Diffusion (Ours) Diffusion LSTM-GMM IBC

Lift

30 100.0± 0.0 100.0± 0.0 - -
50 100.0± 0.0 100.0± 0.0 - -

100 100.0± 0.0 100.0± 0.0 - -
200 100.0± 0.0 100.0± 0.0 96 73

Can

30 69.0± 1.4 61.0± 5.9 - -
50 85.7± 1.9 82.3± 3.3 - -

100 95.3± 1.7 93.3± 0.0 - -
200 96.7± 0.9 97.3± 2.5 88 1

Square

30 62.3± 3.3 44.3± 6.1 - -
50 67.0± 2.9 57.3± 4.2 - -

100 91.7± 3.9 82.0± 7.0 - -
200 94.7± 3.9 95.0± 4.1 59 0

dataset with 200 proficient-human demonstrations, we focus our evaluation on how the performance
scales with the number of demonstrations, both with and without AWE. The results in Table 2 suggest
that AWE consistently improves the performance of diffusion policy as the number of demonstrations
is scaled from 30 to 200, while both of them outperform LSTM-GMM and implicit BC [41] with half
the demonstration data, or even less. The improvements are larger when the number of demonstrations
is smaller or the task is longer-horizon, for example, an 18% increase in the success rate when using
30 demonstrations on the Square task.

5.3 Real-World Bimanual Tasks

For real-robot evaluations, we use ALOHA [6], a low-cost open-source bimanual hardware setup. The
setup consists of two leader arms and two follower arms, where the joint positions are synchronized
between the leaders and followers during teleoperation. The observation space consists of RGB
images from 4 cameras: two are mounted on the wrist of the follower robots, allowing for close-up
views of objects for fine-manipulation, and the other two are mounted on the front and at the top
respectively. The demonstration data consists of 4 camera streams and the joint positions for each
robot at 50Hz. We refer readers to the original paper for more hardware details.

We experiment with three long-horizon tasks, each requiring precise coordination between the two
arms, illustrated in Figure 3. For Screwdriver Handover, the right arm needs to pick up the
screwdriver that is randomly initialized in a 15cm ×20cm rectangular region (#1) and hand it to the
left arm mid-air (#2), followed by the left arm dropping it into the cup (#3). For Wiping the Table, a
roll of paper towels is randomly placed in a 15cm ×10cm region. The opening of the roll always
faces the right side, with naturally occurring variations in length and spacing. The left arm presses on
the roll to prevent it from moving (#1), while the right arm tears off one segment of the paper towel
(#2) and places it on a fixed location to absorb the spilled liquid (#3). For Coffee Making, a small
coffee pod is randomized in a 15cm ×10cm region. The left arm needs to pick it up (#1), followed by
the right arm opening the coffee machine (#2). The left arm then carefully inserts the coffee pod into
the slot (#3), with the right arm closing the lid (#4). Next, the right arm grasps a transparent cup with
upto 2cm randomization in the position and places it under the coffee outlet (#5).

The three tasks emphasize precision and coordination, and involve deformable or transparent objects
that can be hard to perceive or simulate. For example, placing the coffee pod into the machine
requires high precision. It is easy for the gripper or coffee pod to collide with the machine due to
the small clearance. The screwdriver handover task emphasizes the coordination between two arms.
Grasping the paper towel requires accurate perception of the deformable material, which also has
low-contrast against itself. The gripper needs to move accurately so as to only grasp the opening but
not collide with the roll and push it away.
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#1 #2 #3init. #4 #5

init.

init.

#1 #2 #3

#1 #2 #3

Screwdriver Handover

Wiping the Table

Coffee Making

Figure 3: Real-World Bimanual Tasks. We consider three challenging real-world bi-manual tasks: (top)
picking up a screw driver, handing it over to the other arm, and placing it in a cup, (middle) tearing off a segment
of paper towel and putting it on a spill, and (bottom) putting a coffee pod into a coffee machine, closing the
coffee machine, and placing a cup underneath the dispenser. Initial object positions are within the red rectangle.

Table 3: Success rate (%) for real world tasks. AWE improves the success of ACT on all three tasks ranging
from 4% to 28%. On the longest horizon coffee making task, AWE improves success by 28%.

Screwdriver Handover Wiping the Table Coffee Making

ACT 84 92 36

AWE + ACT (Ours) 92 96 64

As shown in Table 3, AWE achieves substantial success on each task. It consistently improves over
ACT by 8%, 4%, and 28% on Screwdriver handover, Wiping table, and Coffee Making, respectively.
We observe that the most common failure case for ACT is inaccurate action prediction, which results
from compounding errors on these long-horizon tasks. For example, the robot may make a wrong
prediction at the beginning and grasp the coffee pod at an inconvenient position. The subsequent
predictions become increasingly incorrect, and thus the robot fails to insert the coffee pod into the
machine. On the other hand, AWE can more accurately grasp the coffee pod due to a smaller decision
horizon, resulting in more successful insertions into the coffee machine. Leveraging the low-level
controller to execute linear motions instead of relying on accurate policy predictions can reduce the
errors compounded over time. By accurately detecting waypoints for a successful handover, for
tearing, and for inserting, AWE decreases the policy horizon and consistently improves performance.

5.4 Analysis

Waypoint selection for different error budgets. We visualize a ground truth trajectory of end-
effector (EE) positions and the EE trajectory reconstructed using AWE for the Can task in Figure 4.
As the the error budget η is reduced, the reconstructed trajectory tracks the original trajectory better.
Importantly, as the budget is decreased, waypoints are added to harder segments of the task, as
they are less linear while the number of waypoints for simpler, linear paths stays similar. Smaller
error thresholds lead to gradual increases in the number of selected waypoints. We also measure
performance with varying error thresholds (the only hyperparameter), for AWE +DiffusionPolicy on
the Can task with 50 demonstrations. Figure 5 shows that when the η is too high (too few waypoints)
or too low (too many waypoints), the agent does not take full advantage of AWE.

On the importance of modeling multi-modality for AWE. The usage of waypoints can increase
the multimodality of the target conditional action distribution. We compare the performance of
AWE when trained with mean-squared error (MSE) loss (i.e, a unimodal Gaussian with identity
covariance) and a more expressive Gaussian mixture model (GMM) with 5 modes. As shown in
Figure 6, GMM policies can benefit from AWE, as they can represent multimodal action distributions.
However, vanilla BC with a MSE loss degrades in performance. BC has a mode-covering behavior,
and insufficient representative power of unimodal Gaussian can cause the performance to degrade.
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Figure 4: As the error budget η decreases, our method
selects fewer waypoints if linear interpolation aptly
approximates the segment. Best viewed on our website.
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Figure 5: Success rate vs. error budget threshold η.
Performance drops slightly if the budget is too tight
and more significantly if the budget is too permissive.
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Figure 6: AWE requires expressive policy classes.
While expressive policies that can represent multimodal
distributions benefit from AWE (GMMs on left), the
performance can degrade for policy classes that are not
sufficiently expressive (right).

Figure 7: Comparing the replay success rate of AWE
to common heuristics for waypoint selection. With
similar numbers of waypoints, following waypoints
from AWE leads to more consistent task completion
than following the waypoints from heuristics.

Comparison to heuristics. Prior works [9, 10, 4, 11] have been successful by extracting waypoints
using simple heuristics. Are simple heuristics enough for extracting important waypoints? We
experiment with two heuristics. The first one is similar to Shridhar et al. [4], labeling timesteps as
waypoints when the end-effector velocity is close to zero, or when the binary gripper state changes.
The second heuristic selects waypoints with fixed intervals. For AWE and both heuristics, we extract
waypoints for all 200 trajectories in the RoboMimic Lift dataset, and measure the success rate when
replaying the demonstration, i.e., following the extracted waypoints starting from the demonstration
trajectory’s initial state. We adjust the selection threshold or interval to generate similar numbers of
waypoints across methods for comparable results. Results in Figure 7 show that these two heuristics
do not lead to satisfactory success rates even when simply replaying the trajectories.

6 Conclusion
We presented a method for extracting waypoints from demonstrations of robotic manipulation
tasks, therefore reducing the horizon of imitation learning problems. We found that AWE can
be combined with state-of-the-art imitation learning methods such as diffusion policy and ACT
to improve performance, especially in data limited settings. AWE also consistently improved
performance on three real-world dexterous manipulation tasks. Finally our analysis indicated the
importance of the AWE optimization compared to naive or heuristic waypoint selection methods, as
well as the effect of the error budget and policy distribution class on performance.

Limitations. AWE leverages proprioceptive information to reparameterize demonstration trajectories
in end-effector or joint space, an approach that may not be applicable to torque-controlled robot arms,
tasks requiring forceful manipulation, or other robotics problems such as purely visual navigation
or legged locomotion. Our evaluation only considers quasi-static tasks, and AWE currently does
not account for velocities, which might be important for dynamic tasks. Furthermore, for tasks
that require extreme precision at certain times, we expect that AWE would require a tight error
budget, diluting the benefit of using waypoints. This limitation might be resolved by identifying
when such precision is needed, either automatically or by incorporating some human supervision,
and subsequently modifying the AWE optimization objective.
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A AWE Pseudocode
We provide the complete pseudocode for AWE in Algorithm 1.

Algorithm 1 Automatic Waypoint Extraction (AWE)
input: D; // expert demonstrations
input: L, f, η;
// waypoint selection via dynamic programming
def get waypoints(τ, η,M):

if τ ̸∈ M then
// check if the endpoints are valid waypoints
if L(f({τ.start, τ.end}), τ) ≤ η then
M [τ ] = {τ.start, τ.end};

// try all intermediate states as waypoints, and return the smallest set
else

// initialize length of current shortest subsequence
m←∞;
// loop over all intermediate states as waypoints
for w ∈ τ.mid do
Wbefore ← get waypoints(τ.before(w), η);
Wafter ← get waypoints(τ.after(w), η);
// dedupe w, as it is in both of them
W ← (Wbefore\{w}) ∪Wafter;
if |W| < m then

m← |W|;
M [τ ]←W;

returnM [τ ];

// construct dataset for next waypoint prediction
def preprocess traj(W, τ ):
Daug ← {};
for (ot, xt) ∈ τ do

// select the nearest future waypoint inW
w ←W.next waypoint(t);
Daug ← Daug ∪ {(ot, xt, w)};

return Daug;

Dnew ← {};
for τ ∈ D do
M← {}; // memoize waypoints for efficient dynamic programming
Dnew ← Dnew ∪ preprocess traj(get waypoints(τ, η,M), τ)

output: Dnew

B Hyperparameters

B.1 Error Budget Threshold

The only hyperparameter we need for waypoint selection is η, the error threshold (Table 4). The
threshold η is the same for all data sizes {30, 50, 100, 200} across all tasks on RoboMimic, i.e.
η = 0.005. We also use a consistent η for both scripted data and human data on both tasks in the
Bimanual Manipulation suite, i.e. η = 0.01. Two out of three real-world tasks also use the same
η; however, on the Coffee Making task, we opt for a lower η to select more waypoints due to the
high-precision nature of the task.
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Table 4: Hyperparameter for waypoint selection.

Task Error thresholod (η)
Lift 0.005
Can 0.005
Square 0.005
Cube Transfer 0.01
Bimanual Insertion 0.01
Screwdriver Handover 0.01
Wiping Table 0.01
Coffee Making 0.008

B.2 ACT in Bimanual Simulation Suite

We use the same hyperparameters as the ACT paper [6], shown in Table 5, except reducing the chunk
size from 100 to 50. Intuitively, as the length of trajectories reduces after running AWE, the chunk
size can also be reduced to represent the same wall-clock time.

Hyperparameter ACT AWE + ACT
learning rate 1e-5 1e-5
batch size 8 8
# encoder layers 4 4
# decoder layers 7 7
feedforward dimension 3200 3200
hidden dimension 512 512
# heads 8 8
chunk size 100 50
beta 10 10
dropout 0.1 0.1

Table 5: Hyperparameters of AWE +ACT and ACT. The only difference is the reduction in chunk size.

B.3 Diffusion Policy in RoboMimic

We use the exact same set of training hyperparameters as Diffusion Policy [5] (Table 6). The only
additional hyperparameter we added is the “control multiplier” (bottom row), which allows the
low-level controller to take more steps to reach the target position at the inference time. This can be
useful when predicted waypoints are far apart.

B.4 A Guide to Hyperparameter Selection

We suggest selecting an error threshold for new tasks based on a ratio of the number of waypoints to
the average length of the trajectories. Our recommendation is to aim for a ratio of approximately 1:8,
which can be automatically calculated using the waypoint generation script in our codebase. The ideal
ratio may vary depending on the specific task and control frequency. Based on our empirical findings,
a ratio between 1:5 and 1:15 tends to effectively reduce the policy horizon while still maintaining an
accurate approximation of the trajectories.

For tasks involving real robots using ALOHA hardware [6], we advise turning on temporal ensembling
(Sec C.3) to ensure smoother actions. Nonetheless, if the policy appears overly hesitant, two potential
remedies are: (a) disabling temporal ensembling, and (b) increasing DT to emulate a blocking
controller, where DT refers to the time interval between each update in a simulation or a control loop.
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Hyperparameter Lift Can Square
Ctrl Pos Pos Pos
To 2 2 2
Ta 8 8 8
Tp 10 10 10
# D-params 9 9 9
# V -params 22 22 22
# Layers 8 8 8
Emb Dim 256 256 256
Attn Dropout 0.3 0.3 0.3
Lr 1e-4 1e-4 1e-4
WDecay 1e-3 1e-3 1e-3
D-Iters Train 100 100 100
D-Iters Eval 100 100 100
Control Multiplier 10 1 10

Table 6: Hyperparameters for diffusion policy. Ctrl: position or velocity control, To: observation
horizon, Ta: action horizon, Tp: action prediction horizon , #D-Params: diffusion network number
of parameters in millions, #V -Params: vision encoder number of parameters in millions, Emb Dim:
transformer token embedding dimension, Attn Dropout: transformer attention dropout probability,
Lr: learining rate, WDecay: weight decay (for transformer only), D-Iters, Train: number of training
diffusion iterations, D-Iters Eval: number of inference diffusion iterations, Control Multiplier:
multiplier for the low-level control steps.

C Implementation and Experiment Details

C.1 Controller

We use an Operation Space Controller (OSC) in RoboMimic, which allows position and orientation
control of the robot’s end-effector. It takes in the desired absolute position and orientation of the
end-effector, and computes the necessary torques and velocities.

We use the default joint position controller in the Bimanual Manipulation suite. On real-world tasks,
we made no change to the controller except for the Coffee Making task, where we increased the
step time from 0.02 to 0.1. This allows the controller to operate closer to a blocking controller, and
execute low-level actions longer until reaching the desired joint position.

C.2 Loss Function

To determine the distance between potential waypoints and the ground truth trajectory, we project the
ground truth state onto the linearly interpolated waypoint trajectory and compute the L2 distance for
xyz position. For orientation, we convert the axis angles to quaternions and slerp two ground truth
quaternions to determine the projection. Then we sum the position and orientation distances as the
state loss. For the trajectory loss, we take a max over all states.

C.3 Temporal Ensemble

For all the ACT experiments, we adopt a temporal ensemble technique as in the original paper [6].
Temporal ensembling is an approach to improve the smoothness of action chunking in robotic tasks.
It queries the policy at each timestep, creating overlapping chunks and multiple predicted actions for
each timestep. These predictions are then combined via a weighted average using an exponential
weighting scheme, wi = exp(−m× i), that helps in smoothly incorporating new observations. This
technique enhances the precision and smoothness of motion without any additional training cost, but
requires extra computation during inference. We refer readers to Zhao et al. [6] for more details.

C.4 Computation Cost

Computing waypoints is inexpensive, especially compared to the training budget. The wall clock
time for labeling one trajectory in Lift is 0.8 seconds on average.
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Figure 8: Performance scaling with demonstrations. We compare how the performance scale for
diffusion policy [5] with and without AWE. Training on waypoints generated by AWE consistently
improves the performance, with improvements being larger on the harder task (Square).

D Additional Comparisons

D.1 Subsampling

A potential alternative to our proposed AWE method is the straightforward approach of subsampling
trajectories. This implicit selection of waypoints can be viewed as a heuristic method. Figure 7
demonstrates that AWE achieves a superior replay success rate, i.e., when one follows the extracted
waypoints, starting from the demonstration trajectory’s initial state, than subsampling. However, how
do these methods influence the performance downstream?

To address this, we compare the success rate of a policy learned using waypoints selected by AWE
against those from subsampled trajectories. We experiment on two RoboMimic tasks, Can and Square,
both using 100 demonstrations. We compare against two subsampling ratios, specifically 5 and 7: a
ratio of 7 produces a number of waypoints comparable to that of AWE in RoboMimic.

AWE (Ours) Subsampled by 7 Subsampled by 5
Can (100 demo) 95.3 77.3 72.7

Square (100 demo) 91.7 77.3 86.4

Table 7: Comparison of success rates for policies learned using AWE and subsampling methods on
Can and Square.

As shown in Table 7, we find that: 1) AWE consistently surpasses the subsampling approach; 2)
The most effective subsampling ratio is task-dependent. For instance, in the Can task, subsampling
by 7 exceeds subsampling by 5. Conversely, the Square task sees better results with a ratio of 5.
This variance suggests that AWE can discern and select waypoints that are more instrumental for
downstream learning.

D.2 Keypose-based motion planning

Our work is conceptually related to keypose-based motion planning, which has seen notable contribu-
tions in recent years. Tonneau et al. [42] utilized keyposes for multi-robot planning, emphasizing
bottleneck states. Ichter et al. [43] employed probabilistic roadmaps to identify critical configurations,
while Lai [44] RRF* method adaptively targets bottleneck regions. These methods require complete
knowledge of the environment to plan trajectories. In contrast, our method derives waypoints from the
robot’s proprioceptive data. We assume we only have raw RGB images and no low-level information
about the external environment.
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