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Abstract: We propose a system for rearranging objects in a scene to achieve a
desired object-scene placing relationship, such as a book inserted in an open slot of
a bookshelf. The pipeline generalizes to novel geometries, poses, and layouts of
both scenes and objects, and is trained from demonstrations to operate directly on
3D point clouds. Our system overcomes challenges associated with the existence
of many geometrically-similar rearrangement solutions for a given scene. By
leveraging an iterative pose de-noising training procedure, we can fit multi-modal
demonstration data and produce multi-modal outputs while remaining precise and
accurate. We also show the advantages of conditioning on relevant local geometric
features while ignoring irrelevant global structure that harms both generalization
and precision. We demonstrate our approach on three distinct rearrangement tasks
that require handling multi-modality and generalization over object shape and
pose in both simulation and the real world. Project website, code, and videos:
https://anthonysimeonov.github.io/rpdiff-multi-modal
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1 Introduction

Consider Figure 1, which illustrates (1) placing a book on a partially-filled shelf and (2) hanging
a mug on one of the multiple racks on a table. These tasks involve reasoning about geometric
interactions between an object and the scene to achieve a goal, which is a key requirement in many
cleanup and de-cluttering tasks of interest to the robotics community [1]. In this work, we enable
a robotic system to perform one important family of such tasks: 6-DoF rearrangement of rigid
objects [2]. Our system uses point clouds obtained from depth cameras, allowing real-world operation
with unknown 3D geometries. The rearrangement behavior is learned from a dataset of examples that
show the desired object-scene relationship – a scene and (segmented) object point cloud are observed
and a demonstrator transforms the object into a final configuration. For example, from a dataset
showing books placed on shelves, our model learns how to transform new books into open shelf slots.

Real-world scenes are often composed of objects whose shapes and poses can vary independently.
Such composition creates scenes that (i) present combinatorial variation in geometric appearance and
layout (e.g., individual racks may be placed anywhere on a table) and (ii) offer many locations and
geometric features for object-scene interaction (e.g., multiple slots for placing the book and multiple
racks for hanging the mug). These features of real-world scenes bring about two key challenges for
learning that go hand-in-hand: multi-modal placements and generalization to diverse scene layouts.

• Multi-modality appears in the rearrangement outputs. There may be many scene locations to place
an object, and these multiple possibilities create difficulties during both learning and deployment.
Namely, a well-known challenge in learning from demonstrations is fitting a dataset containing
similar inputs that have different associated targets (modes). Moreover, during deployment,
predicting multiple candidate rearrangements can help the robot choose the ones that also satisfy
any additional constraints, such as workspace limits and collision avoidance. Therefore, the system
must predict multi-modal outputs that span as many different rearrangement solutions as possible.

• Generalization must be addressed when processing the inputs to the system. A scene is composed
of many elements that vary in both shape and layout. For example, a shelf can be located anywhere
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Figure 1: By learning from a set of demonstrations of a rearrangement task, such as place the book in the shelf
(A) and hang the mug on the rack (B), Relational Pose Diffusion (RPDiff) can produce multiple transformations
that achieve the same object-scene relationship for new object/scene pairs.

in the environment, and there are many possible arrangements of existing books within a shelf.
The point clouds that are presented to the model reflect this diversity. Generalizing to such input
variability is harder than generalizing to shape and pose variations for a single object, due to the
combinatorially many arrangements and layouts of scenes.

Given a dataset of final object-scene point clouds (obtained by transforming the observed object
point cloud into its resultant configuration at the end of the demo), we can synthesize many initial
object configurations as perturbations of the final point clouds. Using this data, we can naturally
cast rearrangement prediction as point cloud pose de-noising. From a final object-scene point cloud,
we create a “noised” point cloud by randomly transforming the object and train a neural network
to predict how to transform the noised point cloud back into the original configuration (using the
known perturbation for ground truth supervision, see Fig. 2(b)). During deployment, we similarly
predict a de-noising object transformation that satisfies the learned relation with the scene and use this
predicted transformation as the rearrangement action. The robot executes the predicted rearrangement
using a combination of grasp sampling, inverse kinematics, and motion planning.

Unfortunately, learning to de-noise from large perturbations (e.g., the “fully-noised” red point cloud
in Fig. 2(b)) in one step can be ineffective when considering multi-modality [3] – creating similar-
looking noised point clouds with prediction targets that differ can lead the model to learn an average
solution that fits the data poorly. We overcome this difficulty by training the predictor as a diffusion
model [4, 5] to perform iterative de-noising. By creating a multi-step noising process, diffusion
models are trained to incrementally reverse the process one step at a time. Intuitively, early steps
in this reverse process are closer to the ground truth and the associated prediction targets are more
likely to be unique across samples – the prediction “looks more unimodal” to the model. The model
similarly generates the test-time output in an iterative fashion. By starting this inference procedure
from a diverse set of initial guesses, the predictions can converge to a diverse set of final solutions.

While iterative de-noising helps with multi-modality, we must consider how to support generalization
to novel scene layouts. To achieve this, we propose to locally encode the scene point cloud by cropping
a region near the object (e.g., see Fig. 2(c)). Locally cropping the input helps the model generalize
by focusing on details in a local neighborhood and ignoring irrelevant and distant distractors. The
features for representing smaller-scale patches can also be re-used across different spatial regions
and scene instances [6–9]. We use a larger crop size on the initial iterations because the inference
procedure starts from random guesses that may be far from a good solution. As the solution converges
over multiple iterations, we gradually reduce the crop size to emphasize a more local scene context.

In summary, we present Relational Pose Diffusion (RPDiff), a method that performs 6-DoF relational
rearrangement conditioned on an object and scene point cloud, that (1) generalizes across shapes,
poses, and scene layouts, and (2) gracefully handles scenarios with multi-modality. We evaluate our
approach in simulation and the real world on three tasks, (i) comparing to existing methods that either
struggle with multi-modality and complex scenes or fail to achieve precise rearrangement, and (ii)
ablating the various components of our overall pipeline.
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Figure 2: Method Overview. (A) Starting from an object and scene point cloud PO and PS, we transform
PO to a diverse set of initial poses. RPDiff takes the initial object-scene point clouds as input, iteratively updates
the object pose, and outputs a set of object configurations that satisfy a desired relationship with the scene. This
enables integrating RPDiff with a planner to search for a placement to execute while satisfying additional system
constraints. (B) The model is trained to perform iterative pose de-noising. Starting from object-scene point
clouds that satisfy the desired task, we apply a sequence of perturbations to the object and train the model to
predict SE(3) transforms that remove the noise one step at a time. (C) To facilitate generalization to novel scene
layouts, we crop the scene point cloud to the region near the object point cloud.

2 Problem Setup

Our goal is to predict a set of SE(3) transformations {Tk}Kk=1 that accomplish an object rearrange-
ment task given the scene S and the object O, represented as 3D point clouds (PS ∈ RM×3 and
PO ∈ RN×3, respectively). By selecting (i.e., via a learned scoring function) and applying one
transformation from this set, we can place the object in a manner that fulfills the desired geometric
relationship with the scene. We assume the object point cloud is segmented from the whole scene,
which does not have any additional segmented objects (e.g., we cannot segment any individual
books on the shelf). We also assume a training dataset D = {(PO,PS)}Ll=1 where each data point
represents an object placed at the desired configuration. For example, D could include point clouds of
books and bookshelves (with different shapes, poses, and configurations of books on the shelf), and
SE(3) transformations that place the books in one of the available slots. These demonstrations could
come from a human or a scripted algorithm with access to ground truth object states in simulation.

Critically, depending on constraints imposed by other system components (e.g., available grasps,
robot reachability, collision obstacles), the system must be capable of producing multi-modal output
transformations. Predicting diverse outputs enables searching for a placement that can be feasibly
executed. For execution on a robot, the robot has access to a grasp sampler [10], inverse kinematics
(IK) solver, and motion planner to support generating and following a pick-and-place trajectory.

3 Method

The main idea is to iteratively de-noise the 6-DoF pose of the object until it satisfies the desired
geometric relationship with the scene point cloud. An overview of our framework is given in Fig. 2.

3.1 Object-Scene Point Cloud Diffusion via Iterative Pose De-noising
We represent a rearrangement action T as the output of a multi-step de-noising process for a
combined object-scene point cloud, indexed by discrete time variable t = 0, ..., T . This process
reflects a transformation of the object point cloud in its initial noisy configuration PO

(T ) to a
final configuration PO

(0) that satisfies a desired relationship with the scene point cloud PS, i.e.,
PO

(0) = TPO
(T ). To achieve this, we train neural network fθ : RN×3×RM×3 → SE(3) to predict

an SE(3) transformation from the combined object-scene point cloud at each step. The network is
trained as a diffusion model [4, 5] to incrementally reverse a manually constructed noising process
that gradually perturbs the object point clouds until they match a distribution PO

(T ) ∼ p(T )
O (· | PS),

which we can efficiently sample from during deployment to begin de-noising at test time.
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Test-time Evaluation. Starting with PO and PS, we sample K initial transforms {T̂(I)
k }Kk=1

* and
apply these to PO to create initial object point clouds {P̂(I)

O,k}Kk=1 where P̂(I)
O,k = T̂

(I)
k PO. For each

of the K initial transforms, we then perform the following update for I steps.† At each iteration i:
T

(i)
∆ = TRand

∆ fθ

(
P̂

(i)
O ,PS, pos emb

(
t
))

t = i to t(i) (1)

T̂(i−1) = T
(i)
∆ T̂(i) P̂

(i−1)
O = T

(i)
∆ P̂

(i)
O (2)

The update T
(i)
∆ is formed by multiplying the denoising transform predicted by our model fθ with

a perturbation transform TRand
∆ that is sampled from an iteration-conditioned normal distribution

which converges toward deterministically producing an identify transform as i tends toward 0. In the
de-noising process, TRand

∆ helps each of the K samples converge to different multi-modal pose basins
(analogously to the perturbation term in Stochastic Langevin Dynamics [11]). The function pos emb
represents a sinusoidal position embedding. Since fθ is only trained on a finite set of t values (i.e.,
t = 1, ..., 5) but we might want to perform the update in Eq. 2 for a larger number of steps, we use
the function i to t to map the iteration i to a timestep value t that the model has been trained on.
Details on external noise scheduling and mapping i to t can be found in Appendix A3.

Generally, we search through K solutions {T̂(0)
k }Kk=1 for one that can be executed while satisfying

all other constraints (e.g., collision-free trajectory). However, we also want a way to select a single
output to execute assuming there are no other constraints to satisfy. We may also want to reject
“locally optimal” solutions that fail to complete the desired task. To achieve this, we use a separate
classifier hφ to score the predicted poses (i.e., sk = hφ(PO

(0)
k ,PS) where s ∈ [0, 1]), such that the

sample indexed with kexec = argmax {sk}Kk=1 can be selected for execution‡.

Training. Given a dataset sample (PO,PS), we start with final “placed” object point cloud PO
(0) =

PO and randomly sampled timestep t ∈ [1, T ]. We then obtain a perturbation transform T
(t)
noisefrom

a timestep-conditioned distribution with appropriately scaled variance and create a noised point
cloud PO

(t) = T
(t)
noisePO. The task is to predict a transformation that takes one de-noising step as

T̂
(t)
∆ = fθ(P

(t)
O ,PS, pos emb(t)). Network parameters θ are trained to minimize a loss between the

prediction T̂
(t)
∆ and a ground truth target T(t)

∆,GT. We use the Chamfer distance between the point
cloud obtained by applying the predicted transform and the ground-truth next point cloud as the loss
to minimize.

A natural target for fθ to predict is the inverse of the perturbation, i.e., T(t)
∆,GT = T

(t)
noise,inv =[

T
(t)
noise

]−1
, to encourage recovering the original sample. However, as the perturbation magnitude

varies across timesteps, this requires output predictions of different scales for different timesteps.
In supervised learning with neural networks, it is advisable to keep the magnitudes of both input
and output signals consistent in order to minimize large fluctuations in gradient magnitudes between
samples [12]. For this reason, an alternative approach is to encourage the network to take shorter
“unit steps” in the direction of the original sample. We achieve this by uniformly interpolating the full
inverse perturbation as {T(s)

interp}ts=1 = interp(T
(t)
noise, inv, t) and training the network to predict one

interval in this interpolated set, i.e., T(t)
∆,GT = [T

(t−1)
interp ]−1T

(t)
interp (details in Appendix A2 and A7).

For the success classifier, we generate positive and negative rearrangement examples, where positives
use the final demonstration point cloud, PO

(0), and negatives are obtained by sampling diverse
perturbations of PO

(0). The classifier weights φ (separate from weights θ) are trained to minimize a
binary cross-entropy loss between the predicted likelihood and the ground truth success labels.

3.2 Architecture

We use a Transformer [13] for processing point clouds and making pose predictions. A Transformer
is a natural architecture for both (i) identifying important geometric parts within the object and the
scene and (ii) capturing relationships that occur between the important parts of the object and the

* Initial rotations are drawn from a uniform grid over SO(3) , and we uniformly sample translations that
position the object within the bounding box of the scene point cloud.

† We denote application of SE(3) transform T = (R, t) to 3D point x as Tx = Rx+ t
‡ See Appendix A7 for results showing that scoring with hφ performs better than, e.g., uniform output sampling
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scene. Starting with PO and PS, we tokenize the point clouds to obtain input features. This can be
performed by passing through a point cloud encoder [14, 15], but we simply downsample the point
clouds and use the downsampled 3D point features as input. We then pass these input tokens through
a Transformer encoder and decoder, which performs self-attention on the scene point cloud, and
cross-attention between the scene and the object. This produces output features for each point, which
are mean-pooled to obtain a global feature vector. The global feature is passed to a set of MLPs
which predict the rotation R ∈ SO(3) and a translation t ∈ R3. As in [10, 16], we represent the
rotation by predicting vectors a ∈ R3 and b ∈ R3, finding the component of b that is orthogonal to a,
and normalizing to obtain â and b̂. We then take a cross product to obtain ĉ = â× b̂, and construct R
as
[
â b̂ ĉ

]
. We incorporate iteration t by passing pos emb(t) as a global token in the decoder and

adding it to the global output feature. To predict success likelihood, we process point clouds with the
same Transformer but output a single scalar followed by a sigmoid.

3.3 Local Conditioning

The approach described above conditions the transform regression on both the object and the scene.
However, distant global information can act as a distraction and hamper both precision and gener-
alization. Prior work has also observed this and suggested hard attention mechanisms on the input
observation like cropping task-relevant regions to improve generalization by ignoring irrelevant
distractors [8, 9]. Building on this intuition, we modify the scene point cloud by cropping PS to only
include points that are near the current object point cloud PO

(i). Our modified pose prediction thus
becomes T̂(i)

∆ = fθ

(
P̂

(i)
O , P̄

(i)
S , pos emb

(
i to t(i)

))
where P̄

(i)
S = crop(P̂

(i)
O ,PS). The function

crop returns the points in PS that are within an axis-aligned box centered at the mean of P̂(i)
O . We try

one variant of the crop function that returns a fixed-size crop, and another that adjusts the crop size
depending on the iteration variable i (the size starts large and gradually decreases for later iterations).

4 Experiments: Design and Setup
Our quantitative experiments in simulation are designed to answer the following questions:

1. How well does RPDiff achieve the desired tasks compared to other methods for rearrangement?
2. How successful is RPDiff in producing a diverse set of transformations compared to baselines?
3. How does our performance change with different components modified or removed?

We also demonstrate RPDiff within a pick-and-place pipeline in the real world to further highlight
the benefits of multi-modal generation and our ability to transfer from simulation to the real world.

4.1 Task Descriptions and Training Data Generation

We evaluate our method on three tasks that emphasize multiple available object placements: (1)
placing a book on a partially-filled bookshelf, (2) stacking a can on a stack of cans or an open shelf
region, and, (3) hanging a mug on one of many racks with many hooks. As a sanity check for our
baseline implementations, we also include two easier versions of “mug on rack” tasks that are “less
multi-modal”. These consist of (i) hanging a mug on one rack with a single hook and (ii) hanging a
mug on one rack with two hooks. We programmatically generate ∼1k-3k demonstrations of each
task in simulation with a diverse set of procedurally generated shapes (details in Appendix A2). We
use each respective dataset to train both RPDiff and each baseline (one model for each task). For our
real-world experiments, we directly transfer and deploy the models trained on simulated data.

4.2 Evaluation Environment Setup

Simulation. We conduct quantitative experiments in the PyBullet [17] simulation engine. The
predicted transform is applied to the object by simulating an insertion controller which directly
actuates the object’s center of mass (i.e., there is no robot in the simulator). The insertion is executed
from a “pre-placement” pose that is offset from the predicted placement. This offset is obtained using
prior knowledge about the task and the objects and is not predicted (see Appendix A6 for details). To
quantify performance, we report the success rate over 100 trials, using the final simulator state to
compute success. We also quantify coverage by comparing the set of predictions to a ground truth set
of feasible solutions and computing the corresponding precision and recall. Details on the insertion
controller, computation of Tpre-place, and the task success criteria can be found in the Appendix.
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Method Mug/EasyRack Mug/MedRack Book/Shelf Mug/Multi-MedRack Can/Cabinet

C2F Q-attn 0.31 0.31 0.57 0.26 0.51
R-NDF-base 0.75 0.29 0.00 0.00 0.14
NSM-base 0.83 0.17 0.02 0.01 0.08
NSM-base + CVAE – 0.39 0.17 0.27 0.19
RPDiff (ours) 0.92 0.83 0.94 0.86 0.85

Table 1: Rearrangement success rates in simulation. On tasks with a unimodal solution space and simpler
scene geometry, each method performs well (see Mug/EasyRack task). However, on tasks involving more
significant shape variation and multi-modality, RPDiff works better than all other approaches.

Real World. We also apply RPDiff to object rearrangement in the real world using a Franka Panda
robotic arm with a Robotiq 2F140 parallel jaw gripper. We use four calibrated depth cameras to
observe the tabletop environment. From the cameras, we obtain point clouds PO and PS of object O
and scene S and apply our method to predict transformation T. T is applied to O by transforming
an initial grasp pose Tgrasp (using a separate grasp predictor [10]) by T to obtain a placing pose
Tplace = TTgrasp, and inverse kinematics and motion planning is used to reach Tgrasp and Tplace.

4.3 Baselines

Coarse-to-Fine Q-attention (C2F-QA). This method adapts the classification-based approach pro-
posed in [8] to relational rearrangement. We train a fully convolutional network to predict a distri-
bution of scores over a voxelized representation of the scene, denoting a heatmap over candidate
translations of the object centroid. The model runs in a “coarse-to-fine” fashion by performing this
operation multiple times over a smaller volume at higher resolutions. On the last step, we pool the
voxel features and predict a distribution over a discrete set of rotations to apply to the object. We use
our success classifier to rank the predicted transforms and execute the output with the top score.

Relational Neural Descriptor Fields (R-NDF). R-NDF [18] uses a neural field shape representation
trained on category-level 3D models as a feature space wherein local coordinate frames can be
matched via nearest-neighbor search. R-NDFs have been used to perform relational rearrangement
tasks via the process of encoding and localizing task-relevant coordinate frames near the object parts
that must align to achieve the desired rearrangement. We call this method “R-NDF-base” because it
does not feature the additional energy-based model for refinement proposed in the original work.

Neural Shape Mating (NSM) + CVAE. Neural Shape Mating (NSM) [3] uses a Transformer to
process a pair of point clouds and predict how to align them. Architecturally, NSM is the same as
our relative pose regression model, with the key differences of (i) being trained on arbitrarily large
perturbations of the demonstration point clouds, (ii) not using local cropping, and (iii) only making
a single prediction. We call this baseline “NSM-base” because we do not consider the auxiliary
signed-distance prediction and learned discriminator proposed in the original approach [3]. While
the method performs well on unimodal tasks, the approach is not designed to handle multi-modality.
Therefore, we modify NSM to act as a conditional variational autoencoder (CVAE) [19] to better
enable learning from multi-modal data. We use NSM+CVAE to predict multiple transforms and
execute the output with the top score produced by our success classifier.

5 Results

5.1 Simulation: Success Rate Evaluation

Table 1 shows the success rates achieved by each method on each task and highlights that our method
performs best across the board. The primary failure mode from C2F-QA is low precision in the
rotation prediction. Qualitatively, the C2F-QA failures are often close to a successful placement but
still cause the insertion to fail. In contrast, our refinement procedure outputs very small rotations that
can precisely align the object relative to the scene.

Similarly, we find R-NDF performs poorly on more complex scenes with many available placements.
We hypothesize this is because R-NDF encodes scene point clouds into a global latent representation.
Since the single set of latent variables must capture all possible configurations of the individual
scene components, global encodings fail to represent larger-scale scenes with significant geometric
variability [6, 7]. For instance, R-NDF can perform well with individual racks that all have a single
hook, but fails when presented with multiple racks.
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Figure 3: (a) Coverage evaluation in simulation. Both RPDiff and C2F-QA achieve high placement coverage,
but the prediction quality of C2F-QA reduces with an increase in coverage, while RPDiff produces outputs that
remain precise while achieving high coverage. (b) Cropping ablations. Success rate of RPDiff with different
kinds of scene point cloud conditioning. The increased success rate achieved when using local scene cropping
highlights the generalization and precision benefits of focusing on a local spatial region.

(B)

(A)

(C)

Figure 4: Real-world multi-modal rearrangement. Executing Can/Cabinet (A), Book/Shelf (B), and
Mug/Rack (C) in the real world. For each task, the initial object-scene configuration is shown in the top-left
image, and examples of executing multiple inferred placements are shown in the main image sequence.

Finally, while NSM+CVAE improves upon the unimodal version of NSM, we find the generated
transforms vary too smoothly between the discrete modes (e.g., book poses that lie in between the
available shelf slots), an effect analogous to the typical limitation of VAE-based generators producing
blurry outputs in image generation. We hypothesize this over-smoothing is caused by trying to make
the approximate posterior match the unimodal Gaussian prior. This contrasts RPDiff’s ability to
“snap on” to the available placing locations in a given scene. More discussion on the performance
obtained by the baseline methods and how they are implemented can be found in Appendix A6.

5.2 Simulation: Coverage Evaluation

Next, we evaluate the ability to produce multi-modal outputs that cover the space of rearrangement
solutions and examine the tradeoff between prediction quality and coverage. Since coverage is
affected by the number of parallel runs we perform, we compute average recall and average precision
for different values of K (the number of initial poses that are refined). Precision and recall are
computed with respect to a set of ground truth rearrangement solutions for a given object-scene
instance. We consider positive predictions as those that are within a 3.5cm position and 5-degree
rotation threshold of a ground truth solution.

Fig. 3a shows the results for our approach along with C2F-QA, the best-performing baseline. We
observe a trend of better coverage (higher recall) with more outputs for both approaches. For a modest
value of K = 32, we observe RPDiff is able to cover over half of the available placement solutions
on average, with C2F-QA achieving slightly lower coverage. However, we see a stark difference
between the methods in terms of precision as the number of outputs is increased. C2F-QA suffers
from more outputs being far away from any ground truth solution, while our approach maintains
consistently high generation quality even when outputting upwards of 200 rearrangement poses.

5.3 Simulation: Local Cropping Ablations and Modifications

Finally, we evaluate the benefits of introducing local scene conditioning into our relative pose
regression model. Table 3b shows the performance variation of our method with different kinds
of scene point cloud conditioning. We achieve the best performance with the version of local
conditioning that varies the crop sizes on a per-iteration basis. Using a fixed crop size marginally
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reduces performance, while conditioning on the whole uncropped scene point cloud performs much
worse. This highlights the generalization and precision benefits of focusing on a local spatial region
near the object in its imagined configuration. It also suggests an advantage of using a coarse-to-fine
approach that considers a larger region on earlier iterations. Additional results examining the effect of
the success classifier, external noise, and parameterization of i to t can be found in Appendix A7.

5.4 Real World: Object rearrangement via pick-and-place

Finally, we use RPDiff to perform relational rearrangement via pick-and-place on real-world objects
and scenes. Fig. 1 and Fig. 4 show the robot executing multiple inferred placements on our three
tasks. We relied on our approach’s ability to output multiple solutions, as some geometrically valid
placements were not kinematically feasible for the robot based on its workspace limits and the
surrounding collision geometry. Please see the supplemental video for real-world execution.

6 Related Work

Object Rearrangement from Perception. Object rearrangement that operates with unknown objects
in the real world by operating from perceptual input has been an area of growing interest [2, 3, 8,
18, 20–46]. One straightforward method is end-to-end training to directly regress the relative
transformation, as in Neural Shape Mating (NSM) [3]. Others have explored identifying task-relevant
object parts and then solving for the desired alignment, as in TAX-Pose and R-NDF [18, 37, 45].
However, many of these approaches in their naive form struggle when there is multi-modality (NSM
and TAX-Pose can only output a single solution). There has been success addressing multi-modality
by performing classification over a discretized version of the search space [8, 39, 41, 43, 44, 47], but
these methods are typically less precise.

Denoising Diffusion and Iterative Regression. Diffusion models [4, 48] use an iterative de-noising
process to perform generative modeling. While they were originally designed for generating images,
they have been extended to other domains including waveforms [49, 50], 3D shapes [51, 52], and
decision-making[53–55]. Several approaches have applied diffusion models (and related energy-
based models) to a variety of robotics domains, including policy learning [56, 57], motion plan-
ning/trajectory optimization [58–60], grasping [54], and object rearrangement [18, 38, 61]. The use
of iterative regression has also been successful in other domains such as pose estimation [62–65].

SE(3)-DiffusionFields [54] integrate learned 6-DoF grasp distributions within a trajectory optimiza-
tion framework, and LEGO-Net [55] employs iterative de-noising to generate realistic-looking room
layouts. Our work differs in that we do not assume known object states or 3D models. Most similar
to our work, StructDiffusion [38] uses a diffusion model to perform language-conditioned object
rearrangement with point clouds. While the focus in [38] is to rearrange multiple objects into
abstract structures (e.g., circles, lines) specified via natural language, we emphasize covering all
rearrangement modes and integrating with sampling-based planners.

7 Limitations and Conclusion

Limitations. The amount of demonstration data we use may be difficult to obtain in the real world,
thus we rely on scripted policies that use privileged information in simulation for demo collection.
Furthermore, sim2real distribution shifts reduce our real-world performance, we lack a closed-loop
control policy for placement execution that is robust to perturbations, and we do not show any
transfer to new tasks. Finally, a subtle yet important limitation is our use of manually-computed
pre-placement offset poses. Predicting the final desired object configuration is an important step
toward general-purpose rearrangement, but it would be even better to also predict additional waypoint
transforms that help obtain a feasible path to the final pose.

Conclusion. This work presents an approach for rearranging objects in a scene to achieve a desired
placing relationship, while operating with novel geometries, poses, and scene layouts. Our system
can produce multi-modal distributions of object transformations for rearrangement, overcoming the
difficulty of fitting multi-modal demonstration datasets and facilitating integration with planning
algorithms that require diverse actions to search through. Our results illustrate the capabilities of our
framework across a diverse range of rearrangement tasks involving objects and scenes that present a
large number of feasible rearrangement solutions.
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Shelving, Stacking, Hanging: Relational Pose Diffusion for
Multi-modal Rearrangement – Supplementary Material

Section A1 includes additional visualizations of iterative test-time evaluation on simulated shapes
and examples of object-scene point clouds that were used as training data. In Section A2, we present
details on data generation, model architecture, and training for RPDiff. In Section A3 we elaborate
in more detail on the multi-step iterative regression inference procedure which predicts the set of
rearrangement transforms. Section A4 describes more details about how the success classifier is
trained and used in conjunction with our transform predictor as a simple mechanism for selecting
which among multiple candidate transforms to execute. In Section A5, we describe more details
about our experimental setup, and Section A6 discusses more details on the evaluation tasks, robot
execution pipelines, and methods used for computing pre-placement offset poses. In Section A7 we
present an additional set of ablations to highlight the impact of other hyperparameters and design
decisions. Section A8 describes additional implementation details for the real-world executions
along with an expanded discussion on limitations and avenues for future work. Section A9 includes
preliminary results on training a multi-task model for iterative pose de-noising and using RPDiff to
perform multi-step manipulation, and Section A10 includes additional discussion on demo collection
(and the manually-designed heuristics it uses), performance analysis and sim2real considerations,
system engineering details, expanded related works. Finally, Section A11 shows model architecture
diagrams a summarized set of relevant hyperparameters that were used in training and evaluation.

A1 Additional Test-time and Training Data Visualizations

Here, we show additional visualizations of the tasks used in our simulation experiments and the noised
point clouds used to train our pose regression model. Figure A1 shows snapshots of performing the
iterative de-noising at evaluation time with simulated objects, and Figure A2 shows examples of
the combined object-scene point clouds and their corresponding noised versions that were used for
training to perform iterative de-noising.

A2 Iterative Pose Regression Training and Data Generation

This section describes the data used for training our pose diffusion model, the network architecture
we used for processing point clouds and predicting SE(3) transforms, and details on training.

A2.1 Training Data Generation

Objects used in simulated rearrangement demonstrations. We create the rearrangement demon-
strations in simulation with a set of synthetic 3D objects. The three tasks we consider include objects
from five categories: mugs, racks, cans, books, “bookshelves” (shelves partially filled with books),
and “cabinets” (shelves partially-filled with stacks of cans). We use ShapeNet [66] for the mugs and
procedurally generate our own dataset of .obj files for the racks, books, shelves, and cabinets. See
Figure A3 for representative samples of the 3D models from each category.

Procedurally generated rearrangement demonstrations in simulation. The core regression
model fθ in RPDiff is trained to process a combined object-scene point cloud and predict an
SE(3) transformation updates the pose of the object point cloud. To train the model to make these
relative pose predictions, we use a dataset of demonstrations showing object and scene point clouds
in final configurations that satisfy the desired rearrangement tasks. Here we describe how we obtain
these “final point cloud” demonstrations

We begin by initializing the objects on a table in PyBullet [17] in random positions and orientations
and render depth images with the object segmented from the background using multiple simulated
cameras. These depth maps are converted to 3D point clouds and fused into the world coordinate
frame using known camera poses. To obtain a diverse set of point clouds, we randomize the number
of cameras (1-4), camera viewing angles, distances between the cameras and objects, object scales,
and object poses. Rendering point clouds in this way allows the model to see some of the occlusion
patterns that occur when the objects are in different orientations and cannot be viewed from below
the table. To see enough of the shelf/cabinet region, we use the known state of the shelf/cabinet to
position two cameras that roughly point toward the open side of the shelf/cabinet.
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(a) Mug/Rack

(b) Book/Shelf

(c) Can/Cabinet

Figure A1: Visualizations of multiple steps of iterative de-noising on simulated objects. Starting from the left
side, each object is initialized in a random SE(3) pose in the vicinity of the scene. Over multiple iterations,
RPDiff updates the object pose. The right side shows the final set of converged solutions.
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Can/Cabinet

Final combined
object/scene 

Interpolated 
noise steps

Sample w/
cropped scene

Book/Shelf

Final combined
object/scene 

Interpolated 
noise steps

Sample w/
cropped scene

Mug/Rack-Multi

Final combined
object/scene 

Interpolated 
noise steps

Sample w/
cropped scene

Figure A2: Example point clouds from the demonstrations for each task of Can/Cabinet (top), Book/Shelf
(middle) and Mug/RackMed-Multi (bottom). For each task, the top row shows the ground truth combined
object-scene point cloud. Scene point clouds are in black and object point clouds are in dark blue. The middle
row in each task shows an example of creating multiple steps of noising perturbations by uniformly interpolating
a single randomly sampled perturbation transform (with a combination of linear interpolation for the translation
and SLERP for the rotation). Different colors show the point clouds at different interpolated poses. The bottom
row shows a sampled step among these interpolated poses, with the corresponding “noised” object point cloud
(dark blue), ground truth target point cloud (light blue), and cropped scene point cloud (red).
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mugs

racks

books +
shelves

cans +
cabinets

Figure A3: Example 3D models used to train RPDiff and deploy RPDiff on our rearrangement tasks. Mugs
are from ShapeNet [66] while we procedurally generated our own synthetic racks, books, cans, shelves, and
cabinets.

After obtaining the initial object and scene point clouds, we obtain an SE(3) transform to apply to
the object, such that transforming into a “final” objct pose using this transform results in the desired
placement. This transform is used to translate and rotate the initial object point cloud, such that
the combined “final object” and scene point cloud can be used for generating training examples.
Figure A2 shows example visualizations of the final point clouds in the demonstrations for each task.

We obtain the final configuration that satisfies these tasks using a combination of privileged knowledge
about the objects in the simulator (e.g., ground truth state, approximate locations of task-relevant
object parts, 3D mesh models for each object, known placing locations that are available) and human
intuition about the task. To create mug configurations that satisfy “hanging” on one of the pegs of a
rack, we first approximately locate one of the pegs on one of the racks (we select one uniformly at
random) and the handle on the mug (which is straightforward because all the ShapeNet mugs are
aligned with the handle pointing in the +y axis of the body frame). We then transform the mug so that
the handle is approximately “on” the selected hook. Finally, we sample small perturbations about this
nominal pose until we find one that does not lead to any collision/penetration between the two shapes.
We perform an analogous process for the other tasks, where the ground truth available slots in the
bookshelf and positions that work for placing the mug (e.g., on top of a stack, or on a flat shelf region
in between existing stacks) are recorded when the 3D models for the shelves/cabinets are created.
The exact methods for generating these shapes and their corresponding rearrangement poses can be
found in our code.

A2.2 Pose Prediction Architecture

Transformer point cloud processing and pose regression. We follow the Transformer [13] ar-
chitecture proposed in Neural Shape Mating [3] for processing point clouds and computing shape
features that are fed to the output MLPs for pose prediction.
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We first downsample the observed point clouds PO ∈ RN ′×3 and PS ∈ RM ′×3 using farthest
point sampling into P̄O ∈ RN×3 and P̄S ∈ RM×3. We then normalize to create PO

norm ∈ RN×3

and PS
norm ∈ RM×3, based on the centroid of the scene point cloud and a scaling factor that

approximately scales the combined point cloud to have extents similar to a unit bounding box:

P̄S =

pS
1

pS
2
...
pS
M

 P̄O =

p
O
1

pO
2
...
pO
M

 pS,cent =
1

M

M∑
i=1

pS
i a = max{pS

i } −min{pS
i }

PS
norm =


pS,norm

1
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2
...
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M

 pS,norm
i = a(pS

i − pS,cent) ∀ i ∈ 1, ...,M

PO
norm =


pO,norm

1

pO,norm
2
...

pO,norm
M

 pO,norm
i = a(pO

i − pS,cent) ∀ j ∈ 1, ..., N

Next, we “tokenize” the normalized object/scene point clouds into d-dimensional input features
φO ∈ RN×d and φS ∈ RM×d. We directly use the 3D coordinate features from the downsampled
and normalized point clouds as input tokens, and then project the input to a d-dimensional vector
with a linear layer Win ∈ Rd×3:

φS =


Winp

S,norm
1

Winp
S,norm
2
...

Winp
S,norm
M

 φO =


Winp

O,norm
1

Winp
O,norm
2
...

Winp
O,norm
M


Note we could also pass the point cloud through a point cloud encoder to pool local features together,
as performed in NSM via DGCNN [15]. We did not experiment with this as we obtained satisfactory
results by directly operating on the individual point features, but it would likely perform similarly or
even better if we first passed through a point cloud encoder. We also incorporate the timestep t that
the current prediction corresponds to by including the position-encoded timestep as an additional

input token together with the object point tokens as φ̄O ∈ R(N+1)×d where φ̄O =

[
φO

pos emb(t)

]
.

We then use a Transformer encoder and decoder to process the combined tokenized point cloud (see
Figure A4 for visual depiction). This consists of performing multiple rounds of self-attention on
the scene features (encoder) and then performing a combination of self-attention on the object point
cloud together with cross-attention between the object point cloud and the output features of the
scene point cloud (decoder):

qS = QE(φS) kS = KE(φS) vS = VE(φS)

sS = Attention(qS, kS, vS) = softmax
(qSkST

√
d

)
vS

qO = QD(φ̄O) kO = KD(φ̄O) vO = VD(φ̄O)

sO = Attention(qO, kO, vO) = softmax
(qOkOT

√
d

)
vO

hO = Attention(q = sO, k = sS, v = sS) = softmax
(sOsST
√
d

)
sS

This gives a set of output features hO ∈ R(N+1)×d where d is the dimension of the embedding
space. We compute a global feature by mean-pooling the output point features and averaging with
the timestep embedding as a residual connection, and then use a set of output MLPs to predict the
translation and rotation (the rotation is obtained by converting a pair of 3D vectors into an orthonormal
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Figure A4: Architecture diagram showing a combination of self-attention and cross-attention among object and
scene point cloud for SE(3) transform prediction. The scene point cloud is processed via multiple rounds of
self-attention, while the object features are combined via a combination of self-attention and cross-attention
with the scene point cloud. The timestep embedding is incorporated as both an input token and via a residual
connection with the pooled output feature. The global output feature is used to predict the translation and rotation
that are applied to the object point cloud.

basis and then stacking into a rotation matrix [10, 16]):
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2

( 1
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hO,i + pos emb(t)
)

h̄O ∈ Rd
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a

||a||
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Local scene point cloud cropping. As shown in the experimental results, local cropping helps
improve performance due to increasing precision while generalizing well to unseen layouts of the
scene. Our “Fixed” cropping method uses a box with fixed side length Lbox = Lmin, centered at the
current object point cloud iterate across all timesteps, and selects scene point cloud points that lie
within this box. Our “Varying” cropping method adjusts the length of the box based on the timestep,
with larger timesteps using a larger crop, and smaller timesteps using a smaller crop. We parameterize
this as a function of the timestep t via the following linear decay function:

Lbox = Lmin + (Lmax − Lmin)
T − t
T

where Lmin and Lmax are hyperparameters.

Applying Predicted Transforms to Object Point Cloud. We apply the predicted rotation and
translation by first mean-centering the object point cloud, applying the rotation, and then translating
back to the original world frame position, and then finally translating by the predicted translation.
This helps reduce sensitivity to the rotation prediction, whereas if we rotate about the world frame
coordinate axes, a small rotation can cause a large configuration change in the object.

A2.3 Training Details

Here we elaborate on details regarding training the RPDiff pose diffusion model using the demonstra-
tion data and model architecture described in the sections above. A dataset sample consists of a tuple
(PO,PS). From this tuple, we want to construct a perturbed object point cloud PO

(t) for a particular
timestep t ∈ 1, ..., T , where lower values of t correspond to noised point clouds that are more similar
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Skill Type Number
of samples

Mug/EasyRack 3190
Mug/MedRack 950
Mug/Multi-MedRack 3240
Book/Shelf 1720
Can/Cabinet 2790

Table 2: Number of demonstrations used in each task. The same set of demonstrations is used to train
both our method and each baseline method.

to the ground truth, and larger values of T are more perturbed. At the limit, the distribution of point
clouds corresponding to t = T should approximately match the distribution we will sample from
when initializing the iterative refinement procedure at test time.

Noising schedules and perturbation schemes are an active area of research currently in the diffusion
modeling litierature [67, 68], and there are many options available for applying noise to the data
samples. We apply a simple method that makes use of uniformly interpolated SE(3) transforms.
First, we sample one “large” transform from the same distribution we use to initialize the test-time
evaluation procedure from – rotations are sampled uniformly from SO(3) and translations are
sampled uniformly within a bounding box around the scene point cloud. We then use a combination
of linear interpolation on the translations, and spherical-linear interpolation (SLERP) on the rotations,
to obtain a sequence of T uniformly-spaced transforms (see Fig. A2 for example visualizations).
Based on the sampled timestep t, we select the transform corresponding to timestep t in this sequence
as the noising perturbation T

(t)
noise, and use the transform corresponding to timestep t− 1 to compute

the “incremental”/“interval” transform to use as a prediction target. As discussed in Section 3.1, using
the incremental transform as a prediction target helps maintain a more uniform output scale among
the predictions across samples, which is beneficial for neural network optimization as it minimizes
gradient fluctuations [12]. We also provide quantitative evidence that predicting only the increment
instead of the full inverse perturbation benefits overall performance. See Section A7 for details.

The main hyperparameter for this procedure is the number of steps T . In our experiments, we
observed it is important to find an appropriate value for T . When T is too large, the magnitude of the
transforms between consecutive timesteps is very small, and the iterative predictions at evaluation
time make tiny updates to the point cloud pose, oftentimes failing to converge. When T is too small,
most of the noised point clouds will be very far from the ground truth and might look similar across
training samples but require conflicting prediction targets, which causes the model to fit the data
poorly. We found that values in the vicinity of T = 5 work well across our tasks (T = 2 and T = 50
both did not work well). This corresponds to an average perturbation magnitude of 2.5cm for the
translation and 18 degrees for the rotation.

After obtaining the ground truth prediction target, we compute the gradient with respect to the loss
between the prediction and the ground truth, which is composed of the Chamfer distance between
the point cloud obtained by applying the predicted transform and the ground truth next point cloud.
We also found the model to work well using combined translation mean-squared error and geodesic
rotation distance [69, 70] loss.

We trained a separate model for each task, with each model training for 500 thousand iterations on
a single NVIDIA V100 GPU with a batch size of 16. We used a learning rate schedule of linear
warmup and cosine decay, with a maximum learning rate of 1e-4. Training takes about three days.
We train the models using the AdamW [71] optimizer. Table 2 includes the number of demonstrations
we used for each task.

A3 Test time evaluation

Here, we elaborate in more detail on the iterative de-noising procedure performed at test time. Starting
with PO and PS, we sample K initial transforms {T̂(I)

k }Kk=1, where initial rotations are drawn from
a uniform grid over SO(3) , and we uniformly sample translations that position the object within the
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bounding box of the scene point cloud. We create K copies of PO and apply each corresponding
transform to create initial object point clouds {P̂(I)

O,k}Kk=1 where P̂
(I)
O,k = T̂

(I)
k PO. We then perform

the following update for I steps for each of the K initial transforms:
T̂(i−1) = (TRand

∆ T̂∆)T̂(n) P̂
(n−1)
O = (TRand

∆ T̂∆)P̂
(i)
O

where transform T̂∆ is obtained as T̂∆ = fθ(P̂
(i)
O ,PS, pos emb(i to t(i))). Transform TRand

∆ is
sampled from a timestep-conditioned uniform distribution that converges toward deterministically
producing an identify transform as i tends toward 0. We obtain the random noise by sampling from
a Gaussian distribution for both translation and rotation. For the translation, we directly output a
3D vector with random elements. For the rotation, we represent the random noise via axis angle 3D
rotation R0

aa ∈ R3 and convert it to a rotation matrix using the SO(3) exponential map [72] (and a
3D translation t0 ∈ R3). We exponentially decay the variance of these noise distributions so that
they produce nearly zero effect as the iterations tend toward 0. We perform the updates in a batch.
The full iterative inference procedure can be found in Alg. 1.

Evaluation timestep scheduling and prediction behavior for different timestep values.. The
function i to t is used to map the iteration number i to a timestep value t that the model has been
trained on. This allows the number of steps during evaluation (I) to differ from the number of steps
during training (T ). For example, we found values of T = 5 to work well during training but used
a default value of I = 50 for evaluation. We observed this benefits performance since running
the iterative evaluation procedure for many steps helps convergence and enables “bouncing out” of
“locally optimal” solutions. However, we found that if we provide values for i that go beyond the
support of what the model is trained on (i.e., for i > T ), the predictions perform poorly. Thus, the
function i to t ensures all values i ∈ 1, ..., I are mapped to an appropriate value t ∈ 1, ..., T that
the model has seen previously.

There are many ways to obtain this mapping, and different implementations produce different kinds
of behavior. This is because different i to t schedules emphasize using the model in different ways
since the model learns qualitatively different behavior for different values of t. Specifically, for
smaller values of t, the model has only been trained on “small basins of attraction” and thus the
predictions are more precise and local, which allows the model to “snap on” to any solution in the
immediate vicinity of the current object iterate. Figure A5 shows this in a set of artifically constrained
evaluation runs where the model is constrained to use the same timestep for every step i = 1, ..., I .

However, this can also lead the model to get stuck near regions that are far from any solution. On the
other hand, for larger perturbations, the data starts to look more multi-modal and the model averages
out toward either a biased solution in the direction of a biased region, or just an identity transform
that doesn’t move the object at all.

We find the pipeline performs best when primarily using predictions corresponding to smaller
timesteps, but still incorporating predictions from higher timesteps. We thus parameterize the
timestep schedule i to t such that it exponentially increases the number of predictions used for
smaller values of t. While there are many ways this can be implemented, we use the following
procedure: we construct an array D of length I where each element lies between 1 and T , and define
the mapping i to t as

t = i to t(i) = Di subscript i denotes the i-th element of D
The array D is parameterized by a constant value A (where higher value of A corresponds to using
more predictions with smaller timesteps, while A = 1 corresponds to using each timestep an equal
number of times) and ensures that predictions for each timestep are made at least once:
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Algorithm 1 Rearrangement Transform Inference via Iterative Point Cloud De-noising

1: Input: Scene point cloud PS, object point cloud PO, number of parallel runs K, number of
iterations to use in evaluation I , number of iterations used in training T , pose regression model fθ,
success classifier hφ, function to map from evaluation iteration values to training iteration values
i to t, parameters for controlling what fraction of evaluation iterations correspond to smaller
training timestep values A, local cropping function crop, distribution for sampling external pose
noise pAnnealedRandSE(3)

# Init transforms, transformed object, and cropped scene
2: for k in 1,...,K do
3: R

(H)
k ∼ pUnifSO(3)(·)

4: t
(H)
k ∼ pUnifBoundingBox( · | PO,PS)

5: T̂
(H)
k =

[
R t
0 1

]
6: P̂

(H)
O,k = T̂

(H)
k PO

7: P̄
(H)
S,k = crop(P̂

(H)
O,k,PS)

8: end for
# Init set of transform and final point cloud solutions and classifier scores

9: init S = ∅
10: init T = ∅
11: init P = ∅

# Iterative pose regression
12: for i in I ,...,1 do

# Map evaluation timestep to in-distribution training timestep
13: t = i to t(i, A)
14: for k in 1,...,K do
15: T̂∆,k = fθ(P

(t)
O,k, P̄

(t)
S,k, pos emb(t))

16: if i > (0.2 ∗ I) then
# Apply random external noise, with noise magnitude annealed as i approaches 0

17: TRand
∆,k ∼ pAnnealedRandSE(3)(· | i)

18: else
# Remove all external noise for the last 20% of the iterations

19: TRand
∆,k = I4

20: end if
21: T̂

(i−1)
k = TRand

∆,kT∆,kT̂
(i)
k

22: P̂
(i−1)
O,k = TRand

∆,kT∆,kP̂
(i)
O,k

23: P̄
(i−1)
S,k = crop(P̂

(i−1)
O,k ,PS, t, T )

24: if i == 1 then
# Predict success probabilities from final objects

25: sk = hφ(P
(0)
O,k,PS)

# Save final rearrangement solutions and predicted scores
26: S = S ∪ {sk}
27: T = T ∪ {T̂(0)

k }
28: P = T ∪ {P̂(0)

O,k}
29: end if
30: end for
31: end for

# Decision rule (e.g., argmax) for output
32: kout = argmax(S)
33: Tout = T [kout]

# Return top-scoring transform and full set of solutions for potential downstream planning/search
34: return Tout, T ,P,S
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Figure A5: Examples of running our full iterative evaluation procedure for I steps with the model constrained
to use a fixed value for t on each iteration. This highlights the different behavior the model has learned for
different timesteps in the de-noising process. For timesteps near 1, the model has learned to make very local
updates that “snap on” to whatever features are in the immediate vicinity of the object. As the timesteps get
larger, the model considers a more global context and makes predictions that reach solutions that are farther
away from the initial object pose. However, these end up more biased to a single solution in a region where there
may be many nearby solutions (see the top row of shelves where there are four slots that the model finds when
using timestep 1, but the model only reaches two of them with timestep t = 2 and one of them with t = 3). For
even larger values of t, the model has learned a much more biased and “averaged out” solution that fails to rotate
the object and only approximately reaches the scene regions corresponding to valid placements.

B = [AT , , AT−1..., A2, A1] Exponentially decreasing values

C = d A ∗ I∑T
i=1Ai

e Normalize, scale up by I , and round up (minimum value per element is 1)

C̄ = d C ∗ I∑T
i=1 Ci

e Normalize again so
T∑
i=1

C̄i ≈ I with C̄i ∈ N ∀ i = 1, ..., T

C̄1 = C̄0 − (

T∑
i=1

C̄i − I) Ensure
T∑
i=1

C̄i = I exactly

Then, from C̄, we construct multiple arrays with values ranging from 1 to T , each with lengths
corresponding to values in C̄,

D̄1 = [D̄1,1 D̄1,2 ...] with D̄1,k = 1 ∀k ∈ 1, ..., C̄1

D̄2 = [D̄2,1 D̄2,2 ...] with D̄2,k = 2 ∀k ∈ 1, ..., C̄2

...

D̄T = [D̄T,1 D̄T,2 ...] with D̄T,k = T ∀k ∈ 1, ..., C̄T

and then stack these arrays together to obtain D as a complete array of length I:

D = [D̄1 D̄2 ... D̄T ]

A4 Success Classifier Details

In this section, we present details on training and applying the success classifier hφ that we use for
ranking and filtering the set of multiple predicted SE(3) transforms produced by RPDiff.
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Training Data. To train the success classifier, we use the demonstrations to generate positive and
negative examples, where the positives are labeled with success likelihood 1.0 and the negatives have
success likelihood 0.0. The positives are simply the unperturbed final point clouds and the negatives
are perturbations of the final object point clouds. We use the same sampling scheme of sampling a
rotation from a uniform distribution over SO(3) and sampling a translation uniformly from within a
bounding box around the scene point cloud.

Model Architecture. We use an identical Transformer architecture as described in Section A2,
except that we use a single output MLP followed by a sigmoid to output the predicted success
likelihood, we do not condition on the timestep, and we provide the uncropped scene point cloud.

Training Details. We supervise the success classifier predictions with a binary cross entropy loss
between the predicted and ground truth success likelihood. We train for 500k iterations with batch size
64 on a V100 GPU which takes 5 days. We augment the data by rotating the combined object-scene
point cloud by random 3D rotations to increase dataset diversity.

A5 Experimental Setup

This section describes the details of our experimental setup in simulation and the real world.

A5.1 Simulated Experimental Setup

We use PyBullet [17] and the AIRobot [73] library to set up the tasks in the simulation and quantita-
tively evaluate our method along with the baselines. The environment consists of a table with the
shapes that make up the object and the scene, and the multiple simulated cameras that are used to
obtain the fused 3D point cloud. We obtain segmentation masks of the object and the scene using
PyBullet’s built-in segmentation abilities.

A5.2 Real World Experimental Setup

In the real world, we use a Franka Robot arm with a Robotiq 2F140 parallel jaw gripper attached
for executing the predicted rearrangements. We also use four Realsense D415 RGB-D cameras
with known extrinsic parameters. Two of these cameras are mounted to provide a clear, close-up
view of the object, and the other two are positioned to provide a view of the scene objects. We
use a combination of Mask-RCNN, density-based Euclidean clustering [74], and manual keypoint
annotation to segment the object, and use simple cropping heuristics to segment the overall scene
from the rest of the background/observation (e.g., remove the table and the robot from the observation
so we just see the bookshelf with the books on it).

A6 Evaluation Details

This section presents further details on the tasks we used in our experiments, the baseline methods
we compared RPDiff against, and the mechanisms we used to apply the predicted rearrangement to
the object in simulation and the real world.

A6.1 Tasks and Evaluation Criteria

Task Descriptions. We consider three relational rearrangement tasks for evaluation: (1) hanging a
mug on the hook of a rack, where there might be multiple racks on the table, and each rack might
have multiple hooks, (2) inserting a book into one of the multiple open slots on a randomly posed
bookshelf that is partially filled with existing books, and (3) placing a cylindrical can upright either
on an existing stack of cans or on a flat open region of a shelf where there are no cans there. Each
of these tasks features many placing solutions that achieve the desired relationship between the
object and the scene (e.g., multiple slots and multiple orientations can be used for placing, multiple
racks/hooks and multiple orientations about the hook can be used for hanging, multiple stacks and/or
multiple regions in the cabinet can be used for placing the can, which itself can be placed with either
flat side down and with any orientation about its cylindrical axis).
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Evaluation Metrics and Success Criteria. To quantify performance, we report the average success
rate over 100 trials, where we use the ground truth simulator state to compute success. For a trial to
be successful, the object O and S must be in contact and the object must have the correct orientation
relative to the scene (for instance, the books must be on the shelf, and must not be oriented with the
long side facing into the shelf). For the can/cabinet task, we also ensure that the object O did not run
into any existing stacks in the cabinet, to simulate the requirement of avoiding hitting the stacks and
knocking them over.

We also quantify coverage via recall between the full set of predicted solutions and the precomputed
set of solutions that are available for a given task instance. This is computed by finding the closest
prediction to each of the precomputed solutions and checking whether the translation and rotation
error between the prediction and the solution is within a threshold (we use 3.5cm for the translation
and 5 degrees for the rotation). If the error is within this threshold, we count the solution as “detected”.
We compute recall for a trial as the total number of “detected solutions” divided by the total number of
solutions available and report overall recall as the average over the 100 trials. Precision is computed
in an analogous fashion but instead checks whether each prediction is within the threshold for at least
one of the ground truth available solutions.

A6.2 Baseline Implementation and Discussion

In this section, we elaborate on the implementation of each baseline approach in more detail and
include further discussion on the observed behavior and failure modes of each approach.

A6.2.1 Coarse-to-Fine Q-attention (C2F-QA).

C2F-QA adapts the classification-based approach proposed in [8], originally designed for pick-and-
place with a fixed robotic gripper, to the problem of relational object rearrangement. We voxelize the
scene and use a local PointNet [75] that operates on the points in each voxel to compute per-voxel
input features. We then pass this voxel feature grid through a set of 3D convolution layers to compute
an output voxel feature grid. Finally, the per-voxel output features are each passed through a shared
MLP which predicts per-voxel scores. These scores are normalized with a softmax across the grid to
represent a distribution of “action values” representing the “quality” of moving the centroid of the
object to the center of each respective voxel. This architecture is based on the convolutional point
cloud encoder used in Convolutional Occupany Networks [7].

To run in a coarse-to-fine fashion, we take the top-scoring voxel position (or the top-k voxels if
making multiple predictions), translate the object point cloud to this position, and crop the scene
point cloud to a box around the object centroid position. From this cropped scene and the translated
object, we form a combined object-scene input point cloud and re-voxelize just this local portion of
the point cloud at a higher resolution. We then compute a new set of voxel features with a separate
high-resolution convolutional point cloud encoder. Finally, we pool the output voxel features from
this step and predict a distribution over a discrete set of rotations to apply to the object. We found
difficulty in using the discretized Euler angle method that was applied in [8], and instead directly
classify in a binned version of SO(3) by using an approximate uniform rotation discretization method
that was used in [76].

We train the model to minimize the cross entropy loss for both the translation and the rotation (i.e.,
between the ground truth voxel coordinate containing the object centroid in the demonstrations and
the ground truth discrete rotation bin). We use the same object point cloud perturbation scheme to
create initial “noised” point clouds for the model to de-noise but have the model directly predict how
to invert the perturbation transform in one step.

Output coverage evaluation. Since C2F-QA performs the best in terms of task success among all
the baselines and is naturally suited for handling multi-modality by selecting more than just the
argmax among the binned output solutions, we evaluate the ability of our method and C2F-QA to
achieve high coverage among the available placing solutions while still achieving good precision
(see Section 5.2). To obtain multiple output predictions from C2F-QA, we first select multiple voxel
positions using the top-k voxel scores output by the PointNet→ 3D CNN→MLP pipeline. We then
copy the object point cloud and translate it to each of the selected voxel positions. For each selected
position, we pool the local combined object-scene point cloud features and use the pooled features
to predict a distribution of scores over the discrete space of rotations. Similar to selecting multiple
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voxel positions, we select the top-k scoring rotations and use this full set of multiple translations +
multiple rotations-per-translation as the set of output transforms to use for computing coverage.

Relationship to other “discretize-then-classify” methods. C2F-QA computes per-voxel features
from the scene and uses these to output a normalized distribution of scores representing the quality of
a “translation” action executed at each voxel coordinate. This idea of discretizing the scene and using
each discrete location as a representation of a translational action has been successfully applied by a
number of works in both 2D and 3D [41, 44, 77]. In most of these pipelines, the translations typically
represent gripper positions, i.e., for grasping. In our case, the voxel coordinates represent a location
to move the object for rearrangement.

However, techniques used by “discreteize-then-classify” methods for rotation prediction somewhat
diverge. C2F-QA and the recently proposed PerceiverActor [44] directly classify the best discrete
rotation based on pooled network features. On the other hand, TransporterNets [41] and O2O-
Afford [43] exhaustively evaluate the quality of different rotation actions by “convolving” some
representation of the object being rearranged (e.g., a local image patch or a segmented object point
cloud) in all possible object orientations, with respect to each position in the entire discretized scene
(e.g., each pixel in the overall image or each point in the full scene point cloud). The benefit is the
ability to help the model more explicitly consider the “interaction affordance” between the object and
the scene at various locations and object orientations and potentially make a more accurate prediction
of the quality of each candidate rearrangement action. However, the downside of this “exhaustive
search” approach is the computational and memory requirements are much greater, hence these
methods have remained limited to lower dimensions.

A6.2.2 Relational Neural Descriptor Fields (R-NDF).

R-NDF [18] uses a neural field shape representation trained on category-level 3D models of the objects
used in the task. This consists of a PointNet encoder with SO(3)-equivariant Vector Neuron [78]
layers and an MLP decoder. The decoder takes as input a 3D query point and the output of the point
cloud encoder, and predicts either the occupancy or signed distance of the 3D query point relative to
the shape. After training, a point or a rigid set of points in the vicinity of the shape can be encoded by
recording their feature activations of the MLP decoder. The corresponding point/point set relative to a
new shape can then be found by locating the point/point set with the most similar decoder activations.
These point sets can be used to parameterize the pose of local oriented coordinate frames, which can
represent the pose of a secondary object or a gripper that must interact with the encoded object.

R-NDFs have been used to perform relational rearrangement tasks via the process of encoding task-
relevant coordinate frames near the object parts that must align to achieve the desired rearrangement,
and then localizing the corresponding parts on test-time objects so a relative transform that aligns them
can be computed. We use the point clouds from the demonstrations to record a set of task-relevant
coordinate frames that must be localized at test time to perform each of the tasks in our experiments.
The main downside of R-NDF is if the neural field representation fails to faithfully represent the shape
category, the downstream corresponding matching also tends to fail. Indeed, owing to the global
point cloud encoding used by R-NDF, the reconstruction quality on our multi-rack/bookshelf/cabinet
scenes is quite poor, so the subsequent correspondence matching does not perform well on any of the
tasks we consider.

A6.2.3 Neural Shape Mating (NSM) + CVAE.

Neural Shape Mating (NSM) [3] uses a Transformer to process a pair of point clouds and predict how
to align them. The method was originally deployed on the task of “mating” two parts of an object that
has been broken but can be easily repurposed for the analogous task of relational rearrangement given
a point cloud of a manipulated object and a point cloud of a scene/“parent object”. Architecturally,
NSM is the same as our relative pose regression model, with the key differences of (i) being trained
on arbitrarily large perturbations of the demonstration point clouds, (ii) not using local cropping,
and (iii) only making a single prediction. We call this baseline “NSM-base” because we do not
consider the auxiliary signed-distance prediction and learned discriminator proposed in the original
approach [3]. As shown in Table 1, the standard version of NSM fails to perform well on any of
the tasks that feature multi-modality in the solution space (nor can the model successfully fit the
demonstration data). Therefore, we adapted it into a conditional variational autoencoder (CVAE) that
at least has the capacity to learn from multi-modal data and output a distribution of transformations.
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We use the same Transformer architecture for both the CVAE encoder and decoder with some small
modifications to the inputs and outputs to accommodate (i) the encoder also encoding the ground
truth de-noising transforms and predicting a latent variable z, and (ii) the decoder conditioning on z
in addition to the combined object-scene point cloud to reconstruct the transform. We implement
this with the same method that was used to incorporate the timestep information in our architecture –
for the encoder, we include the ground truth transform as both an additional input token and via a
residual connection with the global output feature, and for the decoder, we include the latent variable
in the same fashion. We also experimented with concatenating the residually connected features and
did not find any benefit. We experimented with different latent variable dimensions and weighting
coefficients for the reconstruction and the KL divergence loss terms, since the CVAE models still
struggled to fit the data well when the KL loss weight was too high relative to the reconstruction.
However, despite this tuning to enable the CVAE to fit the training data well, we found it struggled to
perform well at test time on unseen objects and scenes.

A6.3 Common failure modes

This section discusses some of the common failure modes for each method on our three tasks.

For Book/Shelf, our method occasionally outputs a solution that ignores an existing book already
placed in the shelf. We also sometimes face slight imprecision in either the translation or rotation
prevents the book from being able to be inserted. Similarly, the main failure modes on this task
from the baselines are more severe imprecision. C2F-QA is very good at predicting voxel positions
accurately (i.e., detecting voxels near open slots of the shelf) and the rotation predictions are regularly
close to something that would work for book placement, but the predicted book orientations are
regularly too misaligned with the shelf to allow the insertion to be completed.

For Mug/Rack, a scenario where our predictions sometimes fail is when there is a tight fit between
the nearby peg and the handle of the mug. For C2F-QA, the predictions appear to regularly ignore the
location of the handle when orienting the mug – the positions are typically reasonable (e.g., right next
to one of the pegs on a rack) but the orientation oftentimes appears arbitrary. We also find C2F-QA
achieves the highest training loss on this task (and hypothesize this occurs for the same reason).

Finally, for Can/Cabinet, a common failure mode across the board is predicting a can position that
causes a collision between the can being placed and an existing stack of cans, which we don’t allow
to simulate the requirement of avoiding knocking over an existing stack.

A6.4 Task Execution

This section describes additional details about the pipelines used for executing the inferred relations
in simulation and the real world.

A6.4.1 Simulated Execution Pipeline

The evaluation pipeline mirrors the demonstration setup. Objects from the 3D model dataset for the
respective categories are loaded into the scene with randomly sampled position and orientation. We
sample a rotation matrix uniformly from SO(3), load the object with this orientation, and constrain
the object in the world frame to be fixed in this orientation. We do not allow it to fall on the table
under gravity, as this would bias the distribution of orientations covered to be those that are stable on
a horizontal surface, whereas we want to evaluate the ability of each method to generalize over all
of SO(3). In both cases, we randomly sample a position on/above the table that are in view for the
simulated cameras.

After loading object and the scene, we obtain point clouds PO and PS and use RPDiff to obtain a
rearrangement transform to execute. The predicted transformation is applied by resetting the object
state to a “pre-placement” pose and directly actuating the object with a position controller to follow a
straight-line path. Task success is then checked based on the criteria described in the section above.

Pre-placement Offset and Insertion Controller. Complications with automatic success evaluation
can arise when directly resetting the object state based on the predicted transform. To avoid such
complications, we simulate a process that mimics a closed-loop controller executing the last few
inches of the predicted rearrangement from a “pre-placement” pose that is a pure translational offset
from the final predicted placement. For our quantitative evaluations, we use the ground truth state of

28



the objects in the simulator together with prior knowledge about the task to determine the direction of
this translational offset. For the mug/rack task, we determine the axis that goes through the handle
and offset by a fixed distance in the direction of this axis (taking care to ensure it does not go in the
opposite direction that would cause an approach from the wrong side of the rack). For the can/cabinet
task and the book/bookshelf task, we use the known top-down yaw component of the shelf/cabinet
world frame orientation to obtain a direction that offsets along the opening of the shelf/cabinet.

To execute the final insertion, we reset to the computed pre-placement pose and directly actuate the
object with a position controller to follow a straight line path from the pre-placement pose to the
final predicted placement. To simulate some amount of reactivity that such an insertion controller
would likely possess in a full-stack rearrangement system, we use the simulator to query contact
forces that are detected between the object and the scene. If the object pose is not close to the final
predicted pose when contacts are detected, we back off and sample a small “delta” translation and
body-frame rotation to apply to the object before attempting another straight-line insertion. These
small adjustments are attempted up to a maximum of 10 times before the execution is counted as a
failure. If, upon detecting contact between the object and the scene, the object is within a threshold of
its predicted place pose, the controller is stopped and the object is dropped and allowed to fall under
gravity (which either allows it to settle stably in its final placement among the scene object, or causes
it to fall away from the scene). We use this same procedure across all methods that we evaluated in
our experiments.

We use this combination of a heuristically-computed pre-placement pose and “trial-and-error” inser-
tion controller because (i) it removes the need for a full object-path planning component that searches
for a feasible path the object should follow to the predicted placement pose (as this planning problem
would be very challenging to solve to due all the nearby collisions between the object and the scene),
(ii) it helps avoid other artificial execution failures that can arise when we perform the insertion from
the pre-placement pose in a purely open-loop fashion, and (iii) it enables us to avoid complications
that can arise from directly resetting the object state based on the predicted rearrangement transform.
However, we also observe some failure modes and brittleness that arises from our use of manual
computation and heuristics to compute these pre-placement poses, and in the future, we would like to
explore predicting additional feasible waypoint poses that help construct a full path from start to goal
for the object. Below, we include further details and discussion on the heuristics used for computing
the pre-placement offsets in simulation.

A6.4.2 Computing pre-placement offset poses with task-specific heuristics in simulation

Future versions ought to introduce predictions of more intermediate waypoints (note diffusion has
shown to be useful in this context as well, e.g,. for motion planning/trajectory modeling [1, 2, 3]).

Book/bookshelf and Can/cabinet. Since the simulator pose of each object is available, we use
the top-down orientation of the shelf/cabinet to obtain the offset vector. The [x, y] world-frame
components of the vector are computed such that, from a top-down perspective, the 2D vector is
perpendicular to the front opening of the shelf/cabinet. The z component of the vector is set to 0.
This allows the books/cans to be moved to the vicinity of the final placement, with a pure 2D offset
such that moving along this offset in a straight line can achieve successful insertion/stacking. If the
orientation or the position of the predicted pose is wrong following the 2D vector from the offset
version of these poses can cause the insertion/placement to fail. Example reasons for this failure
include the book not fitting, due to an incorrect orientation, and the can colliding with one of the
existing stacks (which we check for and count as a failure).

Mug/rack. We use simulated ShapeNet mugs that have a canonical orientation. Based on this
canonical orientation, we know the 3D vector direction corresponding to a vector that points through
the opening of the handle on the mug. This vector can point in two different directions; we select
the one with the larger +z component, based on the knowledge that the mug should approach the
rack from above (since the hooks are angled slightly upward, to avoid the mugs falling when they
are hung). Using this vector, we translate the mug from its predicted hanging pose along a direction
that goes through the handle, so that when we actuate it from this offset (assuming the prediction is
accurate), the hook ends up going through the handle. If the position or orientation of the prediction
is incorrect, then the offset pose will be computed so that the mug either cannot be placed on the rack
(due to collisions occurring between the handle and the hook) or the placement will miss the hook
entirely (so the mug falls away and fails to be hung) – both of these cases are treated as failures.
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A6.4.3 Real World Execution Pipeline

Here, we repeat the description of how we execute the inferred transformation using a robot arm with
additional details. At test time, we are given point clouds PO and PS of object and scene, and we
obtain T, the SE(3) transform to apply to the object from RPDiff. T is applied to O by transforming
an initial grasp pose Tgrasp, which is obtained using a separate grasp predictor [10], by T to obtain a
placing pose Tplace = TTgrasp. As in the simulation setup, we use a set of task-dependent heuristics
to compute an additional “pre-placement” pose Tpre-place, from which we follow a straight-line end-
effector path to reach Tplace. We then use off-the-shelf inverse kinematics and motion planning to
move the end-effector to Tgrasp and Tplace.

To ease the burden of collision-free planning with a grasped object whose 3D geometry is unknown,
we also compute an additional set of pre-grasp and post-grasp waypoints which are likely to avoid
causing collisions between the gripper and the object during the execution to the grasp pose, and
collisions between the object and the table or the rest of the scene when moving the object to the
pre-placement pose. Each phase of the overall path is executed by following the joint trajectory in
position control mode and opening/closing the fingers at the correct respective steps. The whole
pipeline can be run multiple times in case the planner returns infeasibility, as the inference methods
for both grasp and placement generation have the capacity to produce multiple solutions.

A6.4.4 Computing pre-placement offset poses with task-specific heuristics in the real world

Here, we describe details on the heuristics we used to compute the pre-placement poses are included
in the subsection below. We acknowledge that noise in the computation of these pre-placement poses
was a common source of execution failure in our real-world qualitative trials, and future work that
also learns to robustly predict additional feasible waypoint poses that help reach the final placement
is likely to support improved rearrangement performance in the real world.

Book/bookshelf. In the real world, we again use the knowledge that the placement offset should
primarily consist of a 2D [x, y] translation from the predicted pose on the shelf. We fit an oriented
bounding box to the predicted book point cloud and select the 2D vector corresponding to the longest
corner on the bottom face of the bounding box (with a small +z component, to help the placement
avoid clipping the shelf with the bottom of the book by approaching from slightly above). Again, this
2D vector can have two potential directions, and we select the one that points toward the center of the
table (assuming we are not placing on a shelf from the far edges of the table).

Can/cabinet. For the real-world can stacking task, we cropped a portion of the cabinet point cloud
(to avoid any outlier points from the table), fit a bounding box to it, and selected the 2D vector
corresponding to the corner on the bottom face of the bounding box that pointed from the center of
the cabinet point cloud most closely to the center of the table (again, assuming we were approaching
from near the center of the table, rather than the table edges).

Mug/rack. In the real world, we attempt to approximate the 3D offset vector based on fitting a
3D line to the part of the point cloud corresponding to the nearby hook. Due to noise in the point
cloud and an imperfect ability to solely segment out the hook from the body of the rack, this offset
computation was the least robust and introduced some failed execution attempts.

A7 Extra Ablations

In this section, we perform additional experiments wherein different system components are modified
and/or ablated.

With vs. Without Success Classifier. We use neural network hφ to act as a success classifier and
support selecting a “best” output among theK predictions made by our iterative de-noising procedure.
Another simple mechanism for selecting an output index kexec for execution would be to uniformly
sample among the K outputs. However, due to the local nature of the predictions at small values of t
and the random guess initializations used to begin the inference procedure, some final solutions end
in configurations that don’t satisfy the task (see the book poses that converge to a region where there
is no available slot for placement in Figure A5 for A = 10).

Therefore, a secondary benefit of incorporating hφ is to filter out predictions that may have converged
to these “locally optimal” solutions, as these resemble some of the negatives that the classifier has
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No external noise

With external noise (            )

small noise scale 

medium noise scale

Figure A6: Examples of running our full iterative evaluation procedure for I steps with different values of
A (and subsequently, D) in our i to t function (which maps from test-time iteration values n = 1, ..., I to
the timestep values t = 1, .., T that were used in training), and with different amounts of external noise TRand

∆

added from the annealed external noise distribution pAnnealedRandSE(3)(·). We observe that with large values of A,
the model makes more predictions with smaller values of t. These predictions are more local and the overall
solutions converge to a more broad set of rearrangement transforms. This sometimes leads to “locally optimal”
solutions that fail at the desired task (see top right corner with A = 10). With small A, the early iterations are
more biased toward the average of a general region, so the set of transforms tends to collapse on a single solution
within a region. By incorporating external noise, a better balance of coverage for smaller values of A and “local
optima” avoidance for larger values of A can be obtained.

seen during training. Indeed, we find the average success rate across tasks with RPDiff when using the
success classifier is 0.88, while the average success when uniformly sampling the output predictions
is 0.83. This difference is relatively marginal, indicating that the majority of the predictions made
by the pose de-noising procedure in RPDiff are precise enough to achieve the task. However, the
performance gap indicates that there is an additional benefit of using a final success classifier to rank
and filter the outputs based on predicted success.

Noise vs. No Noise. In each update of the iterative evaluation procedure, we update the overall
predicted pose and the object point cloud by a combination of a transform predicted by fθ and a
randomly sampled “external noise” transform TRand

∆ . The distribution that TRand
∆ is sampled from is

parameterized by the iteration number i to converge toward producing an identity transform so the
final pose updates are purely a function of the network fθ.

The benefit of incorporating the external noise is to better balance between precision and coverage.
First, external noise helps the pose/point cloud at each iteration “bounce out” of any locally optimal
regions and end up near regions where a high quality solution exists. Furthermore, if there are
many high-quality solutions close together, the external noise on later iterations helps maintain some
variation in the pose so that more overall diversity is obtained in the final set of transform solutions.

For instance, see the qualitative comparisons in Figure A6 that include iterative predictions both with
and without external noise. For a value of A = 1 in i to t, only two of the available shelf slots are
found when no noise is included. With noise, however, the method finds placements that cover four
of the available slots. Quantitatively, we also find that incorporating external noise helps in terms of
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overall success rate and coverage achieved across tasks. The average
(
Success Rate, Recall

)
across

our three tasks with and without noise was found to be (0.88, 0.44) and (0.83, 0.36), respectively.

Number of diffusion steps T during training. The total number of steps T and the noise distribution
for obtaining perturbation a transform T

(t)
noise affects the magnitude of the translation and rotation

predictions that must be made by the model fθ. While we did not exhaustively search over these
hyperparameters, early in our experiments we found that very small values of T (e.g., T = 2) cause
the predictions to be much more imprecise. This is due to the averaging that occurs between training
samples when they are too far away from the ground truth. In this regime, the examples almost
always “look multi-modal” to the model. On the other hand, for large values of T (e.g., T = 50),
the incremental transforms that are used to de-noise become very small and close to the identity
transform. When deployed, models trained on this data end up failing to move the object from its
initial configuration because the network has only learned to make extremely small pose updates.

We found a moderate value of T = 5 works well across each of our tasks, though other similar values
in this range can likely also provide good performance. This approximately leads the average output
scale of the model to be near 2.5cm translation and 18-degree rotation. We also observe a benefit in
biasing sampling for the timesteps t = 1, ..., T to focus on smaller values. This causes the model to
see more examples close to the ground truth and make more precise predictions on later iterations
during deployment. We achieve this biased sampling by sampling t from an exponentially decaying
categorical probability distribution over discrete values 1, 2, ..., T .

Incremental targets vs. full targets. As discussed in Section 3.1, encouraging the network fθ to
predict values with roughly equal magnitude is beneficial. To confirm this observation from the
literature, we quantitatively evaluate a version of the de-noising model fθ trained to predict the full
de-noising transform

[
T

(t)
noise

]−1
. The quantitative

(
Success Rate, Recall

)
results averaged across

our three tasks with the incremental de-noising targets are (0.88, 0.44), while the model trained on
full de-noising targets are (0.76, 0.34). These results indicate a net benefit in using the incremental
transforms as de-noising prediction targets during training.

Value of A in i to t. In this section, we discuss the effect of the value A in the i to t function
used during the iterative evaluation procedure. The function i to t maps evaluation iteration values i
to timestep values t that were seen during training. For instance, we may run the evaluation procedure
for 50 iterations, while the model may have only been trained to take values up to t = 5 as input. Our
i to t function is parameterized by A such that larger values of A lead to more evaluation iterations
with small values of t. As A approaches 1, the number of iterations for each value of t becomes equal
(i.e., for A = 1, the number of predictions made for each value of t is equal to I/T ).

Figure A6 shows qualitative visualizations of de-noising the pose of a book relative to a shelf with
multiple available slots with different values of A in the i to t function. This example shows that
the solutions are more biased to converge toward a single solution for smaller values of A. This is
because more of the predictions use larger values of t, which correspond to perturbed point clouds
that are farther from the ground truth in training. For these perturbed point clouds, their association
with the correct target pose compared to other nearby placement regions is more ambiguous. Thus,
for large t, the model learns an averaged-out solution that is biased toward a region near the average
of multiple placement regions that may be close together. On the other hand, for large A, more
predictions correspond to small values of t like t = 1 and t = 0. For these timesteps, the model has
learned to precisely snap onto whatever solutions may exist nearby. Hence, the pose updates are
more local and the overall coverage across the K parallel runs is higher. The tradeoff is that these
predictions are more likely to remain stuck near a “locally optimal” region where a valid placement
pose may not exist. Table 3 shows the quantitative performance variation on the Book/Shelf task for
different values of A in the i to t function. These results reflect the trend toward higher coverage
and marginally lower success rate for larger values of A.

A8 Further Discussion on Real-world System Engineering and Limitations

This section provides more details on executing rearrangement via pick-and-place on the real robot
(to obtain the results shown in Figures 1 and 4) and discusses additional limitations of our approach.
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Metric Value of A in i to t

1 2 5 10 20
Success Rate 1.00 0.95 0.96 0.94 0.90
Recall (coverage) 0.37 0.41 0.48 0.48 0.52

Table 3: Performance for different values of A in i to t. Larger values of A obtain marginally better
precision at the expense of worse coverage (lower recall).

A8.1 Executing multiple predicted transforms in sequence in real-world experiments

The output of the pose diffusion process in RPDiff is a set of K SE(3) transforms {T(0)
k }Kk=1. To

select one for execution, we typically score the outputs with success classifier hφ and search through
the solutions while considering other feasibility constraints such as collision avoidance and robot
workspace limits. However, to showcase executing a diverse set of solutions in our real-world
experiments, a human operator performs a final step of visually inspecting the set of feasible solutions
and deciding which one to execute. This was mainly performed to ease the burden of recording robot
executions that span the space of different solutions (i.e., to avoid the robot executing multiple similar
solutions, which would fail to showcase the diversity of the solutions produced by our method).

A8.2 Expanded set of limitations and limiting assumptions

Section 7 mentions some of the key limitations of our approach. Here, we elaborate on these and
discuss additional limitations, as well as potential avenues for resolving them in future work.

• We train from scratch on demonstrations and do not leverage any pre-training or feature-sharing
across multiple tasks. This means we require many demonstrations for training. A consequence of
this is that we cannot easily provide enough demonstrations to train the diffusion model in the real
world (while still enabling it to generalize to unseen shapes, poses, and scene layouts). Furthermore,
because we train only in simulation and directly transfer to the real world, the domain gap causes
some challenges in sim2real transfer, so we do observe worse overall prediction performance in the
real world. This could be mitigated if the number of demonstrations required was lower and we
could train the model directly on point clouds that appear similar to those seen during deployment.

• In both simulation and the real world, we manually completed offset poses for moving the object
before executing the final placement. A more ideal prediction pipeline would involve generating
“waypoint poses” along the path to the desired placement (or even the full collision-free path, e.g.,
as in [79]) to support the full insertion trajectory rather than just specifying the final pose.

• Our method operates using a purely geometric representation of the object and scene. As such,
there is no notion of physical/contact interaction between the object and the scene. If physical
interactions were considered in addition to purely geometric/kinematic interactions/alignment, the
method may be even more capable of accurate final placement prediction and avoid some of the
small errors that sometimes occur. For instance, a common error in hanging a mug on a rack is
to have the handle just miss the hook on the rack. While these failed solutions are geometrically
very close to being correct, physically, they are completely different (i.e., in one, contact occurs
between the two shapes, while in the other, there is no contact that can support the mug hanging).

• Our method operates using 3D point clouds which are currently obtained from depth cameras.
While this permits us to perform rearrangements with a wide variety of real-world objects/scenes
that can be sensed by depth cameras, there are many objects which cannot be observed by depth
cameras (e.g., thin, shiny, transparent objects). Investigating a way to perform similar relational
object-scene reasoning in 6D using signals extracted from RGB sensors would be an exciting
avenue to investigate.

33



A9 Additional Results

A9.1 Training multi-task models for pose de-noising

While Section 5 shows results for models trained on datasets corresponding to single tasks, here, we
discuss preliminary results on training one model on data from all the tasks together. In particular,
we trained the diffusion model fθ on the combined set of demonstrations across all three tasks and
evaluated its performance on held-out test instances of each task. The average success rate across
tasks was 85%, which is comparable to the performance achieved by the single-task models (88%).

A9.2 Multi-step Manipulation with RPDiff

In this section, we provide a qualitative example of how RPDiff can be used to support predicting
and executing rearrangement actions for tasks requiring multiple steps and/or manipulating multiple
objects in sequence. We use the example of placing three books on a table into a shelf, one by one.

Initial scene + 3 book point clouds Final transformed book point clouds, after 
sequence of predicted placements

Figure A7: (Left) Initial environment with three books on a table (with corresponding point clouds shown in
green, red, and blue) along with a bookshelf with multiple open slots (bookshelf point cloud shown in black).
The task is to place all three books into the shelf by sequentially predicting transforms that should be applied to
each of them. We will use RPDiff to achieve this by cycling through each book point cloud and updating the
corresponding scene point cloud on each step. (Right) The predicted transform for each book is shown (see the
green, red, and blue point clouds transformed into configurations on the shelf).

In Fig. A7 (left), we show the original scene with three books and a shelf. In Fig. A7 (right), we
show the same scene and initial objects, along with corresponding transformed objects (with colors
indicating which initial and final book point clouds go together). These final point clouds have been
obtained by sequentially (i) inferring a relative SE(3) transform of one of the books, followed by (ii)
modifying the scene point cloud to include the newly-transformed book point cloud, so that it can be
considered as part of the scene on the prediction of where to place the next book.

To begin, the first book (picked at random - shown in blue in Fig. A8) is transformed into the
configuration shown in yellow (Fig. A8, left) using a prediction from RPDiff. Subsequently, the
transformed book point cloud is added to the point cloud representing the scene (Fig. A8, right).
Next, we perform the same process (i.e. apply RPDiff with a new book point cloud, shown in blue
in Fig. A9) with the new scene point cloud resulting from step one. Note this could be “imagined”
by directly applying the predicted transform to the originally-observed point cloud of the first book.
Alternatively, we could execute the first predicted step and then re-perceive the whole scene (which
would now include the just-placed first book). For simplicity, we have shown “imagining” the new
scene point cloud by transforming the originally-observed book point cloud based on the predicted
placement transform. Finally, we repeat this process for a third step with the remaining book (shown
in blue in Fig. A10), again updating the “full” scene point cloud to reflect the placement of the first two
books (see Fig. A9, right). Note that each of these placements was selected as the maximum-scoring
prediction as evaluated by our success classifier.

Overall, as shown in Fig. A7 (right), we have obtained a set of SE(3) transforms corresponding to
each of the three books on the table, and by either imagining the execution of each step or performing
the execution of each step (and then re-perceiving), we can take into account the placement of earlier
books when having RPDiff infer where to place the next books.
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(1) Imagined book point cloud 
added to scene point cloud

Figure A8: Multi-step book placement, step 1. The first book is selected at random (point cloud shown in
blue) and RPDiff is used to obtain a transform for placing this book on the shelf. The transformed point cloud
is shown in yellow on the left, and the corresponding new scene point cloud (with the transformed book point
cloud included) is shown in red on the right.

(2) Imagined book point cloud 
added to scene point cloud

Figure A9: Multi-step book placement, step 2. The updated “full scene point cloud” from step 1 is used as the
input scene point cloud to step 2. The second book is selected (point cloud shown in blue) and a corresponding
transform is obtained with RPDiff. Once again, the transformed point cloud is shown in yellow on the left, and
the corresponding new scene point cloud (with the transformed book point cloud included) is shown in red on
the right.

(3) Imagined book point cloud 
added to scene point cloud

Figure A10: Multi-step book placement, step 3. This process is repeated a final time with the third book
(point cloud shown in blue) and the scene point cloud with both other books in their “imagined” placement
configuration. RPDiff predicts a rearrangement transform to place the third book (shown in yellow on the left),
such that the process could be continued with the newly updated scene point cloud (right) if needed.
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A10 Expanded Discussion

A10.1 Demo collection in simulation with manually-designed heuristics, scripted policies,
and known 3D models

Here we clarify the details and context for our specific choice of data generation/demonstration
collection procedure and mention alternatives that could have been employed instead. While the
specific approach taken in this work involves scripted mechanisms for generating demonstrations of
each rearrangement task, it is important to note our method does not fundamentally rely on these
components. We only rely on demonstrations of object-scene point clouds in final configurations that
satisfy the desired object-scene relation. These demonstrations could equivalently come from the real
world (i.e., via teleoperation or kinesthetic teaching, similar to [18, 37]), but we were unable to collect
a large number of these demonstrations in the real world, and instead opted to automatically collect
them in simulation. With this goal, we take advantage of privileged simulator and model information,
as well as task-specific heuristics, purely for automating data generation. This information includes
3D models, simulator states, canonical object poses, and available placing locations in the scenes
(which were recorded when scene objects were generated). One goal of future work is to bring down
the number of demos required so the training examples can be directly shown in the real world on
real objects

Related to this choice of collecting demos with scripted policies and manually designed heuristics,
potential questions and concerns may arise regarding why the same heuristics could not have been
used to solve the tasks in the first place. To this point, we emphasize that the information used to
generate the demos is not available in the real world, and that we only use the heuristics and privileged
information to generate training data. From this data, we obtain models that operate with point clouds,
and these models can be deployed in the real world on unknown objects and scenes due to their use of
a representation that can be obtained from standard perception systems. This is somewhat analogous
to the paradigm of teacher-student training in reinforcement learning and imitation learning, wherein
a “teacher” policy is trained using privileged information and then distilled to a “student” policy that
operates from perception [80, 81].

A10.2 Scripted demo collection using task-specific heuristics and privileged information

Book/Shelf Placing. We manually generated the bookshelf 3D models as shelves with books placed
randomly among the available locations on each shelf. In creating these shelf models, we placed
books in some of the existing slot locations and recorded locations and orientations near each of the
remaining open slots. These open slot poses were then used when generating object-scene point cloud
demonstrations, so that we could directly obtain SE(3) transforms that move books from their initial
poses into final poses within the shelf. The real-world alternative would be to manually configure a
diverse set of shelves and book placements within the shelves, and collect demonstrations of placing
new books on these shelves.

Can/Cabinet Stacking. Similar to the approach for book/shelf placing, we programmatically
generated the 3D scenes with cabinets and existing stacks of cans and recorded poses of available
poses either on top of the existing can stacks or in regions large enough for making new stacks.
Again, we use this information in the data generation phase to directly transform new cans into
configurations that are either “on” an existing stack or begin a new stack in an open area. The
real-world alternative would be to manually configure a diverse set of cabinets and can stacks within
the cabinets. With these scenes, we could then collect demonstrations of placing/stacking new cans
within these cabinets.

Mug/Rack-Multi Hanging. The mugs come from ShapeNet, where the 3D models for each category
are all canonically aligned (i.e., the opening is aligned with the +y axis and the handle is aligned
with the +z axis of the body frame). We use knowledge of these canonical poses to approximate
the pose of the handle on each mug and similarly use approximate knowledge of the hook on each
rack to roughly align the mug handle with the hook of a rack. Since these estimates are not perfect,
we sample random perturbations of these poses until one is found that (1) does not cause collision
between the objects and (2) leads to stable hanging of the mug on the rack when it falls under gravity.
Similar to the above two tasks, with a few racks and mug instances, such demos could be collected in
the real world without introducing any such assumptions.
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A10.3 Expanded Performance Analysis and Discussion

Here we provide further analysis and characterization of the system performance.

A10.3.1 Simulation performance breakdown

While our simulation success rates are high, there remains room for improved performance. First, we
did not achieve complete coverage over all possible modes in the space of placing solutions (e.g., note
that recall terminates near 0.68 in Fig. 3a). We find that there remains some bias toward and/or away
from certain modes. This could possibly arise from bias or spurious correlations in the object point
clouds and demonstrated placements. For example, the initial book point clouds often had one large
visible face, with the other less visible (due to laying flat on the table). It is possible that the data
contained a spurious correlation where the visible side was aligned with the open slot in a particular
orientation more frequently, thus resulting in the model acquiring this bias. Another observation is
that sometimes two modes are located very close together (e.g., two open slots might be directly next
to each other). In these cases, the model may have again learned a biased solution either preferring
one over the other or reaching an average between these close-together solutions. Either of these
would lead to the less-visited/separate solutions to be predicted less frequently.

The model also occasionally tries to place objects in parts of the scene that cannot be reached (e.g.,
placing a book where there is already a book). This is sometimes due to ambiguity in the scene
object poses (i.e., it can be hard to distinguish the front vs. back of the shelf). Finally, the model
sometimes places an object “just off”. For example, the handle of the mug is aligned to the rack,
but is not far enough “on” the hook, resulting in the mug just missing the hook when dropped under
gravity. Similarly, predicted can placements are sometimes very close but cause a collision with the
stack of cans below. This highlights the large precision demands placed on a system that can perform
rearrangement with high performance.

A10.3.2 Real world performance breakdown and sim2real challenges

Placement prediction accuracy. The distribution shift between simulated and real point clouds
appeared to be the largest source of lower-quality transform predictions that did not succeed at placing.
This shift is in part caused by depth sensor noise, point cloud outliers, imperfect camera calibration,
and shiny object surfaces. Another source of distribution shift is generated training scenes not having
perfect realism. Sim2real pipelines are still heavily bottlenecked by the effort of creating highly
realistic 3D assets and configuring diverse yet structurally/physically valid scene layouts to train on.

We explored some techniques to mitigate the negative effects of sim2real gaps such as adding small
per-point Gaussian noise to the point clouds and simulating additional occlusions from randomly
posed synthetic cameras. We observed some marginal benefit in applying these techniques but did
not rigorously evaluate how much they helped. Other ideas to explore for reducing sim2real gaps
with 3D point clouds include using predicted depth models that can produce cleaner depth images
than our depth sensors, using better depth sensors, and training and deploying more high-fidelity
noise models to augment the simulation data and make it more similar to the real world.

Robot execution success. One aspect of robot execution success is unaccounted object motion that
occurs while grasping/moving the object. We made the simplifying assumption that that object does
not move during grasping and that, after grasping, the object is rigidly coupled to the gripper. If
there is object movement during grasping/trajectory execution, the placement may become inaccurate.
One way to mitigate this would be to estimate object motion post-grasp and account for this when
reaching the placing pose. We did not implement this or similar system engineering improvements
but it should be straightforward to pursue in the future.

Another source of failure was imperfect computation of task-specific pre-placement offset poses.
Noise in the point cloud and brittleness of the heuristics we used sometimes meant the pre-placement
offset we obtained did not allow a feasible approach to reach the predicted pose, even when our final
pose predictions looked great. In future versions of the system, we want to incorporate predictions of
additional feasible waypoints along the path to the placement.

Finally, another limitation having more to do with execution efficiency is the planning times required
for searching for IK solutions and motion plans. Improvements in this respect are orthogonal to our
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primary objective of predicting object placements that satisfy the desired relation but are certainly
important for future versions of the system to operate more effectively.

A10.4 Computational efficiency

We timed the forward pass (with our hyperparameters) to require 280ms with K=32 and 49ms with
K=1. We also measured the time required for 50 eval iterations. It took 3.3s with K=1 and 24.46s
with K=32 (all on a V100 GPU). Multi-step inference is mainly bottlenecked by other operations
like (re-)cropping the scene point cloud - our batched implementations of these can be improved to
reduce runtime. We leave optimizing computational speed for real-time performance to future work,
but we’re optimistic based on the results shown in [56] and our observations of RPDiff achieving
good performance with as few as 10 iterations.

A10.5 Additional Related Work Discussion

OmniHang [46] proposes a multi-stage approach for generating hanging placements in a category-
agnostic fashion. Their pipeline involves coarse hanging pose regression, keypoint detection and
alignment, and refinement via the cross-entropy method (CEM) with a learned reward function.
Their first stage is analogous to our NSM + CVAE baseline, which we found to perform poorly
due to the limits of predicting a full transform in a single step and constraining the distribution of
latent variables to follow a unimodal Gaussian. The second stage of OmniHang is analogous to our
R-NDF baseline, which localizes task-relevant object parts and brings them into alignment. We could
have explored using a supervised keypoint detector, as in OmniHang, instead of matching features
learned from self-supervision as in R-NDF, but this would have required additional manual keypoint
labeling. Finally, stage three of OmniHang is analogous to using our learned success classifier to
refine the prediction by performing local optimization, i.e., to maximize the score of the classifier
(this has also been deployed in other work for 6-DoF grasp generation [82]). However, optimizing a
learned binary classifier can be susceptible to finding solutions in out-of-distribution regions where
the classifier outputs erroneously large scores, thus requiring extra components to constrain the search
to a local region. Other related work has compared against similar baselines of optimizing learned
cost functions [38, 54] and found it can be difficult to achieve a good balance between diversity and
solution quality with such approaches.

Deep Visual Constraints (DVC) [83] is another closely related method, which learns shape-
conditioned functional representations that represent an underlying kinematic constraint function.
RPDiff can be interpreted as very similar to DVC if DVC was to be (i) extended to deal with unknown
objects and scenes, (ii) simplified to avoid representing objects as neural field representations, and (iii)
directly predicted gradients of the constraint function rather than representing the constraint function
itself. More specifically, the update in each RPDiff iteration at test-time can be viewed as predicting
the direction to move in, so as to come closer to minimizing/satisfying some underlying constraint
function that encodes the geometric relation/constraint that should be satisfied. On the other hand,
applying DVC to our scenario would involve the steps of predicting the constraint function value
itself, and then performing either gradient-based or zero-order optimization to produce a solution that
satisfies the learned constraint function. We did not implement or compare against this version of our
approach, as we found satisfactory results using our method of directly predicting pose updates and
directly encoding observable point clouds (rather than mapping to neural field representations), but it
may be worth exploring the differences and tradeoffs between these two highly related yet subtly
distinct approaches in the future.

Relationship with energy-based learning. Recently, many works have drawn relationships between
the paradigms of energy-based modeling (EBM) [84, 85] and de-noising diffusion (e.g., [56, 57, 86–
88]). As such, there have also been associated successes applying EBMs to object rearrangement
in robotics (e.g., [89]). We highlight one core relationship between these two learning paradigms
in our discussion on DVC above, which is that of prediction by explicitly optimizing a learned
energy/cost/constraint function vs. training a diffusion model to directly approximate a gradient of
such an underlying function. A common current intuition is that diffusion models have the advantage
of being more stable and easy to train than EBMs [56], but there remains more work to be done in
clarifying the degree to which this is true (i.e., see [86]) and exploring which among these closely
related approaches is most suitable in specific robotics problems.
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A11 Model Architecture Diagrams

Parameter Value
Number of PO and PS points 1024
Batch size 16
Transformer encoder blocks 4
Transformer decoder blocks 4
Attention heads 1
Timestep position embedding Sinusoidal
Transformer embedding dimension 256
Training iterations 500k
Optimizer AdamW
Learning rate 1e-4
Minimum learning rate 1e-6
Learning rate schedule linear warmup, cosine decay
Warmup epochs 50
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 0.1
Maximum training timestep T 5
Maximum PS crop size Lmax PS bounding box maximum extent
Minimum PS crop size Lmin 18cm

Table 4: Training hyperparameters

Parameter Value
Number of evaluation iterations I 50
Number of parallel runs K 32
Default value of A in i to t 10
Expression for pAnnealedRandSE(3)(· | i) N (· | 0, σ(i))
σ(i) in pAnnealedRandSE(3) (for trans and rot) a ∗ exp(−bi/I)
Value of a (axis-angle rotation, in degrees) 20
Value of b (axis-angle rotation) 6
Value of a (translation, in cm) 3
Value of b (translation) 6

Table 5: Evaluation hyperparameters
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Downsample point clouds (N +M)× 3

One-hot concat (N +M)× 5

Linear (N +M)× d
Concat pos emb(t) (N +M + 1)× d[

Self-attention (scene)
]
× 4

M × d[
Self-attention (object)

Cross-attention (object, scene)

]
× 4

(N + 1)× d

Global Pooling d

Residual pos emb(t) d

MLP (translation) d→ 3

MLP→ orthonormalize (rotation) d→ 6→ 3× 3

Table 6: Transformer architecture for predicting SE(3) transforms

Downsample point clouds (N +M)× 3

One-hot concat (N +M)× 5

Linear (N +M)× d[
Self-attention (scene)

]
× 4

M × d[
Self-attention (object)

Cross-attention (object, scene)

]
× 4

N × d

Global Pooling d

MLP→ sigmoid (success) d→ 1

Table 7: Transformer architecture for predicting success likelihood
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