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Abstract: For robots to follow instructions from people, they must be able to
connect the rich semantic information in human vocabulary, e.g. “can you get me
the pink stuffed whale?” to their sensory observations and actions. This brings
up a notably difficult challenge for robots: while robot learning approaches allow
robots to learn many different behaviors from first-hand experience, it is imprac-
tical for robots to have first-hand experiences that span all of this semantic infor-
mation. We would like a robot’s policy to be able to perceive and pick up the pink
stuffed whale, even if it has never seen any data interacting with a stuffed whale
before. Fortunately, static data on the internet has vast semantic information, and
this information is captured in pre-trained vision-language models. In this paper,
we study whether we can interface robot policies with these pre-trained models,
with the aim of allowing robots to complete instructions involving object cate-
gories that the robot has never seen first-hand. We develop a simple approach,
which we call Manipulation of Open-World Objects (MOO), which leverages a
pre-trained vision-language model to extract object-identifying information from
the language command and image, and conditions the robot policy on the current
image, the instruction, and the extracted object information. In a variety of exper-
iments on a real mobile manipulator, we find that MOO generalizes zero-shot to
a wide range of novel object categories and environments. In addition, we show
how MOO generalizes to other, non-language-based input modalities to specify
the object of interest such as finger pointing, and how it can be further extended to
enable open-world navigation and manipulation. The project’s website and evalu-
ation videos can be found at https://robot-moo.github.io/.

1 Introduction

For a robot to be able to follow instructions from humans, it must cope with the vast variety of
language vocabulary, much of which may refer to objects that the robot has never interacted with
first-hand. For example, consider the scenario where a robot has never seen or interacted with a plush
animal from its own camera, and it is asked, “can you get me the pink stuffed whale?” How can the
robot complete the task? While the robot has never interacted with this object category before, the
internet and other data sources cover a much wider set of objects and object attributes than the robot
has encountered in its own first-hand experience. In this paper, we study whether robots can tap into
the rich semantic knowledge captured in such static datasets, in combination with the robot’s own
experience, to be able to complete manipulation tasks involving novel object categories.

Computer vision models can capture the rich semantic information contained in static datasets.
Indeed, composing modules for perception, planning, and control in robotics pipelines is a long-
standing approach [1, 2, 3], allowing robots to perform tasks with a wide set of objects [4]. How-
ever, these pipelines are notably brittle, since the success of latter motor control modules relies on
precise object localization. On the other hand, several prior works have trained neural network
policies with pre-trained image representations [5, 6, 7, 8] and pre-trained language instruction em-
beddings [9, 10, 11, 12]. While this form of vanilla pre-training can improve efficiency and gen-
eralization, it does not provide a mechanism for robots to ground and manipulate novel semantic
concepts, such as unseen object categories referenced in the language instruction. This leads to a
crossroads — some approaches can conceivably generalize to many object categories but rely on
fragile pipelines; others are less brittle but cannot generalize to new semantic object categories.
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Figure 1: Overview of MOO. We train a language-conditioned policy conditioned on object locations from a
frozen VLM. The policy is trained on demonstrations spanning a set of 106 objects using VLM-based object-
centric representations, enabling generalization to novel objects, locations produced from new modalities.

To allow robots to generalize to new semantic concepts, we specifically choose to leverage open-
vocabulary pre-trained vision-language models (VLMs), rather than models pre-trained on one
modality alone. Such models capture the rich information contained in diverse static datasets, while
grounding the linguistic concepts into a perceptual representation that can be connected to the robot’s
observations. Crucially, rather than using the pre-trained model for precise state estimation in its en-
tirety (akin to pipelined approaches), we only use the VLM to identify the relevant objects in the
image by coarsely localizing them, while allowing an end-to-end trained policy to use this informa-
tion along with the original observation to perform the task. More specifically, our system receives a
language instruction and uses a VLM to identify the 2D image coordinates of objects in the instruc-
tion. Along with the image and the instruction, the 2D coordinates of the objects are fed into our
manipulation policy allowing it to ground the natural language to objects and know which objects
to act upon without seeing any demonstrations with those objects. The VLM is frozen throughout
all of our training, and the policy is trained with the real VLM detector in the loop to prevent the
brittleness that can plague prior pipelined approaches.

The main contribution of this paper is a flexible approach for open-world object manipulation that
interfaces policy learning with pre-trained vision-language models. An overview is given in Fig. 1.
The pre-trained models are trained on massive static image and language data that far exceeds the
robot’s own experience. The robot’s policy is trained to perform skills using demonstration data
covering a more modest yet still physically diverse set of 106 training objects. The composition
of the pre-trained vision-language model and the control policy leads to an overarching language-
conditioned policy that can complete commands that refer to novel semantic categories.

We study the performance of our method across 1, 472 evaluations on a real robotic manipulator,
where we find that our approach is significantly more successful than recent robot learning methods.
Beyond verbal object descriptions, we also find that the trained policy can be easily combined with
other means of communicating intent, e.g., pointing at an object and inferring the object description
using a VLM, showing a generic image of the object of interest, or using a simple GUI. Finally,
our experiments further show that our method can be integrated with an open-vocabulary object
navigation model called Clip-on-Wheels (CoW), to complete mobile manipulation tasks involving
novel objects. Throughout this paper, we refer to our approach as Manipulation of Open-vocabulary
Objects (MOO) and the integrated mobile manipulation system as CoW-MOO.

2 Related Work

Leveraging Pre-Trained Models in Robotic Learning. Using off-the-shelf vision, speech, or lan-
guage models is a long-standing approach in robotics [13, 14, 10]. Modern pre-trained vision and
language models have improved substantially over older models, and have played an increasing role
in robotics research. A large body of prior work has trained policies on top of frozen or fine-tuned
visual representations [5, 15, 6, 16, 17, 18, 19, 7, 8, 20, 21], while other works have leveraged pre-
trained language models [22, 23, 9, 10, 11, 24, 25, 12]. Unlike these prior works, we aim to leverage
vision-language models that ground language in visual observations. Our use of vision-language
models enables generalization to novel semantic object categories, which cannot be achieved by
using vision models or language models individually.

Generalization in Robotic Learning. A number of recent works have studied how robots can com-
plete novel language instructions [26, 22, 23, 9, 10, 11, 27, 28, 24], typically focusing on instructions
with novel combinations of words, i.e. compositional generalization, or instructions with novel ways
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to describe previously-seen objects and behaviors. Our work focuses on how robots can complete
instructions with entirely new words that refer to objects that were not seen in the robot’s demonstra-
tion dataset. Other research has studied how robot behaviors like grasping and pick-and-place can
be applied to unseen objects [29, 30, 31, 32, 33, 34, 35, 36, 37], focusing on generalization to visual
or physical attributes. Our experimental settings require visual and physical object generalization
but also require semantic object generalization. That is, unlike these prior works, the robot must be
able to ground a description of a previously-unseen object category.

Vision-Language Models for Robotic Manipulation. Two closest related works to our approach
are CLIPort [38] and PerAct [12] that use the CLIP vision-language model as a backbone of their
policy. Both of these approaches have demonstrated impressive level of generalization to unseen
semantic categories and attributes. Inspired by these works, we aim to expand them to more general
manipulation settings by: i) removing the need for depth cameras or camera calibration, ii) expand-
ing and demonstrating that the hereby introduced representation works with other modalities such
as pointing to the object of interest, iii) moving beyond 2D manipulation tasks, e.g. demonstrating
the approach on tasks such as reorienting objects upright as well as mobile manipulation tasks.

Open-World Object Detection in Computer Vision. Historically, object-detection methods have
been restricted to a fixed category map covering a limited set of objects [39, 40, 41, 42]. These
methods work well for the object categories on which they are trained, but have no knowledge of
objects outside their limited vocabulary. Recently, a new wave of object detectors have emerged that
aim to go beyond simple closed-vocabulary tasks by replacing the fixed one-hot category prediction
with a shared image-language embedding space that can be used to answer open-vocabulary object
queries [43, 44, 45, 46]. Typically these methods rely on internet-scale data in the form of pairs of
image and associated descriptive text to learn the grounding of natural language to objects. Various
methods have been employed to then extract object localization information in the form of bound-
ing boxes and segmentation masks. In our work, we use the OWL-ViT detector due to it’s strong
performance in the wild and publicly available implementation [43].

3 Manipulation of Open-World Objects (MOO)

The key goal of MOO is to develop a policy that can leverage the visually-grounded semantic in-
formation captured by pre-trained vision-language models for generalization to object types not in
the policy training set. More specifically, we aim to use the VLM to localize objects described in
a given instruction, while allowing the policy to complete the task using both the instruction and
the object localization information from the VLM. MOO accomplishes this in two stages. First,
the current observation and the words in the instruction corresponding to object(s) are passed to
the VLM to localize the objects. Then, the object localization information and the instruction sans
object information are passed to the policy, along with the original observation, to predict actions.

The key design choice of MOO lies in how to represent object information encoded in VLMs and
how to feed that information to the instruction-conditioned policy. In the remainder of this section,
we first overview the set-up, then describe the design of these crucial aspects of the method, and
finally provide an overview of the model architecture and the training procedure as well as describe
practical implementation details that allows us to deploy MOO on real robots.

3.1 Problem Set-Up

Formally, we assume that the robot, with image observations o ∈ O and actions a ∈ A, is pro-
vided with a set of expert demonstrations Drobot collected via teleoperation. Each demonstration
corresponds to a sequence of observation-action pairs {(oj , aj)}Tj=1 collected over a time horizon
T , and is annotated with a structured language instruction ` for the task being performed in the
demonstration. To help facilitate object generalization, we assume that these language instructions
are structured as a combination of a template and a list of object descriptions within that template.
For example, for the instruction ` =“move yellow banana near cup,”, the template is “move X near
Y,” and the object descriptions are X =“yellow banana” and Y =“cup.” Inspired by RT-1 [24], in
this work, we focus on five different types of skills defining the templates: “pick X ,” “move X near
Y ,” “knock X over,“ “place X upright,“ and “place X into Y ,”.

All of the objects seen in the demonstrations are drawn from a set Srobot, and our objective is to
complete new structured language instructions with a seen template but novel objects that are not in
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Figure 2: MOO architecture: We extract object location (represented as the center of the bounding box) on
the first frame of an episode. The segmentation mask is concatenated channel-wise to the input image for each
frame. We remove the language embedding for everything except the task so that the object specific information
is only provided through the object instance mask.

Srobot, which also have novel object descriptions. In aiming to complete this goal, our approach will
leverage imitation learning and vision-language models, which we briefly review in the Appendix.

3.2 Representing Object Information

To utilize the object knowledge encoded in the VLMs, we need to pick a representation that can
be easily transferred to the text-conditioned control policy. We start by identifying the instruction
template (represented by verb v) and object X (or list of objects X,Y, ...) from the instruction
`. Equipped with an object description X , we query a VLM to produce a bounding box of the
object of interest with the prompt q = “An image of an X”, and use the resulting detection (if
any) as conditioning of our policy. To reduce the reliance of the exact segmentation of the object
dimensions, we select a single pixel that is at the center of the predicted bounding box as the object
representation. In the case of one object description, we use a single-channel object mask with the
value set to 1.0 at the pixel of the object’s predicted location. In the case of two object descriptions,
we set the pixel value of the first to be 1.0 and the second to be 0.5.

This design has two main advantages: first, it is a generic representation that works with objects of
any size as long as they are visible, and second, it is compatible with a large selection of vision meth-
ods such as bounding boxes or segmentation masks as these can be easily transformed into a single,
object-centric pixel location. We ablate other object representation choices in the experiments.

Importantly, this approach can handle object descriptions that are not previously seen in the robot’s
demonstration data, as long as it is sufficiently represented in the static large-scale training data
of the VLM. For any unseen objects, we simply include a description in the task command, e.g.,
“pick stuffed toy whale.” Once the object description is translated into a pixel location by the VLM,
the robot’s policy trained on demonstration data only needs to be capable of interpreting the mask
location and how to physically manipulate the novel object’s shape, rather than needing to also
ground the semantic object description.

3.3 Architecture and Training of MOO

We present the model architecture and information flow of MOO in Fig. 2. As described above, we
extract the object descriptions from the language instruction and together with the initial image feed
them into the VLM to output object locations in the image. This information is then represented as
an object mask with dots at the center of the objects of interest.

Once we obtain the mask, we append it channel-wise to the current image together with the recent
image history, which is passed into the RT-1 policy architecture [24]. We use a language model
to encode the previously extracted verb v part of the language instruction in an embedding space
of an LLM. The images are processed by an EfficientNet [47] conditioned on the text embedding
via FiLM [48]. This is followed by a Token Learner [49] to compute a small set of tokens, and
finally a Transformer [50] to attend over these tokens and produce discretized action tokens. We
refer the reader to the RT-1 paper for details regarding the later part of the architecture. The action
space corresponds to the 7-DoF delta end-effector pose of the arm (including x, y, z, roll, pitch, yaw
and gripper opening). The entire policy network is trained end-to-end using the imitation learning
objective and we specify the details of the objective in the Appendix (Equation 1). Importantly, the
VLM used to detect the objects is frozen during training, so that it does not overfit to the objects in
the robot demonstration data. The policy is trained with this frozen VLM in the loop, so that the
policy can learn to be robust to errors made by the VLM given other information in the image.
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3.4 Practical Implementation
To detect objects in our robot images, we use the Owl-ViT open-vocabulary object detector [43]. In
practice, we find that it is capable of detecting most clearly visible objects without any fine-tuning,
given a descriptive natural language phrase. The interface to the detector requires a natural language
phrase describing what to detect (e.g., “An image of a small blue elephant toy.”) along with an image
to run the detection on. The output from the model is a score map indicating which locations are
most likely to correspond to the natural language description and their associated bounding boxes.
We select a universal score threshold to filter detections. To detect our objects, we rely on some
prompt-engineering using descriptive phrases including the color, size, and shape of objects, though
most of our prompts worked well on the first attempt. We share the prompts in the Appendix.

To make the inference time practical on real robots, we extract the object information via VLM only
in the first episode frame. By doing so, most of the heavy computation is executed only once at
the beginning and we can perform real-time control for the entire episode. Since the information is
appended to the current observation, we rely on the policy to find the corresponding object in the
current image if the object has moved since the first timestep.

3.5 Training Data

Figure 3: (Left) RT-1 objects that account for ≈ 70% of training data
covering all skills. (Middle) Diverse training objects that appear only in
“pick” demonstrations. (Right) Unseen objects used only for evaluation.

We start with the demonstra-
tion data used by RT-1 [24] cov-
ering 16 unique objects. De-
spite the use of the VLM for
semantic generalization, we ex-
pect that the policy will re-
quire more physical object di-
versity to generalize to novel ob-
jects. Therefore, we expand the
dataset with additional diverse
“pick” data across a set of 90
diverse objects, for a total of
106 objects, as shown in Fig-
ure 3. We choose to only expand
the set of objects for the picking
skill, since it is the fastest skill to execute and therefore allows for the greatest amount of diverse
data collection within a limited budget of demonstrator time. Our additional set of 90 diverse objects
only appear in “pick” episodes. All other tasks, such as “move near” or “place into”, must be learned
from the original 16 objects in the RT-1 dataset. Detailed statistics are in Appendix Figure 9.

4 Experiments
Our experiments answer the following questions: 1) Does MOO generalize across objects for differ-
ent skills including unseen objects? 2) Does MOO generalize beyond new objects – Is MOO robust
to distractors, backgrounds and environments? 3) Can the intermediate representation used support
non-linguistic modalities to specify the task? 4) Does the object generalization performance scale
with the (a) number of training episodes, (b) number of unique objects in the training episodes and
(c) size of the model? 5) Can MOO be used for open-world navigation and manipulation?

4.1 Experimental Setup
Seen and unseen objects. The training data is collected with teleoperation on table-top environ-
ments across a set of 106 different object types. We evaluate performance on a subset with 49 objects
“seen” in training and report the performance as “seen”. We hold out 47 objects not present in train-
ing and report performance on these as “unseen”. These 47 held-out objects are comprised of 22
objects of the categories seen in training and 25 objects of unseen categories. These objects are listed
in Appendix Table 1. Note that previous works often focus on unseen combinations of previously
seen commands and objects (e.g. “pick an apple” even though the training data contains “move an
apple into a bowl” and “pick a bowl”); we adopt a more strict definition of unseen objects, where
our unseen objects were not seen in the robot’s training demonstration data at any point for any
task, therefore making our unseen performance a zero-shot object generalization problem. Further-
more, we report results across different environments that introduce novel textures, backgrounds,
locations, and additional open-world objects not present in the training data.
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Figure 4: Main Results. While baseline methods perform competitively on in-distribution combinations of
objects and skills seen during training, they fail to generalize to novel objects. MOO substantially improves
generalization to novel objects, especially those in unseen categories and for the “pick” skill.

Evaluation details. We evaluate on a set of tabletop tasks involving manipulating a diverse set
of objects. We use mobile manipulators with 7 degree-of-freedom arm and two-fingered gripper
(Appendix Figure 10). Our experiments evaluate the percent of successfully completed manipulation
commands which include five skills: “pick”, “move near”, “knock,” “place upright,” and “place into”
across a set of evaluation episodes (definition and success criteria follow RT-1 [24] and are described
in the Appendix). To study object specificity and robustness, for all evaluation episodes, we include
between two to four distractor objects in the scene which the robot should not interact with. For
each evaluation episode, we randomly scatter the evaluation object(s) and the distractor objects onto
the table. There is no consistent placement of the target object relative to the distractors. We repeat
this process 21 times and report the performance. We present the experimental setup in Appendix
Figure 10.

Baselines. We compare two prior methods: RT-1 [24] and a modified version of VIMA [25], referred
to as “VIMA-like”. VIMA-like preserves the cross-attention mechanism, but uses the mask image
as the prompt token and the current image as state token. These modifications are necessary because
VIMA uses Transporter-based action space and is not applicable to our task, i.e., our robot arm
moves in 6D and has a gripper that can open and close continuously. These two baselines correspond
to common alternatives where the computer vision data is used as a pre-training mechanism (as in
RT-1) or object-centric information is fed to the network through cross attention (as in VIMA-like).

4.2 Experimental Results

Figure 5: MOO is able to generalize to new objects, textures, and
environments with greater success than prior methods. Visualiza-
tions are shown in Figure 6.

Generalization to Novel Objects.
We investigate the question: Does
MOO generalize across objects for
different manipulation skills includ-
ing objects never seen at training
time? Experiments are presented in
Figure 4 and example trajectories are
shown in Appendix Figure 12. Rel-
ative to the baselines on the pick
tasks, MOO exhibits substantial im-
provement over the seen object per-
formance as well as the unseen ob-
jects, which in both cases reaches
∼ 50% improvement. MOO can cor-
rectly utilize a VLM to find novel ob-
jects and incorporate that information
more effectively than the VIMA-like
baseline. When comparing the performance on seen objects for the skills other than pick, we observe
a slightly worse performance than for the pick tasks. This is understandable since the “Seen objects”
for “Non-pick skills” have only been seen during the pick episodes as shown in Appendix Figure
9. This demonstrates MOO’s ability to transfer the learned object generalization across the skills so
that the objects that have only been picked can now be also used for other skills. In addition, MOO
exhibit generalization to unseen objects (i.e. unseen in any previous tasks, including pick) that is at
the same level as for unseen objects for the pick skill, and 50% better than baseline.
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Figure 6: To study the robustness of MOO, we evaluate on (a) new environments, (b) challenging texture
backgrounds which are visually similar to unseen objects in the scene, and (c) additional open-world objects.
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Figure 7: We explore using various input modalities to generate the single-pixel object representations used by
MOO. (a) shows the standard mask generation process using OWL-ViT with a text instruction. (b) shows using
a VLM to generate a text caption, then fed to OWL-ViT. (c) shows an uploaded image to prompt OWL-ViT. (d)
shows a user providing a ground-truth mask via a GUI.

Robustness Beyond New Objects. To further test the robustness of MOO, we analyze novel evalua-
tion settings with significantly increased difficulty and visual variation, which are shown in Figure 6.
To reduce the number of real robot evaluations, we focus this comparison on the picking skill. The
results are presented in Figure 5. Across these challenging evaluation scenes, MOO is significantly
more robust compared to VIMA-like [25] and RT-1 [24]. This indicates that the use of VLMs in
MOO not only improves generalization to new objects that the robot has not interacted with, but also
significantly improves generalization to new backgrounds and environments.

Input Modality Experiments. To answer our third question, we perform a number of qualitative
experiments testing different input modalities (detailed description in the Appendix). We find that
MOO is able to generalize to masks generated from a variety of upstream input modalities, even
under scenarios outside the training distribution including scenes with duplicate objects and clutter.

As the first qualitative example, Figure 7(b) illustrates that VLM such as PaLI [51] can infer what
object a human is pointing at, allowing OWL-ViT to generate an accurate mask of the object of in-
terest. Secondly, OWL-ViT can also use visual query features instead of textual features to generate
a mask, enabling images of target objects to act as conditioning for MOO, as shown in Figure 7(c).
This modality is useful in cases where text-based mask generation due to ambiguity in natural lan-
guage, or when target images are found in other scene contexts. We explore both the setting where
target images are sourced from similar scenes or from diverse internet images. Finally, we show that
MOO can interpret masks directly provided by humans via a GUI, as shown in Figure 7(d). This
is useful in cases where both text-based and image-based mask generation is difficult, such as with
duplicate or cluttered objects. MOO is robust to how upstream input masks were generated, and our
preliminary results suggest interesting future avenues in the space of human-robot interaction.
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CoW: “find the pepsi” MOO: “pick up the pepsi”

Figure 8: We present CoW-MOO, a system that combines an open-vocabulary object navigation by CoW [52]
with open-world manipulation by MOO. Full videos are shown on the project’s website.

MOO Ablations. We conduct a number of ablations to assess the impact of the size and diversity
of our dataset and the scale (in terms of number of parameters) of our model. In Appendix Table 3
we vary both the number of unique objects in the training set (reducing it from 106 to 53 to 16
unique training objects) and the number of total training episodes (reducing it by half – from 59051
training episodes to 29525) while keeping all objects in the dataset. We aim to vary these two axes
independently to determine the impact of the overall size of the dataset vs its object diversity on the
final results. Interestingly, we find that seen object performance is not affected by reducing object
diversity, but generalization to unseen objects is very sensitive to object diversity.

Additionally, we investigate the impact of scaling model size. We train two smaller versions of
MOO where we scale down the total number of layers and the layer width by a constant factor. The
version of MOO that we use in our main experiments has 111M parameters, which, for the purpose
of this ablation, we then reduce by an order of magnitude down to 10.2M and then by 5X again
down to 2.37M. Comparing different sizes of the model, we find significant drop offs in both “seen”
(from 98% to 54% and 39% respectively) and “unseen” object performance (from 79% to 50% and
13%; see Appendix Figure 11 for a graph of the results). We also note that we could not make MOO
larger than 111M parameters without increasing the latency on robot to an unacceptable level, but
we expect continued performance gains with bigger models if latency requirements can be relaxed.

Open-World Navigation and Manipulation. Finally, we consider how such a system can be inte-
grated with open-vocabulary object-based navigation. Coincidentally, there is an open-vocabulary
object navigation algorithm called Clip on Wheels (CoW) [52]; we implement a variant of CoW and
combine it with MOO, which we refer to as CoW-MOO. CoW handles open-vocabulary navigation
to an object of interest, upon which MOO continues with manipulating the target object. This com-
bination enables a truly open-world task execution, where the robot is able to first find an object
it has never interacted with, and then successfully manipulate it to accomplish the task. We show
example qualitative experiments in Figure 8 and in the video of this system on the project’s website2.

5 Conclusion and Limitations

In this paper we presented MOO, an approach for leveraging the rich semantic knowledge captured
by vision-language models in robotic manipulation policies. We conduct 1, 472 real world evalua-
tions to show that MOO allows robots to generalize to novel instructions involving novel objects,
enables greater robustness to visually challenging table textures and new environments, is amenable
to multiple input modalities, and can be combined with open-vocabulary semantic navigation.

Despite the promising results, MOO has multiple important limitations. First, the object mask rep-
resentation used by MOO may struggle in visually ambiguous cases, such as where objects are
overlapping or occluded. Second, we expect the generalization of the policy to still be limited by the
motion diversity of training data. For example, we expect that the robot may struggle to grasp novel
objects with drastically different shapes or sizes than those seen in the training demonstration data,
even with successful object localization. Third, instructions are currently expected to conform to a
set of templates from which target objects and verbs can be easily separated. We expect this limita-
tion could be lifted by leveraging an LLM to extract relevant properties from freeform instructions.
Finally, MOO cannot currently handle complex object descriptions involving spatial relations, such
as “the small object to the left of the plate.” Fortunately, we expect performance on tasks such as
these to improve significantly as vision-language models continue to advance moving forward.

2https://robot-moo.github.io/
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Appendix

Imitation Learning and RT-1

MOO builds upon a language-conditioned imitation learning setup. The goal of language-
conditioned imitation learning is to learn a policy π(a | `, o), where a is a robot action that should be
applied given the current observation o and task instruction `. To learn a language-conditioned policy
π, we build on top of RT-1 [24], a recent robotics transformer-based model that achieves high lev-
els of performance across a wide variety of manipulation tasks. RT-1 uses behavioral cloning [53],
which optimizes π by minimizing the negative log-likelihood of an action a given the image ob-
servations seen so far in the trajectory and the language instruction, using a demonstration dataset
containing N demonstrations:

J(π) :=

N∑
n=1

T (n)∑
t=1

log π(a
(n)
t | `(n), {o(n)j }

t
j=1). (1)

Vision-Language Models

In recent years, there has been a growing interest in developing models that can detect objects
in images based on natural language queries. These models, known as vision-language models
(VLMs), are enabling detectors to identify a wide range of objects based on natural language queries.
Typically the text queries are tokenized and embedded in a high-dimensional space by a pre-trained
language encoder, and the image is processed by a separate network to extract image features into
the same embedding space as the text features. The language and image representations are then
combined to make predictions of the bounding boxes and segmentation masks. Given a natural
language query, q, and an image observation on which to run detection, o, these models aim to
produce a set of embeddings for the image fi(o) with shape (height,width, feature dim) and an
embedding of the language query fl(q) with shape feature dim such that logits = fi(o) · fl(q) gives
a logit score map and is maximized at regions in o which correspond to the queries in q. Each
image embedding location within fi(o) is also associated with a predicted bounding box or mask
indicating the spatial extent of that object corresponding to fi(o). In this work, we use the Owl-ViT
detector [43], which we discuss further in Sec. 3.4.

Datasets

We collect a teleoperated demonstration data that focuses on increasing object diversity for the most
efficient skill to collect data for, the picking task. This dataset of 13,239 episodes was collected
with a similar procedure to [24], with expert users utilizing Oculus Virtual Reality controllers for
teleoperation. Detailed dataset statistics are in Figure 9 and Table 1.
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Object Included in
Training

Included in Evaluation
Seen Object Unseen Object,

Seen Category
Unseen

Category
red grapefruit can yes

coke zero can yes
pineapple spindrift can yes

lemon spindrift can yes
love kombucha yes

original pepper can yes
fruit gummies yes

instant oatmeal pack yes
brie cheese cup yes

coffee mixing stick yes
white sparkling can yes

diet pepper can yes
lemon sparkling water can yes

black pen yes
orange plastic bottle yes

blue pen yes
coffee cup sleeve yes
regular 7up can yes

small salmon plate yes
diet coke can yes

lemonade plastic bottle yes
original redbull can yes

numi tea bag yes
popcorn chip bag yes

cereal scoop yes
blackberry hint water yes

green cookies bag yes
watermelon hint water yes

spoon yes
coffee cup lid yes

green pear yes
coffee cup yes

iced tea can yes
ito en green tea yes
pink lunch box yes

chocolate caramel candy yes
small beige plate yes

large yellow spatula yes
large hot pink plate yes

red bowl yes
green bowl yes

orange spatula yes
large blue plate yes

large baby pink plate yes
small purple plate yes
small blue spatula yes
small green plate yes

table tennis paddle yes
green brush yes
rubiks cube yes

gray suction toy yes
toy ball with holes yes

large tennis ball yes
gray microfiber cloth yes

toy boat train yes
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teal and pink toy car yes
dna chew toy yes

slinky toy yes
raspberry baby teether yes
small purple spatula yes

milano dark chocolate yes
badminton shuttlecock yes

chain link toy yes
orange cup yes

head massager yes
square cheese yes

boiled egg yes
blue cup yes
chew toy yes yes
fish toy yes yes

egg separator yes yes
blue microfiber cloth yes yes

yellow pear yes yes
small orange rolling pin yes yes

wrist watch yes yes
pretzel chip bag yes yes

disinfectant wipes yes yes
pickle snack yes yes
octopus toy yes yes
catnip toy yes yes

orange yes yes
7up can yes yes
apple yes yes

coke can yes yes
swedish fish bag yes yes

large green rolling pin yes yes
place green can upright yes yes

black sunglasses yes yes
blue chip bag yes yes

pepsi can yes yes
pink shoe yes yes

blue plastic bottle yes yes
green can yes yes

orange can yes yes
water bottle yes yes
redbull can yes yes

green jalapeno chip bag yes yes
rxbar chocolate yes yes
rxbar blueberry yes yes
brown chip bag yes yes

green rice chip bag yes yes
sponge yes yes

chocolate peanut candy yes yes
banana yes yes

oreo yes yes
cheese stick yes yes
yellow bowl yes yes

large green plate yes yes
white coat hanger yes yes

green microfiber cloth yes yes
small blending bottle yes yes

floral shoe yes yes
dog rope toy yes yes

red cup yes yes
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fork yes yes
disinfectant pump yes yes

blue balloon yes yes
bird ornament yes

red plastic shovel yes
whisk yes

baby toy yes
brown dinosaur toy yes

pikmi pops confetti toy yes
white marker holder yes

white toilet scrub yes
pink stapler yes

green dolphin toy yes
purple eggplant yes

small green dinosaur toy yes
green blocks yes
navy toy gun yes
gray pouch yes

small red motorcycle toy yes
bike pedal yes
c clamp yes

burgundy paint brush yes
transparent hint water bottle yes

shiny steel coffee grinder holder yes
transparent plastic cup yes

shiny steel mug yes
shiny steel scooper yes

shiny pink steel bowl yes
light pink sunglasses yes

pink marker yes
cold brew can yes

ginger lemon kombucha yes
green cup yes

green sprite can yes
large orange plate yes

pineapple hint water yes
small blue plate yes

small hot pink plate yes
black small duck yes
small purple bowl yes

purple toy boat yes
black chip bag yes

teal sea salt chip bag yes
blue sea salt chip bag yes

sea salt seaweed snack yes
gray sponge yes

red velvet snack bar yes
red bell pepper yes

blue toy boat train yes
green tennis ball yes

Table 1: List of objects used in training and evaluation. There are 3 types of objects used in evaluation: 49
objects which were seen in training, 22 unseen objects of categories which were seen in training, 25 unseen
objects of unseen categories.
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Figure 9: Distribution of training objects across the training dataset. We augmented RT-1 data (on the left)
with a large number of diverse pick episodes (in the middle) in order to demonstrate strong generalization to
unseen objects (on the right). Blue and yellow bars represent “pick” episodes and red bars represent other tasks
like “move near” or “knock.” Yellow bars portray the objects randomly selected for “Seen Object” evaluations.
Objects for “Unseen Category” and “Unseen Object, Seen Category” evaluations are shown to the right.

Experiments

We show a visualization of our 7-DoF manipulation robot in Figure 10.

Skills. Our experiments evaluate the percent of successfully completed manipulation commands
which include five skills: “pick”, “move near”, “knock,” “place upright,” and “place into” across
a set of evaluation episodes. The definition of the tasks follows RT-1 [24]: For “pick”, success is
defined as (1) grasping the specified object and (2) lifting the object at least 6 inches from the table
top. For “move near”, success is defined as (1) grasping the specified object and (2) placing it within
6 inches of the specified target object. For “knock”, success is defined as placing the specified object
from an “upright” position onto its side. “Place upright” tasks are the inverse of “knock” and involve
placing an object from its side into an upright position. Finally, “place into” tasks involve placing
one object into another, such as an apple into a bowl.

Robustness evaluation details. We evaluate the robustness of MOO on a variety of visually chal-
lenging scenarios with drastically different furniture and backgrounds, as shown in Figure 6; the
results are reported in Figure 5. The first set of these difficult evaluation scenes introduces six evalu-
ations across five additional open-world objects that correspond to various household items that have
not been seen at any point during training. The second set of difficult scenes introduces 14 evalu-
ations across two patterned tablecloths; these tablecloth textures are significantly more challenging
than the plain gray counter-tops seen in the training demonstration dataset. Finally, the last set of
difficult scenes include 14 evaluations across three new environments in natural kitchen and office
spaces that were never present training. These new scenes simultaneously change the counter-top
materials, backgrounds, lighting conditions, and distractor items.

Input modality demonstration details. We explore the ability of MOO to incorporate object-
centric mask representations that are generated via different processes than the one used during
training. During training, an OWL-ViT generates mask visual representations from textual prompts,
as described in Section 3.2. We study whether MOO can successfully accomplish manipulation
tasks given (1) a mask generated from a text caption from a generative VLM, (2) a mask generated
from an image query instead of a text query, or (3) a mask directly provided by a human via a
GUI. For each of these cases, we implement different procedures for generating the object mask
representation, which are then fed to the frozen MOO policy.
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Figure 10: Image of our robot hardware and evaluation setting.

Mask Sensitivity Study We originally noted the qualitative observation that MOO seemed to ex-
hibit robustness to imperfect object-centric mask localization. We ran an additional experiment of
evaluating a MOO policy with masks that contain artificially added localization noise. We study
four cases where we ablate the mask while keeping the starting scene the same: (1) the baseline
when the mask is at the centroid of the object, (2) when the mask is still on the object of interest
but not at the centroid, (3) when the mask is off of the object entirely but still within roughly 5cm,
and (4) when the mask is far and more than 5cm from the object of interest. We add the artificial
noise manually by starting with the centroid mask and then manually ablating the masks. We run
a total of 20 trials across 5 tasks involving one seen object (green rolling pin), one unseen object
in a seen category (cold brew can), and three unseen object categories (egg plant, shiny sunglasses,
transparent bottle). We find that performance degrades as more noise is added: case (1) achieves 5/5
successes, case (2) achieves 4/5 successes, case (3) achieves 3/5 successes, and case (4) achieves 3/5
successes. Qualitatively, we observe that the policy sometimes initially reaches for the inaccurate
mask location, and is sometimes able to recover and re-approach the correct target object. In one
notable example, the policy faced an off-center mask on the lower part of the clear bottle (a visually
challenging object, since no transparent objects were in the training set) and grasped the clear bottle
in the upper section, which is the correct strategy for re-orienting the bottle upright. Additionally,
a few examples showed that the policy was able to retry after failures caused by inaccurate masks;
this suggest that the policy does not just memorize going to the location of the mask, but instead
also pays attention to semantics. We provide the table of quantitative results in Table 2.

Training data ablation. We ablate the amount of data used to train MOO, and find that both data
diversity and data scale are important, as shown in Table 3.

Prompts used

We use the following prompts to OWL-ViT detect our objects. All prompts were prefixed with the
phrase “An image of a”.
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Mask Ablation Amount Pick Skill Upright Skill Knock Skill

Green Rolling Pin Eggplant Shiny Glasses Clear Bottle Cold Brew Can

baseline centroid mask 1 1 1 1 1
off-center on-object mask 0 1 1 1 1
off-object less than 5cm mask 1 1 1 0 0
off-object more than 5cm mask 1 0 1 0 1

Table 2: We evaluate a MOO policy for 20 trials with masks that contain artificially added localization noise.
Notably, we find that MOO is able to recover from misspecified masks which may not be centered on the target
object, for both seen objects and novel objects altogether.

Dataset Filtering Pick

Objects Episodes per Object Seen objects Unseen objects

100% 100% 98 79
50% 100% 92 75
18% 100% 88 19
100% 50% 46 38
100% 10% 23 0

Table 3: Performance of MOO in percentage of success relative to the amount of data used for training. Both
data scale and data diversity are important.

7up can→ “white can of soda”
banana→ “banana”
black pen→ “black pen”
blue chip bag→ “blue bag of chips”
blue pen→ “blue pen”
brown chip bag→ “brown bag of chips”
cereal scoop→ “cereal scoop”
chocolate peanut candy→ “bag of candy snack”
coffee cup→ “coffee cup”
coke can→ “red can of soda”
coke zero can→ “can of soda”
disinfectant pump→ “bottle”
fork→ “fork”
green can→ “green aluminum can”
green cookies bag→ “green snack food bag”
green jalapeno chip bag→ “green bag of chips”
green sprite can→ “green soda can”
knife→ “knife”
orange can→ “orange aluminum can”
orange plastic bottle→ “orange bottle”
oreo→ “cookie snack food bag”
pepsi can→ “blue soda can”
popcorn chip bag→ “bag of chips”
pretzel chip bag→ “bag of chips”
red grapefruit can→ “red aluminum can”
redbull can→ “skinny silver can of soda”
rxbar blueberry→ “small blue rectangular snack food bar”
spoon→ “spoon”
swedish fish bag→ “bag of candy snack food”
water bottle→ “clear plastic waterbottle with white cap”
white sparkling can→ “aluminum can”
blue plastic bottle→ “clear plastic waterbottle with white cap”
diet pepper can→ “can of soda”
disinfectant wipes→ “yellow and blue pack”
green rice chip bag→ “green bag of chips”
orange→ “round orange fruit”
paper bowl→ “round bowl”
rxbar chocolate→ “small black rectangular snack food bar”
sponge→ “scrub sponge”
blackberry hint water→ “clear plastic bottle with white cap”
pineapple hint water→ “clear plastic bottle with white cap”

18



Figure 11: Pick success vs. model size. We see continuous improvements on both seen and unseen objects
as we increase the number of parameters of our model architecture while keeping the data set size fixed. In
comparison to our main model, we scaled down layer widths and depth by the same constant multiplier. We
expect more performance gains at larger model capacity, yet are currently unable to scale further due to real
time inference constraints on our robot.

watermelon hint water→ “clear plastic bottle with white cap”
regular 7up can→ “can of soda”
lemonade plastic bottle→ “clear plastic bottle with white cap”
diet coke can→ “silver can of soda”
yellow pear→ “yellow pear”
green pear→ “green pear”
instant oatmeal pack→ “flat brown pack of instant oatmeal”
coffee mixing stick→ “small thin flat wooden popsicle stick”
coffee cup lid→ “round disposable coffee cup lid”
coffee cup sleeve→ “brown disposable coffee cup sleeve”
numi tea bag→ “small flat packet of tea”
fruit gummies→ “small blue bag of snacks”
chocolate caramel candy→ “small navy bag of candy”
original redbull can→ “can of energy drink with dark blue label”
cold brew can→ “blue and black can”
ginger lemon kombucha→ “yellow and tan aluminum can with brown writing”
large orange plate→ “circular orange plate”
small blue plate→ “circular blue plate”
love kombucha→ “white and orange can of soda”
original pepper can→ “dark red can of soda”
ito en green tea→ “light green can of soda”
iced tea can→ “black can of soda”
cheese stick→ “yellow cheese stick in wrapper”
brie cheese cup→ “small white cheese cup with wrapper”
pineapple spindrift can→ “white and cyan can of soda”
lemon spindrift can→ “white and brown can of soda”
lemon sparkling water can→ “yellow can of soda”
milano dark chocolate→ “white pack of snacks”
square cheese→ “small orange rectangle packet ”
boiled egg→ “small white egg in a plastic wrapper”
pickle snack→ “small black and green snack bag”
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move cold brew can near green cup

pick disinfectant wipes  

move small blue plate near whisk

pick wrist watch

move bird ornament near whisk

pick small orange rolling pin

Figure 12: Example images of our policy detecting and grasping objects not seen during training time. The
object detections are colored in correspondence to the text above the image, and the images are ordered left to
right across time.

red cup→ “plastic red cup”
blue cup→ “plastic blue cup”
orange cup→ “plastic orange cup”
green cup→ “plastic green cup”
head massager→ “metal head massager with many wires”
chew toy→ “blue and yellow toy with orange polka dots”
wrist watch→ “wrist watch”
small orange rolling pin→ “small orange rolling pin with wooden handles”
large green rolling pin→ “large green rolling pin with wooden handles”
rubiks cube→ “rubiks cube”
blue microfiber cloth→ “blue cloth”
gray microfiber cloth→ “gray cloth”
green microfiber cloth→ “green cloth”
small blending bottle→ “small turqoise and brown bottle”
large tennis ball→ “large tennis ball”
table tennis paddle→ “table tennis paddle”
octopus toy→ “purple toy octopus”
pink shoe→ “pink shoe”
floral shoe→ “red and blue shoe”
whisk→ “whisk”
orange spatula→ “orange spatula”
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small blue spatula→ “small blue spatula”
large yellow spatula→ “large yellow spatula”
egg separator→ “large pink cooking spoon”
green brush→ “green brush”
small purple spatula→ “small purple spatula”
badminton shuttlecock→ “shuttlecock”
black sunglasses→ “black sunglasses”
toy ball with holes→ “toy ball with holes”
red plastic shovel→ “red plastic shovel”
bird ornament→ “colorful ornament with blue and yellow confetti”
blue balloon→ “blue balloon animal”
catnip toy→ “small dark blue plastic cross toy”
raspberry baby teether→ “red and green baby pacifier”
slinky toy→ “gray metallic cylinder slinky”
dna chew toy→ “big orange spring”
gray suction toy→ “gray suction toy”
teal and pink toy car→ “teal and pink toy car”
two pound purple dumbbell→ “purple dumbbell”
one pound pink dumbbell→ “pink dumbbell”
three pound brown dumbbell→ “brown dumbbell”
dog rope toy→ “white pink and gray rope with knot”
fish toy→ “fish”
chain link toy→ “skinny green rectangular toy”
toy boat train→ “plastic toy boat”
white coat hanger→ “white coat hanger”
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