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Abstract:
Effectively scooping food items poses a substantial challenge for current robotic
systems, due to the intricate states and diverse physical properties of food. To
address this challenge, we believe in the importance of encoding food items into
meaningful representations for effective food scooping. However, the distinctive
properties of food items, including deformability, fragility, fluidity, or granularity,
pose significant challenges for existing representations. In this paper, we inves-
tigate the potential of active perception for learning meaningful food representa-
tions in an implicit manner. To this end, we present SCONE, a food-scooping
robot learning framework that leverages representations gained from active per-
ception to facilitate food scooping policy learning. SCONE comprises two cru-
cial encoding components: the interactive encoder and the state retrieval mod-
ule. Through the encoding process, SCONE is capable of capturing properties
of food items and vital state characteristics. In our real-world scooping exper-
iments, SCONE excels with a 71% success rate when tasked with 6 previously
unseen food items across three different difficulty levels, surpassing state-of-the-
art methods. This enhanced performance underscores SCONE’s stability, as all
food items consistently achieve task success rates exceeding 50%. Additionally,
SCONE’s impressive capacity to accommodate diverse initial states enables it to
precisely evaluate the present condition of the food, resulting in a compelling
scooping success rate. For further information, please visit our website.
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1 Introduction

Robot scooping skills have the potential to greatly improve human life, with applications in food
preparation and assistive feeding [1, 2, 3, 4, 5, 6, 7] applicable in diverse environments, including
homes, hospitals, and restaurants. Nonetheless, successfully scooping various food types presents
a challenging task because of the wide range of appearances and physical properties exhibited by
different foods. These attributes are not easily defined or fully predicted beforehand during prepara-
tion. Consequently, developing a framework that empowers robots to acquire the essential skills for
handling unfamiliar food items remains a substantial challenge in real-world applications.

Present methodologies [1, 2, 3, 7, 8, 9] often rely on hard-coded primitive actions to address real-
world food manipulation challenges. Nonetheless, these approaches frequently hinge on predeter-
mined trajectories or specialize in particular food categories, constraining their adaptability to unfa-
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Figure 1: Real World Robot Food Scooping Task.

miliar food items. Current data-driven learning frameworks for assistive feeding [4, 10, 11, 12, 13]
presume that food items with similar visual appearance will yield comparable success rates when
adopting identical policies. However, due to the diverse properties of food encountered in scooping
tasks, these frameworks still face limitations in generalizing their performance. Moreover, intricate
characteristics of food states pose difficulties in precisely defining segmentation masks or bounding
boxes as representations [4, 11, 12, 13].

Dynamic feedback from interactions could effectively capture essential food state features without
explicit definitions. Hence, active perception [14, 15, 16] show great potential in tackling real-world
food manipulation’s generalization challenges by recognizing object characteristics through inter-
action. These frameworks consist of two stages. The first is the Interacting stage, where the robot
interacts with target objects to acquire dynamic sensory feedback. Subsequently, in the Manipula-
tion stage, a policy model benefits from the additional information gathered during the first stage,
leading to improved efficacy. The pipeline has been widely used in food classification, policy selec-
tions [17, 18, 19], and dynamics inference [20, 21, 22]. Compared to static observations, interacting
with food items yields higher confidence in assessing food properties.

To this end, we propose SCONE: a food SCOoping robot learNing framEwork with active percep-
tion. We employ active perception to enhance the manipulation of target objects in a coarse plus fine
manner: it involves dynamics feedback for global food properties and local state information during
each Interacting frame. Building upon this intuition, our method encodes active perception data
with two distinct modules. The interactive encoder encodes overall interaction observations, while
the state retrieval module captures crucial state details. Subsequently, a task-related embedding is
obtained by fusing these two encoding modules. This embedding, along with current observations,
serves as guidance for the closed-loop policy.

We evaluate our method on a real-world robotic food scooping platform, demonstrating its com-
pelling performance compared to the benchmark methods. Overall, our method attains an impres-
sive 71% task success rate across 6 previously unobserved food categories spanning three distinct
levels of difficulty, thereby confirming its generalization capabilities. Furthermore, SCONE demon-
strates its ability to accurately perceive current food states, ensuring continuous scooping success
while minimizing spillage and damage to the food and surroundings. Additionally, we visualize the
learned latent embeddings from the feature extraction modules, demonstrating that the properties of
food can be extracted and the task-related information can be retrieved at each time step. Our main
contributions are as follows:

• We propose SCONE: An active perception-based learning framework for food scooping
robots, employing Interaction data to enhance generalization concerning food properties in
real-world food scooping tasks.
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• The visualization of latent embeddings highlights the extraction of valuable knowledge and
clearly illustrates how active perception aids in policy learning.

• In real-world experiments, the framework effectively manipulates unseen food items across
various settings, surpassing the performance of the baseline methods.

2 Related Work

Robotic Food Scooping. Recent studies have explored various robot scooping methods for handling
food items [23, 24]. However, achieving effective food scooping requires careful consideration of
the food’s inherent characteristics, such as fragility, to enable a successful scooping policy. For as-
sistive feeding and food preparation tasks, several commercial meal-assistance robots [8, 9] rely on
pre-defined trajectories and need human-assigned controls, which are more stable but with limited
autonomy. Ohshima et al. [1] introduce an autonomous robot system using Laser Range Finder
for non-rigid solid foods by tackling the recognition problem of remnants of foods. However, it is
still limited to the geometry and deformability of food items. Park et al. [2] presented an active
feeding framework where users select tool-use actions. Without considering the properties of each
food, this may encounter limitations in scalability. Grannen et al. [4] proposed a bimanual scooping
framework with closed-loop visual feedback to prevent food breakage. However, the visual detec-
tion mechanism with masks in their framework still limits the range of food states. In this work,
we explore the potential of active perception to represent foods in an implicit manner, offering an
alternative approach for generalizing to diverse states of food.

Active Perception in Closed-loop Policy Learning. Prior works have utilized pre-interacting data
for predicting object physical properties, reconstructing the object geometries, and executing open-
loop control for manipulation tasks [25, 17, 26, 18, 27, 19]. However, it remains largely unexplored
how the pre-programmed interaction can improve closed-loop policy learning in an implicit manner.
Saito et al. [21] propose a sensorimotor dynamical system model using a recurrent neural network
to learn the pouring task. In testing, robots observe liquid behavior with pre-programmed shak-
ing actions and generate pouring motions. In their subsequent work, Saito et al. [22] employ a
similar architecture for tool selection and tool-use tasks, enhancing the dynamical model with a
multiple-timescale recurrent neural network. This network has updatable initial parameters, allow-
ing exploration during interaction in testing. In contrast, we take a different approach to enhance
the connection and use of interaction data in manipulation. We introduce the state retrieval module,
which efficiently extracts crucial information from each step in the closed-loop process, allowing
for more effective utilization of the interaction data.

3 Method

Our goal is to design a learning framework that enables real-world robot scooping. We develop
our method based on active perception and focus on how to utilize the interaction data to improve
task success under dynamic situations. Moreover, we adopt the learning from demonstration (LfD)
paradigm to enable the robot to learn using a spoon in a faster and more reliable manner. We assume
a demonstration dataset is available for model training. Figure 2 shows an overview of our proposed
framework.

3.1 Problem Formulation

Task Definition. In our work, the food scooping task is divided into three distinct stages: the
interacting stage, the scooping stage, and the transferring stage. During the interacting stage, the
robot employs a spoon to stir the contents of the container while observing the dynamics of the food
items. In the scooping stage, the robot’s objective is to scoop up the food items successfully. Finally,
in the transferring stage, the robot transfers the scooped food to another container. In this work, we
focus on learning the challenging scooping process exclusively, while keeping the interacting and
transferring stages fixed with pre-defined motions. Task success is determined by specific criteria:
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Figure 2: SCONE is a real-world robotic food scooping learning framework. With active perception,
the generalization capability of the model can be enhanced. SCONE consists of three main feature
extraction modules: (a) Global temporal encoder, which is able to capture the stage information
from the current observations. (b) Interactive encoder, which effectively gathers information and
integrates it to form a holistic understanding of the physical properties of the food items. (c) State
retrieval module, which explores and extracts the task-related state information based on the current
state to facilitate manipulation.

the food items on the spoon should cover over a one-third area or more than one entity without
spillage and damage. The spoon must remain at a position higher than the container after scooping
motions are performed.

Pre-processing of Interaction Data. To extract the information of food items with greater precision
and efficiency, we sample K frames (K = 7 in our case) of observed data from sequences received
in the interacting stage Dorigin

interact = {(oi, ei)|i = 1, . . . , N}. We also crop the viewing area around
the container. The sampling starts at the time step when the spoon reaches the lowest position and
acquires the data every 0.5 seconds. The pre-processed data denotes Dinteract = {(oi, ei)|i =
1, . . . ,K}, which has sensor readings oi = (IRGB, IDepth) and the robot end-effector poses ei.

SCONE Architecture (Fig. 2). At each time step, we have the interaction data Dinteract and the
N-length history of observation data Ot = {(oi, ei)|i = t − N, . . . , t}. They are the inputs to
the three encoding modules: global temporal encoder fgt, interactive encoder fgi, and the state
retrieval module fsrm to obtain latent vectors zgt, zcropped, zgi and zsrm. We aim to learn the policy
π(ai|zgt, zcropped, zgi, zsrm) that minimizes the standard policy learning loss. In this work, we only
control the 3D position and the y-axis pitch rotation of the end-effector, and the action ai ∈ R4

output from the policy at each time step is formulated as the delta between the current and next
end-effector pose, i.e., ei and ei+1.

3.2 Global Temporal Encoder

The aim of the global temporal encoder is to capture the progressive information from the observa-
tions, guiding the policy to be aware of the current phase in the task progress. We use two designed
convolution neural networks to extract feature vectors of a certain dimension from the overall ob-
servations of IRGB and IDepth. To obtain the temporal information, we encode the past N frames
of observations (N = 10 in our case), so at each time step, the inputs to the observation encoding
module are oobserve = (IRGB ∈ RN×W×H×3, IDepth ∈ RN×W×H×1). These two sequences of
different modalities pass through the corresponding encoders fRGB and fDepth to obtain two sets of
feature embeddings. We concatenate them on the last dimension. Then, we flatten and downsample
the feature vectors through one fully-connected layer, obtaining global temporal features of current
observation zgt. This would be the overall guidance for the policy model to output actions.
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3.3 Interactive Encoder

To extract a representation of food items through pre-programmed interaction, we introduce the
interactive encoder fgi, which consists of an RGB encoder, a depth encoder, and a self-attention
module. The sequential data of two modalities ointeract = (IRGB ∈ RK×W×H×3, IDepth ∈
RK×W×H×1) are first passed over the convolution encoder separately, and then concatenated into
latent vectors zinteract ∈ RK×D. Afterward, the concatenated embeddings are fed into the self-
attention module, implementing cross-modality and cross-time attention to catch the critical infor-
mation, outputting final flattened latent vectors zgi. The zgi contains the characteristics of food items
in the latent space that can be treated as guidance for the policy model to recognize the similarity
between seen and unseen objects.

3.4 State Retrieval Module

We assume that the state of each frame in the interacting stage has a different importance to the state
of each time step in the manipulating stage, so the objective of the state retrieval module (SRM)
is to retrieve meaningful embeddings from the sequences of interaction data queried on current
observations. To obtain meaningful features for guidance, the state feature extraction layers and the
cross-attention mechanism are applied.

To extract the features more precisely, we crop the current observation around the container to obtain
o
crop
t , which is the same as the pre-processing of the interacting data. First, the RGB-D images in
o
crop
t are fed into designed convolution layers to output the feature embeddings separately, and then

concatenated with the corresponding end-effector poses, acquiring the state pairs zcropped ∈ R1×D

and zinteract ∈ RK×D. Next, the attention mechanism is applied to generate an attention map
between zcropped and zinteract. The final feature maps are the result of matrix multiplication of the
attention map and each frame features in zinteract. Furthermore, a fully connected layer is used to
downsample the output latent vectors into lower dimensions. The output of the state retrieval mod-
ule zsrm extracts task-related state information from the pre-interacting data, and implicitly guides
the policy model to adapt the policy considering the target item and the interaction experience. Con-
currently, the zcropped are treated as another input to the policy model.

3.5 Policy Learning

To learn the policy π(ai|zgt, zcropped, zgi, zsrm), we adopt Behavior Cloning (BC) to train action
prediction from the observation in a supervised manner. The model takes the latent vectors of
the global observation, the local observation, the overall food representation, and the retrieved cue
under the current state as inputs pass over a three-layer Multi-Layer Perceptron, and then outputs the
corresponding actions. We use the mean square loss between the ground truth action â and predicted
action a for training the network.

4 Evaluation

4.1 Food Scooping Dataset

Hardware setting. The data collection platform consists of a 7DoF Franka Emika Panda robot with
the default gripper, a D435 RealSense camera fixed around the platform, and two containers placed
in the center of the table. During the data collection, we receive sensory data of RGB-D images and
the robot proprioception simultaneously. The robot controller runs at a 10 Hz frequency.

Food Categories. In the training stage, we select 6 food items, i.e., brown rice, mung bean, soybean,
chocolate ball, dried jujube, and cheese ball) that encompass different particle sizes, shapes, and
weights. Additionally, we evaluate 6 unseen food items, i.e., orange, red bean, sago, macadamia,
penne, and fruit candy. To assess the generalization ability of our proposed method, we design three
difficulty levels. The basic configuration closely mimics the training data, with the container being
filled with two-thirds full of food items. These primarily comprise small particles, accompanied by a
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smaller quantity of larger particle foods. The extended setting reduces the number of small particles
and increases the number of large particles. The peculiar setting includes foods with significantly
different appearances and weights compared to those in the training set. These difficulty levels
are designed to have a comprehensive assessment of the model’s capability to handle a wide range
of scenarios. Additionally, we have introduced testing scenarios that involve foods with notably
different properties, such as semi-solid food and liquid. See Supplementary Material for the details.

Data Collection. We employ the hand-guiding mode for intricate scooping operations. This in-
volves a human kinesthetically guiding the robot while recording the end-effector’s trajectory. We
gather 10 demonstrations for each food category, each encompassing 6 seconds of interaction, 15
seconds of scooping, and 10 seconds of transferring. The recorded interacting motions are subse-
quently replayed to collect demonstrations without humans in the scene. Every trial is thoroughly
reviewed to ensure trajectory viability. A trial is considered a qualified demonstration if the robot
successfully scoops up the food items. In total, we collect 60 real-world demonstrations.

4.2 Baselines

We conduct a comparison with seven different approaches, which encompass various BC-based
methods and template-based methods. Please see Supplementary Material for the details of each
baseline.

BC-based Methods: The methods include the standard BC trained on both scooping and transfer-
ring data (one stage), standard BC trained w/o interaction data, BC with interaction, and the BC
conditioned on food categories represented by a one-hot vector.

Template-based Methods: The method treats the learning process as a template selection problem.
The category-level templates are obtained through the mean of all trajectories that belong to the
same category. The experiments proceed with selecting templates randomly or pre-defined with
the trained classifier.

MTRNN [22]: The baseline strings the interacting and the scooping stage as one action sequence.
The model trains a multi-timescale recurrent neural network to learn the corresponding system.

4.3 Single Scooping Experiment

In the single scooping task, the robot is required to scoop up food items and transfer them to the
target container without causing spillage or damaging the food. The food items on the spoon should
occupy at least one-third of its area. All tested foods are uniformly spread in the bowl, ensuring
similar initial conditions for all testing trials. The experimental results are presented in Table 1.
Overall, our proposed method achieves a task success rate of 71% across 3 difficulty levels.

Basic Setting. BC baselines (one stage and w/o interact) perform unsatisfactory in this setting. The
incorporation of additional information from interacting data leads to improved performance, with
a success rate increase of over 10% compared to the basic BC baselines. Template-based methods
offer improved stability over BC-based methods, yet there are cases where classifier predictions
may lead to the selection of an unsuitable template, resulting in failure instances. For instance,
when encountering the food item Sago, the model predicts incorrectly, leading to food spillage. The
MTRNN and the SCONE achieve over 80% success rate in each category, while there are failure
cases caused by unstable robot arm movements or other sources of uncertainties.

Extended Setting. The overall task success rate declines as a result of disparities between the
testing and training environments, posing challenges in accurately assessing the states of the target
items and leading to failed attempts at food scooping. Conversely, our proposed framework ex-
cels at leveraging the precise state information obtained during the interaction stage, resulting in
improved performance. The template-based method (Classified Template) maintains stability when
the appropriate template is selected.
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Basic Extended Peculiar

Orange Red Bean Sago Macadamia Orange Red Bean Sago Macadamia Penne Candy Success

BC (one stage) 1/10 0/10 0/10 1/10 0/10 0/10 0/10 0/10 1/10 0/10 3%

BC (w/o interact) 3/10 0/10 2/10 0/10 5/10 0/10 3/10 2/10 2/10 4/10 21%

BC (w/ food id) 7/10 2/10 0/10 2/10 0/10 0/10 3/10 0/10 4/10 3/10 21%

BC (w/ interact) 7/10 5/10 0/10 3/10 3/10 0/10 3/10 1/10 5/10 1/10 28%

Rand. Template 5/10 4/10 6/10 8/10 0/10 0/10 3/10 0/10 3/10 0/10 29%

Classified Template 10/10 10/10 0/10 10/10 3/10 0/10 10/10 3/10 1/10 0/10 47%

MTRNN [22] 10/10 10/10 10/10 8/10 4/10 2/10 0/10 3/10 8/10 3/10 58%

SCONE (Ours) 10/10 8/10 9/10 9/10 7/10 5/10 6/10 5/10 7/10 5/10 71%

Table 1: Single Scooping Experiment Results.

Penne Red Bean

AS↑ Max/Min Penalty↓ AS↑ Max/Min Penalty↓

Classified Template 0 0/0 0% 5.4 8/2 29%

MTRNN [22] 2.8 4/2 42% 2.8 4/2 21%

SCONE (Ours) 3.2 4/2 25% 13.4 14/5 22%

Table 2: Continuous Scooping Experiment Results.

Global
Temporal
Encoder

Interactive
Encoder

Local
Latent SRM Success

Rate

✓ 21%
✓ ✓ 28%
✓ ✓ ✓ 48%
✓ ✓ ✓ ✓ 71%

Table 3: Ablation Study.

Peculiar Setting. The task success rate of template-based methods significantly decreases in com-
parison to previous settings, highlighting the effectiveness and robustness of the close-loop learning-
based approach. The methods with interaction outperform other baselines because of their enhanced
understanding of food items. SCONE achieves the highest total success rate, which can be attributed
to its ability to accurately capture task-related information and establish an effective connection be-
tween the pre-interaction state and the subgoal state during the manipulation stage.

4.4 Continuous Scooping Experiment

In the continuous scooping task, the robot needs to repetitively transfer food from one bowl to
another until it scoops up nothing. Unlike the single scooping task, a model should precisely perceive
food properties and states to achieve continuous scooping with changing initial conditions. A notable
change from the single scooping experiment is the removal of the criterion involving scooping less
than one-third of a spoon as a failure. We conduct a comparison between the proposed method
and other representative baselines in scooping tasks involving red beans and penne pasta, with five
trials for each type of food. SCONE demonstrates the ability to successfully scoop food across
intricate variations in food states, with a lower proportion of spillage and damage to the food and
surroundings. The experimental results are presented in Table 2. AS means the average number of
successful scoops per trial, Max/Man represents the maximum and minimum number of scoops in
a single trial, and the Penalty shows the total instances of food spillage and food/setting damage,
divided by the total number of scoops.

4.5 Ablation Study

We compared four model variants in the single scooping experiment, as shown in Table 3. The
base model achieves a success rate of 21%. Incorporating interactive data improved performance to
28%, indicating a better understanding of the target food items. Moreover, adding the current local
observation, which emphasizes the model’s attention on the crucial stage, results in a substantial
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improvement of approximately 20% in the task success rate. Finally, including the state retrieval
module significantly enhanced the success rate to an impressive 71%, showcasing its ability to ac-
curately extract and utilize critical information from the interacting data.

4.6 Visualization

Interactive Embeddings. To interpret the behavior of
the interactive encoder, we utilize t-SNE projections to
visualize the embeddings from the interactive encoder.
In Figure 3, we show that food items belonging to the
same category or possessing similar properties tend to
cluster together. This result suggests that the interac-
tive encoder effectively captures the inherent similari-
ties among the food items.

Attention Scores from State-retrieval Module. Fig-
ure 4 depicts attention scores during manipulation. The
x-axis represents the time index in the manipulation
stage, and the y-axis shows attention scores for state
pairs. The cross-attention mechanism effectively iden-
tifies and captures state importance within the interac-
tion data, enhancing manipulation. Attention scores

Figure 3: 2D t-SNE of Interactive Embed-
dings.

follow a consistent pattern across trials, showcasing the model’s ability to understand task phases.
Notably, even without explicit labeling, the model demonstrated an inherent ability to capture and
recognize important information related to different phases of the task. Further analysis can be found
in the Supplementary Material.

Figure 4: Visualization of Attention Scores.

5 Conclusion

We introduced SCONE, an active perception-based robot food scooping framework, utilizing in-
teracting data in a coarse plus fine approach: global encoding for overall physical properties, and
state retrieval for critical state information. Our framework dynamically tailors the scooping policy
according to real-time observations, enabling the model to excel with previously unobserved food
items, thereby elevating both performance and generalization capabilities.

Limitations and Future Work. Our proposed approach places significant emphasis on extracting
vital information from active perception, making the design of pre-programmed interaction motions
an essential component for attaining successful outcomes. However, the current approach of human-
hard-coded-defined actions may limit the exploration of other possibilities. In our future endeavors,
we envision ample room for further investigation into the design of interaction motions, aiming to
enhance their exploratory nature, thereby augmenting the system’s overall performance. In addition,
our emphasis on food property-driven generalization imposes constraints on environmental variables
such as container positions and tool types. Thus, our goal is to explore the integration of perception
components, such as object detection and pose estimation, into the proposed framework, allowing it
to adapt to a broader range of diverse setups.
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SCONE: A Food Scooping Robot Learning
Framework with Active Perception

Supplementary Material

The supplementary materials consist of:

1. Demonstration video.

2. Details of dataset.

3. Baseline approach.

4. Analysis of experiment results.

5. Details of our proposed method.

6. Visualization of attention scores.

7. Additional experiment on out-of-distribution food categories.

1 Demonstration video

In the supplementary video, we show 1) a brief introduction of our food scooping robot learning
framework and 2) illustrations of scooping tasks and qualitative results.

2 Details of Dataset

In this section, we provide more details about the data collection and preparation process for training.

2.1 Food Preparation

We select a total of 12 categories of food items for our real-world experiment, with 6 categories used
for training and the remaining 6 categories used for testing. To simplify the complexity, we have
limited the differences between categories primarily to particle size and the amount of food items.

Food in the Training Set. The food categories for training contain brown rice, mung bean, soybean,
chocolate call, dried jujube, and cheese ball. For food items with small particles such as brown rice,
mung bean, and soybean, we fill the bowl to approximately 2/3 of its capacity. This threshold ensures
that the interaction can be carried out without the risk of spilling the food items. For food items with
large particles such as chocolate balls, dried jujube, and cheese balls, we select more than one piece
but fewer than a certain number based on their size. This is done to prevent the spoon from getting
stuck or breaking the food items when there is insufficient space in the bowl for the spoon to reach
them.

Food in the Testing Set. The food categories for testing contain sago, red bean, orange, macadamia,
penne, and fruit candy. In the testing set, we have designed three levels of difficulty to evaluate the
performance of the models. Both the Basic and Extended settings in the evaluation include sago,
red bean, orange, and macadamia, and the peculiar setting includes penne and fruit candy.

• Basic Setting: In this setting, the conditions are kept identical to the training set. For food items
with small particles, the bowl is filled to approximately 2/3 of its capacity. For food items with large
particle sizes, more than one entity is included in the bowl.
• Extended Setting: In this setting, we change the combination of properties related to particle size
and amount of food items. We want to explore different scenarios to evaluate the performance of our
model under varying conditions. For food items with small particles, we fill the bowl with a smaller



quantity of these items. The intention is to keep the height of the food in the bowl similar to that of
the food items with large particles in the Basic setting. Conversely, we increase the amount of food
items with large particles.
• Peculiar Setting: These food items in the peculiar setting had unique features, such as different
shapes, colors, or textures, that are not present in the training set. By introducing these visually
distinct food items, we aim to challenge the model’s capacity to recognize and handle novel objects
effectively.

2.2 Manipulation Policy

During the data collection phase, we employ two distinct manipulation policies to ensure the suc-
cessful scooping of the food items. To prevent spilling, we adopt a specific policy for scooping
up food items with small particles. The strategy involves positioning the spoon at a shallow depth
under the height of the food items. By adopting this approach, the risk of spillage can be minimized
and the food items were securely contained within the spoon during the scooping process. When
dealing with food items that have large particles, we position the spoon at the lowest point within the
bowl and gently push the items toward the edge. This allows the food to roll into the spoon and is
able to successfully scoop up without any spillage. Figure 1 shows the end-effector positions during
manipulation in the training dataset.

Figure 1: Visualization of End-effector Position During Manipulation.

2.3 Implementing Detail of Overall Scooping Task

The task is divided into three stages: interacting, scooping, and transferring. Among these stages,
only the scooping stage requires learning. The overall task follows a predefined procedure. The
interaction data is collected by replaying the recorded end-effector trajectory. The model then be-
gins predicting the scooping stage. Once the scooping stage is completed, the transferring stage is
initiated. The trajectory for the transferring stage is obtained by averaging all training data. Consid-
ering that the ending position of the scooping stage for every testing food tends to be relatively close
to initial position of the transferring stage, the Panda arm then proceeds to move to the first point
using simple motion planning. Once the transition is complete, the rest of the trajectory is replayed
accordingly.

3 Baseline Approach

This section provides detailed explanations of the baselines in comparison with SCONE.
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3.1 BC-based Method

When adopting Learning from Demonstration (LfD), behavior cloning (BC) is a straightforward
approach for direct learning from both observation and action. We conducted the task using 4
different BC models, both with and without the inclusion of interacting data.

BC one stage. In BC (one stage), we consider scooping and transferring as a single stage. This
implies that the BC (one stage) model is required to learn the long-horizon task only through obser-
vation, without any additional input.

BC without interaction. The most basic method that learns the scooping task through observations.

BC with food ID. To implement BC with food ID, we applied the trained classification model to the
interaction data. The predicted food ID was then conditioned as a one-hot vector and concatenated
with the observation zgi, serving as the input for the BC model.

BC with interaction. In the case of BC with interaction, the input for the model is the concatenation
of latent of observation and interaction data.

3.2 Template Policy

One of the approaches we explore in utilizing interaction data is the selection of trajectories from
the pre-interacting data based on their similarity to the food categories in the training dataset. The
template trajectory is obtained by averaging the sequences of end-effector pose of 6 different food
categories respectively.

Rand. Template. Random policy is selected arbitrarily.

Classified Template. The template policy is selected accordingly based on the predicted category
by the classifier.

3.3 Dynamical System Model

MTRNN. We utilized the multiple time scale recurrent neural network by [1] to update the initial
parameter Cs0 using the interaction data in the testing stage.

4 Analysis of Experiment Results

4.1 Failure Cases

During our real-world evaluation, the failure cases observed included instances of spilling (SP),
insufficient food on the spoon (IF), failed attempts to scoop (FA), collisions (CO), and others (OT).
We select the orange, sago, and penne as examples, and their results can be found in Table 1 and
Table 2.

Spilling (SP). Spilling happens at the end of the scooping process, especially when there is an
excessive amount of food on the spoon. Consequently, during the stages of transferring or when
withdrawing the spoon from the bowl, the excess food spills out.

Insufficient food (IF). The failure case of insufficient food occurs when the amount of food on the
spoon is unable to cover at least one-third of its surface area. This is frequently attributed to the
spoon not being inserted deep enough into the bowl to effectively reach the desired food portion.

Failed Attempts (FA). Failed attempts to scoop are attributed to the same underlying reason as
insufficient food. In these cases, the spoon fails to acquire any amount of food, rather than scooping
up an insufficient quantity.

Collisions (CO). Relying on vision-based information can lead to incorrect decisions when facing
out-of-distribution situations. In such scenarios, collisions between the spoon and the bowl may
occur.
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Basic - Orange

SP IF FA CO OT Failed

BC (one stage) 0 0 5 3 1 9

BC (w/o interact) 2 0 3 3 0 8

BC (w/ food id) 1 0 2 1 1 5

BC (w/ interact) 1 0 2 0 0 0

Rand. Template 0 0 5 0 0 5

Classified Template 0 0 0 0 0 0

MTRNN [1] 0 0 0 0 0 0

SCONE (Ours) 0 0 0 0 0 0

(a) Basic - Orange

Basic - Sago

SP IF FA CO OT Failed

BC (one stage) 0 0 0 0 10 10

BC (w/o interact) 8 0 0 0 0 8

BC (w/ food id) 1 0 2 1 1 5

BC (w/ interact) 2 0 2 8 0 10

Rand. Template 2 0 2 0 0 4

Classified Template 10 0 0 0 0 10

MTRNN [1] 0 0 0 0 0 0

SCONE (Ours) 1 0 0 0 0 1

(b) Basic - Sago

Table 1: Basic - Failure Cases

Extended - Sago

SP IF FA CO OT Failed

BC (one stage) 0 0 0 0 10 10

BC (w/o interact) 5 1 0 1 0 7

BC (w/ food id) 1 0 2 1 1 5

BC (w/ interact) 0 4 0 3 0 7

Rand. Template 3 4 0 0 0 7

Classified Template 0 0 0 0 0 0

MTRNN [1] 0 5 0 5 0 10

SCONE (Ours) 3 1 0 0 0 4

(a) Extended - Sago

Peculiar - Penne

SP IF FA CO OT Failed

BC (one stage) 1 0 8 3 0 9

BC (w/o interact) 1 0 6 1 0 8

BC (w/ food id) 0 0 5 1 0 6

BC (w/ interact) 1 0 0 4 0 5

Rand. Template 4 0 3 0 0 7

Classified Template 2 0 7 0 0 9

MTRNN [1] 2 0 0 0 0 2

SCONE (Ours) 2 0 1 0 0 3

(b) Peculiar - Penne

Table 2: Extended and Peculiar - Failure Cases

Others (OT). In addition to the failure cases mentioned earlier, there are instances where the task
cannot be successfully completed or the food ends up being damaged.

4.2 Result Analysis

Table 1: Orange. The BC-based baselines achieved low task success rates due to the high incidence
of failed attempts because the weight of the orange used in the testing set is heavier than the foods
in the training set. By contrast, the MTRNN and SCONE models exhibited stable performance due
to their ability to learn and understand the conditions for successful scooping from the provided
demonstrations. The classified template method also achieved higher performance due to its ability
to select suitable templates for food items.

Table 1: Sago. The BC-based baselines encountered challenges in providing correct predictions,
causing several failure cases during the manipulation. Moreover, the template-based method has
been limited by its reliance on the predictions from the classifier. In cases where the classifier
selected a template intended for food items with large particles, it often resulted in spillage. The
MTRNN and the proposed SCONE method demonstrated their ability to overcome this challenge,
achieving a higher success rate.
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Figure 2: Details of Each Module in SCONE

Table 2: Extended Sago. The number of spillages (SP) decreases significantly compared to the
basic settings because the amount of sago been reduced, but there was an increase in the occurrence
of insufficient food (IF) cases, due to the improper depth insertion of the spoon into the bowl in most
of the methods. The Select Template model classified sago as chocolate balls, resulting in 10 suc-
cessful trials when following the corresponding template. MTRNN demonstrated poor performance
under this particular setting. During the scooping stage, it showed a hovering behavior within the
bowl and occasionally collided with it. However, SCONE is capable of handling the challenging
setting, achieving a success rate of 6 out of 10.

Table 2: Penne. To test the models’ generalization abilities, we conducted experiments using
peculiar-shaped foods such as penne and fruit candy. Though the color of penne looks familiar
to soy beans, the shapes of them are totally different, which led to failed attempts (FA) when em-
ploying the soy bean template. While MTRNN was able to handle penne, the jittering trajectory
could lead to instability and spillage (SP), which we would like to avoid in real-world evaluation.
Our SCONE behaved more stable and maintained a smooth trajectory.

5 Details of Proposed Method

See Figure 2 for detailed information on each encoding module. All the observation inputs are RGB-
D images, which are processed through corresponding convolutional layers to extract features.

Global temporal encoder. The global temporal encoder takes as input a sequence of current obser-
vations of length N. In our implementation, we set N to 10, which means that the model can access
the previous 10 observations within a time window of 1 second. This allows the model to capture
the temporal dynamics and dependencies in the input data. Then, the sequences of RGB and depth
images are processed separately by their respective encoders, and the output features are concate-
nated and flattened into a one-dimensional embedding. To further reduce the dimensionality of the
features, a fully-connected layer is applied to downsample the features to the dimension of 128.

Interactive encoder. We utilize an interactive encoder to process the sequence of observations cap-
tured during the interaction stage. The number of frames K is set to 7. Similar to the encoding
process in the global temporal encoder, both RGB and depth images within the sequence are pro-
cessed independently through their respective convolutional layers. The output features from these
layers are then concatenated to form a sequence of feature maps, capturing the visual information
from both modalities. Then, we introduce the multi-head self-attention mechanism, allowing the
model to focus on relevant parts of the input sequence. The output features passed through a fully-
connected layer, which reduces their dimension to 128.
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Figure 3: Visualization of Attention Scores. The upper is the manipulation process of brown rice,
and the lower is the manipulation process of chocolate ball.

State retrieval module. The state retrieval module tasks the current local observation and the se-
quence of interaction as inputs. For the current local observation, which consists of cropped RGB-D
images captured at the current time step, we pass them through an encoding module to obtain latent
embeddings. These embeddings are then concatenated with the current end-effector pose, result-
ing in the latent state representation denoted as zcropped. Regarding the sequence of interaction, we
apply the same encoding layers to process the observations and obtain corresponding feature em-
beddings. Similar to the current local observation, we also concatenate the end-effector poses with
the encoded features, creating a sequence of states in the interaction. To retrieve the critical state
information, we use zcropped as a query and compute its relationship with the sequence of states
in the interaction. This is achieved by employing cross-attention mechanisms that output weighted
feature embeddings. These embeddings are then flattened and downsampled to a dimension of 32,
obtaining the zsrm. Furthermore, we also downsample the latent state representation zcropped to a
dimension of 32.

6 Visualization of Attention Scores

Figure 3 shows more examples of visualization for attention scores. Based on the results, it is
evident that the model can accurately capture the state information without human labeling; this
is demonstrated by the consistent patterns observed in the changing attention scores over time at
each trial. Overall, our analysis reveals that frame 1 and frame 3 exhibit higher attention scores
compared to other frames. We attribute this to the presence of important state information related to
the spoon’s contact with the food items under specific end-effector poses. These frames can be seen
as providing subgoal-like cues, guiding the model in the scooping task. Additionally, we observed
that in food items with large particles, frame 3 tends to have higher attention scores than frame
1 initially. This is because the state captured in frame 3 is more similar to the state prior to the
scooping action in scenarios involving large particles. On the other hand, we noticed that the highest
attention score for frame 1 typically occurs close to the timing of the actual scooping action. This
suggests that frame 1 serves as a general guide for determining ”how” and ”where” to scoop up the
food items. These findings highlight the model’s ability to effectively identify and utilize critical
state information from the interacting data to inform its scooping strategy.
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7 Additional Experiment on Out-of-distribution Food Categories

We conducted additional tests to assess the model’s adaptability to food categories with markedly
different physical properties compared to the training data. Specifically, we prepared semi-solid
pudding and liquid black tea. The proposed method demonstrated a success rate of over 50% for
both foods, indicating a notable level of generalization in our approach.

Black Tea Pudding

SCONE (Ours) 8/10 5/10

Table 3: Out-of-Distribution Food Scooping Experiment
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