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Abstract: This work considers planning the manipulation of deformable 1-
dimensional objects such as ropes or cables, specifically to tie knots. We propose
TWISTED: Tying With Inverse model and Search in Topological space Exclud-
ing Demos, a hierarchical planning approach which, at the high level, uses ideas
from knot theory to plan a sequence of rope topological states, while at the low
level uses a neural-network inverse model to move between the configurations in
the high-level plan. To train the neural network, we propose a self-supervised
approach, where we learn from random movements of the rope. To focus the
random movements on interesting configurations, such as knots, we propose a
non-uniform sampling method tailored for this domain. In a simulation, we show
that our approach can plan significantly faster and more accurately than baselines.
We also show that our plans are robust to parameter changes in the physical sim-
ulation, suggesting future applications via sim2real.
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1 Introduction
Deformable object manipulation is important for many applications, such as manufacturing and
robotic surgery. In particular, manipulating 1-dimensional (1D) objects such as ropes, cables, and
hoses, is a challenging and exciting research area that has drawn recent attention [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]. There are several challenges to 1D object manipulation.

Representing the state of the object is difficult, as unlike rigid objects, the object may have infinite
degrees of freedom [11, 12, 13]. Perception of a rope-like object is complex due to self-occlusions,
the similarity between different rope parts, and self-loops [1, 14, 15, 16, 17, 18]. Planning typically
requires an effective abstraction of the states and the actions, which may be difficult to define [19,
20], and low-level control for executing a plan must handle the flexibility and deformability of the
rope – all non-trivial control problems [3, 21, 22]. To the best of our knowledge, a system that can
generally manipulate 1D objects is beyond the capabilities of current technology. Our focus in this
work is on the planning component in 1D manipulation, particularly rope manipulation and knot
tying. As mentioned above, planning for rope manipulation is non-trivial, as the state space may
be large or infinite, and tasks like knot-tying essentially have a ‘needle in a haystack’ characteristic
and require exhaustive exploration to reach desired states. Accordingly, most prior studies on rope
manipulation relied on human demonstrations in lieu of automatic search [3, 23, 5, 24, 25, 6, 26, 27].

This paper tackles the problem of rope manipulation planning without any demonstrations. Our
main contribution is a hierarchical search algorithm that exploits prior knowledge about knot-tying
geometry for its high-level plan, with self-supervised learning of an inverse model for executing
the low-level control, which we call Tying With Inverse model and Search in Topological space
Excluding Demos – TWISTED. TWISTED is trained and evaluated in a physical simulation. We
demonstrate, however, that our planning results are robust to variations of physical properties such
as friction. Thus, we believe that our planning approach can be integrated with real-robot perception
and control for a complete 1D manipulation system in the future. We demonstrate that TWISTED
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can tie various types of knots and can generalize to tie knots that were not seen during the training.
To the best of our knowledge, this is the first demonstration of such a capability, which cannot be
obtained by previous work that required a human demonstration of the knot to tie. Finally, while
TWISTED is tailored for knot tying by building on knot theory for high-level planning, our general
methodology may be useful for other tasks where a well-established theory may inform the high-
level characterization of the problem, while a learning-based method is used for low-level control.

2 Background

Figure 1: P-data Topological state representation: each column
corresponds to an intersection along the rope of L links. Row
one is ordered from 1 to L in ascending order. Row two, for each
intersection, defines the other link in the intersection. The label
”o”/”u” classifies the vertical arrangement at each intersection
(over or under). Finally the last row identifies the ”sign” – see
appendix Section 9.1. E.g. in the center state representation link
1 is over link 2 with a ”+” sign

In our work, we build on knot-
theory for high-level planning.
In this section, we give a brief
overview of knot theory. The
most common way to solve
problems like knot-tying, with
a high-dimensional and continu-
ous state and action spaces, and
long-horizon planning is to sep-
arate it into a topological repre-
sentation for high-level planning
and a geometric representation
for low-level control, which is
solved using learning [24]. We
represent a rope as having L
links, and denote by q ∈ Q the
rope configuration, with Q ⊆
R2L+5. The first seven coordinates describe the global position of the middle rope link (position
(x, y, z) and quaternion representation for the rotation), and the remaining L − 1 joints are each
described by yaw and pitch values of the i− 1 link relative to link i.

We follow Yan et al. [3], where the discrete topological representation for S is P-data (see appendix
Section 9.1), and we denote Top:Q → S the mapping from a configuration to its topological state.
The “complexity” of a topological state s ∈ S is defined according to the number of crosses (link
intersections, see Section 9.1) it represents figure 1. Knot theory [28] suggests Reidemeister moves
as actions that transition the rope between topological states. In this work, we will use them as
high-level actions during the search. We denote the space of Reidemeister moves as AR and PR :
S×AR → S as the transition function of topological states using Reidemeister moves. Reidemeister
[28] proved that between any two topological states s, s′ ∈ S, there exists a sequence of actions that
starts in s and ends in s′, namely, ∃a0, . . . , ak ∈ AR s.t. S′ = PR(. . . PR(PR(s, a0), a1) . . . , ak).
The Reidemeister moves are (1) Reidemeister I (R1) which moves one segment to create a new
loop, (2) Reidemeister II (R2) which pulls the middle segment and creates a new intersection with
opposite signs, and (3)the Cross (C) creates a new intersection between two segments. Examples of
those actions can be visualized in Figure 4 in the appendix.

Considering the knot-tying problem as a trajectory over topological states with Reidemeister moves
as actions, translates the original problem of directly manipulating rope configurations to a problem
of a shorter horizon and a “lower” branching factor. This approach has been adopted in different
algorithms [3, 23, 5, 24, 25].

Finally, we use the topological motion primitives action space [3]: When manipulating a rope with
L links, an action is a curve c ∈ C, parameterized by the link to grab l ∈ [1, L]1, an endpoint
in (x, y) (in the workspace), and the maximal height zmax. We denote the transition function for
curves applied on configurations by f : Q×C → Q. Yan et al. [3] observed that the space of curves
C approximates well all the possible Reidemeister moves available from a given topological state.

1We associate a fixed point for every link.
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Figure 2: TWISTED: Given initial and goal topological states, we iteratively call a high-level plan-
ner to find plans to follow (top row). The plan uses an inverse model to transition between consec-
utive topological states (bottom right). When following a plan, new information is integrated into a
tree of all known configurations, which seeds the high-level planner with initial states (bottom left).
Gray boxes are high-level states, green boxes are low-level states (rope configuration), blue boxes
represent the inverse model, and our environment in Mujoco is red. See Section 4.

For this reason, in this work, we follow Yan et al. [3], and plan using Reidemeister moves while
manipulating the rope with curves.

3 Related work
Manipulating deformable objects presents varying degrees of difficulty [29]. For rope manipulation,
recent studies focused on either learning from human demonstrations [2, 6, 3] or solving short-term
plans (e.g., changing the shape of the rope, but not tying a knot) through pick-and-place actions
[7, 27]. Differently, in our work we tackle long-term planning, such as knot tying, without demon-
strations. To handle the challenging deformable-object dynamics of ropes, previous methods used
self-supervised learning [10, 26, 17]. We also use self-supervised collected data to train our inverse
model. Finally, some previous works attempted to learn rope manipulation using reinforcement
learning (RL) methods [30, 31, 32]. However, as we show, our knot-tying tasks are too complicated
for off-the-shelf RL algorithms (see Section 5).
Several recent works studied the simpler task of rope un-tying [33, 34, 35, 15, 36]. In particular,
[33, 34] used graph-based search algorithms. Knot un-tying is simpler because the end goal is al-
ways the same (untangled rope), while in our work we specifically focus on a large space of possible
goals, which renders un-tying methods inapplicable.

4 TWISTED
In this section we describe the components that comprise our solution – TWISTED. We start with
the description of the simulated environment in Section 4.1, we follow with the description of the al-
gorithmic components in Sections 4.2, 4.3, and 4.4, and finally describe our data collection method-
ology 4.5. See Figure 2 for an overview.

4.1 Simulated Environment
The environment we used to learn and test TWISTED was created by the free, open-source sim-
ulation environment of Mujoco [37]. It includes the default rope of Mujoco and the end-effector
moving the rope. We used a free-moving end-effector to focus on the complexity of tying knots,
ignoring the additional complexity of controlling a robot manipulator2. It is crucial to mention that

2Although non-trivial, we expect that common motion planning solutions could be utilized in order to bridge
the gap from a free-moving end-effector to a complete robotic manipulator.

3



during planning, we run actions in the simulation itself, meaning that both evaluation and search use
the same Mujoco environment (i.e., the search acts with a perfect world model).

4.2 Planning Algorithm
TWISTED3 is best summarized as an iterative algorithm that given an initial rope configuration qinit
and goal state sg repeats three steps: (1) starts searching from a known reachable configuration,
(2) plans a high level trajectory whose states are in S, and actions in AR, and (3) uses a low-
level planner to follow subsequent states in the selected high-level plan. The iterative process of
TWISTED repeats until sg is reached (success) or a pre-specified timeout expires (terminating in
failure). See Algorithm 1.

Algorithm 1 TWISTED algorithm
Input qinit Initial configuration state and sg topo-
logical goal state
Output Low-level plan if found

1: init : T,P ▷ see data structures
2: sinit = Top(qinit)
3: populate P with plans from sinit
4: while Not timeout do
5: sslct = SelectTopologicalState()
6: Pslct = SelectP lan(sslct)
7: qslct = SelectConfig(sslct)
8: PlanFound = FollowP lan(qslct, Pslct)
9: if PlanFound then

10: ReturnP lan
11: else
12: RandomExpand()
13: end if
14: end while

Data structures: we maintain two data struc-
tures, a tree of known reachable configu-
rations and a set of high-level plans. The
known reachable configurations, is a tree T
whose vertices are configurations of the rope
with their corresponding topological states
(q, Top(q)) and the edges are low-level ac-
tions in C. Initially, T contains only a
root node - the rope’s initial configuration
qinit and its topological state sinit. We also
maintain a list of high level plans, P =
{Pi = (s0, s1, . . . sli = sg)}i from cur-
rently reachable topological states (see Sec-
tion 4.3). When a topological state s′ is dis-
covered for the first time by the low-level
planner (Section 4.3), we run the high-level
planner from s′ and store the results into P.

Plan selection: At the start of each iteration,
we need to select a plan to execute from P and a configuration to start executing the plan from. One
naive heuristic is to select a random configuration from the reachable configurations. However, due
to the problem’s sparsity, we observe that during the search, configurations in T with more crosses
are exponentially fewer than those with fewer crosses. We thus seek an approach that promotes con-
figurations corresponding to topological states with higher crosses. We therefore run the following
three sub-procedures in sequence:

SelectTopologicalState(): identifies the reachable topological states in T that have a high-level
plan to the goal. Samples one such topological state s according to one of two heuristics; random,
which is the uniform distribution4, and prioritize-crosses, which assigns s ∈ S probability that is
proportional to Cross(s) (i.e. prefers topological states with more crosses – motivating to search
deeper than the random heuristic).

SelectP lan(s): a high-level plan (sequence of topological states) P = s, s1, . . . sl = g is randomly
selected from all the high-level plans that start in s.

SelectConfiguration(s): randomly select a configuration from all configurations belonging to s.

Plan execution: Next, in FollowP lan, we follow the high level plan P = s0, s1, . . . sl, where
s0 = s and sl = sg , starting in s, and incrementally try to reach si>0 until sg is reached. To
transition from si to si+1, we use the low-level planner (Section 4.3) that uses the learned inverse
model (Section 4.4) to predict curves. The low-level planner applies multiple curves {cj}j to the
current configuration qi. Let q′j = f(qi, cj), and s′j = Top(q′j). If the transition for cj reaches a
configuration with more crosses, we add this information to T , and note that it could be the case that

3https://github.com/matansudry/twisted
4Even the random heuristic prioritizes complex topological states, as sampling a random topological state

induces a different distribution than sampling from all reachable configurations in T directly.
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s′j ̸= si+1 because the inverse model is not perfect. Nevertheless, this is an executable low-level
action; thus, we add it to our search tree.

Completeness guarantee: Finally, for completeness of the algorithm, after every iteration of
TWISTED, with probability p (hyper-parameter, with a default value of 0.05), we sample a ran-
dom reachable configuration q ∈ T , execute k = 100 random actions and add them to T if the
action transitions to a topological state with a greater or equal number of crosses (same conditions
as in the “plan execution” above). This ensures that given enough time, our algorithm is guaranteed
to find a solution. We denote this sub-routine as RandomExpand.

4.3 Planning and Search

TWISTED is composed of two levels of planning, high-level and low-level planning, that are called
as sub-procedures by the algorithm. We now describe the two planners with their states and actions.

High-level planner: with a state space S and Reidemeister moves AR as actions, finds all paths
from currently reachable topological states s ∈ T (not necessarily sinitial) to sg ∈ S using Breadth-
first search (BFS). Our BFS prunes new states s′ with Cross(s′) > Cross(sg), and returns a set
(possibly empty) of all paths that start in s and terminate in sg .

Low-level Planner: Given s and s′ two consecutive topological states in the high-level plan, we
search for a curve c ∈ C that traverses from s to s′. To successfully and efficiently find such a curve,
we utilize our inverse model (Section 4.4) and generate curves {ci ∈ C}K (K = 6). If any of the
newly found topological states are s′, we return success (if more than one action succeeds we use
the first one found), and the plan execution will move to the next topological state in the high-level
path. Otherwise, we return failure, and the iterative process of TWISTED repeats.

4.4 Inverse model
An action generator is crucial in knot-tying as the proportion of curves that transition the rope to a
given topological state could be extremely small (See Section 5.1 where we show the data collection
difficulties). This makes it unlikely that a small set of randomly selected curves could be found
to satisfy the required transition between topological states. Thus, we trained an inverse model to
generate action candidates that are likely to satisfy the required transition. The inverse model is
an auto-regressive model [38] predicts elements as follows: link to pickup, the height of the curve
zmax, destination X position, and destination Y position. The link is a categorical and modeled
as a multinomial distribution, and the other elements are continuous and modeled with a Normal
distribution. Every element is predicted with an independent sub-network, whose inputs are: (1)
the current configuration, (2) the current (x, y, z) coordinates of each of the L links, (3) the next
topological state s′, and (4) all the elements before the current element (e.g. zmax gets the link index
as input). See Figure 5 in appendix section 9.4.

Training: we collected data generated from random actions to train the inverse model (see Sec-
tion 4.5). The data D contains transitions (s, s′, q, c), s and s′ are current and following topological
states, q is the current configuration, and c is the curve taken. Since the data collection is time-
consuming, we follow previous work of Yan et al. [3] and apply the Mirror and Reverse augmenta-
tions to our data.5 We train the model via a maximum likelihood objective on D (predicting c).

Inference: during inference, we follow the standard ancestral sampling scheme for auto-regressive
models [38]; we predict a distribution for every element, sample from it, and feed the result to predict
the next element in the sequence.

4.5 Data collection
To train the inverse model, we must collect data that represents movements typically encountered
when tying knots. The problem, however, is that without a controller that knows how to tie knots,
nor human demonstrations, it is not clear how to collect such data. Initially, we tried to collect
rollouts simply by executing random walks of curves. However, in doing so, we found a very low

5In Yan et al. [3] these augmentations were applied over manual demonstrations. In our work, we apply
them on randomly collected data.
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number of topological states with three crosses (only 27 states per CPU core per hour), demonstrat-
ing that applying random actions to the rope typically does not lead to knot-like configurations. We,
therefore, designed a collection scheme that selectively resets the environment. Using our scheme,
we collected 537 successful transitions per hour per CPU core. We used that to collect a data set of
1,670,000 data points. For full details see Appendix 9.3.

5 Experiments
The experiments aim to address the following items: (1) How sensitive is knot-tying planning to
the action space, and is a continuous action space necessary? (2) Comparison of TWISTED with
baselines (3) How sensitive is TWISTED to changes in the physical simulation? (4) How well does
TWISTED generalize to unseen knots?

5.1 What makes knot-tying difficult?

One difficulty of our knot-tying problem is that it requires very accurate actions to solve. To demon-
strate this, we verify that even a fine discretization of the problem leads to significantly different
outcomes. In this experiment, we measure sensitivity to discritization of curves, i.e. test if using a
discretized curve reaches the same topological state as the next topological state (obtained by exe-
cuting the original non-discretized curve). Formally, given a curve, c = (i, zmax, x, y) ∈ C, which
includes three continuous elements (zmax, x, and y), we convert it to a discrete curve where each
element is rounded. zmax, is discritized in steps of 0.001, and x and y in steps of 0.01. Notice that
the size of the discretized curve space is 21× 70× 100× 100 = 14, 700, 000, already rather large.
We measure the accuracy of the resulting topological states. If the accuracy is high, there is little
difference in discretizing the action space, suggesting that knot tying could be solved using off-the-
shelf discrete planners [39, 40]. We ran over 600k data points of transitions from topological states
of two crosses to topological states of three crosses, and got an accuracy of 82%. These results show
knot tying is sensitive to discretization as very small changes in the actions can lead to different
topological states. As the space of available discretized actions is already rather large (larger action
spaces would make planning even more difficult) we conclude that discretization of the action space
is not a suitable approach to the knot-tying problem.

5.2 Success Rate of Different Algorithms
In this experiment, we compare several algorithms, including TWISTED and its ablations.

Low level only: We modify TWISTED to not use any high-level information. Essentially, using
random search over configurations with curves as actions. As there is no notion of topological
states, there is no way to use the inverse model here. Instead, we sample random curves. It is
important to notice that for this baseline, the search does not get feedback along the trajectory (in
TWISTED, we do, for instance, count the number of crosses). We use this baseline to demonstrate
how crucial high-level information is for knot tying.

Low+high level: We modified TWISTED not to use the inverse model. Instead, we sample random
actions replacing those suggested by the inverse model. Unlike the previous baseline, we do try
to follow a high-level plan. This baseline demonstrates the trade-off between intensive but more
accurate action prediction (inverse model) vs. an approach of guessing many random actions and
seeing if any suffice.

SAC+HER: In this baseline, we learn a stochastic policy using the Soft Actor-Critic (SAC)[41],
with Hindsight Experience Replay (HER)[42], and after training we replace our inverse model
with the policy. The objective of this baseline is to establish the performance of model-free RL
methods and the challenging problem of knot-tying.

TWISTED, RND: TWISTED using the random heuristic for topological state selection.
TWISTED, CRS: TWISTED using the prioritize-crosses heuristic for topological state selection.

Evaluation protocol: To evaluate the performance on different difficulty levels, we split our col-
lected data D (Section 4.5) into three levels: easy, medium, and hard. To classify the problems
(topological goal states), we counted the frequency each topological state has been recorded. Easy,
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medium and hard are the 33%, 66%, and 100% percentiles appearing the most in the data. From
every class of problems, we sampled ten representatives.

Results: None of the algorithms solve medium or hard in the time limit of 1800 seconds, demon-
strating the hardness of the knot-tying problem. Figure 3 (a) shows the number of solved tasks vs.
the running time for easy problems. First, observe that ”low level only” is barely able to solve two
out of the ten problems. This validates our earlier hypothesis in Section 4.5 that the problem is too
sparse to solve without prior knowledge of the problem structure (such as our high-level search).
Surprisingly, the model-free RL baseline is barely better than the random search. We observed that
during training, it did manage to consistently solve all 1-cross problems, but already for 2-cross
problems success rate was near zero. This suggests that knot-tying is a hard task to learn end-to-end
without proper domain knowledge. We hypothesize that the main reason this baseline fails is due
to the discrete nature of the topological states – in such cases algorithms cannot generalize between
“similar” states because as categorical variables, there is no notion of similarity, only the relation of
equality. Even a well utilized exploration method such as HER does little to mitigate this problem,
because it can only reinforce patterns for goals we reach, and as we saw when acting randomly,
like RL agents do at the beginning of training, there is little chance to advance to topological states
with many crosses (see Section 4.5). Finally, regarding the baselines, we see that because ”low +
high level” is so inferior to the full TWISTED versions, the inverse model is a valuable component
of our full solution. Comparing “TWISTED, RND” and “TWISTED, CRS”, we observe that the
results are not conclusive. To identify the better model, we sampled 15 additional easy goals to
get a statically significant separation on which is the better variant of TWISTED. The “TWISTED,
CRS” solved a total of 24/25, and the “TWISTED, RND” solved only 19/25. Under a Z-test the
“TWISTED, CRS” has a statistical significance of being better than the “TWISTED, RND” (using
α-level of 0.05), showing that planning deeper and utilizing prior knowledge (number of crosses) is
preferable. Therefore, in our next experiments, we use the “TWISTED, CRS” version.

5.3 Sensitivity Analysis
To motivate the usage of TWISTED in real-world applications we test what happens if the model
of the world in the planning computation is mismatched with the evaluation environment. In our
experiments, we focus on the friction coefficient. First, we validate that friction indeed significantly
impacts rope tying. To measure this, we compare the next topological state observed when applying
the same action from the same low-level state, under different friction coefficients. We evaluated
over 600,000 actions, and only 82% curves had the same topological state as the original friction
value. Next, we evaluate the performance of TWISTED trained with a single friction coefficient on
simulated environments with different frictions of the rope.

Variants: 100% friction denotes the default Mujoco friction, and the one we use for TWISTED.
The 95% and 105% variants, denote decreasing and increasing the friction by 5%.

Results: The performance of TWISTED is well-maintained with the different friction coefficients
(Figure 3 (b)). This asserts that TWISTED can handle some variations in the environment’s physics
such as friction (even though the resulting trajectories might be different than the original ones).

5.4 Generalization to Unseen Topological States
The number of available topological states for states with 3 or 4 crosses is above 500 and almost
8000 correspondingly. Naturally our data does not contains all of them because it is hard to sample
topological states of higher crosses (see Section 4.5 for analysis). Thus, we require our algorithm
to handle unseen topological states. We evaluate whether TWISTED can tie knots where the goal
state was not represented in D. For this, we take topological states with three crosses not seen in
D, and topological states with four crosses. In these out-of-distribution cases we expect the inverse
model to contribute less than in well represented states, and we expect that the planning components
in TWISTED will compensate for this distribution shift. For this reason, we extend search time by
a factor of 4×. Results are shown in figure 3 (c). Figure 3 (c) shows that TWISTED solved two out
of eight problems with unseen three cross states. Those states are harder to reach because they were
never seen in D during data collection. In figure 3 (c) we see that TWISTED solved three out of ten
problems with unseen states with four crosses. We recall that our data contain only one, two, and
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(a) (b) (c)

Figure 3: Anytime Success Rates for Different Settings. The X-axis is the algorithm run time and
the Y-axis is the number of solved problems. (a) Differnt knot tying algorithms, (b) ”TWISTED,
CRS” with different ropes and different friction to knot tying, and (c) ”TWISTED, CRS” on unseen
states with three crosses and four crosses, with eight and ten problems respectively

Algorithm Solved problems Friction Solved problems Goal states Solved problems
Low level only 2 95% 9 3 crosses 3/10
Low+high level 4 100% 10 4 crosses 2/8
SAC+HER 3 105% 9
TWISTED, RND 10
TWISTED, CRS 10

Table 1: Experiments Summary: (a) Success Rate of Different Algorithms, (b) Sensitivity Anal-
ysis, and (c) Generalization to Unseen Topological States

three crosses, and therefore these results show that TWISTED is not only memorizing the data, but
can generalize to some degree to unseen goal states.

6 Limitations
Our work has several important limitations that need to be addressed in order to make it more
practical and useful in real-world applications. First, simulation accelerates the training process but
introduces a sim2real gap between the simulation and real-world performance. This gap should be
tested on a real robot using real ropes. Furthermore, in this work we also simplified the problem;
we control a free-moving end-effector instead of controlling a manipulator (which might make some
curves unfeasible in some scenarios), and we get a perfect representation of the rope, where in reality
we would need first to estimate one. Finally, as our experiments demonstrate, TWISTED has shown
better performance on frequent data from the easy problems, but its performance decreases when
trying to solve more rare or unseen goals from medium and hard.

7 Outlook
We presented TWISTED – a hierarchical planning algorithm for knot tying, that relies on knot-
theory and a learned inverse model to automatically solve problems that previously required access
to human demonstrations. TWISTED outperforms various baselines, including a model-free deep
RL agent, and we demonstrated robustness to simulation parameters such as friction, and general-
ization to problems not seen during training (even to problems of greater complexity). We see this
as an important step towards general 1D object manipulation, and to the best of our knowledge, this
is the first work that manages to tie knots using random data instead of demonstrations.

An exciting area for improvement would be to utilize TWISTED as a demonstrations provider to
generate “valuable” data for an off-policy RL algorithm, either by distilling the planner into a pol-
icy [43] or by combining RL with imitation learning [44]. This could be the missing prior knowledge
that RL methods lack for knot-tying tasks (cf. Section 5). A different interesting future direction
might be to improve the data collection process to seek novel states instead of relying on random
actions. Collecting data from states where the system is less capable, could ultimately provide data
of higher quality and improve the performance of our learned inverse model. Finally, it would be
interesting to test TWISTED on a real system overcoming challenges such as estimating the rope
configuration and executing precise rope manipulation actions.
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9 Appendix

9.1 P-data, an abstract representation for rope states

A common way to abstract the state space in knot tying is using the P-data representation [24]. The
P-data representation translates a rope configuration to a matrix of discrete values that depends on
the number of link intersections. The P-data algorithm stages are: (1) project the 3D rope onto a 2D
on the horizontal plane. (2) Select rope direction by defining the head and tail of the rope. (3) Move
from head to tail and count the number of intersections along the path, starting from 1 to N. Those
intersections are also called crosses. Finally, (4) each intersection gets over/under value based on
which segment is over the other in the height dimension and also gets a sign plus/minus. The sign
defined as

sign =

−→
l over×

−→
l under

|−→l over×
−→
l under|

· −→ez ,

where ez is the unit normal of the horizontal plane, and lover and lunder are the two strands direc-
tional vectors. Examples of P-data of projected knots in Figure 1.

9.2 Reidemeister Moves

The various Reidemeister Moves are depicted in figure 4.

9.3 Collection process

Our data collection process is split into two steps, the first is random sampling with resets and the
second is noisy re-sampling.

The random sampling with resets works as follows: We maintain a set of configurations we
have already seen during data collection and their respective number of crosses, i.e. DQ =
{(q, Cross(Top(q))}q∈D. For every data collection iteration t, we load the simulation with a con-
figuration sampled uniformly from qt ∼ DQ, take a random 100 curves cit (for i ∈ [1 . . . 100]),
and reach a new configuration qit+1 with a topological state sit+1. We sample the curve parameters
uniformly: the link is discrete and sampled from [1, 21]. The other three, x, y, and zmax, are con-
tinuous variables sampled from [-0.5, 0.5], [-0.5, 0.5], and [0.001, 0.07], respectively. If the number
of crosses in Cross(sit+1) > Cross(st) the transition (qt, st, c

i
t, q

i
t+1, s

i
t+1) is added to D, and the

configuration qit+1 is added to DQ.

In noisy re-sampling, the goal is to increase the amount of data using previously collected data. First,
we sample transitions from our data set (thus they are “interesting”, i.e. move the agent to higher
number of crosses), add noise to the action, and obtain a new transition based on the same starting
configuration and the modified action. The noise distribution is uniform and characterized by four
parameters that offset the current action: The link offset is sampled from {−1, 1}. The x, y, and
zmax offsets are sampled from [-0.05, 0.05] but are clipped to stay within the limits of [0.001, 0.07]
for zmax and [-0.5, 0.5] for x and y. See Algorithm 2 for more information.

9.4 Inverse model

Our inverse model architecture is detailed in figure 5.

(a) (b) (c)

Figure 4: (a) Reidemeister move one, (b) Reidemeister move two and (c) cross.
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Algorithm 2 Data Collection
1: while time < TimeBudgetStageOne do
2: state = GetStateFromData() ▷ Select state randomly
3: PotentialActions = SampleRandomAction()
4: for action in PotentialActions do
5: NextState = RunActionInSim(action)
6: if V alidaStete(NextState) then ▷ Checks if the action increases number of crosses
7: SaveAction(action)
8: else
9: ResetState()

10: end if
11: end for
12: end while
13: while time < TimeBudgetStageTwo do
14: state, action = GetStateAndActionFromData() ▷ Select tuple randomly
15: noise = SampleActionNoise()
16: NewAction = action+ noise
17: NextState = RunActionInSim(NewAction)
18: if V alidStete(NextState) then ▷ Checks if the action increases number of crosses
19: SaveAction(action)
20: else
21: ResetState()
22: end if
23: end while

Figure 5: Inverse model - Auto-regressive Stochastic Network. The network predicts an action in an
auto-regressive manner: first is predicts the link index l ∈ [1, L], then the height of the curve zmax,
finally it predicts the x and y coordinates of the curve. All predictions are stochastic (Multinominal
for link index, and Gaussian otherwise). Besides the previous elements, the input of each element
includes the current configuration qt, the next topological state st+1, and the link positions of all the
rope links. The weights of the sub-components are not shared.
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