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Abstract: We approach the fundamental problem of obstacle avoidance for robotic
systems via the lens of online learning. In contrast to prior work that either assumes
worst-case realizations of uncertainty in the environment or a stationary stochastic
model of uncertainty, we propose a method that is efficient to implement and
provably grants instance-optimality with respect to perturbations of trajectories
generated from an open-loop planner (in the sense of minimizing worst-case regret).
The resulting policy adapts online to realizations of uncertainty and provably
compares well with the best obstacle avoidance policy in hindsight from a rich
class of policies. The method is validated in simulation on a dynamical system
environment and compared to baseline open-loop planning and robust Hamilton-
Jacobi reachability techniques. Further, it is implemented on a hardware example
where a quadruped robot traverses a dense obstacle field and encounters input
disturbances due to time delays, model uncertainty, and dynamics nonlinearities.
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1 Introduction

The problem of obstacle avoidance in motion planning is a fundamental and challenging task at
the core of robotics and robot safety. Successfully solving the problem requires dealing with
environments that are inherently uncertain and noisy: a robot must take into account uncertainty
— external disturbances and unmodeled effects, for example — in its own dynamics and those
of other agents in the environment. Approaches for tackling the obstacle avoidance problem in
robotics typically fall under two categories: (i) methods that attempt to construct stochastic models of
uncertainty in the agents’ dynamics and use the resulting probabilistic models for planning or policy
learning, and (ii) methods that construct plans that take into account worst-case behavior. In Sec. 2
we give a more detailed overview of both classes of approaches.

In this paper, we are motivated by Vapnik’s principle: “when solving a given problem, try to avoid
solving a harder problem as an intermediate step.” Constructing accurate models of disturbances and
agent dynamics is perhaps more complicated than the task of obstacle avoidance in motion planning,
as practical uncertainties rarely conform to assumptions made by the two classes of approaches
highlighted above. As an example, consider a quadruped robot navigating through an (a priori
unknown) obstacle field subject to unmodeled dynamics and external disturbances in the input
channel (Fig. 1). Constructing accurate probabilistic models of disturbance and obstacle variations
is challenging, and may cause the robot to violate safety in out-of-distribution settings. In contrast,
worst-case assumptions may lead to extremely conservative behavior. This motivates the need for
online learning methods that adapt to the particular context encountered by the robot.

Statement of Contributions. In this work, we pose the problem of obstacle avoidance in a regret
minimization framework and build on techniques from non-stochastic control. Our primary contribu-
tion is a trust-region-based online learning algorithm for the task of obstacle avoidance, coupled with
provable regret bounds that show our obstacle avoidance policy to be comparable to the best policy in

†Corresponding Author: dasnyder@princeton.edu. 1Intelligent Robot Motion (IRoM) Lab, Princeton
University. 2Department of Computer Science, Princeton University. 3Google DeepMind.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



Figure 1: A quadruped robot is tasked with traversing a course with densely placed obstacles to a goal. During
traversal, the robot is subject to sensor noise, time delays, input-channel disturbances, and nonlinearities in the
closed-loop dynamics, which can render optimistic nominal plans (orange) unsafe. Our online learning control
(OLC) algorithm (dashed pink) corrects for this to give a wider margin of error when moving through the course.

hindsight from a given class of closed-loop policies. This type of theoretical performance guarantee
is nonstandard, and allows us to flexibly adapt to the behavior of the uncertainty in any instance of
the obstacle avoidance problem without making a priori assumptions about whether the uncertainty
is stochastic or adversarial. Further, the resulting method is computationally efficient. The method
is applied to dense obstacle environments with complex unmodeled dynamics, and demonstrates
improved performance where open-loop planners and overly-robust methods can respectively struggle.
We additionally show the efficacy of our method with hardware demonstrations where a quadruped
robot has to navigate dense obstacle fields subject to time delays and input-channel disturbances.

2 Related Work

Effective motion planning is a central challenge within robotics of continuing and significant inter-
est [1, 2, 3]. While planning is well-developed in deterministic settings, robustness remains a major
challenge in the presence of unmodeled uncertainty. Existing techniques typically fall into one of two
categories: (i) methods that make assumptions on the distribution of uncertainty, or (ii) methods that
assume worst-case disturbances. Below, we set our work within this context and discuss techniques
from online learning; we will leverage the latter to develop our framework for obstacle avoidance.

Planning under uncertainty. A popular approach to account for uncertainty in motion planning
is to assume knowledge of the uncertainty distribution. One early method in this vein utilizes
chance constraints to bound the probability of collision under stochastic uncertainty [4] and has been
subsequently extended to encompass many sources of stochastic uncertainty in robotics [5] - [8].
Further development has utilized partially observable Markov decision processes (POMDPs) to
account for state uncertainty [9] - [12]. These approaches are able to provide strong guarantees
on safety, albeit under generally restrictive assumptions on the uncertainty distribution (e.g., i.i.d.
Gaussian uncertainty); our approach does not assume knowledge of the distribution of uncertainty,
yet provides regret bounds even in the presence of non-Gaussian and non-stationary noise.

Recently, learning-based planning techniques relying on domain randomization have demonstrated
significant empirical success [13] - [19] by specifying a distribution of uncertainty over various
simulation parameters to train robust policies. Combining this domain randomization with online
identification of uncertain parameters has been proposed [20, 21]; however, despite these methods’
empirical successes, they still rely on real-world environments being well-represented by the dis-
tribution of uncertainty used in (relatively extensive) training. By contrast, our approach focuses
on settings where it may be challenging to specify the uncertainty, and we do not require expensive
training of policies in simulation to provide theoretical guarantees in the form of bounded regret.
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Reachability-based robust planning. Hamilton-Jacobi (HJ) Reachability-based [22, 23] and tra-
jectory library-based [24, 25] robust planning techniques assume worst-case realization of uncertainty.
As such, they provide adversarial certificates of safety for path planning problems via the construction
of representations (or outer approximations) of the safe and unsafe regions of the state space condi-
tional on the robot dynamics, obstacle placement, and disturbance size. This formalism is similar
to related results in adaptive control [26, 27], which prove stability in the face of disturbances for
specific planning controllers, even in the presence of certain non-convex obstacles. HJ methods,
which generally suffer from the curse of dimensionality [28] (despite the existence of speed-ups in
certain settings [29]), use the formalism of the differential game [30] to provide a “global” notion
of safe and unsafe sets [31]. In comparison, robust trajectory libraries, which are usually computed
using convex programs [32], provide safety guarantees in the form of robust “tubes” or “funnels”
[33, 25] that encompass only the nominal trajectory (or hypothesized trajectories) within the space.

Our work differs from these methods via guaranteeing “instance-optimality;” namely, the regret mini-
mization framework allows us to adapt to the specific nature of observed disturbances. Our method is
effective in both stochastic and adversarial regimes, we do not sacrifice too much performance in
“benign” environments to provide guaranteed robust performance in more adversarial cases.

Online learning for control. Our work makes significant use of online learning [34] to make
guarantees on regret, which is the difference between the algorithm’s performance and that of the
best policy in hindsight (once disturbances are realized) from a given class of closed-loop policies.
Several canonical control-theoretic results have recently been cast as problems in online learning
[35, 36], providing interesting generalizations to established control results like the linear-quadratic
regulator [37, 38, 39] and H∞ robust control [40]. Results in optimal sample complexity [41] and
synthesis for unknown linear systems [42] illustrate further generalizations of standard control theory.

Standard control formulations are efficiently solvable due to a convex objective. However, “higher-
level” decision-making tasks like obstacle avoidance often have non-convex objective functions (e.g.,
maximizing the distance to the nearest obstacle). Fortunately, some non-convex objectives admit
“hidden convexity” — that they can be reformulated (via transformations, relaxations, or conversions
to a dual formulation — see [43] for a survey) into equivalent optimization problems that are convex.
This allows for efficient solutions (e.g., [44, 45, 46]) to problems that nominally would be hard to
solve (e.g., [47]). Our work gives such a formulation for the task of obstacle avoidance.

3 Problem Formulation and Preliminaries

Consider a discrete-time dynamical system with state x̄ and control input ū. A planning oracle
OT (x̄0) takes in an initial state and generates a nominal state trajectory with associated control inputs
T = {x̄0

t , ū
0
t−1}Tt=1. Here, x ∈ Rdx and u ∈ Rdu . We design a robust obstacle avoidance controller

that will update the trajectory online to avoid local obstacles. Intuitively, this is a faster “safety inner
loop” for the slower trajectory planning stage OT , keeping the agent safe from external features. For
analytical tractability, we assume that the dynamics of perturbations of the nominal trajectory are
discrete-time linear. Defining xt = x̄t − x̄0

t and ut = ūt − ū0
t , this assumption becomes

xt+1 = A0xt +But +wt, (1)

where wt ∈ Rdw is a bounded, unknown, possibly-adversarial disturbance1. For many practical
systems the linear dynamics assumption is reasonable; one example is a control-affine system with
feedback linearization. Additionally, wt can encompass small, unmodeled nonlinearities. Our task is
to construct this “residual" controller generating ut to avoid obstacles. As such, OT is the optimistic,
goal-oriented planner (in practice, an off-the-shelf algorithm, e.g., [48]) and our controller is the
safety mechanism that becomes active only when needed and in a provably effective manner.

1The results here are presented for linear time-invariant (LTI) systems. Additionally, we present the case
dw = dx, which affords the disturbances the most ‘power’; these results immediately extend to the inclusion of
a non-identity disturbance-to-state matrix and dw ≤ dx in Eqn. 1.
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3.1 Safety Controller Objective

A controller trying to avoid obstacles needs to maximize the distance to the nearest obstacle, subject
to regularization of state deviations and control usage. Assume a sensor mechanism that reports all
“relevant” obstacle positions (e.g., within a given radius of the agent). The optimization problem, for
a trajectory of length T , safety horizon of length L ≤ T , and obstacle positions pjt denoting the jth

sensed obstacle at time t, is

max
A∈A

Cobs(A), where: (2)

Cobs(A) :=

T∑
t=1

min
τ∈[L]

min
j

∥xAt+τ − pjt∥22 − ∥xAt ∥2Q − ∥uAt ∥2R.

Here, A is the set of online algorithms that choose actions for the controller, and xAt denotes the
realized state trajectory conditioned on actions uAt ∼ A ∈ A. The last two terms represent quadratic
state and action costs; these costs2 are very common objectives in the control literature, but serve
primarily here to regularize the solution to the obstacle avoidance task. Note that, though the collision
avoidance objective is relaxed, it remains a nonconvex quadratic penalty term rendered additionally
complex due to the discrete selection over time and obstacle indices of the minimal-distance obstacle
in the first term of Cobs. From here, we model the optimal policy search in the online control
paradigm [38]. This allows us to define the regret-based safety metric with respect to the best
achievable performance in hindsight. For a sufficiently powerful policy comparator class, we achieve
meaningful guarantees on the safety of the resulting controller.

3.2 Regret Framework for Obstacle Avoidance

Leveraging the class of linear dynamic controllers (LDCs) as comparators [40, 38], we use a
disturbance-action controller design, which combines state feedback with residual obstacle-avoidance:

ut = Kxt + bt +

H∑
i=1

M
[i]
t wt−i. (3)

Here, [i] indexes the history length and t denotes the time index of the decision. We rearrange the
expression by moving the state feedback out of ut, defining ũt = ut −Kxt and Ã = A0 + BK.
Then the system dynamics (Eqn. 1) are equivalently

xt+1 = Ãxt +Bũt +wt. (4)

The comparator class Π will be the class of LDCs parameterized by M ; this class has provably
expressive approximation characteristics [38]. The regret is defined using quantities from Eqn. 2:

RegT (A) = sup
w1,...,wT

{
max
M∈Π

Cobs(M)− Cobs(A)

}
. (5)

A sublinear bound on Eqn. 5 implies that the adaptive sequenceMt selected by low-regret algorithmA
will perform nearly as well as the best fixed policy M∗ in hindsight, for all realizations of uncertainty
within the system. Thus, sublinear regret bounds establish finite-time (near) optimality; the policy
performs nearly as well as an optimal policy that has a priori knowledge of the realized disturbances.

3.3 Trust Region Optimization

To provide guarantees on regret, the method presented in Sec. 4.2 will construct sequential trust
region optimization instances. A trust region optimization problem [49] is a nominally non-convex
optimization problem that admits “hidden convexity”. One can reformulate a trust region instance
(see Def. 1) via a convex relaxation in order to solve it efficiently [44, 50].

2Here, we omit the fully general LQR costs (time-varying Qt and Rt) for simplicity of presentation; however,
the results we show will also hold for this more general setting.
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Definition 1 (Trust Region Instance). A trust region instance is defined by a tuple (P,p, D) with
P ∈ Rd×d, p ∈ Rd, and D > 0 as the optimization problem

max
∥z∥≤D

{
zTPz+ pT z

}
. (6)

Throughout the remainder of this paper, we will use “trust region instance” to refer interchangeably
to instances of Def. 1 and the implicit, equivalent convex relaxation.

4 Methodology, Algorithm, and Regret Bound

4.1 Intuitive Decomposition of the OLC Algorithm Control Signal

The intuition of our control scheme is to allow for online, optimization-based feedback to correct
for two key sources of failure in obstacle avoidance: (1) non-robust (risky) nominal plans, and (2)
external disturbances. The former can be thought of as errors in planning – that is, they arise when
the nominal path is followed exactly. Paths that move very close to obstacles or that pass through
them (e.g., due to sensor noise) would be examples of this problem. The presence of the bias term in
the OLC framework accounts for control input to correct these errors. The latter challenge concerns
deviation from nominal trajectories caused by errors in modeling, time discretization, and physical
disturbances. The linear feedback term in the OLC framework accounts for these errors.

4.2 Theoretical Method and Contributions

We utilize the “Follow the Perturbed Leader” (FPL) method [35] in tandem with an optimization
oracle [51, 52] from the online convex optimization [53] literature. In this area, [40] develops a
method to generate adversarial disturbances for linear systems online, and extends the FPL algorithm
to the setting with memory. Further, [54] gives regret bounds for many game scenarios in which the
players have varying cost landscapes. Several contributions of this paper lie in reductions: we show
that optimizing Eqn. 8 is equivalent to finding the equilibrium solution of a general-sum two-player
game for which every control-player instance is a trust-region problem, and that both players have
low-regret algorithms to solve for the optimal policies. This allows us to use the results in [54].
Additionally, we show that extension to the multi-step setting in Eqn. 9 remains a trust region instance
in a ‘lifted’ game, allowing us to use the FPL results ( [52, 51, 40]).

4.3 Algorithm Exposition and Regret Bound

We formulate the obstacle avoidance controller as an online non-convex FPL algorithm in Alg. 1.
At time t, the agent generates a control input ũt via Eqn. 3 by playing M [1:H]

t ∈ {M̃}. The state
dynamics are then propagated to reveal the new state xt+1, and the realized wt is reconstructed in
hindsight from the state. The robot simultaneously uses its sensors to observe local obstacle positions.

The key conceptual step is then the following: given past reconstructed disturbances and obstacle
locations, one can construct a instantaneous reward function (Eqn. 8) at time t+ 1. This is a function
of a counterfactual set of gains {M̃}, where xM̃t+1 and ũM̃t correspond to the state and control input
that would have resulted from applying M̃ given the realized disturbances, obstacle locations, and
the initial state x0. The key algorithmic step is to solve for the optimum M

[1:H]
t+1 ∈ {M̃} in Eqn. 9,

which is the Follow-the-Perturbed-Leader component of the algorithm (M̃ • P0 is the perturbation).
The resulting sublinear regret bound is given in Thm. 2.

Theorem 2 (Regret Bound for Online Obstacle Avoidance). Consider an instance of Alg. 1, with Alg.
2 (see Supp. B) acting as a subroutine optimizing Eqn. 9. Then the regret attained by Memory FPL
will be

Õ(poly(L)
√
T ), (7)

where L is a measure of the instance complexity.
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Algorithm 1 Online Learning Control (OLC) for Obstacle Avoidance

Input: Observed obstacle positions {pj0}Kj=1, history length H = O(log T ).
Input: Full horizon T , algorithm parameters {η, ϵ, λ}, initial state x0.
Input: Open-loop plan: ūot for t = 1, ..., T .
Initialize: Closed-loop correction M [1:H]

0 , fixed perturbation P0 ∼ Exp(η)du×Hdw .
Initialize: Play randomly for t = {0, ...,H − 1}, observe rewards, states, noises, and obstacles.
for t = H until T − 1 do

Play M [1:H]
t , and observe state xt+1 and obstacles {pjt+1}j∈[k]t+1

.
Reconstruct disturbance wt using observed xt+1.
Construct the reward function in M̃ :

ℓt+1(M̃) = min
j∈[k]

{
∥xM̃t+1 − pjt+1∥22

}
− ∥xM̃t+1∥2Q − ∥ũM̃t ∥2R. (8)

Receive realized reward lt+1(M
[1:H]
t ).

Solve for ‘perturbed leading policy’ M [1:H]
t+1 as the solution to:

argmax
∥M̃∥≤DM

{
t+1∑
τ=1

ℓτ (M̃) + λ(M̃ • P0)

}
. (9)

end for

5 Experiments

We demonstrate the effectiveness of our method in simulated and physical environments. The
simulated environment in Sec. 5.1 considers a 2D racing problem. The hardware experiments
in Sec. 5.2 are conducted on a Go1 quadruped robot [55] avoiding obstacles in the presence of
unmodeled nonlinear dynamics, sensor noise, and time delays, as shown in Fig. 1. In both settings,
we demonstrate the benefits of our approach as compared to baselines that use, resp., RRT*/A* (with
replanning) for ‘optimistic’ path generation, and HJ reachability for robust planning. We illustrate
how our method acts as an adaptive intermediary, providing a computationally tractable algorithm
that nonetheless maintains improved safety properties relative to purely optimistic planners.

5.1 Simulation Experiments

Centerline Experiment overview. In the simulated environment, a racing vehicle (using double
integrator dynamics) observes all obstacles within a fixed sensor range (Fig. 2). The nominal dynamics
are perturbed by disturbances with varying levels of structure (described further below). A “centerline”
environment shown in Fig. 2 is utilized to demonstrate key safety and adaptivity criteria. The nominal
trajectory is fixed to be a straight path through obstacles, requiring the obstacle avoidance behavior to
emerge via the online adaptation of Alg. 1. For speed, the implementation of the environment and
algorithm is set up in JAX [56], using Deluca [57] as a framework for the control-theoretic simulation
environment. Each simulation takes 1-2 minutes to run on a single CPU with H = 10, T ≈ 1000.

Comparison with baselines. We utilize a HJ reachability planner [58] to generate robust trajecto-
ries, as well as a kinodynamic RRT∗ implementation [59] to generate “optimistic” plans (replanned
at 1 Hz, with a path-following controller applied at 5 Hz). We demonstrate two key behaviors: (1)
better performance than HJ methods with respect to LQR costs when disturbances are “benign;” (2)
better performance than RRT∗ when disturbances are adversarial. For each algorithm both stochastic
[‘Rand’] and non-stochastic (sinusoidal [‘Sin’] and adversarial [‘Adv’]) disturbance profiles are tested,
and metrics for both the safety (number of collisions) and performance (LQR state and input costs)
are collected for runs spanning 50 centerline obstacles. Results are presented for each algorithm and
disturbance profile in Table 1. For space considerations, figures illustrating trajectories of simulated
runs referenced below are deferred to Supp. D.
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Figure 2: Centerline environment. The
nominal path passes vertically through
obstacles; the sensor range is denoted
by the blue shaded region.

Plan
Dist. Rand Sin Adv

RRT∗ 0.27± 0.05 —- —-
0.60 1.00 1.00

OLC 0.51± 0.09 0.49± 0.13 1.57± 0.65
(ours) 0.06 0.04 0.26

HJ Plan 0.55± 0.05 0.59± 0.14 1.01± 0.03
0.00 0.00 0.00

Table 1: Planner performance for each disturbance type. Costs are
given in terms of linear-quadratic (LQ) costs (top) and fraction of
failures (bottom). Best-performing cases for each column are bold.
LQ costs are only computed for successful passes; as such, RRT∗ is
intentionally blank for two entries.

Several aspects of Table 1 reflect the expected behavior of each algorithm. RRT∗ follows efficient
paths, but fails to handle disturbances effectively, with a high collision rate. Second, HJ paths are
robust, but performance improvements are limited as ‘adversariality’ is reduced, and the method does
not adapt to disturbance structures. In particular, the sinusoid case incentivizes the racer to pass the
obstacles on a specific side; the HJ planner passes on each side in equal proportion In contrast, OLC
adapts to the structure of the sinusoidal disturbances to take the “easier route” with lower cost.

As shown in Table 1, OLC significantly reduces collisions across all disturbance profiles relative
to RRT∗ planning, while also reducing control usage and state costs relative to HJ planners. This
intermediate solution also provides computational speed-up to HJ, allowing it to be run more
efficiently online and allow for feedback on sensory information (as opposed to the privileged map
information that HJ requires in Sec. 5.2). Finally, OLC was tested on several other environments,
including with dynamic obstacles – for further details, see Supp. D.

5.2 Hardware Experiments

Experiment overview. For our hardware experiments, we use the Unitree Go1 quadruped robot,
shown in Fig. 1. The robot is equipped with LIDAR and an inertial measurement unit (IMU) which
enable obstacle detection and localization using LIO-SAM [60]. The robot’s task is to traverse a dense
course of cylindrical obstacles, while encountering time delays and residual, nonlinear dynamics. The
plant is modeled as a Dubins’ car; the equations of motion are included in Supp. C. The high-level
inputs are then translated to joint-level torque commands by the robot’s low-level controller. We
note that the noisy estimates on hardware of both the state and the relative obstacle positions will
further demonstrate the OLC algorithm’s robustness to noise in the inputs to Alg. 1, including in the
reconstructed disturbances and in the estimated state.

Controller architecture. All sensing and computation is performed onboard the robot. We use
a Euclidean clustering algorithm for obstacle detection [61] based on the LIDAR measurements.
This detection algorithm runs onboard the robot and provides updated obstacle locations to the
controller in real time (not all obstacles are initially sensed due to occlusions and larger distances).
At each replanning step, the robot generates a nominal set of waypoints from the estimated state and
detected obstacles using an A* algorithm [62] over a discretization of the traversable space, which is
converted to a continuous path by a down-sampled smoothing spline. We then wrap the additional
OLC feedback controller (H = 5, T = 40) of the form presented in Eqn. 3 using Alg. 1. The use of
A∗ in lieu of RRT∗ was undertaken to ensure smoother resulting paths for the quadruped. We justify
the change by noting that due to discretization A∗ should only be equally or more robust than RRT∗

(using equivalent margin), thereby reducing the apparent benefits of the OLC module.

Baselines. We compare OLC with the baselines used for the simulated experiments (Sec. 5.1),
substituting A* for RRT* to improve speed and stability of the nominal planner. Concretely, the
first baseline uses A* in a receding horizon re-planning scheme with the nominal dynamics model
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and obstacle padding of 0.25m to account for the Go1’s size. The robot executes the control inputs
provided by the planner, replanning at 1 Hz and taking actions at 4 Hz. The second baseline is a
robust controller that is generated using Hamilton-Jacobi (HJ) reachability. This baseline is provided
an a priori map of the obstacles, and uses a provided model of the disturbances, taking into account
velocity-dependent effects. This second baseline acts as a safety ‘oracle,’ with optimal trajectories
synthesized offline from the true map. As before, we demonstrate that our algorithm improves the
safety of a pure A* (with margin) while providing shorter and more intuitive paths than HJ methods.

Planner
Metric Path Length (m) Max Deviation (m) Collisions

A∗ 10.61± 0.40 0.62± 0.33 12

Online (OLC) 10.59± 0.41 0.63± 0.28 7

HJ Plan 11.13± 0.45 1.16± 0.57 0 [simulated]
Table 2: Planner performance along several metrics for the hardware examples. We observe that our method
(‘Online’) performs very similarly to A∗ in terms of path efficiency while reducing collisions by over 40%. Note
that HJ methods choose significantly longer paths to account for worst-case uncertainty; HJ was not run on
hardware and the optimal paths were calculated offline using the true obstacle positions.

Results. We run physical experiments using A∗ and OLC for 21 runs each, consisting of three
trials over seven obstacle layouts (see the supplemental video and Supp. C for additional details).
In each instance, the robot is required to traverse 10m forwards. For each layout, the optimal HJ
path is analyzed offline; for all runs, a ‘crash’ is defined as any contact made with an obstacle.
As shown in Table 2, HJ methods choose an overly-conservative route that is generally safe but
inefficient. Conversely, A* – even with obstacle padding of 0.25m – does not sufficiently account
for the disturbances, yielding a significant rate of crashes. However, in contrast to HJ, A∗ and
OLC take significantly shorter paths (note that the shortest possible path is at minimum 10m in
length). However, our algorithm reduces the number of collisions by nearly half versus the naive
obstacle-padded A∗ approach, a result significant at p = 0.1 using a Boschloo exact test (see Supp. C).
Importantly, while OLC was run onboard the robot in real time, the HJ methods required several
seconds for each computation of the backward reachable set, and could not be run online.

6 Conclusion and Limitations

We develop a regret minimization framework for the problem of online obstacle avoidance. In contrast
to prior approaches that either assume worst-case realization of uncertainty or a given stochastic
model, we utilize techniques from online learning in order to adaptively react to disturbances and
obstacles. To this end, we prove regret bounds that demonstrate that our obstacle avoidance policy is
comparable to the best policy in hindsight from a given class of closed-loop policies. Simulation and
hardware experiments demonstrate that our approach compares favorably with baselines in terms of
computational efficiency and performance with varying disturbances and obstacle behaviors.

Some limitations that we hope to address in future work include the limited classes of applicable
dynamics (though our hardware experiments apply the method to time-varying linear dynamics)
and obstacle geometries. Additionally, the cost function does not have multi-time-step lookahead
(i.e., MPC-like). Additional lookahead would yield better foresight in the planning stage and likely
improve performance. Finally, because the algorithm relies on solutions to optimization problems
that run real-time, ensuring stability of the optimization procedure and automating selection of
hyperparameters (those used are satisficing but likely suboptimal) would be useful extensions that
may further improve the runtime performance.
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A Full Regret Proof

A.0 Outline of Proof

1. Reduce path planner to linear dynamical systems model

2. Demonstrate that a general instance of Alg. 2 is a trust region problem

3. Reduce Eqn. 9 in Alg. 1 to an instance of Alg. 2

4. Justify necessary analogous quantities in our problem to those of the proofs in [40, 38]

5. Apply the results for Nonconvex FPL with Memory from [40] to Alg. 1 to obtain the regret
bound

A.1 Reduction of Path Planned case to Standard Controls case

Assume that the planner devises a nominal path (denoted with a (̄·)0 notation) in coordinates x and
inputs u: so the path P is fully specified as P = {x̄0

t , ū
0
t}Tt=0. Assume that the path is chosen so that

at every x on or near the path, the following dynamics hold around perturbations of the path:

xt − x̄0
t = A(xt−1 − x̄0

t−1) +B(ut−1 − ū0
t−1) +Dwt−1. (10)

Using this change of coordinates, we can essentially negate the path and study the relevant perturbation
dynamics δxt := xt − x̄0

t and δut := ut − ū0
t , we recover the desired equation:

δxt = Aδxt−1 +Bδut−1 +Dwt−1. (11)

For shorthand, we will define x := δx and u = δu to ease exposition, remembering that they
represent perturbations from the nominal path. Intuitively, this is a reasonable model for ‘quasi-static’
systems (e.g., a drone or car or aircraft using path planning for non-aggressive maneuvers).

A.2 Algorithm 2 is a Trust Region Solver

The proof that Alg. 2 is a trust region solver is given in Supp. B.1- B.3.

A.3 Algorithm 2 Solves Equation 9

The proof that Eqn. 9 is a special instance of admissible arguments to Alg. 2 is shown in Supp. B.4.

A.4 Technical Notes

A.4.1 Continuity and Conditioning Parameters

We begin with an analysis of the Lipschitz constant for the approximate cost functions (this will
follow a similar path to [40]).

First, note that the diameter of the decision set is 2DM and that the gradient of the quadratic cost
above is ∇mℓt = (P + PT )m+ p. As such,

L := max
m,t

{∥∇mℓt(m)∥∞}

≤ max
m,t

{(∥P∥1 + ∥P∥∞)DM + ∥p∥∞}

≤ 2HdwRD +R

We consider as well a bound on the conditioning number of the optimization problem. Because
the size of the optimization grows linearly in time, the condition number grows at most linearly as
well. Therefore, the run-time of the algorithm is polynomial (neither the condition number nor the
dimension grows too rapidly).

Finally, we note bounds on the elements of P and p in the trust region instance. The bounds on costs,
states, inputs, and disturbances together imply that the elements of Pt are bounded by C2

uκ
2ξ, and

the elements of p are bounded by C2
uκ

2ξβ (this again follows [40]).
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A.4.2 Truncated State Approximation

The idea of this proof follows directly from [40]; however, we show the proof in detail because in
our case the truncated state history affects the resulting vectors aj in the optimization, leading to a
different instantiation of the problem.

To give a sense of the added subtlety for obstacle avoidance, observe that in certain scenarios, small
perturbations in the observed relative obstacle positions could yield large changes in the optimal
policy. For example, imagine that there is one obstacle, located directly on the centerline of the
nominal planned motion. Then a small perturbation of the obstacle to the right makes the optimal
action “Left," while a small perturbation of the obstacle to the left makes the optimal action “Right."

This phenomenon is not a problem in the regret outline because, while the optimal decision is fragile,
the loss incurred of choosing incorrectly is bounded by the quadratic (and therefore, continuous)
nature of the cost functions themselves.

For the dynamics and control we have assumed that
xt+1 = Axt +But +Dwt

ut = Kxt + bt +Mtw̃t

= Kxt +

H∑
i=1

M
[i]
t wt−i,

(12)

where the bias is included by one-padding the disturbance vector. For simplicity we will omit the
explicit bias from ensuing analysis; in all cases it can be understood to be incorporated into the
measured disturbance. We can then show (as in [40]) that the state can be expressed as the sum of
disturbance-to-state transfer function matrices Ψt,i:

xA
t+1 = ÃH+1xA

t−H +

2H∑
i=0

Ψt,iwt−i, where

Ã = A+BK and

Ψt,i = ÃiD1[i ≤ H] +

H∑
j=0

ÃjBM
[i−j]
t−j 1[i− j ∈ {1, ...,H}].

We define the state estimate and cost as

yt+1 :=

2H∑
i=0

Ψt,iwt−i

ℓt(Mt−H:t) = ct(yt+1(Mt−H:t), ũt)

where ũt =Mtw̃t (the residual input on top of the closed-loop controller).

Now, assume that ∥Ã∥ ≤ 1 − γ, that ∥Ã∥, ∥B∥, ∥D∥, ∥K∥ ≤ β, and that for all t it holds that
∥wt∥ ≤ Cw, ∥ut∥ ≤ Cu, and ∥Qt∥, ∥Rt∥ ≤ ξ. Then we can show that the approximation error of
the costs is sufficiently small. Let the condition number be defined as k = ∥Ã∥∥Ã−1∥.

A.4.3 Bounding the States Along a Trajectory

Note that ũt =Mtw̃t; this implies that ∥ũt∥ ≤ HDCw. This implies further that ∥Bũt +Dwt∥ ≤
2βHDCw by the triangle inequality. Assuming that there exists τ such that

∥xτ∥2 ≤ 2βHDCw
γ

,

we have that for every t > H + τ + 1, ∥xA
t−H−1∥2 ≤ 2βHDCw

γ . (WLOG, we can assume the initial
state x0 is bounded in this domain - that is, that the assumption is satisfied with τ = 0; the region
defined above is the long-term reachable set of the state xt driven by bounded disturbances wt

and (implicitly bounded) residual inputs ũt [the norm is limited by the stability parameter γ of the
closed-loop Ã-matrix]).
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A.4.4 Bounding the Change in Costs

Now, we analyze the change in costs

|ct(xA
t+1, ũt)− ℓt(Mt−H:t)| = |min

j∈[p]
∥aj,t +BMtw̃t∥22 − min

j∈[p]
∥âj,t +BMtw̃t∥22|

Noting the definition of âj,t and of aj,t, we can bound the difference between them as a function of
the error in approximation of xt (see [40]):

aj,t := pj,t − xt

=⇒ âj,t − aj,t = (pj,t − x̂t)− (pj,t − xt)

= xt − x̂t

=⇒ ∥âj,t − aj,t∥2 = ∥xt − x̂t∥2

≤ kCxe
−γH

Now, we argue that the loss incurred due to the noise in x̂t is less than simply twice the change in cost
due to the error in âj,t. Let ĵ∗ := argminj∈[p]{∥âj,t −BMtw̃t∥22}. Let j∗ be defined analogously.
If j∗ = ĵ∗, then the difference in cost is less than or equal to the extra loss incurred by the error in â.
If j∗ ̸= ĵ∗, then it is possible that the true ‘binding obstacle’ was biased away, and that the ‘guessed’
binding obstacle was ‘biased towards’; therefore, the cost error is possibly due to deviations up to
twice the error in the âj,t vectors. This means that, defining δt such that ∥δt∥2 = 2∥xt − x̂t∥2, we
have that the following holds:

∆ = |ct(xA
t+1, ũt)− ℓt(Mt−H:t)| = |min

j∈[p]
∥aj,t +BMtw̃t∥22 − min

j∈[p]
∥âj,t +BMtw̃t∥22|

≤ max
δt:∥δt∥2≤2kCxe−γH

{
∥(âj,t + δt) +BMtw̃t∥22 − ∥âj,t +BMtw̃t∥22

}

= δTt δt + 2δTt âj,t − 2δTt (BMtw̃t)

≤ ∥δt∥22 + 2(Cx + ∥δt∥2)∥δt∥2 + 2∥δt∥2CwβDM

= 3∥δt∥22 + 2Cx∥δt∥2 + 2CwβDM∥δt∥2

≤ 5Cx∥δt∥2 + 2CwβDM∥δt∥2

≤ 5(k2C2
xe

−γH(1 + βDMCw)).

Letting H = ⌈γ−1 log (5k2Cx(1 + βDMCw)T )⌉, we have that

∆ ≤ Cx
T
.
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Remark 3. Recursive Definition of H and Cx:
Currently, there is a recursive nature to the definition of H and Cx; H :=
⌈γ−1 log (5k2Cx(1 + βDCw)T )⌉ and Cx := 2βHDCw

γ . However, this is not problematic because
the definitions will have a solution (that can be found efficiently); namely:

H ≥ c1 log (c2Cx)

Cx = k1H

=⇒ H ≥ c1 log (c2k1H)

And for any c1, c2, k1 ∈ R+ and fixed T > 0, there exists a positive integer H such that the above
result holds (e.g., following from the fact that logH = o(H)). Further, the resulting H will not be
too large wrt T for sufficiently large T (e.g., large enough T to overcome the constants).

A.5 Finalizing the Regret Bound

A.5.1 Apply Nonconvex Memory Follow-the-Perturbed-Leader

This result is from [40], Theorem 13 (Corollary 14 gives an equivalent result to our setting in the
asymptotic regret behavior; our optimal choice of η and ϵ differs slightly).

A.5.2 Completing the Bound

Finally, we use Alg. 1 (which acts as an efficient ϵ-oracle) with an approximate trust region imple-
mentation of our desired optimization problem (Alg. 2) acting as a subroutine, in order to compose
the regret components into a complete bound.

Regret(A) := max
M∈Π

T∑
t=H

ct(x
M
t , ũt(M))−

T∑
t=H

ct(x
A
t , ũt(A))

≤ max
M∈Π

T∑
t=H

(ft(M,M, ...,M) +
Cx
T

)−
T∑
t=H

(ft(Mt−H:t) +
Cx
T

)

=
[
max
M∈Π

T∑
t=H

ft(M,M, ...,M)−
T∑
t=H

ft(Mt−H:t)
]
+O(log T )

≤ Õ(poly(L)
√
T )

(13)

To clarify the steps: the second line incorporates the approximation error from Section A.4.2 (which
is logarithmic in T , as noted in the third line) and the final line follows from the Nonconvex Memory
FPL result of [40].
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B Convex-Concave Game: Algorithm and Correctness

For completeness and easier reference, we include a copy of Alg. 1 below. To improve clarity,
references to equations within this section (Supp. B) will use their numbering as given in Supp. B,
rather than in the main text. The key technical results of this section are to demonstrate: (1) that
Alg. 2 is a trust region instance that can be solved efficiently, and (2) that the optimization procedure
in Eqn. 15 is solved correctly and efficiently by the trust region procedure Alg. 2. Given these results,
our obstacle avoidance algorithm will be computationally efficient and attain low regret.

Algorithm 1 Online Learning Control (OLC) for Obstacle Avoidance

Input: Observed obstacle positions {pj0}Kj=1, history length H = O(log T ).
Input: Full horizon T , algorithm parameters {η, ϵ, λ}, initial state x0.
Input: Open-loop plan: ūot for t = 1, ..., T .
Initialize: Closed-loop correction M [1:H]

0 , fixed perturbation P0 ∼ Exp(η)du×Hdw .
Initialize: Play randomly for t = {0, ...,H − 1}, observe rewards, states, noises, and obstacles.
for t = H...T − 1 do

Play M [1:H]
t , and observe state xt+1 and obstacles {pjt+1}j∈[k]t+1

.
Reconstruct disturbance wt using observed xt+1.
Construct the reward function in M̃ :

ℓt+1(M̃) = min
j∈[k]

{
∥xM̃t+1 − pjt+1∥22

}
− ∥xM̃t+1∥2Q − ∥ũM̃t ∥2R. (14)

Receive realized reward lt+1(M
[1:H]
t ).

Solve for ‘perturbed leading policy’ M [1:H]
t+1 as the solution to:

argmax
∥M̃∥≤DM

{
t+1∑
τ=1

ℓτ (M̃) + λ(M̃ • P0)

}
. (15)

end for

Algorithm 2 (General) Hidden-Convex Formulation for Objective in Eqn. 9

Input: Set of vectors {a[τ ]j }k,Ht

j=1,τ=1, matrix B, vectors b,b0, time history Ht ≤ t
Input: Iterations N , learning rate η, approx. error ϵ, perturbation P0, diameter DM .
Initialize: Vector c[τ ]0 = 1

k1
k, τ = 1, . . . ,Ht.

for n=0...N do
(1) Solve for Mn

Mn = argmax
∥M∥≤DM

{ Ht∑
τ=1

k∑
j=1

cn(j)
[τ ]∥a[τ ]j +BMb[τ ]∥22

− ∥b[τ ]
0 +BMb[τ ]∥2Q − ∥Mb[τ ]∥2R + λ(M • P0)

}
.

(16)

(2) Update cn+1

c
[τ ]
n+1 = Π

∆k

[
c[τ ]n e−η∇c

(∑
j c[τ]

n (j)∥a[τ]
j +BMb[τ]∥2

2

)]
,∀τ ∈ {1, . . . ,Ht}. (17)

end for
return MN
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B.1 Non-convex Memory FPL for Obstacle Avoidance

Intuitively, Alg. 1 operates by updating the gain matrices M [1:H]
t+1 via counterfactual reasoning: in

hindsight, given the actual observed disturbances and obstacle locations, what gain matrices would
have resulted in good performance (in terms of obstacle avoidance and the state-input penalties)? In
Supp. A, we demonstrate that this algorithm results in low regret as formalized in Eqn. 5 of the main
text. For reference: Eqn. 9 (main text) corresponds to Eqn. 15 (Supp. B) henceforth; similarly, Eqn. 8
(main text) corresponds to Eqn. 14 (Supp. B).

B.2 Efficient Solution of Eqn. 15 (Part 1): Reduction of Alg. 2 to Trust Region Instance

We now prove that Alg. 2 does indeed solve Eqn. 9. Consider the relaxed optimization problem

max
M∈M

Ht∑
τ=1

∑
j

λ
[τ ]
j ∥a[τ ]j +BMb[τ ]∥22 (18)

We will first describe some useful quantities and (physically-motivated) assumptions. The physical
quantities of interest have the following characteristics: x ∈ Rdx , u ∈ Rdu , and w ∈ Rdw .

Assumption 4. B ∈ Rdx×du , with du ≤ dx, and rank (B) = du. This corresponds to the following
physical assumptions: (1) there are no more inputs than states, and (2) there are no ‘extraneous’
inputs (if there are such inputs, then we can find a minimal realization of B and wlog set extraneous
inputs to always be zero). Similarly, if (1) fails, then we can remove extraneous inputs by again
setting them equal to zero uniformly (just as in (2)).

The dimension of several other variables of interest are: b ∈ RHdw and for the decision variable M ,
M ∈ Rdu×Hdw . We want to show that the optimization in Eqn. 18 is equivalent to a convex trust
region problem, which is efficiently solvable.

Further, let the quantity BTB have a singular value decomposition denoted by:

BTB = UTΛU.

We see that this decomposition has an orthogonal U ∈ Rdu×du and positive definite Λ because
rank(B) = du and thus the symmetric BTB ∈ Rdu×du has BTB ≻ 0.

Now, consider the problem of Eqn. 18, assuming that ∀τ ∈ {1, . . . ,Ht}, there are fixed λ[τ ] ∈
∆p, B, {a[τ ]j }kj=1,b

[τ ]. For now, choose a single time element, notated as [i]. For simplicity, we
will only include this notation at the beginning and end, where we sum the result back together. We
rearrange the objective for this case as follows:

OBJpartial =
∑
j

λ
[i]
j ∥a[i]j +BMb[i]∥22

=
∑
j

λj(aj +BMb)T (aj +BMb)

=
∑
j

λj(a
T
j aj + 2aTj BMb+ bTMTBTBMb)

≡
∑
j

λj(2c
T
j Mb+ bTMTUTΛUMb)

Here, we are searching for the argmax M∗, so the aTj aj is irrelevant. Further, we have defined
cTj = aTj B. Now, let Mr := UM , and decompose Mr = [mT

1 ;m
T
2 ; ...;m

T
du
]. The optimization
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objective is now:

OBJpartial =
∑
j

λj∥aj +BMb∥22

≡
∑
j

λj(2c
T
j Mb+ bTMTUTΛUMb)

=
∑
j

λj(2c
T
j Mb+ bTMT

r ΛMrb)

= [
∑
j

λj(2c
T
j Mb)] + bTMT

r ΛMrb

The last simplification follows from the fact that
∑
j(λj) = 1 (because λ ∈ ∆du). Now, using our

knowledge of the diagonal nature of Λ and the column partition of Mr, we can see that

MT
r ΛMr =

du∑
j=1

σ2
jmjm

T
j

Substituting into the OPT formulation, we can further simplify all the way to the desired form:

OBJpartial =
∑
i

λi∥ai +BMb∥22

≡
[∑

i

λi(2c
T
i Mb)

]
+ bTMT

r ΛMrb

=
[∑

i

λi(2c
T
i Mb)

]
+ bT (

du∑
j=1

σ2
jmjm

T
j )b

=
[∑

i

λi(2c
T
i U

TMrb)
]
+ (

du∑
j=1

σ2
jb

Tmjm
T
j b)

= 2
[∑

i

λi(
∑
j

c̃i,jm
T
j b)

]
+ (

du∑
j=1

σ2
jm

T
j bb

Tmj)

=
∑
j

[
(2

∑
i

λic̃i,j)b
T
]
mj) + (

du∑
j=1

mT
j (σ

2
jbb

T )mj)

= mTPm+ pTm.

where m is a vector concatenation of the transposed rows of Mr. Now, to combine the results over
time, utilizing the convexity-preserving property of function addition, we simply reintroduce the
[i]-indexing and sum:

OBJpartial =
∑
j

λ
[i]
j ∥a[i]j +BMb[i]∥22

= mTP [i]m+ (p[i])Tm

=⇒ OBJfull =
∑
i

∑
j

λ
[i]
j ∥a[i]j +BMb[i]∥22

=
∑
i

mTP [i]m+ (p[i])Tm

=
∑
i

mTPm+ pTm

Once we solve for m∗ using a trust region solver, we unpack it into M∗
r , and get M∗ = UTM∗

r (=
UT (UM∗) =M∗) as desired. Further, we can translate a norm bound on M into an equivalent one
on m (at least, for appropriate choice of norm bound - e.g., the Frobenius norm on M becomes the
2-norm on m).
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B.3 Solving the FPL Sub-Problem

In order to feasibly engage the obstacle avoidance algorithm, it is necessary to solve for optimal
solutions to the objective in Eqn. 15, which is an instance of the following max-min problem:

argmax
∥M∥≤DM

t+1∑
τ=1

min
j

∥a[τ ]j +BMb[τ ]∥22 − ∥b[τ ]
0 +BMb[τ ]∥2Q − . . .

· · · −∥Mb[τ ]∥2R + λ(M • P0),

where a
[τ ]
j , B,b

[τ ]
0 ,b[τ ] depend on the dynamics (Eqn. 4, main text) and the obstacle locations. The

resulting algorithm is shown in Alg. 2, which converges to M [1:H]
t+1 in Eqn. 15 of Alg. 1.

Finally, we need to demonstrate that Alg. 2 will converge to a pair {cN ,MN} that corresponds to the
optimal solution of Eqn. 15. This follows immediately from Theorem 7, Part II of [54]. We have an
instance of a repeated game in which an optimization oracle efficiently solves Eqn. 16, and then the
low-regret exponentiated gradient algorithm [63] iteratively updates cn (Eqn. 17). Again, we utilize
the fact that the operation of function addition preserves, respectively, the convexity and concavity
properties of pairs of operand functions as a necessary tool to allow for the results to still hold when
applying the summation over time steps.

B.4 Efficient Solution of Eqn. 15 (Part 2): Reduction of Obstacle Avoidance to Alg. 2

This proof works as a reduction, where we show that the obstacle avoidance problem (Eqn. 15)
constitutes a particular set of inputs to the general formulation of Alg. 2. Recall that at time t, the
algorithmA has access to the state trajectory {xAτ }tτ=1, the disturbance history {wτ}t−1

τ=1, and the sets
of sensed obstacles {pjτ}tτ=1. For any τ ∈ {H, ..., t}, the loss function can be written as an instance
of Alg. 2. Specifically, let ajτ = Ãxτ−1+Dwτ−1−pjτ , bτ = wτ−H:τ−1, b0,τ = Ãxτ−1+Dwτ−1.
Then, for an appropriate cτ ∈ ∆kτ , the optimization problems are equivalent. Concatenating over the
τ -formulations, we have an instance of Eqn. 16. Specifically, for some choice of c, we will have an
equivalent problem as Eqn. 15; here c is an encoding – unknown a priori – of the relevant (nearest)
obstacles at each time step.
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C Hardware Experiment Details

C.1 Equations of Motion

The equations of motion for the high-level Go1 control are:[
xt+1

yt+1

ψt+1

]
=

[
xt
yt
ψt

]
+ dt

[
cosψ 0
sinψ 0
0 1

] [
ux
uψ

]
+

[
wx,t
wy,t
wψ,t

]
, (19)

where ux is the commanded forward velocity and uψ is the commanded yaw rate. The disturbances
wx, wy and wψ capture unmodeled disturbances including imperfect velocity tracking by the robot’s
low-level controller and deviations due to localization noise.

C.2 Boschloo Test for Significance

In order to evaluate the improvement of OLC vs A∗ in our hardware experiments, we perform a
Boschloo Exact Test on the outcomes of the experiment. This test (for our purposes) essentially
provides a statistical evaluation of the difference in means of two Bernoulli variables in the small-data
regime. In our experiments, we have a 2x2 test matrix in which OLC and A∗ are each run 21 times,
with the number of failures a random variable depending on each algorithm’s behavior subject to the
realized obstacle layouts. While we do not claim that our distribution of layouts exactly matches the
‘true distribution in the world,’ we believe it to be similar enough such that the statistic should be
meaningful here.

To be precise, the statistic encapsulates the probability, in the null hypothesis that the two means are
equal (or that one mean is greater), of achieving a small sample of realizations that is more extreme
than that observed in the true data. By choosing the alternative hypothesis “collision rate of A∗ is
higher,” a significant result (say, at α = 10% or α = 5% significance) would mean that we reject the
null hypothesis. This, then, would provide evidence that the use of OLC meaningfully reduced the
collision rate.

Using the existing scipy implementation (scipy.stats.boschloo_exact), we find that for the data
presented in Table 2, the test statistic is 0.1073 with p = 0.074, indicating significance at α = 0.1
but not α = 0.05. Though not conclusive, this provides reasonable evidence that the reported
improvement in the collision rate is not due to random chance in the obstacle layout realizations.

C.3 Obstacle Layouts

We provide a bird’s eye view of the layout configurations used during the experiments in Figure 3.
Additionally see the supplementary video for the physical instantiation of the layouts used in the
experiments.
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Figure 3: Obstacle layouts from a bird’s eye view used during the experiments. Obstacles are denoted by the red
circles. The quadruped was placed at (0, 0) and tasked with traversing 10m in the the x direction.
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D Simulation Details and Resources

D.1 Simulation Implementation: Parameters, Setup, and Runtime

In this section, we report the hyperparameters used for the experiments results in the main text. We
implemented our algorithm and environments in JAX. All experiments were carried out on a single
CPU in minutes.

We set the full horizon T to 100 and the history length H to 10. For random perturbation across
environments, we sample noise from Gaussian distribution with mean 0 and standard deviation 0.5.
For directional perturbation, we sample Gaussian noise with mean 0.5 and standard deviation 0.5. A
random seed of 0 is used for all experiments. We obtain the nominal control from LQR with Q set to
0.001 and R set to 1. We then learn the residual obstacle-avoiding parameter M via gradient descent.
The learning rate of gradient descent is 0.008 in the centerline environment and is 0.001 for the other
environments.

An important note for these experiments: we do not implement existing heuristic techniques like
obstacle padding to improve the RRT∗ collision-avoidance performance. As such, this performance
is not meant to suggest that RRT∗ cannot work robustly in these settings, only that its nominal
(and theoretically grounded) form does not account for disturbances or uncertainty and is therefore
“optimistic” as compared to HJ methods, etc.

D.2 Additional Figures and Trajectories – Centerline Environment

This appendix includes sample trajectories and other relevant visualizations for each algorithm.

D.2.1 RRT∗ / A∗

Here, we demonstrate some sample paths for RRT∗ in each disturbance regime. Fig. 4 shows uniform
random noise, Fig. 5 shows sinusoidal noise, and Fig. 6 shows adversarial noise. In each case, the
shift at the final time (goal position, top of image) causing a horizontal shift in the path should be
ignored.

Figure 4: RRT∗ Planner trajectories against uniform random disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.
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Figure 5: RRT∗ Planner trajectories against sinusoidal disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

Figure 6: RRT∗ Planner trajectories against adversarial disturbances. Obstacle is the gray sphere, with the
nominal trajectory a dashed black (vertical) line.

Figure 7: Racer backwards reachable set (inside thick black line) and the obstacle (dashed black line).

D.2.2 HJ Reachability Planner

For the centerline example, the HJ Reachability planner constructs in Fig. 7 the backwards-reachable
set for a given obstacle (dashed line), subject to the dynamics constraints imposed on the racer.
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Note that every positive-value region denotes an unsafe region. The interpretation is that there is a
“pseudo-cone" in front of the obstacle from which the vehicle cannot escape hitting the obstacle if the
disturbances are sufficiently adversarial. Note that this means that HJ planning is independent of the
actual disturbances. For each of the disturbance patterns (random, sinusoid, adversarial), we plot
a collapsed view of sample trajectories around an obstacle for the HJ planner in Fig. 8. Note how
similar each plot is, due to this independence of the control from the actual observed disturbances.

D.2.3 Online Learned Planner

The key illustration here is that the trajectories of the online planner follow the structure of the
disturbances, as illustrated by the following comparison of the uniform random and sinusoidal
disturbances in Fig. 9 and Fig. 10.

Figure 8: HJ Planner trajectories against (L) uniform random, (C) sinusoid, and (R) adversarial disturbances.
Obstacles are black spheres, with the nominal trajectory a dashed black (vertical) line.

Figure 9: Collapsed trajectories of the racer using
the online planner with random disturbances. The
racer passes on each side evenly.

Figure 10: Collapsed trajectories of the racer using
the online planner with sin disturbances. The racer
learns to pass on the right.
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D.3 Experiment Details: Dynamic Pedestrian Environment

The pedestrian environment comprises many dynamic obstacles moving through the Racer scene, in
which the Racer must avoid collision (contact). In this setting, the robot is not given direct obstacle
state information, but must act instead on a history of observations of each (visible) obstacle’s position
only. The difficulty of the instances of this setting are illustrated in the following figures, which
highlight several particular instances of success and collision respectively within the experiments
conducted.

Figure 11: (L) Non-crash sequence of still images in which OLC successfully avoids a set of 4 close obstacles;
(R) Crash sequence of images in which OLC cannot avoid a crash with one of 6 close obstacles.

We note several important details for the simulations. The pedestrians are non-avoiding, and in some
cases move nearly as fast as the simulated Racer agent; the majority of collisions are observed due to
a combination of (1) local density of pedestrians, (2) high relative speed of at least 2 pedestrians, and
(3) non-avoiding nature of the pedestrian trajectories. These environments are more dynamic and
chaotic than most in the related literature, as they are intended to demonstrate a ‘proof-of-concept,’
not to rigorously compare to the many available baselines (the comparison in static environments
allows for more interpretable cases that highlight the relative advantages of stochastic (e.g., RRT),
adversarial (e.g., HJ), and hybrid (e.g., OLC) methodologies, respectively). We think that adaptation
to moving obstacles is very natural future work, and a possibly valuable point of future development
for our algorithm.

D.4 Failures in the Slalom Setting

We include an image of the four major environments in Fig. 12. Our simulated performance was
strong in all environments except for the slalom environment, which we discuss further below.

The “slalom" setting allows us to tune its difficulty by varying the x-position (i.e. offset) of the gates
or by narrowing their width. Fig. 13 illustrates the effect of increasing gate offset from center (i.e.,
error in the nominal planned trajectory – x-axis) and decreasing gate width (i.e., greater sensitivity
to disturbances – y-axis) on failure rate through the slalom gates. As expected, reduced gate width
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Figure 12: Illustration of the four environments used as a proof-of-concept for our Online algorithm.

and increased offset broadly increase failure rates. This is due to the online planner being forced
to overcome a poor nominal planned trajectory; in combination with the gated passageways, this
requires very precise sequences of inputs and a longer memory of previously observed gates (due to
the limited sensing horizon). This is discussed further in Supp. D.4.1.

D.4.1 Discussion

The first answer is relatively direct: in all of our examples, we are implicitly acting in a kind of Frenet
frame, where all obstacle positions and other referencing is to the ego vehicle (racer) position. As
such, the nominal planned trajectory can always be thought of as mapped to a straight line ahead of
the racer. In this context, some slalom gates represent a 20m deviation from the nominal trajectory.
However, this flies in the face of the central modeling intuition of the online framework – that
obstacle avoidance is local, with local sensing, local deviations from the nominal trajectory, and
“reactive" control to disturbances as they arise. In this vein, the nominal slalom is a challenging
task, precisely because it stretches the limits of what can be met by our setup. Concretely: limited
sensing makes each slalom wall a kind of “gradient-less" observation (shifting left and right yields
only a continuation of the wall unless the gap is already sensed), meaning that choosing the correct
Left/Right action is difficult. Additionally, the map displays memory, because going the wrong way
early through one gate can render the next gate infeasible.

It is in light of these considerations that we argue that the slalom case is actually a case for our model,
because it interpretably creates a setting in which the key assumptions are broken. Just like an actual
skier who overshoots through one gate and cannot recover for the next gate, so too does our obstacle
avoidance algorithm run the risk of “dooming" itself due to a wrong turn – but this is, as described,
fundamental to the hardness of the obstacle avoidance problem! As such, we consider the slalom gate
as a fundamentally hard problem, and consider a case for future work a fuller characterization of how
our planner works for slaloms of varying difficulty, as measured by the sensor range, the distance
between gates (both laterally and longitudinally), and the fundamental “cost memory" as it depends
on these and other parameters.

D.4.2 Experimental Parameter Sweep – Slalom Course

In an effort to better represent the effects of the slalom setting and the dependence on gate width and
offset, Fig. 13 illustrates the effect of increasing gate offset from center (i.e., error in the nominal
planner trajectory – x-axis) and decreasing gate width (i.e., greater sensitivity to disturbances – y-axis)
on failure rate through the slalom gates. As expected, reduced gate width and increased offset broadly
increase failure rates.

We note that for narrow gates, a zero-offset slalom is actually quite challenging to ensure - we believe
this is due to the fundamental H∞ limit of stabilization of disturbances for this system; namely, a
too-narrow gate requires too-strong robustness about the setpoint (origin), causing failure. This also
explains why failure rates are high but not one for moderate offsets in the narrow-gate environment
as well: specifically, they allow some freedom away from the zero-offset regularization problem.
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Figure 13: Failure rate heatmap for increasing gate offset (left to right) and decreasing gate width (bottom to
top). As expected, failure increases with narrower gates (top) and larger offsets (right).

Besides this, the trend quite clearly demonstrates the fundamental increases in difficulty observed for
narrower gates and larger offsets, as expected.
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