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Abstract: A rich representation is key to general robotic manipulation, but ex-
isting approaches to representation learning require large amounts of multimodal
demonstrations. In this work we propose PLEX, a transformer-based architec-
ture that learns from a small amount of task-agnostic visuomotor trajectories and
a much larger amount of task-conditioned object manipulation videos — a type
of data available in quantity. PLEX uses visuomotor trajectories to induce a la-
tent feature space and to learn task-agnostic manipulation routines, while diverse
video-only demonstrations teach PLEX how to plan in the induced latent feature
space for a wide variety of tasks. Experiments showcase PLEX’s generalization
on Meta-World and SOTA performance in challenging Robosuite environments.
In particular, using relative positional encoding in PLEX’s transformers greatly
helps in low-data regimes of learning from human-collected demonstrations.
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1 Introduction

Transformers [1] have lead to breakthroughs in training large-scale general representations for com-
puter vision (CV) and natural language processing (NLP) [2], enabling zero-shot adaptation and fast
finetuning [3]. At the same time, despite impressive progress, transformer-based representations
haven’t shown the same versatility for robotic manipulation. Some attribute this gap to the lack of
suitable training data for robotics [3]. We argue instead that data relevant to training robotic ma-
nipulation models is copious but has important structure that most existing training methods ignore
and fail to leverage. These insights lead us to propose a novel transformer-based architecture, called
PLEX, that is capable of effective learning from realistically available robotic manipulation datasets.

We observe that robotics-relevant data falls into three major categories: (1) Video-only data, which
contain high-quality and potentially description-annotated demonstrations for an immense variety
of tasks but have no explicit action information for a robot to mimic; (2) Data containing matching
sequences of percepts and actions, which are less plentiful than pure videos and don’t necessarily
correspond to meaningful tasks [4], but capture valuable correlations between a robot’s actions and
changes in the environment and are easy to collect on a given robot; (3) Small sets of high-quality
sensorimotor demonstrations for a target task in a target environment. Thus, a scalable model ar-
chitecture for robotic manipulation must be able to learn primarily from videos, while being extra
data-efficient on sensorimotor training sequences and the small amount target demonstrations.

PLEX, the PLanning-EXecution architecture we propose, is designed to take advantage of data
sources of these types. A PLEX model has two major transformer-based components: (I) a task-
conditioned observational planner that, given a task specification and an estimate of the current
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world state, determines the next state to which the robot should attempt to transition, and (II) an
executor that, having received the desired next state from the planner, produces an action that should
lead there from the current state. The executor is trained by optimizing an inverse dynamics loss over
exploratory sensorimotor data of the aforementioned category (2), while the planner is trained by
minimizing a loss of its autoregressive predictions computed with respect to video-only trajectories
of category (1). The target-task data of category (3) can be optionally used to efficiently finetune the
planner, the executor, or both.

We make three design choices that greatly help the data efficiency of PLEX’s training:

• Learning to plan in the observation embedding space. Rather than generating videos of proposed
task execution using, e.g., stable diffusion as in Du et al. [5], PLEX learns to plan and execute in
the low-dimensional space of observation embeddings.

• Asymmetric learning of the embedding space. The observation embedding space in which the ex-
ecutor and the planner operate is induced by training the observation encoder using the executor’s
loss only (or even by employing a frozen feature-rich encoder such as R3M [6]). The planner’s
gradients don’t affect the encoder, which reduces the cost of PLEX training.

• Relative positional encodings. We adopt the relative positional encodings [7] in PLEX. We em-
pirically show that in robotic manipulation the relative positional encodings significantly improve
training efficiency from human-collected data compared with the absolute positional encodings [1]
commonly used in the literature on transformers.

Most approaches that use video-only demonstrations for pretraining in robotic manipulation pro-
duce purely visual representations (see, e.g., [6, 8–10]). The majority of algorithms that produce
sensorimotor models need most or all of the video demonstrations to be accompanied by action
sequences that generated the videos, a requirement that holds only for a small fraction available
manipulation data [11–17]. Few approaches have a dedicated trainable planning component; e.g.
[16, 18–21] plan in a skill space, which PLEX can be modified to do as well. Conceptually, PLEX
falls under the paradigm of learning from observations (LfO), but existing LfO approaches don’t
have multitask zero-shot planning capability [22–25] or demostrate it only in low-dimensional envi-
ronments across similar tasks [26]. Of the works that have used transformers for robotic manipula-
tion [14, 17, 21, 27, 28], only Brohan et al. [17] have analyzed their data efficiency, and none have
looked at positional embeddings as a way to improve it. Overall, the closest approach to PLEX is
the concurrently proposed UniPi [5]. It also has counterparts of PLEX’s planner and executor, but
its planner operates using diffusion in the image space [29], which is expensive both datawise and
computationally, and may fail to model manipulation-relevant 3D object structure consistently [29].
A more extensive discussion of prior work is provided in Appendix A.

We experimentally show that PLEX’s planner-executor design can effectively exploit the structure
of realistically available robotic manipulation data to achieve efficient learning. On the multi-task
Meta-World [30] benchmark, despite pretraining mostly on video data, PLEX exhibits strong zero-
shot performance on unseen tasks and can be further improved by finetuning on a small amount of
video-only demonstrations. We empirically show on the challenging Robosuite/Robomimic [31, 32]
benchmark that, contrary to conclusions from NLP [7], the use of relative positional encodings
significantly improves the data efficiency of PLEX learning from human-collected demonstrations.

2 Problem statement and relevant concepts

2.1 Problem statement

We consider the problem of learning a generalist task-conditioned policy for goal-directed object
manipulation. Namely, we seek a policy that can control a robotic manipulator to successfully
accomplish tasks that the robot may not have encountered during the policy training process; such a
policy formally can be viewed a solution to a task-conditioned partially observable Markov decision
process (POMDP) described in Appendix B. In practice, learning a generalist policy that performs
well on a broad distribution of tasks zero-shot is very challenging, as the coverage and amount
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of publicly available training data are limited. Therefore, in this work we consider a two-phased
learning process: (1) pretraining, during which a generalist policy is trained, and (2) finetuning,
during which this policy is adapted to a target task.

2.2 Data for training robotic manipulation models

We consider three broad groups of datasets relevant to training robotic manipulation systems:4

Multi-task video demonstrations (Dmtvd). Being the most abundant category, it comprises data
collections ranging from general YouTube videos to curated benchmarks such as Ego4D [33], Epic
Kitchens [34, 35], and YouTube-8M [36] showing an agent – either a robot or a person – perform-
ing a meaningful object manipulation task with an end-effector. This data contains demonstration-
quality sequences of video observations and descriptions of tasks they accomplish, but not the action
sequences whose execution generated these videos.

Visuomotor trajectories (Dvmt). These trajectories consist of paired sequences of observations and
robots’ actions. Although some of them may be high-quality demonstrations of specific tasks, e.g.,
as in the Bridge Dataset [15], many of these trajectories are generated by activities that most people
will not find meaningful, e.g., grabbing random objects in a tray, as in the RoboNet [4]. Since no
strong quality, quantity, or task association requirements are imposed on Dvmt data, it is relatively
easy to collect for any target embodiment and environment.

Target-task demonstrations (Dttd). This is the most scarce but also most desirable data category,
since it encompasses high-quality trajectories for a specific task in question, ideally collected on the
target embodiment (robot). Note, however that we don’t require that these demonstrations be visuo-
motor. In fact, our experiments show that PLEX needs only video demonstrations for finetuning to
learn a high-quality policy for a target task.

A key data assumption we make in this work is that |Dttd| ≪ |Dvmt| ≪ |Dmtvd|.

2.3 Transformers and positional encodings

A transformer-based architecture consists of several specially structured self-attention layers and,
in general, maps an input set (often called a context) of K elements (called tokens) to an output
of the same size K [1]. In most applications, such as language translation, transformers need to
map ordered sets (i.e. sequences) to other ordered sets, and therefore add special vectors called
positional encodings to each input element to identify its position in a sequence. These encodings
can be learned as part of transformer’s training or be hand-crafted.

The most common scheme is the absolute positional encoding, where each position in the trans-
former’s K-sized context gets a positional vector [1]. Some transformers, e.g., Chen et al. [37], use
what we call a global positional encoding. It is similar to the absolute one, but assigns a separate
vector to each position in the entire input sequence rather than just the K-sized context, up to some
maximum length T ≫ K. Finally, models based on Transformer-XL [7, 14, 17], instead condition
the attention computation on the relative positions between different pairs of input tokens within
a context. In this work, we argue that on robotic manipulation finetuning datasets that consist of
small numbers of human-gathered demonstrations, relative positional encoding is significantly more
data-efficient than absolute or global one.

3 PLEX architecture and training
3.1 Intuition

PLEX (shown in Figure 1) separates the model into two transformer-based submodules: 1) a planner
that plans in the observation embedding space based on a task specification, and 2) an executor that
takes the embeddings of the historical and the planned future observations and outputs an action to
control the robot.

4Static image datasets, e.g., ImageNet, aren’t treated by PLEX in a special way and we don’t discuss it here,
but can be used to pretrain PLEX’s image encoders.
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Figure 1: PLEX architecture. This diagram illus-
trates the information flow during PLEX training, de-
scribed in Section 3.2. PLEX is optimized using the
planner’s loss LPL (computation shown with black ar-
rows ↑), and the executor’s loss LEX (computation
shown with gray arrows ↑). The symbols ‘=’ and
‘=’ denote stopgrads, where backpropagation is halted.
Each input modality m is embedded using a modality-
specific encoder ϕm. Video demonstration embed-
dings g̃, Ĩ1:T , and (optionally) R̃1:T are used to train
the planner over the embedding space using the pre-
diction loss LPL . Visuomotor trajectory embeddings
Ĩ1:T , p̃1:T , ã1:T are passed to the executor to compute
the inverse dynamics loss LEX . Note that if the image
encoder ϕI isn’t frozen, LEX ’s gradients will update
ϕI . In contrast, the planner’s own loss LPL never af-
fects ϕI (see stopgrad symbol =).

This design is motivated by the structure of
Dmtvd, Dvmt, and Dttd dataset categories, which
as we explain below make them suitable for
three complementary learning objectives.

1. Learning to execute state transitions. The
visuomotor trajectories from Dvmt, collected
on the target robotic manipulator or a
similar one, show the robot how to ex-
ecute a wide variety of state transitions.
By sampling an observation-action tuple
⟨ot−H , . . . , ot, at, ot+L⟩, the agent can learn
to infer at from ot−H , . . . , ot, and ot+L us-
ing inverse dynamics, where t is the cur-
rent time step, H is an observation history
length, and L is a lookahead parameter.

2. Learning to plan for tasks. In order to
recommend a meaningful action at each
step, inverse dynamics inference needs the
(embedding of) the desired future observa-
tion. Determining the desired future obser-
vation given a task description is something
that can be learned from multi-task video-
only data Dmtvd, since this data shows what
progress towards a successful completion of
a specified task should look like.

3. Improving target-task performance.
While learning to plan and execute on
diverse Dmtvd and Dvmt data can result in a
robotic manipulation foundation model [3]
with strong zero-shot performance (see
Section 4.2), on many tasks it may be
far from perfect. Small datasets Dttd of
high-quality target-task demonstrations
(e.g., through teleoperation) can provide
additional grounding to the target domain to
further improve a pretrained model.

3.2 Architecture

Following the above intuitions, we train
PLEX’s executor using data Dvmt and PLEX’s
planner using data Dmtvd, in addition to a small dataset Dttd of target-task trajectories (which,
if available, can be used to train both the planner and executor). Specifically, let τ =
g,R1, I1, p1, a1 . . . , RT , IT , pT , aT = g,R1:T , I1:T , p1:T , a1:T denote a trajectory. Here, g is a
task specification, It is a tuple of camera image observations, pt is a proprioceptive state, at is an
action, and Rt is a return-to-go at time t, i.e. Rt =

∑T
t′=t rt′ , where rt′ is the instantaneous reward

at time t′. The length T can vary across trajectories. As Figure 1 shows, PLEX processes these
input modalities using corresponding encoders ϕg , ϕI , ϕp, ϕa, and ϕR to obtain an embedded se-
quence g̃, R̃1:T , Ĩ1:T , p̃1:T , ã1:T . When a modality is missing, it is replaced by trainable placeholder
vectors during embedding. Missing modalities are common in robotic manipulation datasets; e.g.,
few datasets have rewards. Since PLEX’s executor and planner are designed to be trainable on task-
agnostic visuomotor Dvmt data and task-conditioned video-only demonstrations Dmtvd, respectively,
each of these components is specialized to operate only on the (embeddings of) modalities avail-
able in their prevalent training data. Per Figure 1, task description and return embeddings g̃ and
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R̃1:T don’t get routed to the executor, since they are missing from Dvmt data. Similarly, the planner
only receives g̃, Ĩ1:T and, optionally, R̃1:T embeddings, since they are present in Dmtvd data. This
separation holds also at the deployment time, when all modalities are available.

Planner The planner’s sole purpose is to determine where the agent should go in the observation
embedding space. As shown in Figure 1, given embeddings g̃, Ĩ1:T of a task-conditioned video-only
training demonstration, the planner outputs a sequence Î1+L:T+L of embeddings corresponding to
the observations the agent should ideally see L steps in the future from its current time step; L is a
hyperparameter. The planner’s training minimizes the prediction loss

LPL(g̃, R̃1:T , Ĩ1:T ) =
∑T+L

t=1+L ∥Ĩt − Ît∥22. (1)

where we set Ĩt = ĨT for t = T +1, ..., T +L. Crucially, LPL’s gradients don’t backpropagate into
the encoders ϕg and ϕI . This is to prevent the collapse of the image embedding space (denoted as
Eo); note the stopgrad symbols on LPL’s computation paths in Figure 1. The embedding space Eo

either comes from pretrained encoders or is learned with inverse dynamics during executor training.

Executor Like the planner, the executor has a specific role at the deployment time. Given the
observation-action sequence o1:t, a1:t so far and the target observation embedding Ît+L produced
by the planner, the executor infers an action ât for the current step. This inference step should be
done in a task-agnostic way, as the task knowledge is already incorporated in the Ît+L prediction of
the planner. For a trajectory from Dvmt, we optimize the executor via the inverse dynamics loss

LEX(I1:T , p1:T , Î1+L:T+L, a1:T , ) =
∑T−1

t=1 ∥at − ât∥22 (2)

A major difference between LEX and LPL optimization is that the former’s gradients can backprop-
agate into the encoders ϕI , ϕo, ϕp, and ϕa: the computation path for LEX through these encoders
in Figure 1 doesn’t have a stopgrad. This allows executor training to shape the embedding space Eo.

Relative positional encoding Like the Decision Transformer (DT) [37], PLEX’s planner and ex-
ecutor transformers are derived from GPT-2. However, DT’s use of global positional encoding
implicitly assumes that all training trajectories have the same length T . PLEX, in contrast, uses
relative encoding from Dai et al. [7] as the default. As we show empirically, in robotic manipulation
settings where tasks are usually goal-oriented and training demonstrations vary a lot in length, global
positional embedding performs poorly and even the fixed absolute positional encoding common in
NLP [1] performs much better. Especially, for human-collected demonstrations where variability is
significant, our experimental results show that relative encoding [7] perform significantly better.

3.3 Training PLEX

Training PLEX generally involves both pretraining and finetuning, though the experiments in Sec-
tion 4.2 show that pretraining alone already gives PLEX solid zero-shot performance.

Pretraining PLEX consists of two sub-stages:

1. Pretraining the executor by optimizing the LEX loss (Equation (2)) over a Dvmt dataset.

2. Pretraining the planner by optimizing the LPL loss (Equation (1)) over a Dmtvd dataset.

If the observation encoders are expected to be trained or finetuned by the inverse dynamics loss
LEX , rather than pretrained and frozen beforehand, it is critical for executor pretraining to be done
before training the planner. Indeed, the planner is expected to make predictions in the observation
encoders’ embedding space, which will change if the inverse dynamics loss affects the encoders. If
the encoders are frozen from the start, however, the pretraining stages can proceed asynchronously.

Finetuning involves adapting PLEX using a target-task demonstration dataset Dttd. As with any
finetuning, this involves deciding which part of PLEX to adapt.

Since Dttd can be viewed both as a small Dmtvd and a small Dvmt dataset, it can be used to train
any component of PLEX—executor, planner, and observation encoders. As with pretraining, if Dttd
is used for finetuning the encoders, it is critical to complete their finetuning before finetuning the
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Figure 2: PLEX’s generalization experiments. The confidence intervals are computed with 10 seeds.

planner. In Section 4.2, we show that finetuning just the last layer of the planner’s transformer,
which constitutes 5% of the parameters of the PLEX instance in the experiment, is sufficient for
significantly boosting a pretrained PLEX’s performance.

Dttd can also be employed for optimizing a behavior cloning loss LBC . This amounts to training
the planner, executor, and encoders simultaneously by having PLEX predict Dttd trajectories’s ac-
tions from the same trajectories’ observations, and allowing the action prediction loss gradients to
backpropagate through the entire PLEX model, to its the inputs. The experiments in Section 4.3
demonstrate the efficiency of BC-based finetuning thanks to the use of a relative position encoding.

4 Experiments

We conduct two sets of experiments to answer the following questions: (i) Does PLEX pretrained
on task-agnostic sensorimotor data and task-annotated video data generalize well to downstream
tasks? (ii) How does the use of relative positional encodings affect PLEX’s policy quality? Ap-
pendix C provides the details about our PLEX implementation.5

4.1 Benchmarks and training data

Meta-World: Meta-World [30] is a collection of 50 tasks featuring a Sawyer arm. We use Meta-
World-v2 with image observations (see details in Appendix D.1). We consider the ML45 split
consisting of 45 training and 5 target tasks (door-lock, door-unlock, hand-insert, bin-picking, and
box-close). We use these 5 target tasks for evaluation. Meta-World comes with high-quality scripted
policies for all tasks. To get video demonstration data (Dmtvd), we use these scripted policies to
generate 100 successful video-only demonstrations for each of the 45 training tasks, i.e., |Dmtvd| =
4500. To generate visuomotor trajectories (Dvmt), for the 5 target tasks’ environments, we add zero-
mean Gaussian noise with standard deviation 0.5 to the actions of the scripted policies and record
the altered actions. We collect 50 trajectories per task, i.e., |Dvmt| = 250. Finally, for target-task
demonstrations (Dttd), we employ the original scripted policies to produce 75 demonstrations per
target task and sample 10 of them in a finetuning experiment run, i.e., |Dttd| = 10.

Robosuite: Robosuite benchmark [31], compared Meta-World, has robotic manipulation tasks with
a significantly more complicated dynamics and action space. We use 9 of its tasks involving a
single robot arm (Panda) (Lift, Stack, Door, NutAssemblyRound, NutAssemblySquare, PickPlace-
Bread PickPlaceCan, PickPlaceMilk, and PickPlaceCereal). Robosuite’s details are provided in
Appendix D.1. Importantly, the training data for Robosuite was collected from human demonstra-
tions, not generated by scripted policies as in Meta-World. See Appendix D.4 for details.

4.2 Generalization experiments

Here we focus on pretraining PLEX with multi-task Meta-World data. The results are shown in
Figure 2. We train a 16,639,149-parameter PLEX instance (including the ResNet-18-based image
encoder) from scratch with random initialization. We use the success rate on the 5 target tasks
as the performance metric. For baselines, we experiment with PLEX with a frozen ResNet-50-
based R3M [6], an observational representation pretrained on the large Ego4D dataset [33]. We
denote it as PLEX+R3M; in Figure 2, Pretr. PLEX+R3M was first pretrained on multitask data and
then finetuned on a target task, while PLEX+R3M, BC was trained only on a single target task’s
data from the start. In addition, we use an adapted Learning from Play (LfP) approach [11]. The

5We implement PLEX using the GPT-2 of the DT codebase [37] but without return conditioning.
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hyperparameters and details can found Appendices C and D. In summary, the experimental results
show that PLEX can perform well without seeing a single sensorimotor expert demonstration.

PLEX demonstrates zero-shot generalization capabilities Figure 2 shows that PLEX pretrained
on as few as 4500 video demonstrations (Dmtvd) from the training environments and 250 dynamics
trajectories (Dvmt) from the target environments (denoted as Pretr. PLEX, zero-shot in Figure 2)
exhibits good downstream performance zero-shot. To demonstrate that this performance is really
due to planning learned from video-only data as opposed to the executor inadvertently exploiting
biases in the data, we consider a PLEX variation (denoted as Pretr. EX only, zero-shot) where we
only pretrain the executor (on Dvmt), not the planner.6 The results of Pretr. EX only, zero-shot reflect
a level of performance one can get with knowledge contained in the dynamics data Dvmt alone. Pretr.
EX only, zero-shot underperforms Pretr. PLEX, zero-shot, which shows the importance of learning
from Dmtvd via PLEX’s planner.

Our main baseline for zero-shot generalization is Learning from Play (LfP) [11], one of the few
existing methods able to generalize zero-shot from data as low-quality as Dmtvd. LfP has planning
capability but doesn’t have a way to use either the video-only data Dmtvd or the target-task demon-
strations Dttd, and performs which gives PLEX a large advantage.

PLEX can be finetuned effectively using only a few video-only demonstrations We further
show that finetuning only 5% of PLEX’s parameters (the last transformer layer of the planner) on just
10 video-only demonstrations for a given task significantly boosts PLEX’s success rate there. For all
5 downstream tasks, this policy outperforms Pretr. EX only, zero-shot by ≥ 2×. The improvement
is drastic especially in the case of hand-insert-v2, bin-picking-v2, and box-close-v2.

Video-only demonstrations is all PLEX needs during finetuning Interestingly, we find that full
demonstrations (with both video and action sequences) don’t increase PLEX’s performance beyond
video-only ones. This can seen from the experimental results of Pretr. PLEX, ft. on 10 full demos,
where we finetune PLEX (the action head and last transformer layer of PLEX’s planner, executor;
≈ 11% of PLEX) on 10 full (sensorimotor) demonstrations for each task. We think this is due to
PLEX’s image encoder being pretrained only on observations from Dvmt and frozen during fine-
tuning. Because of this, finetuning couldn’t help the encoder learn any extra features for modeling
inverse dynamics over the observation space region covered by Dttd, even if such features would
improve PLEX’s performance.

The issue of impoverished observation coverage in Dvmt dataset can be addressed by using a frozen
encoder pretrained on an independent large dataset, as the results of PLEX+R3M, BC and of pre-
trained PLEX+R3M in Figure 2 suggest. There, PLEX’s R3M encoder was never trained on any
Meta-World observations but enables PLEX to perform reasonably well.

The results of Pretr. PLEX+R3M and PLEX+R3M, BC in Figure 2 illuminate two other as-
pects of using observation-only representations like R3M: (1) The sensorimotor representation that
PLEX learns on top of R3M clearly helps generalization – pretrained PLEX+R3M performs much
better than PLEX+R3M, BC, which was trained only on a single task’s data, despite pretrained
PLEX+R3M seeing just video-only demonstrations at finetuning. (2) Fully frozen R3M some-
what limits PLEX’s performance – PLEX variants that pretrained their own encoder outperform
PLEX+R3M on 3 of 5 tasks.

4.3 Positional encoding experiments

In the Meta-World experiments, all training data was generated by scripted policies. In real settings,
most such data is generated by people teleoperating robots or performing various tasks themselves.
A hallmark of human-generated datasets compared to script-generated ones is the demonstration
variability in the former: even trajectories for the same task originating in the same state tend to be
different. In this section, we show that in low-data regimes typical of finetuning on human-generated

6At run time we feed the embedding of the task’s goal image as the predictions that the executor conditions
on (since no planner is trained).
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Figure 3: Data efficiency of PLEX’s relative positional encoding in single-task mode on Robosuite’s
single-arm tasks with |Dttd| varying from 5 to 75. PLEX (with relative encodings) in most cases sig-
nificantly outperforms and at worst matches the performance of its version PLEX-abs with absolute
positional encodings. Both versions significantly outperform DT.

demonstrations, PLEX with relative positional encoding yields superior policies for a given amount
of training data than using absolute encoding. The results are in Figure 3.

Baselines, training and evaluation protocol. To analyze data efficiency and compare to prior
results on Robosuite, we focus on an extreme variant of finetuning – training from scratch. For
each of the 9 Robosuite tasks and each of the evaluated encodings, we train a separate 36,242,769-
parameter PLEX instance using only that task’s Dttd dataset of full sensorimotor human-generated
demonstrations. We compare PLEX with relative positional encoding to PLEX with absolute one
and to two flavors of the Decision Transformer (DT) [37], which use global positional embedding.
Appendix D.5 and Figure 3 provide more details about model training dataset collection, and the
baselines. For each task/dataset size/approach, we train on 10 seeds.

Results. As Figure 3 shows, PLEX learns strong policies using at most 75 demonstrations, despite
having to train a 36M-parameter model including randomly initialized vision models for tasks, most
of which have complex dynamics and broad initial state distributions. Moreover, PLEX with relative
positional encoding (denoted simply as PLEX in the legend) outperforms the alternatives by as much
as 20 percentage points (pp) on Robosuite’s human-generated demonstration data while never losing
to them. In particular, DT-global(+rew) and, especially, DT-global perform far worse of both PLEX
and PLEX-abs. Since all models share most of the implementation and are trained similarly when
PLEX and PLEX-abs run in BC mode, we attribute PLEX’s advantage only to the combined effect
of using human-generated training data and positional encodings. We have also trained PLEX and
PLEX-abs for Meta-World’s 5 target tasks from the previous experiment for various amounts of the
available – scripted – demonstrations for these tasks and noticed no significant performance differ-
ence between PLEX and PLEX-abs on any task. This provides additional evidence that the utility of
relative positional enconding manifests itself specifically on human-generated demonstration data.

In fact, relying on relative positional encoding allows PLEX to achieve state-of-the art performance
on all Robosuite tasks in this experiment, as we show and analyze empirically in Appendix D.4.

5 Conclusion and limitations

We have introduced PLEX, a transformer-based sensorimotor model architecture that can be pre-
trained on robotic manipulation-relevant data realistically available in quantity. Our experimental
results show that PLEX demonstrate strong zero-shot performance and can be effectively finetuned
with demonstrations to further boost its performance. In particular, PLEX shows superior perfor-
mance on human-collected demonstrations because of its usage of relative positional encoding.

Limitations We believe that PLEX has great potential as a model architecture for general robotic
manipulation, but in most of our experiments so far, the training data came from the same robot
on which the trained model was ultimately deployed. In reality, most available multi-task video
demonstration data Dmtvd is generated by other robots or even people. This can cause a mismatch
between the demonstrations and the target robot’s capabilities and setups. Planning hierarchically
first in the skill space as, e.g., in Lynch et al. [38], and then in the observation embedding space
may address this issue. In addition, so far we have trained PLEX on simulated data. The eventual
goal, and indeed a significant motivation for this work, would be to pretrain on internet-scale “in-
the-wild” video datasets [29, 33, 36]. Also, with the rise of powerful LLMs such as Ouyang et al.
[39], switching PLEX to language for task specification can facilitate generalization across tasks.
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Appendix
A Related work

Our work lies at the intersection of scalable multi-task representation learning for robotic manipula-
tion, learning from observations, and decision-making using transformers.

Representation learning for robotic manipulation. Most approaches of this kind focus on pre-
training purely non-motor, usually visual, representation models (see, e.g., [6, 8, 9, 40, 41], and
references therein). These models don’t output actions; they are meant to be foundations on top of
which a policy network is to be learned. Thus, in contrast to PLEX, by themselves they can’t enable
zero-shot generalization to unseen tasks even in the limit of pretraining data coverage and amount.
However, they are synergistic with PLEX: PLEX can use them as frozen observation encoders, as
we show in Section 4.2 on the example of R3M [6].

Techniques that train sensorimotor models – i.e., full-fledged generalist policies, like PLEX – have
also been rising in prominence. Some of them [42–44] are based on meta learning [45]. However,
Mandi et al. [46] have shown multi-task pretraining followed by finetuning to be more effective
when the task distribution is broad, and several approaches [11–17] follow this training paradigm
as does PLEX. At the same time, most of them need pretraining data consisting of high-quality
demonstrations in the form of matching videos and action sequences. While the quality requirement
can be relaxed using offline RL, as, e.g., in Singh et al. [47], in order to enable generalization across
broad task distributions these sensorimotor training demonstrations need correspondingly broad task
coverage. This assumption is presently unrealistic and ignores the vast potential of the available
video-only data — the weakness PLEX aims to address.

Among the sensorimotor representation learning methods that, like PLEX, try to learn from both
video-only and sensorimotor data are Schmeckpeper et al. [48], Lynch and Sermanet [11], and Mees
et al. [21]. Schmeckpeper et al. [48] consider single-task settings only and require the video-only
and sensorimotor data to provide demonstrations for the same tasks. Lynch and Sermanet [11]
and Mees et al. [21] allow the sensorimotor data to come from exploratory policies rather than
task demonstrations but insist that this data must be generated from meaningful skills, a strong
assumption that PLEX avoids.

Architecturally, most aforementioned approaches use monolithic models that don’t have separate
components for planning and execution like PLEX. Notable exceptions are methods that mine skills
from pretraining data, embed them into a latent space, and use the latent skill space for accelerated
policy learning of new tasks after pretraining [16, 18–21]. This is akin to planning in the skill
space. PLEX can accommodate this approach hierarchically by having, e.g., a CVAE-based high-
level planning model [38] produce a task-conditioned sequence of skill latents and feeding them into
a skill-conditioned planning model that will plan in the observation embedding space. However, in
this work’s experiments, for simplicity PLEX plans in the observation embedding space directly.

Learning and imitation from observations (I/LfO) I/LfO has been used in robotic manipulation
both for single-task tabula-rasa policy learning [22, 23] and pretraining [24]. Pathak et al. [24] is
related to PLEX in spirit but lacks a counterpart of PLEX’s planner. As a result, it can’t complete
an unseen task based on the task’s goal description alone: it needs either a sequence of subgoal
images starting at the robot’s initial state or a sequence of landmarks common to all initial states of
a given task. Beyond robotics, a type of LfO was also employed by Baker et al. [25] and Venuto
et al. [49] to pretrain a large sensorimotor model for Minecraft and Atari, respectively. This model,
like Pathak et al. [24]’s, doesn’t have a task-conditioned planning capability and is meant to serve
only as a finetunable behavioral prior. Xu et al. [26] investigate an LfO method akin to PLEX in
low-dimensional environments, where it side-steps the question of choosing an appropriate repre-
sentation for planning, the associated efficiency tradeoffs, and pretraining a generalizable planning
policy.
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Overall, the closest approach to PLEX is the concurrently proposed UniPi [5]. It also has a universal
planner meant to be pretrained on a large collection of available videos, as well as an executor
that captures inverse dynamics. However, UniPi ignores the issue of data efficiency and plans in
the space of images (observations), using diffusion [29], rather than in the latent space of their
embeddings. This is expensive to learn and potentially detrimental to plan quality. Latents even from
statically pretrained image encoders are sufficient to capture object manipulation-relevant details
from videoframes [8], whereas diffusion models can easily miss these details or model their 3D
structure inconsistently [29]. Indeed, despite being conceptually capable of closed-loop control, for
computational efficiency reasons UniPi generates open-loop plans, while PLEX interleaves planning
and execution in a closed loop.

Transformers for decision making and their data efficiency. After emerging as the dominant
paradigm in NLP [2] and CV [50], transformers have been recently applied to solving general long-
horizon decision-making problems by imitation and reinforcement learning [37, 51–54], including
multi-task settings [55] and robotic manipulation [14, 17, 21, 27, 28]. Mees et al. [21] provide
evidence that in robotic manipulation transformers perform better than RNNs [11] while having
many fewer parameters. Of all these works, only Reed et al. [14] uses relative positional encoding,
and only by “inheriting” it with the overall Transformer-XL architecture [7], without motivating its
effectiveness for decision-making.

Task specification formats. Task specification modality can significantly influence the generaliza-
tion power of models pretrained on multi-task data. Common task conditioning choices are images
of a task’s goal [15], videos of a task demonstration by a person [12, 42] or by a robot [13, 45], and
language descriptions [11, 12, 17, 21, 56]. PLEX is compatible with any of these formats; in the
experiments, we use goal images.

B Problem formalization

Formally, the problem PLEX aims to solve can be described as a partially observable Markov deci-
sion process (POMDP) ⟨G,S,O, z,A, p, r⟩ with a special structure. Here, G is the space of possible
manipulation tasks that we may want to carry out the tasks in G. S = P × W is a state space
consisting of a space P of robots’ proprioceptive states (e.g., poses, joint speeds, etc.) and a space
W of world states. A state s’s proprioceptive part p ∈ P is known at execution time and in some
of the training data, whereas the world state w ∈ W is never observable directly. A latent state s
can be probabilistically inferred from its observations o ∈ O and a state-conditioned distribution
z : S → ∆(O) that describes how latent states in S manifest themselves through observations,
where ∆ denotes the space of distributions. For robotic manipulation, each observation can consist
of several modalities: camera images (possibly from several cameras at each time step), depth maps,
tactile sensor readings, etc. The distribution z is unknown and needs to be learned. A is an action
space, e.g., the space of all pose changes the robotic manipulator can achieve in 1 time step, and
p : S × A → ∆(S) is a transition function describing how executing an action affects a current
state, which potentially is stochastic. A reward function r : G × S ×A× S → R can provide addi-
tional detail about task execution by assigning a numeric reward to each state transition, e.g., 0 for
transitions to a task’s goal state and -1 otherwise. Our objective is to learn a policy π : G×O|H → A
that maps a history of observations O|H over the previous H steps to an action so as to lead the robot
to accomplish a task g ∈ G.

C PLEX implementation details

The transformers PLEX uses as its planner and executor are derived from the GPT-2-based version
of the Decision Transformer (DT) [37]. Like in DT, we feed inputs into PLEX by embedding each
modality instance (e.g., an image or an action) as a single unit. This is different to the way, e.g.,
Gato [14] and Trajectory Transformer [51] do it, by splitting each input into fragments such as image
patches and embedding each fragment separately.
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We condition PLEX’s planner on embeddings of goal images. Low-dimensional inputs (actions and
proprioceptive states) are mapped to Rh, the transformer’s h-dimensional input space, using a 1-
layer linear neural network. High-dimensional inputs – videoframes from one or several cameras
at each time step as well as goal images – are processed using a ResNet-18-based [57] encoder
from Robomimic [32]. It applies a random crop augmentation to each camera’s image, passes it
through a separate ResNet18 instance associated with that camera, then passes the result through
a spatial softmax layer [58], and finally through a small MLP. The resulting embedding is fed into
PLEX’s planner. If the robot has several cameras, the encoder has a separate ResNet instance for
each. For each time step, PLEX’s planner outputs an h-dimensional latent state representing the
predicted embedding of PLEX’s visual observations k time steps into the future, where k is a tunable
parameter. These latents are then fed directly into the planner as predictions of future observation
embeddings. The output latents from the planner transformer are fed through a tanh non-linearity,
which outputs action vectors in the [−1, 1] range. The hyperparameters can be bound in Tables 4
and 5.

Our PLEX implementation is available at https://microsoft.github.io/PLEX.

D Additional details about the experiments

D.1 Meta-World and Robosuite details

Meta-World. In our Meta-World-v2 setup, at each time step the agent receives an 84 × 84 image
from the environment’s corner camera and the Sawyer arm’s 18D proprioceptive state. The agent’s
actions have 4 dimensions, each scaled to the [−1, 1] range. Although Meta-World also provides
privileged information about the state of the environment, including the poses of all relevant objects,
our PLEX agent doesn’t access it.

Robosuite. The observation and action space in our experiments is exactly as in the best-performing
high-dimensional setup from the Robomimic paper [32]. Namely, actions are 7-dimensional: 6 di-
mensions for the gripper’s pose control (OSC POSE) and 1 for opening/closing it. Visual observa-
tions are a pair of 84× 84 images from agentview (frontal) and eye-in-hand (wrist) cameras at each
step. Proprioceptive states consist of a 3D gripper position, a 4D quaternion for its orientation, and
2D gripper fingers’ position.

D.2 Details of the baselines from prior work

PLEX +R3M [6]. We experiment with two combinations of PLEX with a frozen ResNet-50-based
R3M [6], an observational representation pretrained on the large Ego4D dataset [33] In these ex-
periments, R3M replaces Robomimic’s ResNet-18, and we use versions of our Meta-World Dvmt,
Dmtvd, and Dttd datasets with 224x224 image observations instead of the 84x84 ones.

One combination, PLEX +R3M, BC in Figure 2, learns a single-task policy on 10 full sensorimo-
tor demonstrations for each Meta-World target task. It operates in behavior cloning (BC) mode,
whereby PLEX is optimized solely w.r.t. its action predictions’ MSE loss, whose gradients back-
propagate though the whole network (except the frozen R3M). The other combination, pretr. PLEX
+R3M in Figure 2, follows the same PLEX pretraining and finetuning process as described previ-
ously, except the R3M encoder stays frozen throughout.

Learning from Play [11]. Our final baseline is an adapted Learning from Play (LfP) approach [11].
As in Lynch and Sermanet [11], LfP doesn’t use video-only Dmtvd data or target-task demonstrations
Dttd; it trains one model for all target tasks from the “play” dataset Dvmt only. Instead of using
language annotations to separate “meaningful” subsequences in Dvmt, we give LfP the ground-truth
knowledge of where trajectories sampled from different tasks begin and end. Accordingly, we don’t
use language during training either. As n the case of PLEX, We train Learning from Play to plan
conditioned only on goal images and present it with goal images from successful trajectories of the
target tasks during evaluation.

15

https://microsoft.github.io/PLEX


D.3 Success rate evaluation protocol

In the generalization experiments on Meta-World, all success rate evaluations are done on 50
500-step rollouts starting from initial states sampled from the test distributions of Meta-World’s
ML45 target tasks (door-lock, door-unlock, hand-insert, bin-picking, and box-close).

To evaluate the zero-shot success rate of the pretrained EX and PLEX models, we compute the
average across 50 rollouts generated by these models on each of the 5 target tasks at the end of
pretraining.

To evaluate the success rate of the finetuned models, we adopt the procedure from Mandlekar et al.
[32]. The finetuning lasts for N epochs (see Table 5). After each epoch, we measure the average
success rate of the resulting model across 50 rollouts, and record the maximum average success rate
across all finetuning epochs.

In the positional encoding experiments on Robosuite, the evaluation protocol is the same as in
Meta-World finetuning and in Robomimic [32]: we train each model for N epochs (see Table 5),
after each epoch compute the success rate across 50 trajectories (with 700-step horizon), and record
the best average success rate across all epochs.

D.4 Robosuite datasets and model training

Training data for Robosuite was collected from human demonstrations, not generated by scripted
policies. Robosuite provides a keyboard and SpaceMouse interfaces for controlling the Panda arm
in its environments, and Robomimic supplies datasets of 200 expert (“professional-human”) trajec-
tories collected using the SpaceMouse interface for the NutAssemblySquare, PickPlaceCan, and Lift
tasks. For each of the tasks without pre-collected Robomimic datasets, we gather 75 high-quality
trajectories via Robosuite’s keyboard interface ourselves. We employ Robosuite tasks only for ex-
periments that involve training single-task policies from scratch, so all of these trajectories are used
as target-task demonstration data (Dttd). Typical demonstration trajectory lengths vary between 50
and 300 time steps.

Accordingly, to show the difference between relative and absolute positional encodings’ data ef-
ficiency, we train PLEX for |Dttd| = 5, 10, 25, 50, and 75, sampling Dttd’s from the set of 75
demonstrations without replacement. The results are presented in the main paper in Figure 3.
For Lift, PickPlaceCan, and NutAssemblySquare, Robomimic [32] similarly provides 200 high-
quality human-collected demonstrations each, as well as the results of BC-RNN on subsets of
these datasets with |Dttd| = 40, 100, and 200. Therefore, for these problems we train PLEX for
|Dttd| = 5, 10, 25, 50, 75, as well as 40, 100, and 200. The results are shown in Table 3 and Table 1.

The only difference of PLEX model instances for Robosuite from those for Meta-World is the former
having two ResNet-18s in the observation encoder, one for the eye-in-hand and one for the agentview
camera. As for Meta-World, the encoder in the Robosuite is trained from scratch, in order to make
our results comparable to Robomimic’s [32], where models use an identical encoder and also train
it tabula-rasa. In this experiment, we train PLEX in behavior cloning (BC) mode, like Meta-World’s
single-task PLEX +R3M, whereby PLEX is optimized solely w.r.t. its action predictions’ MSE loss,
whose gradients backpropagate though the whole network. All hyperparameters are in Table 5 in
Appendix E.

We compare PLEX with relative positional encoding to PLEX with absolute one and to two flavors
of the Decision Transformer (DT) [37], which use global positional embedding. One flavor (DT-
global in Figure 3) is trained to condition only on task specification (i.e., goal images), like PLEX.
We note, however, that Chen et al. [37] used rewards and returns when training and evaluating DT.
Therefore, we also train a return-conditioned version of DT (DT-global(+rew) in Figure 3), with
returns uniformly sampled from the range of returns in Dttd during evaluation.
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D.5 Additional Robosuite results

Comparison to BC-RNN. Relying on relative positional encoding allows PLEX to achieve state-
of-the art performance on all Robosuite tasks in our experiments. To establish this, in addition to the
baselines in Figure 3, we compare to the results of a BC-RNN implementation from the work that
introduced some of these Robosuite problems [32]. Interestingly, running BC-RNN on the tasks for
which we have collected demonstrations ourselves resulted in 0 success rate (Table 2), while running
it on tasks with Robomimic-supplied 200 trajectories (Lift, PickPlaceCan, and NutAssemblySquare)
reproduced Mandlekar et al. [32]’s results. PLEX’s comparison to BC-RNN’s results on those prob-
lems are in Table 1 in Appendix D.4. PLEX and BC-RNN are at par on the easier problems but
PLEX performs better on the harder NutAssemblySquare.

Lift PickPlaceCan NutAssemblySquare
|Dttd| 40 100 200 40 100 200 40 100 200
PLEX 100± 0 100± 0 100± 0 82.8± 8.9 95.8± 2.8 96.6± 4.1 40.4± 6.9 69.6± 4.1 86.0± 3.1

BC-RNN 100± 0 100± 0 100± 0 83.3± 1.9 97.3± 0.9 98.0± 0.9 29.3± 4.1 64.7± 4.1 82.0± 0.0

Table 1: Performance of PLEX and BC-RNN on three Robosuite tasks from Mandlekar et al. [32]
on |Dttd| = 40, 100, and 200 demonstrations. BC-RNN’s results come from Figure 3b and Table 27
in Mandlekar et al. [32]). On the easier Lift and PickPlaceCan, PLEX and BC-RNN are at par, but
on the harder NutAssemblySquare PLEX performs better. On the remaining 6 problems for which
we have gathered the demonstration data, BC-RNN’s success rate is 0 — see Table 2.

Door Stack PickPlaceBread PickPlaceMilk PickPlaceCereal NutAssemblyRound
|Dttd| 75 75 75 75 75 75
PLEX 78.4± 9.2 97.3± 2.9 92.0± 4.65 65.6± 4.6 72.2± 4.4 49.8± 5.5

BC-RNN 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

Table 2: Performance of PLEX and BC-RNN on the remaining 6 Robotsuite/Robomimic tasks from
Figure 3. PLEX’s numbers are copied from that Figure.

Better data efficiency or higher performance? Given Figure 3, one may wonder: does PLEX-
abs’s performance plateau at a lower level than PLEX’s with relative positional encoding, or does
PLEX-abs catch up on datasets with |Dttd| > 75? For most tasks we don’t have enough training data
to determine this, but Table 3 in Appendix D.4 provides an insight for the tasks with Robomimic-
supplied 200 training demonstrations. Comparing the performance gaps between PLEX and PLEX-
abs on 75-trajectory and 200-trajectory datasets reveals that the gap tends to become smaller. The
same can be seen for Stack, PickPlaceCereal, NutAssemblyRound already at |Dttd| = 75 in Figure 3,
suggesting that with sufficient data PLEX-abs may perform as well as PLEX. However, the amount
of data for which this happens may not be feasible to collect in practice.

Lift PickPlaceCan NutAssemblySquare
|Dttd| 75 200 75 200 75 200
PLEX 100± 0 100± 0 80.4± 5.7 96.6± 4.1 64.0± 4.6 86.0± 6.1

PLEX-abs 100± 0 100± 0 72.8± 8.0 93.0± 4.7 45.2± 5.7 76.8± 4.9

Table 3: Performance of PLEX and PLEX-abs as the amount of training data |Dttd| increases from
75 to 200 trajectories. The performance gap between the two is narrower on the larger dataset. For
Lift and several other Robosuite tasks, this trend becomes visible for datasets smaller than 200 (see
Figure 3.

E Hyperparameters
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Parameter name Meta-World
(PLanner/EXecutor)

Robosuite
(PLanner/EXecutor)

# layers 3/3 3/3
context size K 30/30 time steps 30/30 time steps

hidden dimension 256/256 256/256
# transformer heads 4/4 4/4

# evaluation episodes 50 50
# max. evaluation episode length 500 700

Table 4: Hyperparameters of PLEX’s transformer-based planner and executor components for the
Meta-World and Robosuite benchmarks. In each case, the planner and executor use the same param-
eters, but for most problems the executor’s context length K can be much smaller than the planner’s
without loss of performance, e.g., KEX = 10. For the Decision Transformer on Robosuite, we use
4 transformer layers and otherwise the same hyperparameters as for PLEX.

Meta-World Robosuite

Parameter name pretraining
(PLanner/EXecutor)

last-layer finetuning
(PLanner/EXecutor)

behavior cloning
(PLanner/EXecutor)

lookahead steps 1/ – 1/ – 1/ –
learning rate 5 · 10−4 5 · 10−4 5 · 10−4

batch size 256 256 256
weight decay 10−5 10−5 10−5

# training epochs 10/10 10/10(?) 10
# training steps per epoch 250/250 250/250(?) 500

Table 5: Hyperparameters of PLEX training for the generalization experiments on Meta-World and
positional encoding experiments on Robosuite. The former use PLEX in pretraining and finetuning
modes; the latter only in behavior cloning mode (training the entire model from scratch for a single
target task). In finetuning mode, we adapt only the last transformer layer of the planner and, in one
experiment, of the executor as well. The (?) next to the executor’s hyperparameters indicate that
they were used only in the experiment where the executor was actually finetuned. For the Decision
Transformer on Robosuite we use the same hyperparameters as for PLEX.
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