
FastRLAP: A System for Learning High-Speed
Driving via Deep RL and Autonomous Practicing

Kyle Stachowicz†, Dhruv Shah†, Arjun Bhorkar†, Ilya Kostrikov, Sergey Levine
UC Berkeley

Abstract: We present a system that enables a 1/10th-scale autonomous car to drive
at high speeds from visual observations using reinforcement learning (RL). Our
system, FastRLAP (faster lap), trains autonomously in the real world, without
human interventions, and without requiring any simulation or expert demonstra-
tions. FastRLAP integrates several components to facilitate the learning process:
we initialize low-dimensional visual representations from a similar reinforcement
learning objective applied to a large offline navigation dataset from other robots,
providing a navigation-relevant representation. Given a series of checkpoints rep-
resenting a driving course, we then use sample-efficient online RL to learn a fast
driving policy, resetting automatically on collision or failure. Perhaps surpris-
ingly, our system can learn to drive over a variety of racing courses with less than
20 minutes of online training. The resulting policies exhibit emergent aggressive
driving skills, such as timing braking and acceleration around turns and avoiding
areas which impede the robot’s motion, approaching the performance of a human
driver using a similar first-person interface over the course of training.

Keywords: reinforcement learning, offroad driving, vision-based navigation

Figure 1: Fast reinforcement learning via autonomous practicing. By pre-training to learn task-relevant
visual features (Stage 1), and deploying our autonomous practicing framework for continuous online improve-
ment (Stage 2), the robot can autonomously navigate between sparse checkpoints (blue), recover from collisions
(red) and improve its driving behavior to maximize speed (yellow→ magenta). FastRLAP learns fast driving
policies in as little as 20 minutes. Videos available at https://sites.google.com/view/fastrlap.

1 Introduction

High-speed vision-based navigation presents a range of challenges, requiring a policy that can
account for both the vehicle’s dynamics and interactions with the terrain and obstacles (Fig. 1).
Learning-based methods offer a particularly appealing approach to such challenges, as they can in
principle capture arbitrary high-performance driving behaviors while accounting for visual indica-
tors. Some prior work has approached similar problems via imitation learning, acquiring end-to-end
skills from expert demonstrations [1, 2]. However, if we aim to maximize performance, we might

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sites.google.com/view/fastrlap


Figure 2: FastRLAP learns fast driving policies for a 1/10th-scale vehicle operating in diverse indoor and
outdoor environments with challenging terrain in tens of minutes, using offline pre-training and online RL.

instead prefer to directly adapt the driving strategy to the vehicle autonomously. In principle, rein-
forcement learning allows an agent to continually improve based on its experience, as shown previ-
ously in board games and robot manipulation where RL can even exceed human performance [3–6].

However, in practice, learning autonomous navigation with RL presents major challenges. Because
we cannot reset the system to a random state, the learning process is highly dependent on the sys-
tem’s ability to continually reach new states without human intervention. Instead, the RL-based
system should train without supervision, while smoothly recovering from failures or collisions.
Furthermore, directly learning from high-dimensional observations in the real world can be pro-
hibitively slow. Because features are learned from a very weak signal (reward), RL often requires a
huge number of interactions with the environment to learn a robust policy. Alternatively, we could
learn entirely from offline data [7, 8], but this yields suboptimal policies when the desired behavior
(aggressive driving) is not included in the dataset (low-speed navigation). The goal of this paper is
to address these challenges and understand how RL can be applied to learn high-speed driving from
vision in the real world. We design a system for Fast Reinforcement Learning via Autonomous
Practicing (FastRLAP) which mitigates the sample complexity challenges by first learning a low-
dimensional representation of driving-related features such as free space and obstacles from offline
data, and then applying online RL to these features to learn a fast driving policy. The online RL
phase proceeds autonomously, automatically recovering from failures and improving with each lap.

We demonstrate FastRLAP in challenging environments on a custom 1/10th-scale RC car modified
for real-world online RL. FastRLAP can autonomously practice and learn aggressive maneuvers
over time, improving by up to 40% over the demonstration lap and achieving performance close
to a human expert. Notably, the online training phase typically takes less than 20 minutes (and as
little as 5 minutes), depending on the size of the environment. During this time, the robot learns
complex maneuvers such as drifting, avoiding low-speed or bumpy areas, and maintaining a racing
line, without requiring high-speed human demonstration or explicit reward for these behaviors. The
training requires no human interventions and is fully autonomous. To the best of our knowledge,
FastRLAP is the first instantiation of a vision-based mobile robotic system that uses model-free RL
to autonomously practice high-speed driving maneuvers and improve online in the real world.

2 Related Work
(a) (b) (c)

Figure 3: High-speed visual navigation faces chal-
lenges including: (a) noisy odometry and localiza-
tion, (b) overexposure and motion blur, and (c) terrain-
dependent over-/under-steer.

Leveraging prior data to bootstrap online learn-
ing has been widely studied in the con-
text of supervised learning [9], representation
learning [10], continual learning [11–15], and
RL [8]. Offline RL in particular has proven
powerful due to its ability to directly learn policies from large datasets, which can be fine-tuned
through online interaction [16–19]. This has enabled a variety of robotic systems leveraging a com-
bination of offline data and online interaction to perform real-world manipulation tasks [20–22],
typically in controlled spaces in which the offline data consists of many high-performance demon-
strations with the same robot in the target environment. In contrast, FastRLAP operates with only
low-performance (slow) data primarily from other robots and environments, and the majority of
behaviors in the resultant policy do not appear in the original dataset.

Existing approaches for learning high-speed driving typically rely either on highly accurate position
information to define states [23–26], localize visual observations relative to a high-fidelity global

2



map [27, 28], or operate via behavioral cloning against some privileged expert [29]. This is pro-
hibitive in unstructured environments, where (i) onboard state estimates can be highly inaccurate,
and (ii) generating a high-fidelity map is difficult or impossible. FastRLAP learns high-speed driving
directly from vision, and improves its behavior by self-practice without using privileged state.

Prior success in learning visual navigation policies typically requires large-scale simulated data [30–
33], passive data [34], human interventions [35, 36] or real-world data from other robots [37]. While
these modalities (in particular, simulation) are typically used to overcome the high number of sam-
ples often required by RL algorithms, we demonstrate that it is possible to train such a policy in
reasonable time with only real-world interactions, opening the door to policies reflecting complex
relationships between vision, dynamics, and terrain (Fig. 3) that might be difficult to simulate.

Several works have studied autonomous real-world RL via safety or reset-free training [38–43] with
applications in robotic manipulation, locomotion, and mobility [20, 44–46]. We draw inspiration
from these works to build a high-speed navigation system that uses a finite state machine to practice
driving around a circuit. FastRLAP can drive diverse courses 100+ meters in length and continually
improves its performance over the course of minutes rather than hours or days.

3 Autonomous Practicing with RL

The objective of our high-speed visual navigation task is to drive through a race course, defined
by a sequence of position checkpoints {ci}, in the minimum possible time. We assume access to
two sources of offline data, neither of which contains the desired high-speed behavior: a large-scale
dataset representing common navigation behaviors executed on a different robot, and a small dataset
including a single lap around the course at low speed. Our system aims to enable efficient end-to-end
RL in the real world. FastRLAP has three components (see Fig. 1): a high-level finite state machine
(FSM) for autonomous practicing (shown in blue), a representation of visual observations learned
via offline RL (purple), and a sample-efficient RL algorithm for online learning (orange).

3.1 Problem formulation

We frame this task as a Markov decision process M(S,A, p, r) with state (V, v, ω, α, g, aprev) ∈ S.
Here, V ∈ R128×128×9 is a sequence of 3 RGB images; v, ω, α ∈ R3 denote the robot’s body-frame
linear velocity, angular velocity, and linear acceleration; the goal g is a body-frame vector to the
next checkpoint, expressed as a unit vector and a distance; aprev is the previous action.

In order to align the visual representations learned offline with those most useful for the online task,
both offline learning and online training phases are structured to maximize the same reward, ensuring
optimal transfer between the two settings. To this end, we define the reward as the weighted sum of
three components: speed-made-good, which is the dot product of the current velocity with the unit
vector pointing towards the current goal; a collision penalty proportional to the magnitude of the
collision (measured by lateral acceleration) applied only when a collision is detected; and a fixed
stuck penalty applied whenever the robot is determined to be “stuck” by the practicing system.

3.2 Autonomous Practicing and Goal Checkpoint Selection

In the autonomous learning setting, the robot is expected to learn in the environment without any
episodic resets or human interventions. Early in training, the policy may reach irrecoverable states,
such as collisions, or otherwise become stuck. Without a reset, the learning algorithm may fail due
to collapse in the state distribution [41]. To overcome this, we use a simple FSM that switches
between a simple collision recovery policy and the learned policy.

When the RL policy reaches a checkpoint, the FSM selects a new goal corresponding to the next
checkpoint in the course sequence {ci}, forcing the learner to practice reaching all of the checkpoint
goals in sequence. The goal checkpoints ci are typically beyond line-of-sight (e.g., Fig. 1, blue), up

3



to 40 meters away. If the RL policy reaches an irrecoverable state (see Sec. 4), the FSM commands
an automatic recovery policy to provides a “pseudo-reset.”

3.3 Online RL Training Algorithm 1: FastRLAP
Data: Navigation dataset D, slow demo Bslow

1 Keys: Pre-Training, Practicing, Online RL
2 while Encoder is not converged do
3 s, a, s′, idx← LoadData(D)
4 g ← LoadFutureData(D, idx + Rand(H))
5 r ← ComputeReward(s, a, g)
6 TrainIQL((s, g), a, r, (s′, g))

7 while True do
8 On Robot
9 s←Observe()

10 if s near g then
11 g ← NextCheckpoint(g)

12 r ← ComputeReward(sprev, aprev, g)
13 SendToWorkstation(sprev, aprev, r, s, g)
14 a ∼ π(ϕ(simage), sproprio, g)
15 Actuate(a)
16 if Collision or Stuck then
17 Execute recovery policy

18 On Workstation
19 ReceiveFromRobot(B)
20 b← Sample(B), bd ← Sample(Bslow)
21 π,Q←TrainRLPD(π,Q, b, bd)

To maximize reward and continually improve
lap times, we use off-policy RL [3, 47]. Off-
policy algorithms benefit greatly from perform-
ing many training steps for each environment
step, known as the update-to-data ratio (UTD):
high UTD leads to efficient learning, but suffers
from overfitting [48]. To overcome this limita-
tion, we use RLPD [49], which trains an en-
semble of critics to avoid catastrophic overesti-
mation and overfitting [50] and learns quickly
using a combination of online interactions and
a small amount of suboptimal, on-task data.

We obtain this on-task data by collecting a sin-
gle slow lap in the target environment. While
this data is very limited (under a minute in most
environments) and does not contain fast driv-
ing behaviors, even suboptimal demonstations
can significantly accelerate online learning by
avoiding critic collapse in early stages of train-
ing [49]. During online training, we sample
50% of each training batch from this low-speed data, interleaved with 50% of data collected on-
line. We found this to be critical to the efficiency of our system in our evaluations (Sec. 5.1).

3.4 Representation Learning with Offline RL

When training image-to-action policies, end-to-end RL allows gradients from the control objective
to optimize the encoder. This results in a task-specific encoder that produces features that are most
relevant to the agent’s task, rather than general features (e.g., features necessary for classification or
video prediction). Unfortunately, training directly on full images is very computationally expensive
and unacceptably reduces the UTD ratio. Ideally, we would prefer to pre-train some encoder to
produce task-relevant features offline, and then freeze the encoder during online training.

We address this by training the encoder with offline RL on an existing large-scale dataset with a
similar objective in a different setting. In particular, we use RECON [51], a large-scale navigation
dataset collected by manually driving a Clearpath Jackal UGV outdoors at low speeds. This dataset
contains navigation trajectories from many environments and an entirely different robot, but impor-
tantly does not include aggressive high-speed driving. Thus, the role of pre-training is not to teach
the robot how to drive quickly, but only to extract a relevant representation to simplify the online
learning problem. The high-speed driving behaviors necessary to solve the desired task must be
learned through practice in the real world, building on this pre-trained foundation.

We apply goal-conditioned offline RL by selecting a 1:1 mixture of random goals and goals from
the robot’s future trajectory in this dataset, and use Implicit Q-Learning [52] to train a critic network
(illustrated in Fig. 1, purple). We then take the learned encoder, which now encodes features relevant
to the navigation task, and freeze it for training the policy and critic (orange) as illustrated in Sec. 3.3.

4 System Design for Online Learning

We instantiate FastRLAP on a 1/10th-scale autonomous car [53, 54]. Our system is based on a
Traxxas Slash 4×4 modified to facilitate online learning. See the appendix for a full parts list.

4



In
do

or
-A

5 10 15 20 25

40

60

80

100

10 20 30 40

50

100

150

200

O
ut

do
or

-D

In
do

or
-B

5 10 15 20 25 30
50

100

150

200

5 10 15 20 25 30
50

100

150

200

250

O
ut

do
or

-E

In
do

or
-C

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

50

100

150

20 40 60 80

200

400

600

800

Si
m

-F

Figure 4: FastRLAP achieves high-speed driving in diverse environments via autonomous practicing. FastR-
LAP improves lap times (best-so-far shown in black) given a slow demo lap (green) and achieves near-expert
lap times (red) in under 40 minutes.

Sensing: Since our high-speed system operates directly on visual observations, we use a forward-
facing fisheye camera to obtain a low-latency stream of 128×128 RGB images. The policy also
depends on IMU data and motor speed as well as relative checkpoint position from a state estimator.

Indoor state estimation: Indoors, we use a RealSense T265 tracking camera, mounted facing the
ceiling, to estimate the robot’s pose and velocity.

Outdoor state estimation: We mount a GPS receiver onboard the robot. To estimate absolute heading
θ, we use an extended Kalman filter to fuse wheel odometry vw, absolute GPS velocity v⃗, and angular
velocity ω with dynamics θt+1 = θt + ω∆t and measurement model v⃗ = (vw cos θ, vw sin θ).

Compute: We use an NVIDIA Jetson Orin NX for onboard compute. We process visual obser-
vations onboard using a pre-trained encoder (Sec. 3.4), and offload training to a workstation with a
GTX 1080ti GPU. We implement our algorithm in JAX [55] and compile several training steps into a
single function, allowing ∼800 actor-critic updates per second (vs. ∼80 without any optimizations).

Actuation: Standard RC motors exhibit “cogging”, a stuttering behavior depending heavily on the
(unobserved) rotor position. We instead use a sensored motor to provide closed-loop sequencing.

Action space: The action space consists of a steering angle and a target speed, which is limited to
4.5m/s across most of our experiments to avoid damaging the robot. This limitation is addressed in
Sec. 5.2 to safely learn a policy driving at higher speeds. To ensure smooth actions, (i) we use a
shifted tanh linearized around aprev to constrain the action to [aprev −δ, aprev +δ], and (ii) we append
the previous action to the observation. See the appendix for details.

Detecting blocked states: The state machine triggers a pseudo-reset and delivers negative reward
when the robot collides, detected by high lateral acceleration, or is not moving for 3 seconds.

5 Faster Lap Times with FastRLAP

In this section we present an experimental evaluation of FastRLAP in a variety of real-world and
simulated environments. We consider several metrics to analyze the peak performance, as well as
cumulative metrics during practice. The time-to-first-lap (T2F) represents the time taken to complete
the first full collision-free lap, starting from scratch. We track the best lap time achieved during
training as well as the median time of last five laps completed to capture the converged behavior.

5



Figure 5: Emergent behaviors with FastRLAP. Maximizing speed with RL results in a “racing line”, braking
as late as possible to maintain speed in and out of tight corners (a) and drifting on slick surfaces (c). Outdoors,
tall grass slows the robot’s motion, promoting driving on paths (b). In Sim-F, the robot infers that the bridge is
faster than driving through mud via visual correlation (d).

T2F Lap Times (s) # Collisions

Env. (min) Best Median Demo Expert† Median

Indoor-A 4.07 32.7 39.0 54 25 0
Indoor-B 12.41 44.2 65.7 70 43 3
Indoor-C 7.27 10.9 11.7 17 7 0

Outdoor-D 11.04 17.1 22.7 43 18 0
Outdoor-E 19.29 62.1 94.0 160 40 3

Sim-F 8.11 104.1 107.0 286 112 0
Sim-G 41.54 18.0 18.1 36 19 0

Outdoor-D
(Schedule)

21.5 13.1 23.4 43 18 0

Table 1: Summary of experiments: FastRLAP
rapidly learns fast driving policies in environments
of varying difficulty levels, improving over the demo
lap by over 40% and achieving lap times within 5%
of the expert, using only egocentric observations.

Figure 6: Sample trajectories of FastRLAP practic-
ing in Indoor-C. FastRLAP recovers from collision
(green) and learns collision-free navigation (orange).
Maximizing speed, FastRLAP discovers a smooth
racing line (purple). The 3D scan is shown only for
illustration.

Additionally, we list the median collisions in the last five laps to capture safety. To contextualize our
results, we provide timing for laps driven in each environment by human drivers watching the robot
from a third-person view (“Human Expert”), as well as the duration of the “slow demo” lap.

We used the same hyperparameters (network architecture, learning rate, etc.) for all experiments,
both in the real-world and simulation. See the appendix for a full list of hyperparameter values,
detailed laptime plots for all baselines, and additional qualitative analysis.

5.1 Real-World Deployment

We deploy FastRLAP in several diverse environments to demonstrate autonomous practicing. Be-
fore training, we manually drive the robot around the course for a slow lap to define the rough layout
of the track. This lap is used in two ways: (i) to generate a sequence of sparse checkpoints {ci}nc

i=1

for the practicing FSM described in Sec. 3.2, and (ii) to provide a low-speed demonstration for
off-policy actor-critic updates as described in Sec. 3.3.

We test in five real-world environments: three indoor and two outdoor, labeled A-E, shown in Fig. 4.
We also test in two simulated environments, Sim-F and Sim-G. Environments include challenging
features such as large scale (Indoor-C, Outdoor-E, Sim-F), tight or cluttered navigation (Indoor-B,
Outdoor-E, Sim-G), and highly terrain-dependent speed that must be inferred by correlating visual
observations to proprioceptive speed measurements during training (Outdoor-D, Outdoor-E, Sim-
F). All environments are described in detail in the appendix.

Table 1 and Fig. 4 summarize the performance of our system in these environments. FastRLAP is
able to consistently improve over the low-speed demonstration lap in a handful of laps, and nearly
match human performance in Indoor-B and Outdoor-D in 30 minutes of real-world practice, with-
out any human interventions. As training progresses, the achieved lap times continue to decrease,
with the robot’s path becoming smoother as a secondary effect of optimizing speed Fig. 6.

6



Emergent behaviors: Maximizing the reward for reaching checkpoints quickly leads to several
emergent behaviors. The system learns a racing line, optimizing speed through corners and chicanes
(a). In Fig. 5(a), the robot maintains speed through the apex of a tight corner, braking sharply to
turn and accelerating out to minimize driving time. On a low-friction surface (c), the policy over-
steers slightly, achieving fast rotation without braking. Outdoors, the learned policy prefers smooth,
high-traction areas on and around concrete paths (b), avoiding tall grass that hinders motion.

5.2 Even Faster Laps: Scheduling Speed Limits

20 30 40 50 60
Training time (minutes)

20

30

40
50
60
70
80
90

La
p 

tim
e 

(s
ec

on
ds

)

Best so far
Expert
FastRLAP, fixed limit

Figure 7: Lap time progression with scheduled
increases in the speed limit. Note log scale.

The action space described in Sec. 4 allows limits
to be adjusted arbitrarily during training. Leverag-
ing this property, we push the limits of FastRLAP
in Outdoor-D, increasing the action bounds linearly
over time from an initial maximum speed of 2.5m/s
to a final speed of 6.75m/s. By increasing the max-
imum commanded speed smoothly from a slow ini-
tial limit, FastRLAP first learns basic behavior in the
low-speed setting that then transfers to high-speed driving, without causing crashes at high speeds.
We see that in the Outdoor-D setting FastRLAP is able to learn a much more aggressive policy than
with the original limits, both quantitatively (Fig. 7) and qualitatively (see the videos on our website).

5.3 Comparative Analysis

We compare the performance of FastRLAP against several baselines and ablations in Indoor-C and
Sim-G to demonstrate the importance of each of the components of our method: pre-trained visual
representations, online RL starting from a slow demo lap, and autonomous recovery behaviors to
handle the reset-free environment. Specifically, we consider the following variations:

No Demo Lap: Ablate the demonstration lap and use only online data.

No Pre-Training: Ablate pre-training and use DrQ [56] to learn the encoder from scratch.

No Pseudo-Resets: Ablate the scripted pseudo-resets, requiring the robot to learn recovery behavior.

ImageNet Pre-Training: Ablate task-specific pre-training and instead train the encoder for image
classification on ImageNet [57, 58] (with the same encoder structure).

DINOv2 Pre-Training: Uses DINOv2 ViT-S [59], a self-supervised vision transformer, as the en-
coder in place of RL pre-training. The much larger model introduces roughly 40ms of actor latency.

Offline RL: Ablate online learning and use a policy trained purely offline with 15 minutes of expert
data from the replay buffer of a successful run of FastRLAP using IQL [52].

State-Based: Replaces visual observations with privileged state (absolute x, y, θ from VIO).

In both Indoor-C and Sim-G, FastRLAP outperforms the ablation with no demo lap in both time-
to-first lap (T2F) and best lap time while causing fewer collisions (Tab. 2). The demo lap helps the
robot make progress early in training, enabling broad state coverage and better final performance.
Removing pseudo-resets causes the robot to become stuck, causing similarly poor performance.

While initializing FastRLAP with a general-purpose pre-trained visual encoder (DINOv2 and Im-
ageNet) gives reasonable performance in simulation, its performance is comparatively poor in the
real-world Indoor-C. This suggests that while general-purpose visual features are sufficient for low
speeds, high-speed navigation requires task-specific features. Training the encoder online achieves
good asymptotic performance, but takes a long time to complete its first collision-free lap and im-
proves relatively slowly due to a reduced UTD ratio (Fig. 8). Our approach also outperforms the
variant with access to privileged state information, suggesting that the pre-trained features generalize
better than a simple localization estimate.

7



Name Indoor-C Sim-G

T2F Best Median Collisions T2F Best Median Collisions

State-Based 11.07 12.7 18.8 4 9.5±2.0 21.1±1.7 26.2 0
No Demo Lap 14.64 16.0 62.6 12 9.8 ± 2.2 20.5 ± 0.9 22.2 0
Offline RL [60] ∞ – – – – – – –
No Pre-Training 10.34 12.7 20.0 1 10.3 ± 2.2 19.3±1.3 18.4 0
ImageNet Encoder 10.05 19.7 29.7 1 8.2 ± 1.4 21.0 ± 2.7 22.1 0
DINOv2 Encoder [59] 16.09 17.0 34.8 4 8.6 ± 1.7 20.6 ± 1.3 25.6 0
FastRLAP (Ours) 7.27 10.9 13.3 0 6.9±0.9 19.3±0.1 18.1 0

Human FPV – 11.1 14.4 2 – 18.6 18.9 0
Human Oracle† – 7.3 8.8 0 – – – –

Table 2: Comparing to baselines: In real and simulated environments, FastRLAP has faster time to first lap
(T2F), best/median lap times, and median collisions, and achieves near-human performance. Offline RL does
not complete a collision-free lap. T2F listed in minutes; other times in seconds; lower is better for all metrics.
Simulation results are reported as mean±std. dev over 3 seeds.

6 Discussion

Figure 8: Lap times for baselines in Sim-G.

We presented a system for learning high-speed
driving with reinforcement learning from rich
observations, practicing autonomously in the
real world. Our approach uses representations
from prior data to initialize the policy, followed by sample-efficient online RL and a checkpoint-
based navigation strategy to recover autonomously from collisions and continue practicing. Al-
though deep RL is often believed to be inefficient and difficult to use in the real world, we demon-
strate that with appropriate pre-training and system design it is possible to learn effective driving
strategies in less than 20 minutes of real-world training. This result may seem quite surprising when
viewed in contrast to prior work that uses simulated data [30] or hundreds of hours of training [61],
and it provides strong validation that deep RL, in conjunction with task-specific pre-training and
approximate resets, can indeed be a viable tool for learning real-world policies from raw images.

A qualitative investigation of the policies learned by our system also reveals interesting emergent be-
havior. Although we bootstrap training with prior data (in other domains and from other robots) and
a single slow demonstration lap, the learned policies exhibit behaviors deviating significantly from
the dataset including drifting, selecting for high-speed terrain, and maintaining a racing line. Thus,
the online RL process not only robustifies existing behavior, as observed in prior work [21], but also
acquires new emergent behaviors by building on the foundation established by the prior data. Our
ablations establish the importance of task-relevant pre-training, supporting the notion that represen-
tations learned from diverse robot navigation data serve as an effective foundation for downstream
skill learning — much as pre-training enables efficient fine-tuning for vision and NLP [62, 63].

Limitations and future work: While our system enables highly effective image-based driving, it
does have several limitations. First, the current implementation requires a coarse state estimator to
provide a vector to the next checkpoint. This could be addressed in future work by specifying future
goals in another format, such as images [64]. Second, our system does not explicitly account for
safety during the training process: the agent will learn to avoid collisions because they lead to task
failure, but high-speed collisions during training could cause damage. Future work could include a
conservative or risk-aware formulation to counteract this effect. Nevertheless, we believe that our
work represents a step towards RL-based systems that can autonomously learn highly performant
navigation skills in a wide range of domains.

Acknowledgments

This research was partially supported by DARPA RACER, ARL DCIST CRA W911NF-17-2-0181,
the National Science Foundation through IIS-2150826, and the Office of Naval Research. The au-
thors would like to thank Alejandro Escontrela, Noriaki Hirose, and Philippe Hansen-Estruch, for
their help with running experiments and providing baseline implementations.

8



References
[1] M. Bojarski et al. End to end learning for self-driving cars, 2016. 1

[2] M. Bansal, A. Krizhevsky, and A. Ogale. ChauffeurNet: Learning to Drive by Imitating the
Best and Synthesizing the Worst. In Robotics: Science and Systems, 2019. 1

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arxiv, 2013. 2, 4

[4] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 2020.

[5] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manip-
ulation with asynchronous off-policy updates. In IEEE International Conference on Robotics
and Automation (ICRA), 2017.

[6] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. JMLR, 2021. 2

[7] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. Reinforcement learning:
State-of-the-Art, 2012. 2

[8] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems, 2020. 2

[9] S. Ross, G. Gordon, and D. Bagnell. A Reduction of Imitation Learning and Structured Pre-
diction to No-Regret Online Learning. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011. 2

[10] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample
efficiency in model-free reinforcement learning from images. In AAAI Conference on Artificial
Intelligence, 2021. 2

[11] S. Thrun and T. M. Mitchell. Lifelong robot learning. Robotics and Autonomous Systems,
1995. 2

[12] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In 26th Annual
International Conference on Machine Learning, 2009.

[13] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International Conference on Machine Learning, 2018.

[14] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher–student curriculum learning.
IEEE Transactions on Neural Networks and Learning Systems, 31(9):3732–3740, 2020. doi:
10.1109/TNNLS.2019.2934906.

[15] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation
and automatic curricula via asymmetric self-play. In Intl. Conf. on Learning Representations
(ICLR), 2018. 2

[16] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv, 2020. 2

[17] A. Villaflor, J. Dolan, and J. Schneider. Fine-tuning offline reinforcement learning with model-
based policy optimization, 2021.

[18] T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai. Policy finetuning: Bridging sample-efficient
offline and online reinforcement learning. In Neural Information Processing Systems, 2021.

9

http://dx.doi.org/10.1109/TNNLS.2019.2934906
http://dx.doi.org/10.1109/TNNLS.2019.2934906


[19] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online reinforcement learning via
balanced replay and pessimistic q-ensemble. In Conf. on Robot Learning, 2021. 2

[20] H. R. Walke, J. H. Yang, A. Yu, A. Kumar, J. Orbik, A. Singh, and S. Levine. Don’t start from
scratch: Leveraging prior data to automate robotic reinforcement learning. In OpenReview,
2022. 2, 3

[21] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine. Pre-Training for Robots:
Offline RL Enables Learning New Tasks from a Handful of Trials. arXiv, 2022. 8

[22] N. Gürtler, S. Blaes, P. Kolev, F. Widmaier, M. Wuthrich, S. Bauer, B. Schölkopf, and G. Mar-
tius. Benchmarking offline reinforcement learning on real-robot hardware. In Intl. Conf. on
Learning Representations (ICLR), 2023. 2

[23] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana, C. Gerdes, D. Langer,
M. Hernandez, B. Müller-Bessler, and B. Huhnke. Up to the limits: Autonomous audi tts.
In IEEE Intelligent Vehicles Symposium, 2012. doi:10.1109/IVS.2012.6232212. 2

[24] N. Keivan and G. Sibley. Realtime simulation-in-the-loop control for agile ground vehicles. In
Towards Autonomous Robotic Systems, 2013.

[25] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving
with model predictive path integral control. IEEE International Conference on Robotics and
Automation (ICRA), pages 1433–1440, 2016.

[26] U. Rosolia and F. Borrelli. Learning How to Autonomously Race a Car: A Predictive Control
Approach. IEEE Trans. on Control Systems Technology, 2020. 2

[27] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. Aggressive deep
driving: Combining convolutional neural networks and model predictive control. In Conf. on
Robot Learning, 2017. 3

[28] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. Vision-based high-
speed driving with a deep dynamic observer. IEEE Robotics and Automation Letters, 2019.
doi:10.1109/LRA.2019.2896449. 3

[29] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou, and B. Boots. Imitation
learning for agile autonomous driving. The International Journal of Robotics Research, 2020.
3

[30] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep
drone racing: From simulation to reality with domain randomization. IEEE Transactions on
Robotics, 2020. 3, 8

[31] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza. Learning
high-speed flight in the wild. Science Robotics, 2021.

[32] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr. Super-human performance in
gran turismo sport using deep reinforcement learning. IEEE Robotics and Automation Letters,
6(3):4257–4264, 2021. doi:10.1109/LRA.2021.3064284.

[33] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot. Navigating to objects in the real
world. ArXiv, abs/2212.00922, 2022. 3

[34] M. Chang, A. Gupta, and S. Gupta. Semantic visual navigation by watching youtube videos.
In Advances in Neural Information Processing Systems, 2020. 3

[35] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen, V. Lam, A. Bewley, and A. Shah.
Learning to drive in a day. CoRR, 2018. 3

10

http://dx.doi.org/10.1109/IVS.2012.6232212
http://dx.doi.org/10.1109/LRA.2019.2896449
http://dx.doi.org/10.1109/LRA.2021.3064284


[36] G. Kahn, P. Abbeel, and S. Levine. Land: Learning to navigate from disengagements. IEEE
Robotics and Automation Letters, 2021. doi:10.1109/LRA.2021.3060404. 3

[37] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine. GNM: A General Navigation Model
to Drive Any Robot. In arXiV, 2022. 3

[38] W. Han, S. Levine, and P. Abbeel. Learning compound multi-step controllers under unknown
dynamics. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015. 3

[39] C. Richter and N. Roy. Safe visual navigation via deep learning and novelty detection. In
Robotics: Science and Systems, 2017.

[40] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine. Leave no Trace: Learning to Reset for Safe
and Autonomous Reinforcement Learning. In Intl. Conf. on Learning Representations (ICLR),
2018.

[41] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The
Ingredients of Real World Robotic Reinforcement Learning. In Intl. Conf. on Learning Repre-
sentations (ICLR), 2020. 3

[42] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Reset-free lifelong learning with skill-space
planning. In Intl. Conf. on Learning Representations (ICLR), 2021.

[43] A. Sharma, K. Xu, N. Sardana, A. Gupta, K. Hausman, S. Levine, and C. Finn. Autonomous
reinforcement learning: Formalism and benchmarking. In Intl. Conf. on Learning Representa-
tions (ICLR), 2022. 3

[44] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free
reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors
without human intervention. In IEEE International Conference on Robotics and Automation
(ICRA), 2021. 3

[45] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan. Learning to walk in the real world with minimal
human effort. In Conference on Robot Learning, 2020.

[46] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine. Fully
autonomous real-world reinforcement learning with applications to mobile manipulation. In
Conf. on Robot Learning, 2022. 3

[47] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, 2019. 4

[48] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville. Sample-
efficient reinforcement learning by breaking the replay ratio barrier. In Deep Reinforcement
Learning Workshop NeurIPS 2022. 4

[49] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data, 2023. 4

[50] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized Ensembled Double Q-Learning: Learn-
ing Fast Without a Model, Mar. 2021. arXiv:2101.05982 [cs]. 4

[51] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine. Rapid exploration for open-world navi-
gation with latent goal models. 2021. 4

[52] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arxiv, 2021. 4, 7

[53] MIT RACECAR, 2014. URL https://racecar.mit.edu. 4

11

http://dx.doi.org/10.1109/LRA.2021.3060404
https://racecar.mit.edu


[54] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam. F1TENTH: An Open-source Eval-
uation Environment for Continuous Control and Reinforcement Learning. In NeurIPS 2019
Competition and Demonstration Track, 2020. 4

[55] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax. 5

[56] I. Kostrikov, D. Yarats, and R. Fergus. Image Augmentation Is All You Need: Regularizing
Deep Reinforcement Learning from Pixels, Mar. 2021. 7

[57] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hier-
archical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009. 7

[58] S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. Gupta. The unsurprising effectiveness of
pre-trained vision models for control. In International Conference on Machine Learning, 2022.
7

[59] M. Oquab et al. Dinov2: Learning robust visual features without supervision, 2023. 7, 8

[60] D. Shah, A. Bhorkar, H. Leen, I. Kostrikov, N. Rhinehart, and S. Levine. Offline reinforcement
learning for visual navigation. In Conf. on Robot Learning, 2022. 8

[61] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. DD-
PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion Frames. In Intl. Conf. on
Learning Representations (ICLR), 2020. 8

[62] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv, 2018. 8

[63] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arxiv, 2020. 8

[64] D. Shah and S. Levine. ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic
Hints. In Robotics: Science and Systems XVIII, 2022. 8

12

http://github.com/google/jax

	Introduction
	Related Work
	Autonomous Practicing with RL
	Problem formulation
	Autonomous Practicing and Goal Checkpoint Selection
	Online RL Training
	Representation Learning with Offline RL

	System Design for Online Learning
	Faster Lap Times with FastRLAP
	Real-World Deployment
	Even Faster Laps: Scheduling Speed Limits
	Comparative Analysis

	Discussion

