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Abstract: Gradient-based methods enable efficient search capabilities in high
dimensions. However, in order to apply them effectively in offline optimization
paradigms such as offline Reinforcement Learning (RL) or Imitation Learning (IL),
we require a more careful consideration of how uncertainty estimation interplays
with first-order methods that attempt to minimize them. We study smoothed
distance to data as an uncertainty metric, and claim that it has two beneficial
properties: (i) it allows gradient-based methods that attempt to minimize uncertainty
to drive iterates to data as smoothing is annealed, and (ii) it facilitates analysis
of model bias with Lipschitz constants. As distance to data can be expensive to
compute online, we consider settings where we need amortize this computation.
Instead of learning the distance however, we propose to learn its gradients directly
as an oracle for first-order optimizers. We show these gradients can be efficiently
learned with score-matching techniques by leveraging the equivalence between
distance to data and data likelihood. Using this insight, we propose Score-Guided
Planning (SGP), a planning algorithm for offline RL that utilizes score-matching
to enable first-order planning in high-dimensional problems, where zeroth-order
methods were unable to scale, and ensembles were unable to overcome local
minima. Website: https://sites.google.com/view/score-guided-planning/home

Keywords: Diffusion, Score-Matching, Offline, Model-Based Reinforcement
Learning, Imitation Learning, Planning under Uncertainty

1 Introduction
Uncertainty minimization is a central problem in offline optimization, which manifests as many
different paradigms in robot learning. In offline model-based RL (MBRL [1, 2, 3, 4]), penalization
of uncertainty acts as a regularizer against model bias [5, 6, 7] and prevents the optimizer from
exploiting model error [8, 6, 9, 10]. In offline model-free RL, it regularizes against overestimation
of the Q function [11, 12]. In addition, many imitation learning (IL) algorithms can be viewed as
minimizing distribution shift from the demonstrator distribution [13] .

Despite the importance of uncertainty, statistical uncertainty quantification remains a difficult problem
[14, 15, 8, 6, 16]; Gaussian processes (GPs) [6, 17, 18] rarely scale to high dimensions, and ensembles
[8, 4, 19] are prone to underestimating true uncertainty [15]. As such, previous works have often
taken the approach of staying near the data by maximizing data likelihood. These methods either
minimize distribution shift between the optimized and data distribution for behavior regularization
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[20, 21, 22, 23], or the occupation measure of the optimized policy and the data distribution [11, 24,
25, 26, 27, 28, 29, 30]. Both of these require the likelihood of the data to be estimated.

A promising direction for estimating the data likelihood is to leverage techniques from likelihood-
based generative modeling, such as variational autoencoders (VAE) [31, 32, 33], generative adversarial
networks (GAN) [34, 35, 36, 13], and flow-based models [25, 37]. Yet, these prior works have shown
that training density models to generate accurate likelihoods can be challenging, especially for high-
dimensional data. While gradient-based methods have good scalability properties that make them
desirable for tackling offline optimization problems in this high-dimensional regime, the effect of
incorrect likelihoods are further exacerbated in this setting as they lead gradient-based methods into
spurious local minima. Thus, we ask in this work: can we design gradient-based offline optimization
methods that encourage data likelihood, without explicit generative modeling of likelihoods?

Our key insight is that in order to maximize the data likelihood with gradient-based methods, we do
not need access to the likelihood itself. Rather, having access to a first-order oracle (gradients), known
as the score function, is sufficient. We claim that directly utilizing the score function has two benefits
compared to likelihood-based modeling. i) First, recent breakthroughs in score-based modeling
[38, 39, 40] show that the score function is considerably easier to estimate with score-matching
techniques [40, 39], as it bypasses estimation of the partition function that is required for computation
of exact likelihoods [40, 41]. ii) In addition, we show that score matching with annealed perturbations
[40] gives gradients that stably drive decision variables to land exactly on data when uncertainty is
minimized with gradient-based optimization, a property we term data stability. We demonstrate this
by showing that the negative log likelihood of the perturbed empirical distribution, whose gradients
score-matching estimates, is equivalent to a softened distance to data [42].

Furthermore, we ask: when, and why, would approaches that penalize distance to data surpass the
ensemble method of statistical uncertainty quantification [4, 9]? We show that unlike empirical
variance among ensembles, we can relate how much smoothed distance to data underestimates true
uncertainty with the Lipschitz constant, for which we can use statistical estimation to put confidence
bounds [18], or utilize structured domain knowledge [43]. Moreover, we show that ensembles do not
necessarily have the data stability property due to statistical noise; therefore, optimizing for ensemble
variance can easily lead to local minima away from data in gradient-based optimization.

To put our theory into a practical algorithm, we propose Score-Guided Planning (SGP), a gradient-
based algorithm that estimates gradients of the log likelihood with score matching, and solves
uncertainty-penalized offline optimization problems that additively combine the cumulative reward
and the log likelihood of data without any explicit modeling of likelihood. SGP enables stable
uncertainty minimization in high-dimensional problems, enabling offline MBRL to scale even to
pixel action-spaces. We validate our theory on empirical examples such as the cart-pole system, the
D4RL benchmark [44], a pixel-space single integrator, and a box-pushing task [45] on hardware.

2 Preliminaries
Offline Model-Based Optimization. We first introduce a setting of offline model-based optimiza-
tion [46]. In this setting, we aim to find x that minimizes an objective function f : Rn → R, but
are not directly given access to f ; instead, we have access to xi ∼ p(x), and their corresponding
values f(xi), such that the dataset consists of D = {(xi, f(xi))}. Denoting p̂(x;D) as the empirical
distribution corresponding to dataset D, offline model-based optimization solves

min
x

fθ∗(x) s.t. θ∗ = argmin
θ

Ex∼p̂(x;D)

[
∥fθ(x)− f(x)∥2

]
. (1)

In words, we minimize a surrogate loss fθ(x), where we choose θ as the solution to empirical
risk minimization of matching f given the data. Denoting x∗ = argminx fθ∗(x), one measure of
performance of this procedure is error at optimality, ∥f(x∗)− fθ(x

∗)∥.

Uncertainty Penalization. The gap ∥f(x∗) − fθ(x
∗)∥ potentially can be large if fθ fails to

approximate f correctly at x∗, which is likely if x∗ is out-of-distribution (o.o.d.). To remedy this,
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previous works [8, 46, 47] have proposed adding a loss term that penalizes o.o.d. regions. We denote
this penalized objective as

f̄θ(x) := fθ(x) + βµ2(x), (2)

where β ∈ R≥0 is some weighting parameter, and µ(x) is some notion of uncertainty. Intuitively this
restricts the choice of optimal x to the training distribution used to find θ∗, since these are the values
that can be trusted. If the uncertainty metric overestimates the true uncertainty, ∥f(x)− fθ(x)∥ ≤
µ(x), it is possible to bound the error at optimality directly using µ(x∗).

Offline Model-Based RL. While the offline model-based optimization problem described is a
one-step problem, the problem of offline model-based RL (MBRL) involves sequential decision
making using an offline dataset. In offline MBRL, we are given a dataset D = {(xt, ut, xt+1)i}
where x ∈ Rn denotes the state, u ∈ Rm denotes action, t is the time index and i is the sample index.
Again denoting p̂(xt, ut, xt+1;D) as the empirical distribution corresponding to D, and introducing
µ(xt, ut) as a state-action uncertainty metric [8], uncertainty-penalized offline MBRL solves

max
x1:T ,u1:T

∑T
t=1 rt(xt, ut)− βµ2(xt, ut)

s.t. xt+1 = fθ∗(xt, ut) ∀t,
θ∗ = argmin

θ
E(xt,ut,xt+1)∼p̂

[
∥xt+1 − fθ(xt, ut)∥2

]
.

(3)

In words, we first approximate the transition dynamics from data, then solve the uncertainty-penalized
optimal control problem assuming the learned dynamics. Previous works have used ensembles
[8, 9, 48], or likelihood-based generative models of data [25] to estimate this uncertainty.

The resulting open-loop planning problem can either be solved with first-order methods [49, 50], or
zeroth-order sampling-based methods [45, 9] such as CEM [51] or MPPI [52]. While insights from
stochastic optimization [53] tell us that first-order methods are more favorable in high dimensions and
longer horizons as the variance of zeroth-order methods scale with dimension of decision variables
[54], first-order methods require careful consideration of how amenable the uncertainty metric is to
gradient-based optimization.

3 Distance to Data as a Metric of Uncertainty
In order to find a metric of uncertainty that is amenable for gradient-based offline optimization,
we investigate smoothed distance to data as a candidate. We show that this metric allows us to
drive iterates of gradient-based methods that minimize uncertainty to land on data as smoothing is
annealed. In addition, it allows us to quantify how much we underestimate true uncertainty by using
the Lipschitz constant of error. All proofs for theorems in this section are included in Appendix A.

3.1 Properties of Distance to Data
We first formally define our proposed metric of uncertainty for offline model-based optimization.

Definition 3.1 (Distance to Data). Consider a dataset D = {xi} and an arbitrary point x ∈ Rn. The
standard squared distance from x to the set D can be written as d(x;D)2 = minxi∈D

1
2∥x − xi∥2.

We define smoothed distance to data using a smoothed version of this standard squared distance,

dσ(x;D)2 := Softminσ
1
2∥x− xi∥2 + C = −σ2 log

[∑
i exp

[
− 1

2σ2 ∥x− xi∥2
]]

+ C, (4)

where C is some constant to ensure positiveness of dσ(x;D)2, and σ > 0, also known as the
temperature parameter, controls the degree of smoothing with σ → 0 converging to the true min.

The motivation for introducing smoothing is to make the original non-smooth distance metric
more amenable for gradient-based optimization [55, 56]. We now consider benefits of using
µ(x) = dσ(x;D) as our uncertainty metric, and show that as the smoothing level is annealed
down, minimizing this distance allows us to converge to the points in the dataset.

Proposition 1 (Data Stability). Consider a monotonically decreasing sequence σk such that σk → 0,
and denote xn

k as the nth gradient descent iteration of minx dσk
(x;D)2. Then, almost surely with
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random initialization and appropriate step size, we have

lim
k→∞

lim
n→∞

xn
k ∈ D. (5)

We note that empirical variance among ensembles [8] is prone to having local minima away from data
due to statistical variations, especially with small number of ensembles, which makes them unreliable
for gradient-based optimization. Next, we show that it is possible to analyze how much softened
distance to data underestimates true uncertainty using the Lipschitz constant of the model bias Le.
Proposition 2 (Lipschitz Bounds). Let Le be the local Lipschitz [57] constant of the true error (bias)
e(x) := ∥f(x) − fθ(x)∥2 valid over Z ⊆ X , where X is the domain of the input x. Then, e(x) is
bounded by

e(x) ≤ e(xc) +
√
2Le

√
dσ(x;D)2 + C2, (6)

for all x ∈ Z , where xc := argminxi∈D
1
2∥x − xi∥22, i.e., the closest data-point, and C2 =

σ2 logN − C, where C is defined in (4).
In general, it is difficult to obtain Le in the absence of more structured knowledge of f . However, it
is possible to obtain confidence bounds on Le using statistical estimation with pairwise finite slopes
∥e(xi)− e(xj)∥/∥xi − xj∥ within the dataset [58, Ch. 3] [18] . We believe this offers benefits over
ensembles as characterizing the convergence of neural network weights with randomly initialized
points is far more complex to analyze. We compare distance to data to other uncertainty metrics in
Figure 1 in simple 1D offline model-based optimization, where we show that ensembles [8, 9] have
local minima outside of data, and unpredictably underestimates uncertainty due to model bias.

3.2 Estimating Gradients of Distance to Data with Score Matching

Although we have shown benefits of smoothed distance to data as an uncertainty metric amenable for
gradient-based optimization, it is costly to compute at inference time as we need to iterate through
the entire dataset. At the cost of losing guarantees of exact computation in Section 3.1, we consider
ways to amortize this computation with function approximation. We first show the equivalence of the
smoothed distance-to-data to the negative log likelihood of the perturbed empirical distribution [40],
which applies randomized smoothing [55, 56] to the empirical distribution p̂(x;D).
Definition 3.2 (Perturbed Empirical Distribution). Consider a datasetD = {xi} and its corresponding
empirical distribution p̂(x;D). We define pσ(x;D) as the noise-perturbed empirical distribution,

pσ(x
′;D) :=

∫
p̂(x;D)N (x′;x, σ2I)dx = 1

N

∑
xi∈DN (x′;xi, σ

2I). (7)

Figure 1: Comparison of different uncertainty metrics. Top row: Visualization of distance to data
against GPs and ensembles with M = 2. Bottom row: Visualization of the penalty µ(x)2. All the
metrics underestimate uncertainty to varying degrees, but distance to data can be more amenable for
analysis; as we increase samples, distance to data will be able to bound the true uncertainty more
closely by estimating Lipschitz constants using pairwise slopes in the dataset. In addition, distance to
data shows more stability to data while ensembles have local minima outside of data.
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Proposition 3. The negative log-likelihood of the perturbed empirical distribution pσ(x) is equivalent
to smoothed distance to data by a factor of σ2, up to some constant that does not depend on x,

−σ2 log pσ(x;D) = dσ(x;D)2 + C(N,n, σ). (8)

This connection to the perturbed empirical distribution allows us to use generative modeling tools that
randomly perturb data [59, 40, 39], such as denoising autoencoders. However, computing likelihoods
directly have shown to be difficult for high-dimensional data [40]. Additionally, even if such a
likelihood-based generative model can estimate likelihoods with low error, there are no guarantees
that its gradients will also be of low error (Appendix A.4), which defeats our purpose of finding
a metric amenable to gradient-based optimization. Thus, we propose to estimate the gradients of
the perturbed empirical distribution (score function) directly [40, 39], which have shown promising
performance in generative modeling [38] as it bypasses the estimation of the partition function.

Estimating the score function is a process known as score-matching. Following [40], we introduce
noise-conditioned score function s(x, σ) := ∇x log pσ(x;D) [40] and aim to optimize the following
objective given some decreasing sequence of annealed smoothing parameters σk,

min
θ

∑
k σ

2
kEx∼pσk

(x;D)
[
∥sθ(x, σk)−∇x log pσk

(x;D)∥2
]
, (9)

which has been shown to be equivalent to the denoising-score-matching loss [59]. Compared to
explicitly computing∇x log pσk

(x;D) which would require iterating through the entire dataset, the
denoising loss allows us to learn the score function using batches of data.

min
θ

∑
k σ

2
kE x∼p̂(x;D)

x′∼N (x′;x,σ2
kI)

[
∥sθ(x′;σk) + σ−2

k (x′ − x)∥2
]
. (10)

4 Planning with Gradients of Data Likelihood
Having illustrated benefits of using smoothed distance to data as an uncertainty metric, we now turn
to the sequential decision-making setting of offline MBRL, where we use notation from Section 2.

Offline MBRL with Data Likelihood. Consider a learned dynamics model fθ from the dataset
D = {(xt, ut, xt+1)i}, as well as the perturbed empirical distribution pσ(xt, ut;D) of the (xt, ut)
pairs in the dataset D. Then, given some sequence of rewards rt, we consider the following planning
problem of maximizing both the reward and the likelihood of data,

max
x1:T ,u1:T

T∑
t=1

rt(xt, ut) + βσ2
T∑

t=1

log pσ(xt, ut;D)

s.t. xt+1 = fθ(xt, ut) ∀t ∈ [1, T ].

(11)

Note that−σ2 log pσ(xt, ut) is equivalent to smoothed distance to data dσ(xt, ut;D)2 as an objective,
and acts as an uncertainty penalty, preventing the optimizer from exploiting o.o.d. solutions.

Score-Guided Planning (SGP). Given a differentiable rt, we propose a single-shooting algorithm
that rolls out fθ and computes gradients of Equation (11) with respect to the input trajectory. We first
denote the sensitivity of the state and input at time t (xt, ut) with respect to the input at time j as
∂xt/∂uj and ∂ut/∂uj . Then, the gradients of Equation (11) can be expressed using this sensitivity,

∂

∂uj

[
T∑

t=1

rt(xt, ut) + βσ2
T∑

t=1

log pσ(xt, ut;D)

]

=
T∑

t=1

[
∂rt
∂xt

∂xt

∂uj
+

∂rt
∂ut

∂ut

∂uj
+ βσ2

[
∂ log pσ(xt, ut)

∂xt

∂xt

∂uj
+

∂ log pσ(xt, ut)

∂ut

∂ut

∂uj

]]
.

(12)

Note that ∂ log pσ(xt, ut)/∂xt and ∂ log pσ(xt, ut)/∂ut can be obtained using the noise-conditioned
score estimator sθ(x, u, σ) in Section 3.2, where we extend the domain to include both x and u. After
using reverse-mode autodiff (Appendix B.1) to compute the gradient, we call optimizers that accept
gradient oracles, such as Adam [50]. We also note that this gradient computation can be extended
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to feedback policy gradients in Appendix B.5. Finally, we train a noise-conditioned score function
for some sequence σk, and anneal the noise-level during optimization following [40]. SGP is also
described with an algorithm block in Appendix B.3.

Related Methods. LDM, COMBO, and DOGE [25, 12, 60] are closely-related offline methods that
penalize for data likelihood or distance to data. Many IL methods [41] are also related, as SGP
with zero rewards can be used to imitate demonstration data by maximizing data likelihood [13]
(Appendix B.6). In particular, AIRL [35] maximizes a rewardless version of our objective using
GANs[34]. However, these methods primarily rely on likelihood-based generative models, and do
not consider the interplay of generative modeling with gradient-based optimization. Diffuser [26, 61]
shares similar methodologies with SGP, and solves a variant of Equation (11) with a quadratic-
penalty-based approximation of direct transcription (Appendix B.4), which comes with benefits of
numerical stability for long horizons [62, exercise 10.1], and robustness to sparse rewards [63].

5 Empirical Results
We now test our proposed algorithm (SGP) empirically and show that it is an effective method
for offline optimization that has scalable properties in high-dimensional problems by leveraging
gradient-based optimization. All details for the included environments are presented in Appendix C.

Cart-pole System with Learned Dynamics. We apply our method to swing up a cart-pole model,
which undergoes a long duration (T = 60) dynamic motion, which directly translates to high number
of decision variables in single shooting. We first show the effects of model bias in in Fig. 2.C, where
vanilla MBRL plans a trajectory that leaves the region (red box) of training data. In contrast, SGP
keeps the trajectory within the training distribution (Fig.2.A). We further compare our method against
the baselines of ensembles (Fig.2.B,E) and CEM [51] (Fig.2.D,E). To fairly compare CEM against
SGP, we additionally train a data distance estimator that predicts the likelihoods directly based on
explicit computation of the softmin distance in Equation (4) (Appendix C).

We observe that the convergence of CEM is much slower than first-order methods (Fig.2.F). However,
we surprisingly obtain more asymptotic performance with CEM rather than using Adam for ensembles
- we believe this signifies presence of local minima in gradient-based minimization of ensemble
variance, as opposed to CEM which has some stochastic smoothing that allows it to escape local
minima [54]. Finally, we note that unlike score functions, distance to data is considerably more
difficult to train as we need to loop through the entire dataset to compute one sample. As a result, it is
costly to train and we were unable to train it to good performance in a reasonable amount of time.

Figure 2: Experiments for the cart-pole system, where blue is the hallucinated plan and green is
the actual rollout, and the red box is the regime of collected data. Note that SGP (A) results in a
successful swingup while MBRL (C) fails. Compared to other baselines such as B,D,E, our method
achieves much lower true cost with faster convergence (F).
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Dataset Env BC MOPO MBOP AWAC CQL Diffuser Ours
Random halfcheetah 2.1 35.4±2.5 6.3± 4.0 2.2 35.4 - 31.3±0.5
Random hopper 1.6 11.7±0.4 10.8±0.3 9.6 10.8 - 12.3±1.3
Random walker2d 9.8 13.6±2.6 8.1±5.5 5.1 7.0 - 15.6±7.1
Medium halfcheetah 42.6 42.3±1.6 44.6±0.8 37.4 44.0 42.8±0.3 46.6±2.8
Medium hopper 52.9 28.0±12.4 48.8±26.8 72.0 58.5 74.3±1.4 60.6±5.8
Medium walker2d 75.3 17.8±19.3 41.0±29.4 30.1 72.5 79.6±0.6 36.2±6.8
Med-Exp halfcheetah 55.2 63.3±38.0 105.9±17.8 36.8 91.6 88.9±0.3 61.6±2.4
Med-Exp hopper 52.5 23.7±6.0 55.1±44.3 80.9 105.4 103.3±1.3 109.2±0.3
Med-Exp walker2d 107.5 44.6±12.9 70.2±36.2 42.7 108.8 106.9±0.2 103.0±2.8

Table 1: Comparing performance of our algorithm on the D4RL [44] dataset. Similar to [26, 68], we
bold-face 95% of max performance. Ours is averaged from 5 trials. We emphasize that we outperform
ensembles (MOPO) in many of the tasks.

D4RL Benchmark. To evaluate our method against other methods on a standard benchmark, we use
the MuJoCo [64] tasks in the D4RL [44] dataset with three different environments and sources of data.
To turn our planner into a controller, we solve the planning problem with some finite horizon, rollout
the first optimal action u∗

1, and recompute the plan in a standard model-predictive control (MPC)
[65] fashion. We compare against methods such as Behavior Cloning (BC) [22, 21], MOPO [8],
MBOP [66], CQL [23], AWAC [67], and Diffuser [26]. Our results demonstrate that our algorithm
performs comparably to other state-of-the-art methods. On many of the tasks, we demonstrate
better performance compared to MOPO [8] which uses ensembles for uncertainty estimation, while
requiring less memory. This empirically supports our proposed benefits of using score matching for
gradient-based offline MBRL. In addition, we outperform BC in many tasks, illustrating that we
achieve better performance than pure imitation learning by incorporating rewards.

Pixel-Based Single Integrator. Pixel spaces have long been a challenge for MBRL due to the
challenges of reliably controlling from images [69], learning pixel-space dynamics, and combating
the resulting model-bias [2, 30, 70, 71]. To show scalability of our method, we present a 32 × 32
pixel-based single integrator environment where the action space is defined in pixel space, similar to
a spatial action map [72]; see Fig. 3 for visuals. Our planning problem requires proposing a sequence
of 32×32 control images, which minimizes cost (goal-reaching while minimizing running cost) when
rolled out through the dynamics (see Appendix C for details and numerical results). We demonstrate
that SGP capably mitigates model bias, generating plans consisting of plausible observation/controls
near the data; thus, these plans are closely followed when executed open-loop under the true dynamics
(Fig.3.A). When ignoring the effect of model bias and planning naïvely with MBRL (Fig.3.B), i.e.,
setting β = 0, the resulting trajectory exploits the subtleties of the chosen cost function, planning an
unrealistic trajectory which leads to high cost at runtime. Also, we show that ensembles are unable to
stably converge back to the data manifold of images seen during training, instead getting trapped in
local minima, planning unrealistic trajectories which translate to poor runtime rollouts on the true
system (Fig.3.C). Moreover, due to the high dimensionality of this action space (ut ∈ R322 ), we see
that zeroth-order methods, such as CEM [51], lead to very low convergence rates (Fig.3.D) due to the
large number of decision variables [53, 54]; again, this leads to high cost seen at runtime.
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Figure 3: Planned (left) and true (right) rollouts of observations for the pixel single-integrator with
pixel action space (center). Note that SGP (A) significantly outperforms Vanilla MBRL (B), Adam +
Ensembles (C), and CEM + Ensembles (D), which are unable to combat model bias during rollout.
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Figure 4: Visualization of the box-pushing experiment in A, where data was collected from 100
demonstrations illustrated in E. We show that SGP successfully stabilizes markers back to their
implicit constraints (B), which allows better predictions (C) than vanilla MBRL (D). We additionally
use the reward to change the goal into three different regions of down (F), middle (G), and up (H),
where vanilla MBRL fails, and behavior cloning is not capable of.
Box-Pushing with Learned Marker Dynamics. To validate our method on the data-scarce regime
of hardware, we prepare a box-pushing task from [45] where we leverage the quasistatic assumption
[73] and treat the positions of the motion capture markers as if they are states. An interesting feature
of this setup is that the markers implicitly live on a constraint manifold where the distance between
each marker is fixed; we ask if using score matching can stabilize the rollouts of prediction to obey
this implicit constraint, similar to how diffusion stabilizes back to the data manifold [42]. To test
this, we collect about 100 demonstrations of the box being pushed to different positions, which
lead to 750 samples of data tuples (xt, ut, xt+1). We aim to show that i) SGP can enforce implicit
constraints within the data, ii) distance to data acts as a successful uncertainty metric in data-scarce
offline MBRL, and iii) we can use the reward to change the task from imitation data.

Our results in Fig.4 demonstrate that SGP successfully imposes implicit constraints on the data. Not
only does minimization of uncertainty in the absence of rewards result in stabilization to the marker
position constraints (Fig.4.B), but the rollouts also become considerably more stable when we use the
distance to data penalty (Fig.4.C). In contrast, MBRL with β = 0 destroys the keypoint structure
as dynamics are rolled out, resulting in suboptimal performance (Fig.4.D). Finally, we demonstrate
through Fig.4.F,G,H that we can use rewards to show goal-driven behavior to various goals from a
single set of demonstration data, which behavior cloning is not capable of.

6 Conclusion and Discussion of Limitations
We proposed SGP, which is a first-order offline MBRL planning algorithm that learns gradients of
distance to data with score-matching techniques, and solves planning problems that jointly maximize
reward and data likelihood. Through empirical experiments, we showed that SGP beats baselines
of zeroth-order methods and ensembles, has comparable performance with state-of-art offline RL
algorithms, and scales to pixel-space action spaces with up to 15, 360 decision variables for planning.

We conclude with listing some limitations of our approach. Unlike ensembles, our method by
construction discourages extrapolation, which can be a limitation when the networks jointly recover
meaningful inductive bias. We also believe that computation is a current bottleneck for realtime appli-
cation of our MPC, which can take between 1-2 seconds per iteration due to gradient computations.
Finally, we have not investigated the performance of SGP under aleatoric uncertainty [48].
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A Proofs

A.1 Proof for Proposition 1

For each k, we denote the stationary point of gradient descent as x∗
k = limn→∞ xn

k . Using the
first-order optimality condition at the stationary point, we know that

0 = ∇xdσk
(x;D)2

∣∣
x=x∗

k

= −∇xσ
2
k log

[∑
i

exp
[
− 1

2σ2
k
∥x− xi∥2

]] ∣∣∣∣∣
x=x∗

k

=
σ2
k

∑
i exp

[
− 1

2σ2
k
∥x− xi∥2

]
σ−2
k (x− xi)∑

i exp
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− 1

2σ2
k
∥x− xi∥2

] ∣∣∣∣∣
x=x∗

k

.

(13)

We then have that∑
i

exp
[
− 1

2σ2
k
∥x∗

k − xi∥2
]
(x∗

k − xi) = 0

(
∑
i

exp
[
− 1

2σ2
k
∥x∗

k − xi∥2
]
)x∗

k =
∑
i

exp
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− 1

2σ2
k
∥x∗

k − xi∥2
]
xi

x∗
k =

∑
i
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2σ2
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∥x∗

k − xi∥2
]

∑
n exp

[
− 1

2σ2
k
∥x∗

k − xn∥2
]xi.

(14)

Let xj ∈ argminxi∈D ∥x∗
k − xi∥2 and ∆i(σk) = σ−2

k (∥x∗
k − xi∥2 − ∥x∗

k − xj∥2).
Lemma 4. When there is a unique minimizer xj , limk→∞ x∗

k = xj .

Proof. Since xj is the unique closest data point to x∗
k, ∆i > 0 for i ̸= j and ∆j = 0. With the

monotonically decreasing σk → 0, we know that

lim
k→∞

∆i(σk) =

{
0 if i = j

∞ otherwise.
(15)

Therefore,

lim
k→∞

exp
[
− 1

2∆i(σk)
]
=

{
1 if i = j

0 otherwise.
(16)

We then obtain

lim
k→∞

exp
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− 1

2σ2
k
(∥x∗

k − xi∥2 − ∥x∗
k − xj∥2)

]
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n exp
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n ̸=j exp
[
− 1

2∆n(σk)
]
+ 1

=

{
1 if i = j

0 otherwise.

(17)

Therefore, by combining (14) and (17), we have that

lim
k→∞

x∗
k = xj . (18)

Lemma 5. When there are multiple minimizers xj1 , . . . , xjm ∈ argminxi∈D ∥x∗
k − xi∥2,

limk→∞ x∗
k = 1

m

∑m
l=1 xjl .
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Proof. In contrast to (17) for the unique xj , we have that

lim
k→∞

exp
[
− 1

2 (∥x
∗
k − xi∥2 − ∥x∗

k − xj1∥2)
]∑

n exp
[
− 1
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[
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2∆n(σk)
]
+m

=

{
1
m if i ∈ {j1, . . . , jm}
0 otherwise.

(19)

Therefore, x∗
k converges to the geometric center of all the minimizers:

lim
k→∞

x∗
k =

1

m

m∑
l=1

xjl . (20)

Lemma 6. For a local minimizer x∗
k, xj is unique; for a local maximizer or saddle point x∗

k, xj is
not unique.

Proof. We first prove that xj is unique if x∗
k is a local minimizer by contradiction. If there are

multiple minimizers xj1 , . . . , xjm ∈ argminxi∈D ∥x∗
k − xi∥2, we have that

lim
k→∞

dσk
(x∗
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k log
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(21)

We observe that x∗
k is a local maximizer of minx dσk

(x;D)2, which raises contradiction.

Similarly, we prove that xj is not unique if x∗
k is a local maximizer or saddle point by contradiction.

Assume xj is the unique minimizer of minxi∈D ∥x∗
k − xi∥2, we have

lim
k→∞

dσk
(x∗

k;D)2 = min
i

lim
k→∞

∥x∗
k − xi∥2

= lim
k→∞

∥x∗
k − xj∥2

= 0.

(22)

Hence, x∗
k can not be a local maximizer or saddle point of minx dσk

(x;D)2, which raises contradic-
tion.

Since gradient descent converges to a local minimizer almost surely with random initialization [74]
and appropriate step sizes, there is a unique xj for x∗

k and (18) holds. We also note that a similar
conclusion can be reached by using Γ-convergence of the softmin to min as σk → 0 [75].
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A.2 Proof for Proposition 2

Let Le be the local Lipschitz constant of the error e(x) := f(x)− fθ(x) over some domain Z ⊆ X ,
and define xc := argminxi∈D

1
2∥x− xi∥22, i.e., the closest data-point. Then, we have the following:

∥f(x)− fθ(x)∥ ≤ min
xi∈D

[
e(xi) + Le∥x− xi∥2

]
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√
dσ(x;D)2 + C2

(23)

where C2 := σ2 logN − C, and C is the constant defined in (4). In the second line, we use the
fact that as xc is a feasible solution to the minimization in the first line, it is an upper bound on the
optimal value. In the sixth line, we have used the fact that for any vector v = [v1, . . . , vn]

⊤ ∈ Rn,
min{v1, . . . , vn} ≤ − 1

t log
∑n

i=1 exp(−tvi) +
logn
t for some scaling t. In the final line, we have

applied the definition of dσ(x;D) from (4).

A.3 Proof for Proposition 3

The perturbed data distribution can be written as a sum of Gaussians, since

pσ(x
′) :=

∫
p̂(x)N (x′;x, σ2I)dx

=

∫ [
1

N

∑
i

δ(xi)

]
N (x′;x, σ2I)dx

=
1

N

∑
i

∫
δ(xi)N (x′;x, σ2I)

=
1

N

∑
i

N (xi;x, σ
2I)

=
1

N

∑
i

N (x;xi, σ
2I)

(24)
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Then we consider the negative log of the perturbed data distribution multiplied by σ2,

−σ2 log pσ(x) = −σ2 log

[
1

N

∑
i

N (x;xi, σ
2I)

]

= −σ2 log

[∑
i

N (x;xi, σ
2I)

]
+ logN

= −σ2 log

[
1√

(2πσ)n

∑
i

exp

[
− 1

2σ2
∥x− xi∥2

]]
+ σ2 logN

= −σ2 log

[∑
i

exp

[
− 1

2σ2
∥x− xi∥2

]]
+ σ2 logN + σ2n

2
log(2πσ)

= −σ2LogSumExpi

[
− 1

2σ2
∥x− xi∥2

]
+ C(N,n,Σ)

= Softminσ

[
1

2
∥x− xi∥2

]
+ C(N,n,Σ)

(25)

where we define C(N,n,Σ) := σ2(logN + n/2 log(2πσ)).

A.4 Function Error vs. Gradient Error

We illustrate with an example that in the finite error regime, bounded function error does not
necessarily imply bounded gradient error.

Suppose we are given a function f(x) : R→ R, and another function of the form

g(x) = f(x) + α cos(ωx) (26)

Then, the error between the two functions is bounded by

e(x) := ∥f(x)− g(x)∥ ≤ α cos(ωx) ≤ α (27)

for all x ∈ R. One might make α arbitrarily small (but not zero) to decrease the error.

However, consider the error in the gradients,

e∇(x) := ∥∇f(x)−∇g(x)∥ ≤ αω sin(ωx) ≤ αω (28)

which now scales with the frequency term ω, which can be arbitrarily scaled up to increase gradient
error.

B Details of the Planning algorithm

B.1 Computation of Gradients

Recall that the gradient of log pσ(xi, ui) cost w.r.t. the input variable uj can be written as

∇uj
log p(xi, ui) = ∇xi

log p(xi, ui)Duj
xi +∇ui

log p(xi, ui)Duj
ui (29)

where D denotes the Jacobian. Writing the dependence on each variable more explicitly, we have

∇uj log p(xi(uj), ui(uj)) = ∇xi log p(xi(uj), ui(uj))Dujxi(uj) (30)
+∇ui log p(xi(uj), ui(uj))Dujui(uj) (31)

where we note that Dujui = 1 if i = j and 0 otherwise. As long as i > j, we also note that xi

has a dependence on uj . Instead of computing this gradient explicitly, we first rollout the trajectory
to compute xi(uj), ui(uj), and compute the score function. Then we ask: which quantity do we
need such that it gives us the above expression when differentiated w.r.t. uj? We use the following
quantity,

cij = sx(xi, ui)xi(uj) + su(xi, ui)ui(uj) (32)
where the score terms have been detached from the computation graph. Note that cij is a scalar and
allows us to use reverse-mode automatic differentiation tools such as pytorch [76].
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B.2 Noise-Annealing During Optimization

Additionally, we anneal the noise level during iterations of Adam. Given a sequence σk with K being
the total number of annealing steps, we run Adam for max itermax/K iterations, then run it with the
next noise level.

B.3 Algorithm Block

We first give some abbreviations to simply the algorithm description. Given the dynamics, we write
down the value function of Equation (11), conditioned in the noise level σ, as

V (u1:T ;σ) :=

T∑
t=1

rt(xt, ut) + βσ2
T∑

t=1

log pσ(xt, ut;D)

s.t. xt+1 = fθ(xt, ut) ∀t

(33)

We note that in our implementation, we use Adam [50] instead of doing gradient descent.

Algorithm 1 Score-Guided Planning (Gradient Descent Version)
Require: Learned dynamics fθ, score function s(x, u), noise schedule sequence σk.
Require: Initial guess u0

1:T , initial noise σ0.
while not converged do

Rollout uk
1:T and compute state-input trajectory (xt, ut)

k.
Compute∇u1:T

V (uk
1:T ;σk) using score estimator s(x, u, σ) ▷ Equation (12), Appendix B.1

uk+1
1:T ← uk

1:T − h∇u1:T
V (uk

1:T , σk) ▷ Gradient Descent with stepsize h
k ← k + 1

end while

B.4 Connection to Diffuser

We first lift the dynamics constraint into a quadratic penalty and write the penalty as log p(xt+1|xt, ut).
This equivalence is seen by considering a case where we fix xt, ut and perturb xt+1 with a Gaussian
noise of scale σ. If (xt, ut, xt+1) is in the dataset, it obeys xt+1 = f(xt, ut) under real-world
dynamics f . This allows us to write

pσ(xt+1|xt, ut) = N (xt+1|f(xt, ut), σ
2I)

log pσ(xt+1|xt, ut) = −
1

2
∥xt+1 − f(xt, ut)∥2 + C

(34)

where C is some constant that does not effect the objective. Then, we rewrite our objective using the
factoring p(xt, ut) = p(ut|x)p(xt). This allows us to rewrite the objective of Equation (11) as

T∑
t=1

rt(xt, ut) + β

T∑
t=1

log p(ut|xt) + β

T∑
t=1

log p(xt) + β

T∑
t=1

log p(xt+1|xt, ut)

=V (x1:T , u1:T ) + β log p(x1:T , u1:T ) +

T∑
t=1

log p(x),

(35)

where the first two terms are the objectives in Diffuser [26].

B.5 First-Order Policy Search

We note that our original method for gradient computation can easily be extended to the setting of
feedback first-order policy search, where we define the uncertainty-penalized value function as

max
α

Ex1∼ρ

[
T∑

t=1

rt(xt, ut) + βσ2
T∑

t=1

log pσ(xt, ut;D)

]
s.t. xt+1 = fθ(xt, ut), ut = πα(xt) ∀t ∈ [1, T ],

(36)
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where ρ is some distribution of initial conditions. We rewrite the objective with an explicit dependence
on α, and use a Monte-Carlo estimator for the gradient of the stochastic objective,

∇αEx1∼ρ

[
T∑

t=1

rt(xt(α), ut(α)) + βσ2
T∑

t=1

log pσ(xt(α), ut(α);D)

]

=Ex1∼ρ∇α

[
T∑

t=1

rt(xt(α), ut(α)) + βσ2
T∑

t=1

log pσ(xt(α), ut(α);D)

]

≈ 1

N

N∑
i=1

∇α

[
T∑

t=1

rt(xt(α), ut(α)) + βσ2
T∑

t=1

log pσ(xt(α), ut(α);D) s.t. x1 = xi ∼ ρ

]
,

(37)
where the last equation denotes that fixing the initial condition to xi sampled from ρ, and N is the
number of samples in the Monte-Carlo process. Since rt and fθ are differentiable, we can obtain the
gradient

∇α

T∑
t=0

rt(xt(α), ut(α)) (38)

after rolling out the closed-loop system starting from xi and using automatic differentiation w.r.t.
policy parameters α. To compute the gradient w.r.t. the score function, we similarly use the chain
rule,

and differentiate it w.r.t α, which lets us compute

∂

∂α

[
T∑

t=1

log pσ(xt, ut)

]
=

T∑
t=1

∂

∂α
log pσ(xt(α), ut(α))

=

T∑
t=1

∂

∂xt
log pσ(xt, ut)

∂xt

∂α
+

∂

∂ut
log pσ(xt, ut)

∂ut

∂α

=

T∑
t=1

sx(xt, ut;σ)
∂xt

∂α
+ su(xt, ut;σ)

∂ut

∂α

(39)

where the last term is obtained by differentiating

T∑
t=1

sx(xt, ut;σ)xt + su(xt, ut;σ)ut (40)

after detaching sx and su from the computation graph.

B.6 Imitation Learning

We give more intuition for why maximizing the state-action likelihood leads to imitation learning.
If the empirical data comes from an expert demonstrator, maximizing data likelihood leads to
minimization of cross entropy between the state-action pairs encountered during planning and the
state-action occupation measure of the demonstration policy, which is estimated with the perturbed
empirical distribution pσ(xt, ut),∑

t

log pσ(xt, ut) =
∑
t

log pσ(ut|xt) +
∑
t

log pσ(x). (41)

Note that the log pσ(ut|xt) is identical to the Behavior Cloning (BC) objective, while log pσ(xt)
drives future states of the plan closer to states in the dataset. We note that Adversarial Inverse
Reinforcement Learning (AIRL) [35] minimizes a similar objective as ours [13].
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C Experiment Details

C.1 Cartpole with Learned Dynamics

Environment. We use the cart-pole dynamics model in [62, chapter 3.2], with the cost function
being

ct(xt, ut) =

{
||xt − xg||2Q if t = T

0 else.
(42)

Q = diag(1, 1, 0.1, 0.1). We choose the planning horizon T = 60.

Training. We randomly collected a dataset of size N = 1, 000, 000 within the red box region in the
state space. The dynamics model is an MLP with 3 hidden layers of width (64, 64, 32). For ensemble
approach we use 6 different dynamics models, all with the same network structures.

We train a score function estimator, represented by an MLP with 4 hidden layers of width 1024. The
network is trained form 400 epochs with a batch size of 2048.

Parameters During motion planning, for Adam optimizer we use a learning rate of 0.01. For CEM
approach we use a population size of 10, with standard variance σ = 0.05, and we take the top 4
seeds to update the mean in the next iteration.

Data Distance Estimator. To train a data distance estimator, we introduce a function approximator
dη : Rn ×R+ → R parametrized by η to predict the noise-dependent Softmin distance. The training
objective is given by

min
η

1

2
Ex∈Ω,σ∈[0,σmax]

[
1

σ2

∣∣∣∣d(x, σ)− Softminxi∈D
1

2
∥x− xi∥2σ−2I

∣∣∣∣] (43)

where Ω is a large enough domain that covers the data distributionD. For small datasets, it is possible
to loop through all xi in the dataset to compute this loss at every iteration. However, this training can
get prohibitive as all of the training set needs to be considered to compute the loss, preventing batch
training out of the training set.

C.2 D4RL Dataset

Environment. We directly use the D4RL dataset [44] Mujoco tasks [64] with 3 different envi-
ronments of halfcheetah, walker2d, and hopper. We additionally use differnet sources of data with
random, medium, and medium-expert.

Training. The dynamics and the score functions are both parametrized with MLP with 4 hidden
layers of width 1024. The noise-conditioned score function is implemented by treating each level
of noise σk as an integer token, that gets embedded into a 1024 vector and gets multiplied with the
output of each layer. This acts similar to a masking of the weights depending on the level of noise.
The D4RL environment does not provide us with a differentiable reward function, so we additionally
train an estimator for the reward. We empirically saw that for score function estimation, wide shallow
networks performed better. We train both instances for 1000 iterations with Adam, with a learning
rate of 1e− 3 and batch size of 2048.

We additionally set a noise schedule to be a cosine schedule that anneals from σ = 0.2 to σ = 0.01
for 10 steps in the normalized space of x, u.

Parameters We used a range of βs between 1e−3 and 1e−1 depending on the environment, where
in some cases it helped to be more reliant on reward, and in others it’s desirable to rely on imitation.
We use a MPC with T = 5 and optimize it for 50 iterations with an aggressive learning rate of 1e−1.
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C.3 Pixel Single Integrator

Environment. In this environment, we have a 2D single integrator f(xt, ut) = xt + ut, xt ∈
R2, ut ∈ R2 as the underlying ground-truth dynamics; however, instead of raw states xt, we observe
a 32 × 32 grayscale image yt = h(xt) ∈ R32×32, which are top-down renderings of the robot. In
these observations, the position of the robot is represented with a dot. Moreover, we assume that we
do not directly assign the 2D control input ut, but instead propose a 32 × 32 grayscale image ût,
where the value of the 2D control action ut is extracted from the image via a spatial average:

ut =
∑

(px,py)

gu(px, py)ût(px, py), (44)

where the sum loops over each pixel (px, py) ∈ {1, . . . , 32}2, yt(px, py) refers to the intensity of the
image at pixel (px, py), and gu : Z × Z → R2 is a grid function mapping from pixel (px, py) to a
corresponding control action. The control image ût is normalized such that its overall intensity sums
to 1. Given some goal xg , the reward is set to be the −ct(xt, ut), where the cost ct(xt, ut) is

ct(xt, ut) =

{
∥xt − xg∥2Qt

+ ∥ut∥2R if t = T

∥xt − xg∥2Q + ∥ut∥2R else,
(45)

To evaluate this cost function for the planned sequence of image observations and control images, the
states xt are also extracted from the image observations through a similar spatial averaging:

xt =
∑

(px,py)

gim(px, py)yt(px, py), (46)

where gim : Z × Z → R2 is a grid function mapping from pixel (px, py) to a corresponding state.

In other words, we have running costs for the state and input, and a different terminal cost for the
state. We set R = 6.5I, Q = 500I, and Qd = 1000I, and plan with a horizon of T = 15.

Training. We collect a randomly collected dataset of size N = 200, 000, with underlying 2D
data sampled from xt ∈ [−1, 1]2 and ut ∈ [−0.2, 0.2]2. Both the dynamics and the score function
estimator are represented as U-Nets [77], with the architecture coming from [78].

Parameters. We found that β = 0.5 is sufficient for the penalty parameter. Results are obtained
within 1450 iterations with a learning rate of 0.03. In representing the noise-conditioned score
function, we use 232 smoothing parameters {σk}232k=1, from σ1 = 50 to σ232 = 0.01.

Baselines. For gradient-based planning with ensembles, we set β = 0.5 and use an ensemble of
size 10. For CEM with ensembles, we set β = 0.5, with an ensemble of size 5 (we only used the first
five networks in the original ensemble of size 10 due to RAM limitations).

Method Cost of plan Actual achieved cost
SGP (Ours) 87.61 124.72
Vanilla MBRL 0.80 1862.06
Ensembles 4031.54 1380.41
CEM 2244.72 2901.95

Table 2: Costs for pixel-space single integrator example (lower is better).

Numerical results. In Table 2, we report numerical results on the costs achieved by our approach
and the various baselines tested in the pixel-space single integrator example (Fig. 3 in the main text).
SGP (our method, Method A in Fig. 3) achieves a low cost at planning time (87), and the actual
achieved cost when rolling out the controls open-loop on the true system is only slightly worse (124),
since the model error is kept small. In contrast, for vanilla MBRL (Method B in Fig. 3 in the main
text), an overly-optimistic cost is achieved (0.8) at planning time, due to the generation of unrealistic
images that exploit subtleties in how the cost is calculated; however, when executing the resulting
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controls, the cost greatly degrades (1862) due to the model mismatch. Using ensembles (Method C in
Fig. 3 in the main text) leads to the optimizer failing to find good control sequence at planning time,
due to the poor optimization landscape when planning with ensembles (cost is 4031); this translates
to a high cost when rolling out on the true system as well (cost is 1380). CEM (Method D in Fig. 3
in the main text) similarly does not find a good control sequence at planning time, due to the high
dimensionality of the search space (cost of 2244); the actual cost achieved is similarly high (cost of
2901).

C.4 Box Pushing with Marker Dynamics

Environment. We prepare a box-pushing environment where we assume that the box follows
quasistatic dynamics, which allows us to treat the marker positions directly as state of the box that is
bijective with its pose. We use 2D coordinates for each markers, and append the pusher position, also
in 2D, resulting in xt ∈ R12. The pusher is given a relative position command with a relatively large
step size [73]. In addition, we give the robot knowledge of the pusher dynamics, xpusher

t+1 = xpusher
t +ut.

The general goal of the task is to push the box and align the edge of the box with the blue tape line.

We formulate our cost as

ct(xt, ut) =

{
∥xmarker

t − xmarker
g ∥2QT

if t = T

∥ut∥2R else,
(47)

where QT = I and R = 0.1I. In order to get xmarker
g , we place the box where we want the goal to be

and measure the position of the markers.

Training. We collect 100 demonstration trajectories resulting in 750 pairs of (xt, ut, xt+1). The
dynamics and the score functions are learned with a MLP of 4 hidden layers with size 1024, with the
noise-conditioned score estimator being trained similar to the D4RL dataset with multiplicative token
embeddings. We train for 500 iterations with a batch size of 32.

We additionally set a noise schedule to be a cosine schedule that anneals from σ = 0.2 to σ = 0.01
for 10 steps.

Parameters. We observed that β = 1e−2 performs well for all the examples, with a learning rate
of 0.1 and 50 iterations. We found that a horizon of T = 4 was sufficient for our setup.

Numerical Results We report numerical results for the box pushing demo in Table C.4, which
illustrates that SGP achieves muchy lower cost compared to vanilla MBRL.

Goal Method Achieved Cost
Left SGP (Ours) 8.86 ± 4.54
Left Vanilla MBRL 51.18 ± 6.93
Center SGP (Ours) 7.74 ± 2.23
Center Vanilla MBRL 35.93 ± 1.18
Right SGP (Ours) 9.05 ± 3.45
Right Vanilla MBRL 61.40 ± 3.82

Table 3: Cost for the Keypoints hardware Example (lower is better). We compare the results of
running MPC using vanilla MBRL, vs. SGP. The cost is evaluated on the final achieved trajectory on
hardware. Numbers are averaged on 5 trials.

22



D Experiments on Hyperparameters on SGP

D.1 Effect of Penalty term β.

Note that β appears in the objective to trade off the reward signal and the uncertainty penalty term,

max
x1:T ,u1:T

T∑
t=1

rt(xt, ut) + βσ2
T∑

t=1

log pσ(xt, ut;D)

s.t. xt+1 = fθ(xt, ut) ∀t ∈ [1, T ].

(48)

We first give intuition for two extreme cases.

D.1.1 Vanilla Model-Based Reinforcement Learning (MBRL), β = 0

When β is 0, no uncertainty is penalized, and the planning problem becomes equivalent to vanilla
Model-Based Reinforcement Learning (MBRL), or planning with learned dynamics. While this
achieves best performance in terms of fθ, the optimizer is likely to not perform well under the true
dynamics f due to model bias.

D.1.2 Imitation Learning / Data Landing, β =∞

When β = ∞, the reward term is discarded and the problem simply turns to that of uncertainty
minimization. When data comes from random sources, the problem will then plan a trajectory to stay
near the vicinity of the data depending on the value of σ.

Interestingly, the case for when β = ∞ can be understood as a case of imitation learning if data
comes from an expert demonstrator. We can write down

T∑
t=1

log pσ(xt, ut;D) =
T∑

t=1

KL(ρ(xt, ut)∥p̃(xt, ut)) (49)

where ρ is the occupancy measure of the plan, and thus maximizing this quantity leads to a form of
distribution matching between this occupancy measure and the perturbed empirical distribution of
data. We have more details in Appendix B.6.

D.1.3 Experimental Validation

To illustrate the effects of β, we prepare a single-integrator environment where the dynamics obey
xt+1 = xt + ut, except in the circular region where actuation gets lost and xt+1 = xt. For instance,
this could simulate a pit in a self-driving environment. The effect of setting different βs are illustrated
in Fig.5.

As hypothesized, too high of a β results in not making progress due to no reward signal - as a result,
the cost is quite high. Yet, the dynamics error is very low. On the other hand, too low of a β results in
a big dynamics error as the single integrator goes into the middle pit region and makes no progress.
As a result, the overall cost is very high as well.

We note that around β = 1e−2 and β = 1e0 is the sweet spot for this experiment, where the agent
was able to circumnavigate the pit as it has not seen data there, and still make meaningful progress
towards the goal.

D.1.4 Tuning Recommendation

In practice we recommend setting β between values of β = 1e−3 to β = 1e0 and explore performance
tradeoffs by doing hyperparameter search.
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Figure 5: Top row: The hallucinated trajectory with different choices of β. Middle row: real rollouts
with different choices of β. Bottom row, left: sweep of β in log-scale and cost. Bottom row, right:
sweep of β and the dynamics error on the rolled out trajectory.

D.2 Effect of Noise Level σ.

Similar to β, the performance of the algorithm deteriorates under too high / too low of a value for the
injected noise σ.

D.2.1 Effect of low σ

The biggest factor preventing us from having too low of a σ comes from the learning of the score
function. As denoising score matching works by perturbing the data with the given noise σ, only
regions within a small vicinity of the data will have been covered by score matching if σ is low.
As the training accuracy of neural networks deteriorates on regions it has not been trained on, the
accuracy of score matching suffers greatly with too low of a σ. This effect is extensively illustrated
by previous score matching papers such as [40].

Another effect is that without normalization by σ, the log probabilities of the perturbed empirical
distribution has a scaling that directly depends on σ. This is clear to see with a single data, for which
the perturbed empirical distribution becomes a Gaussian.

− log p ≈ x2

2σ2
+ C (50)

This suggests that as σ becomes too small, the Lipschitz constant of the distribution becomes large,
creating a landscape that is challenging for neural networks to learn.
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To visually validate this, we illustrate the efficacy of score matching as we vary σ in Fig.6. As we
hypothesize, score matching is very ineffective for small σ, and the actual gradients are very jagged /
near-discontinuous in this regime. On the other hand, as we increase σ to around 0.1 and 0.2 level,
score matching successfully predicts gradients of log-likelihood. However, even for σ = 0.2, note
that we cannot predict the score accurately if we get too far away from the data, since the score
estimator never sees these points during training.

Figure 6: Efficacy of Score Matching as we vary the perturbed noise σ. note that this σ is in the
unnormalized space.

D.2.2 Effect of high σ

If σ is too high compared to the scale of how close data are together, then it is hard to distinguish
from a pure Gaussian noise centered around the average of the data. Indeed, this is what the "nosing
process" of diffusion models rely on.

As the goal of SGP is to stay near the data, not go towards the average of data, it is not desirable to
choose too high of a σ. In fact, we provide an adversarial case in the pit example, where we have not
collected any data near the mean of the data. In such cases, too high of a σ can lead to a catastrophic
failure.

D.2.3 Experimental Validation

We validate our choice of σ by training a score estimator for the example in Appendix D.1.3 and
visualizing its behavior. Our experiments validate our hypothesis that when σ is too small, the score
function is very inaccurate. On the other hand, too big of a σ leads the score function to point towards
the center of all the data - which in this case, corresponds to a region where data was not collected. In
between we have a sweet spot where the score function pushes away from regions with no data.

D.2.4 Tuning Recommendation

To see whether a user has chosen a good σ, we recommend that the user first tests the validity of the
score estimator before attempting to solve any optimal control problem. This can be done by training
a score estimator, and running gradient descent on the log probabilities using the score estimator as
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Figure 7: Visualization of the learned score function s(x) = ∇x log p̃σ(x), according to different
σ values. Top corresponds to a dense and bottom corresponds to a sparse dataset. The grey region
corresponds to region with no data. Note that σ corresponds to noise in the normalized space.

done in [40]. A good score estimator should ensure that after some iterations, the iterates converge to
samples within the data.

We note that in the normalized space, we often find σ = 0.05 ∼ 0.3 to be good. To tradeoff between
accuracy and coverage within this range, we anneal σ in between this range following [40].

E Experiments on Extrapolation
One limitation of SGP that was mentioned was that the method does not have the ability to extrapolate.
We show that,

1. On the trajectory level, our method can successfully extrapolate by stitching trajectories to
create a trajectory that was not in the dataset.

2. Not doing extrapolation can be a very practical method on pathological cases where extrapo-
lation actually hurts.

E.1 Trajectory-level Extrapolation by Stitching

In order to show our trajectory-level extrapolation capabilities, we replicate the example in [26] by
preparing two types of demonstration trajectories. The first type of demonstration goes from the
bottom left to right top, while the second type of demonstration goes from top left to bottom right.
Then, SGP is asked to create a trajectory that goes from bottom left to bottom right - as this kind of
demonstration has never been seen before, this requires use to extrapolate in the space of trajectories
and perform a type of trajectory stitching.

As our results in Figure 8 indicates, SGP is successful in stitching sub-trajectories from the two
demonstrations to come up with an entirely new trajectory that was not in the demonstration set.
Thus, our method is capable of performing extrapolation in the space of trajectories.

E.2 Dynamics-Level Extrapolation as a double-edged sword

By actively constraining the state-action pairs to stay close to the dataset, SGP discourages dynamics-
level extrapolation. While this can be a possible limitation, we also show that this is an important
strength of our method compared to methods that attempt to extrapolate.

For this purpose, we consider the single-integrator with a data-hole inside, where the agent has not
seen data before. The true dynamics is defined as

xt+1 =

{
xt + ut if outside hole
xt if inside hole

(51)
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Figure 8: Left: Demonstration trajectories that go from left bottom to right top. Center: demonstration
trajectories that go from left top to right bottom. Right: performance of SGP when asked to find a
trajectory from left bottom to right bottom, which was not in the dataset before.

These scenarios are plausible if the hole region falls outside the normal operating conditions of the
agent. For example, a self-driving car might always be forced to go around a pit, or patches of grass
in a rotary. Naturally the dynamics are still defined in the physical world, but the agent has never
seen data there. We test the performance of SGP vs. Ensembles in this scenario and plot the results in
Figure 9

As the dynamics are very simple outside the hole, ensembles will learn the simple dynamics xt+1 =
xt + ut with very high-confidence. As a result, the trajectory found by penalizing ensemble variance
attempts to extrapolate, cutting across the data hole region where it believes the dynamics is still a
single integrator. Yet; the extrapolation fails and the method gets stuck at making progress.

However, SGP avoids this problem by making no assumptions about the extrapolation region, and
simply avoiding it. This allows it to escape the pit region and still succeed in reaching the goal.

This experiment goes to show that attempting extrapolation is a double-edged sword. While the agent
may have learned a generalizable form of dynamics that allows it to perform well, it also may not
have, and there is no data to test it. Thus, in cases where we do not have enough domain knowledge
or inductive bias in the network, it can be a strength to avoid extrapolation rather than limitation.

Figure 9: Comparison of SGP vs. Ensembles variance penalty in the single integrator with data hole
example. While SGP successfully avoids the hole, ensembles overconfidently extrapolate and fail to
plan a good trajectory that transfers to real-world dynamics.
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