
Towards Scalable Coverage-Based Testing of
Autonomous Vehicles

James Tu1,2 Simon Suo1,2 Chris Zhang 1,2 Kelvin Wong1,2 Raquel Urtasun1,2

1Waabi 2University of Toronto
{jtu,czhang,kwong,urtasun}@waabi.ai suo@cs.toronto.edu

Abstract: To deploy autonomous vehicles(AVs) in the real world, developers
must understand the conditions in which the system can operate safely. To do
this in a scalable manner, AVs are often tested in simulation on parameterized
scenarios. In this context, it’s important to build a testing framework that par-
titions the scenario parameter space into safe, unsafe, and unknown regions [1].
Existing approaches rely on discretizing continuous parameter spaces into bins,
which scales poorly to high-dimensional spaces and cannot describe regions with
arbitrary shape. In this work, we introduce a problem formulation which avoids
discretization — by modeling the probability of meeting safety requirements ev-
erywhere, the parameter space can be paritioned using a probability threshold.
Based on our formulation, we propose GUARD as a testing framework which
leverages Gaussian Processes to model probability and levelset algorithms to ef-
ficiently generate tests. Moreover, we introduce a set of novel evaluation metrics
for coverage-based testing frameworks to capture the key objectives of testing. In
our evaluation suite of diverse high-dimensional scenarios, GUARD significantly
outperforms existing approaches. By proposing an efficient, accurate, and scal-
able testing framework, our work is a step towards safely deploying autonomous
vehicles at scale.

Keywords: Testing, Coverage, Self-Driving

1 Introduction

Autonomous vehicles (AVs) will soon become a staple in ground transportation—interacting with
billions of people everyday. At this scale, AVs can drastically reduce accidents, relieve traffic con-
gestion, and provide mobility for those who cannot drive. In order to realize this future, developers
must first ask the question: “Is the AV safe enough to be deployed in the real world?” To understand
how safe the AV is, it’s important to identify in which scenarios the AV is safe or unsafe with respect
to requirements defined by safety experts [1, 2]. Towards this goal, it’s important to build a testing
framework which covers the wide range of scenarios in the AV’s operational domain and classify
them as safe, unsafe, or unknown.

To cover the wide range of real-world scenarios in a scalable manner, the AV industry often builds
testing frameworks in simulation [3, 4, 5] where the traffic environment is fully controllable and
long-tail events can be synthesized. A popular strategy to describe real world events in simulation
involves designing parameterized scenarios [6]. These scenarios describe semantics of the environ-
ment (e.g. truck merging from on-ramp) and its parameters specify low-level characteristics (e.g.
velocity of traffic participants). Each parameter configuration then corresponds to a concrete test
which can be executed in simulation to determine if the AV complies with functional safety require-
ments [1]. This is typically captured as a binary pass or fail determined by regulatory demand [7].
For example, an AV could fail if it violates a safety distance threshold.

However, directly covering all variations in a scenario’s parameter space can be infeasible. Contin-
uous parameters imply infinitely many variations and testing frameworks can only execute a finite
number of concrete tests which is limited by computation budget. As a result, to cover the parameter
space the testing framework must leverage observed test results to estimate if the AV will pass or
fail on unseen test configurations. Furthermore, the testing framework must also efficiently choose
concrete tests to execute to maximize coverage and accurately estimate AV performance.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Pass Fail Uncertain

Probabilistic Model

Performance Estimate

Uncertainty

Probabilistic Model of Test Outcome Testing Process

Pass Fail

A
ct

or
 a

cc
el

Actor velocity

Parameterized Scenario Testing

certain

uncertain

Predict Outcome of Unseen Tests
Execute Test

Update model

Select test

- Near Boundary
- Uncertain

Figure 1: Left: Parameterized scenario testing. Middle: Probabilistic model estimates pass/fail
outcomes in parameter space. Right: Testing process—sample and execute tests, then update model.

Existing approaches rely heavily on discretization to reduce the infinite continuous parameter space
into discrete bins, making the assumption that tests in the same bin yield the same result. While
effective for simple 2-dimensional scenarios [8, 9], they scale poorly to high dimensional scenarios
due to exponentially growing number of bins. Alternatively, another common approach involves
generating adversarial examples [10, 11, 12] to discover failures. While revealing failure cases is
useful, these methods forgo covering the parameter space and cannot provide an understanding of
AV performance across the parameter space.

In this work, we formulate the testing process as sequencing a finite number of tests to estimate the
probability of passing or failing across the entire parameter space, thereby avoiding discretization
altogether. To start, we can leverage observed test results to model the probability of passing or
failing across the entire parameter space. Intuitively, if the AV easily passed a particular test, it can
pass similar tests with high probability. Moreover, for an unseen test with little information from
similar tests, the pass/fail outcome should be ambiguous. By modeling the probability everywhere,
it follows that a probability threshold can partition the parameter space into 1) pass regions, 2) failure
regions, and 3) uncertain regions, which is the output prescribed by standard safety guidelines [1, 2].

Based on our formulation, we propose our testing framework GUARD. Specifically, we leverage
Gaussian Processes (GPs) to model the probability of passing and failing. To achieve high sample
efficiency, we adopt levelset algorithms which adaptively generates tests that balance exploration
(of high uncertainty regions) and exploitation (by sampling near the pass/fail boundary). More-
over, GUARD leverages online GP kernel learning, allowing it to scale to different parameterized
scenarios with minimal hyperparameter tuning.

To evaluate testing frameworks, we propose a suite of novel evaluation metrics which capture the
key objectives of testing: achieving high coverage, evaluating safety of the AV, and exposing failure
cases for autonomy development. Under these metrics, GUARD is able to outperform existing test-
ing frameworks across a diverse set of complex and high-dimensional driving scenarios. Moreover,
we find that by avoiding discretization, our approach scales much more efficiently as the dimension-
ality of test scenarios grow. Finally, GUARD can also benchmark different iterations of autonomy
models while identifying specific examples of scenarios where regression occurs.

2 Related Work
2.1 Coverage-Based Testing

AVs are often tested in simulation using parameterized scenarios [6, 13, 14] where it receives a pass
or fail based on safety requirements [7]. Each parameter configuration corresponds to a concrete
test and testing frameworks execute concrete tests to cover the parameter space. Since continuous
scenario parameters imply an infinite amount of scenario variations, existing works discretize the pa-
rameter space into bins — assuming all pass/fail outcomes in a bin are identical. This discretization
introduces error in understanding where the AV passes and fails, which grows with the bin size.

Exhaustively testing all parameter bins [14, 15] is a widely adopted approach in industry. How-
ever, this approach suffers from coarse discretization when testing high-dimensional scenarios. To
increase sample efficiency, t-way testing [16] samples points such that for every subset of t pa-
rameters, every combination is covered. This affords finer discretization but leads to inaccuracies
due to assuming that tests which share a subset of t parameters yield the same result. Similarly,

2

Algorithm 1: Algorithm for GUARD
Input: Threshold γ, threshold α, budget N , initial budget M , kernel params κ0, update freq K
G← GP (κ0) // Initialize GP
for t in 1, ..., M do // Initial exploration batch

θt ← argmaxθ σ(θ)
G← UpdateGPSamples(G,θt, f

∗(θt))
κM ← argmaxκ P (f(θ1) . . . f(θt) | θ1 . . .θt;κ) // Fit kernel on initial batch
G← UpdateGPKernel(G,κM)

for t in M+1, ..., N do // Levelset sampling
θt ← argmaxθ βσ(θ)− |µ(θ)− γ| // Explore or close to boundary
G← UpdateGPSamples(G,θt, f

∗(θt))
if t ≡ 0 mod K then // Fit kernel every K steps

κt ← argmaxκ P (f(θ1) . . . f(θt) | θ1 . . .θt;κ)
G← UpdateGPKernel(G,κt)

P ← {θ ∈ Θ | Φ(γ−µ(θ)σ(θ)) ≥ α} // Pass region

F ← {θ ∈ Θ | Φ(µ(θ)−γσ(θ)) ≥ α} // Fail region

U ← Θ \ P \ F // Unknown region
return P,F ,U

levelset estimation [17, 18, 19] has also been applied to increase sample efficiency in discretized
coverage-based testing [8]. On the other hand, [9] leverages adaptive discretization resolutions.

2.2 Adversarial Example Generation

Adversarial example generation is a widely studied approach to generate difficult exaples [20, 21, 22,
23, 24, 25], which have been applied to image classification [26], natural language processing [27],
and self-driving [10]. In parameterized scenario testing, this is done by optimizing parameters via
black-box optimization algorithms such as Bayesian Optimization [10, 28, 29, 30, 31] or Reinforce-
ment Learning [32, 33] to generate challenging safety-critical scenarios. These methods optimize
for the most adversarial and do not cover the parameter space. On the other hand, [34] showed that
BO with the GP-LCB acquisition function can validate that an AV passes all scenario variations
if the LCB is positive everywhere and a failure isn’t discovered. This achieves coverage but only
in the case where the AV is perfect. Acquisition functions for adversarial example generation can
also be used to sample tests in our framework. However, this oversamples severe failures, whereas
oversampling on the pass/fail boundary is more efficient for coverage-based testing.
3 Scalable Coverage-Based Testing
In this section, we introduce our formulation which leverages probabilistic models to partition the
parameter space into pass, fail, and unknown regions. Following our formulation, we introduce
our testing framework GUARD that leverages Gaussian Processes (GPs), levelset estimation, and
learnable GP kernels. An overview can be found in Figure 1 and the algorithm in Algorithm 1.

3.1 Problem Formulation

The AV software stack is often tested on parameterized scenarios commonly known as logical sce-
narios [13, 6], which are the standard in the self-driving industry. Each logical scenario features a
set of d configurable parameters θ ∈ Rd, where each specific configuration of the parameters results
in a concrete test. The scenario parameters are bounded [13, 15], i.e., θi ∈ [ai, bi], making the entire
parameter search space a closed set Θ in Rd. We assume that a simulation test outputs a scalar mea-
sure of safety (e.g. minimum distance to another agent). Mathematically, let f∗ : θ×A → R be the
test function which takes as input test parameters θ, autonomy system A and outputs a real-valued
scalar f∗(θ;A). We omit A to use f∗(θ) for brevity. In compliance with regulatory demand [7], a
binary pass or fail y = 1[f∗(θ) ≥ γ] is computed using a threshold γ. It follows that we can denote
regions in the parameter space Θ where the system passes and fails as

P∗ = {θ ∈ Θ, f∗(θ) ≥ γ}. (1)
F∗ = {θ ∈ Θ, f∗(θ) < γ}. (2)

3

0.7 0.8 0.9 1.0
Coverage

0.60

0.65

0.70

0.75

0.80

0.85

B
al

an
ce

d
A

cc
ur

ac
y

0.7 0.8 0.9 1.0
Coverage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r R
ec

al
l

2-Way 3-Way Conformal Inference Grid GUARD HiddenGems

0.7 0.8 0.9 1.0
Coverage

0.05

0.10

0.15

0.20

Fa
ls

e
Po

si
tiv

e
R

at
e

Figure 2: GUARD significantly outperforms other testing frameworks. GUARD also a sweepable
confidence threshold to a trade-off between coverage and the other metrics.

Then, the testing process can be thought of as sequencing a finite set of tests {θ1, . . . ,θN}, observ-
ing their outcomes {f∗(θ1), . . . , f∗(θN)} and estimating P ≈ P∗, F ≈ F∗. Estimating pass/fail
across a continuous parameter domain using a finite set of test points inevitably leads to estimation
errors, especially if the number of concrete tests are limited (e.g. due to testing resource constraints).
At the same time, estimation errors and false positive passes in particular can be detrimental to safety.

Thus, we design an uncertainty-aware formulation where the framework quantifies the confidence
of its estimation. This allows the framework to say it is uncertain instead of predicting a pass/fail
outcome with insufficient information. Specifically, we compute the probability that the system will
pass or fail at any point in the parameter space. To achieve this, we model f∗(θ) with a random
variable f(θ). Under this random variable, the estimated pass and fail regions can be defined as

P = {θ ∈ Θ, P (f(θ) ≥ γ) ≥ α}.
F = {θ ∈ Θ, P (f(θ) < γ) ≥ α}. (3)

with respect to confidence threshold α. It follows that the unknown region can be obtained as
U = Θ−P −F , where more information is required to make a prediction. Note that the size of P
and F increase monotonically as α decreases. The configurable confidence threshold α allows the
testing framework to control the tradeoff between the quality and quantity of predictions.

3.2 Gaussian Process
As outlined in Equation 3, our formulation requires a probabilistic estimate f(θ) for the ground truth
test function f∗(θ). We adopt GPs as they perform well in low-data regimes, making them suitable
in our setting as the number of concrete tests are limited. Additionally, GPs are non-parametric and
make less assumptions about the function being modeled, which is important in allowing our testing
framework to scale to a wide variety of logical scenarios.

A GP is a collection of random variables in which every subset is assumed to distributed from a
multivariate Gaussian. Let X = [θ1 . . .θN] ∈ Rn×d ∼ N (µ,Σ) be random variables from N test
samples and Y = [f∗(θ1) . . . f∗(θN)] be the corresponding scalar outputs of f∗. To estimate test
outcomes, we model the distribution over the real-valued output of the metric P (f(θ)). Specifically,
the value of an unseen datapoint is estimated by the conditional posterior distribution

P (f(θ)|θ, X, Y) ∼ N (µ(θ), σ2(θ)) (4)

µ(θ) = k(θ, X)T (K + ε2I)−1Y (5)

σ2(θ) = k(θ,θ)− k(θ, X)T (K + ε2I)−1k(θ, X). (6)
Here k(·, ·) is the kernel function which provides a similarity measure between two GP variables,
k(θ, X) = [k(θ,θi), . . . , k(θ,θN)], Kij = k(θi,θj), and ε models noise in the observed values
Y . Under the posterior distribution of f(θ), the probability of observing a value above or below a
certain threshold can be computed. Specifically, the probability of observing a value greater than the
pass-fail threshold γ is

P (f(θ) ≥ γ) = Φ

(
µ(θ)− γ
σ(θ)

)
. (7)

where Φ is the CDF of the normal distribution. The probability of observing a value under γ can be
computed in a similar fashion. An illustration of this can be seen in Figure 1.

4

Method Coverage(%) Bal. Acc(%) Pos Acc(%) Neg Acc(%) Err. Recall(%) FPR(%)

Grid 87.7 ± 0.4 62.3 ± 0.1 97.4 ± 0.03 27.2 ± 0.2 25.0 ± 0.3 18.9 ± 0.2
2-way [16] 92.2 ± 0.2 60.3 ± 0.6 96.0 ± 0.1 24.6 ± 1.2 24.3 ± 1.2 18.2 ± 0.4
3-way [16] 92.4 ± 1.0 59.7 ± 1.7 96.2 ± 0.3 23.2 ± 3.7 22.5 ± 3.6 20.9 ± 1.3
HiddenGems [8] 72.8 ± 0.6 66.2 ± 2.2 98.3 ± 0.1 33.7 ± 4.4 14.8 ± 2.4 16.0 ± 0.4
Conformal Inference [9] 89.6 ± 0.4 61.8 ± 0.8 97.0 ± 0.7 26.7 ± 1.4 16.6 ± 1.5 23.8 ± 0.9
GUARD 94.3 ± 0.9 84.2 ± 5.3 99.2 ± 0.2 70.3 ± 10.6 58.9 ± 5.3 5.89 ± 3.1

Table 1: Benchmarking GUARD against baselines

3.3 Test Generation

Note that precisely modelling f∗ when the output is far from γ adds little value since it won’t affect
the pass or fail outcome. In contrast, it’s important to accurately model regions near the γ-levelset.
Hence, we leverage levelset algorithms to efficiently upsample points near the boundary. Specif-
ically, we adopt Straddle [35] as it directly integrates GPs, and alternative GP-levelset algorithms
operate on finite input domains [17, 8, 18]. Straddle iteratively queries test points based on an explo-
ration incentive promoting points with high variance and an exploitation incentive promoting points
close to the γ-levelset. Specifically, these two incentives are captured by the acquisition function

ht(θ) = βσt(θ)− |µt(θ)− γ| (8)

where β is a weighting coefficient balancing the first exploration term and the second exploita-
tion term. At each iteration, we solve a lightweight maximization problem to find the next query
point θt = argmaxθ ht(θ). We start by sampling P initial random points from Θ. Then since
ht(θ) is differentiable with respect to θ, the top Q candidates are improved via gradient-based opti-
mization. This optimization is inexpensive since the cost of running the GP model and performing
backpropagation to evaluate µ(θ), σ(θ) is negligible compared to running simulation to evaluate
f∗(θ). Finally, the concrete test corresponding to θt is executed in simulation to obtain f∗(θt). The
observation (θt, f

∗(θt)) is then added to the GP model to update the GP posterior.

3.4 Automatic Kernel Tuning

In addition to observed test points, the posterior distribution outlined in Equation 5 and 6 also depend
heavily on the kernel function k(·, ·). Thus, the estimatesP andF are sensitive to the kernel function
parameters which we denote as κ. At the same time, tuning kernel parameters can be tedious and
time consuming [8]. Moreover, in our task, each individual scenario has different parameters with
varying scales and effects on the final output, requiring different kernels to accurately model different
scenarios. This makes manually tuning kernels infeasible for large scale testing.

To circumvent this issue, we first normalize the scenario parameter space Θ to the unit hypercube
[0, 1]d to address parameters with different scales. Furthermore, instead of manually tuned and fixed
kernel parameters, we optimize the kernel parameters to maximize the marginal likelihood of the
observations. In particular, at iteration t, we update the kernel parameters κ towards

κt = argmax
κ

P (f(θ1) . . . f(θt) | θ1 . . .θt;κ). (9)

The marginal likelihood is differentiable with respect to the kernel parameters κt and we perform
gradient-based optimziation every K iterations. The kernel learning process can be prone to overfit-
ting to a small initial batch of observations. Therefore, we perform an initial sampling step where we
query M tests using only the variance term σt(θ) of the acquisition function outlined in Equation 8.

4 Experiments
We first introduce the test scenarios, evaluation metrics, and relevant baselines. Then, we demon-
strate the effectivness of GUARD and ablate our design choices. Finally, we show how GUARD
can be used in practice to benchmark autonomy systems and catch regressions. Additional experi-
ments are included in Appendix A.

4.1 Experimental Setup

Simulation Test Scenarios: We use a suite of 10 logical scenarios designed by expert testing engi-
neers and based on guidelines [36] prescribed by the National Highway Traffic Safety Association
(NHTSA). The scenarios are executed in a high-fidelity closed-loop simulator and use a combina-
tion of scripted and reactive actors. The scripted actors execute parameterized maneuvers to stress

5

Figure 3: 2D slice of 5D parameter space. GUARD performs better by avoiding discretization.

test the AV - e.g. cut-ins. The reactive actors act as realistic background traffic and are controlled
using the Intelligent Driver Model [37]. Each scenario has d = 5 parameters and descriptions of the
scenarios are provided in Appendix B.

We evaluate the PLT motion planner [38] using minimum distance(m) to collision as the safety
metric and choosing the safety threshold as γ = 1.0. We useN = 1000 test samples for experiments
unless otherwise specified. In the following experiments, we repeat 5 trials for each scenario to
collect mean and standard deviation of metrics. We report the average mean and standard deviation
across the 10 scenarios. To support large scale experimentation, we construct an offline dataset by
evaluating each scenario space over a fine grid to create an approximation via linear interpolation.

Metrics: To evaluate performance, we propose several metrics which capture important aspects of
testing for safety and autonomy development.

• Coverage is the percentage of the search space Θ that is covered by the estimates P and F :

coverage =
|P ∪ F|
|Θ|

. (10)

• Balanced Accuracy evaluates how accurate the estimates P and F are and also addresses class
imbalance due to the fact that the scenario space is dominated by passes:

balanced acc =
|P ∩ P∗|

|P∗| ∩ (|P ∪ F|)︸ ︷︷ ︸
positive acc

+
|F ∩ F∗|

|F∗| ∩ (|P ∪ F|)︸ ︷︷ ︸
negative acc

(11)

• Error Recall measures the percentage of the failures the testing framework can recall, which is
very useful for autonomy development. This computed as:

error recall =
|F ∩ F∗|
|F∗|

. (12)

• False Positive Rate is the percentage of predicted passes that are incorrect, which is crucial to
safety as incorrectly predicting the system to be safe can lead to accidents. This is computed as:

false positive rate =
|P ∩ F∗|
|P|

. (13)

Note that some of these quantities such as |P∗| cannot be computed exactly. Therefore, we randomly
sample 20, 000 points in the scenario parameter space to estimate the terms in the above equations.

Baselines: We compare GUARD with several baselines outlined in Section 2. These include tradi-
tional testing methodologies [16, 14, 15] and works proposed in the literature [8, 9].

• Grid Search [15, 14] discretizes continuous parameters, and uses one discrete test point to repre-
sent each bin. Given budget of N test samples which cannot cover all bins, we sample a subset of
the bins at random. In our scenarios with d = 5 dimensions, we use discretization resolution of 4.

• T-way testing [16] leverages the assumption that most faults are caused by interactions of at most
t parameters. This method draws test samples such that for every t-parameter subset, all possi-
ble combinations of parameter values can be found in at least one test. In our experiments, we
consider t = 2, 3 and choose a discretization resolution of 30 for t = 2 and 12 for t = 3.

6

1 2 3 4 5

Dimensions

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
A

cc
ur

ac
y

1 2 3 4 5

Dimensions

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ec

al
l

2-Way Conformal Inf Grid HiddenGems GUARD

Figure 4: Scaling with scenario dimensionality.

200 400 600 800 1000

Num Samples

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

200 400 600 800 1000

Num Samples

0.3

0.5

0.7

C
ov

er
ag

e

2-Way Conformal Inf Grid HiddenGems GUARD

Figure 5: Scaling with testing budget.

• HiddenGems [8] employs levelset estimation algorithms to more efficiently infer pass/fail out-
comes of the bins. The authors use a 33x33 discretization for a 2-D parameter space. However,
this resolution becomes infeasibly expensive with d = 5 parameters. We adopt a resolution of 6
and further analyze the exponentially increasing runtime in Appendix A.

• Conformal Inference [9] uses conformal inference on samples in each bin to determine the out-
come. Bin sizes are not fixed, since this method chooses how the parameter space is partitioned.

Implementation Details: The initial exploration batch has size M = 200. Our GP kernel is a
product composition of separate Matern32 kernels [39] for each parameter dimension. The kernel
lengthscale is initialized to 0.02 and variance initialized to the variance of the initial exploration
batch. The kernel is fitted every 50 samples using Adam [40] with learning rate 0.01 for 100 steps.
Our acquisition function uses β = 0.5. During acquisition maximization, we sample P = 600
candidates improve the top Q = 30 candidates using Adam with learning rate 0.01 for 30 steps.

4.2 Experiment Results

Testing Performance: We demonstrate the effectiveness of GUARD in Figure 2 where we plot
test coverage versus balanced accuracy, error recall, and false positive rate (FPR). First, note that
we can adjust the trade-off between coverage and the other metrics in GUARD by adjusting the
confidence threshold α as outlined in Equation 3. This is useful in controlling how conservative we
are in testing. Along the trade-off curve, we can observe how reliable the predictions are at different
probability thresholds. Compared to other methods, GUARD performs better across all metrics.
We provide numerical results in Table 1 where we set α = 0.7 for direct comparison.

To illustrate how GUARD achieves better metrics, we visualize the outputs in Figure 3, using the
technique proposed in [41] to visualize a 2D slice of the 5D parameter search space. Specifically,
we sample one boundary point and multiple slices on the boundary point, choosing the slice with
the highest variance. On each slice we visualize the ground truth and predicted pass/fail regions.
Compared to other methods, GUARD is more accurate as it’s not limited by discretization.

Scalability: We evaluate GUARD against baselines on lower dimensional functions to analyze
scalability with the number of scenario parameters. The 10 test scenarios have 5 − c parameters
fixed to reduce the dimension to c. We increase the discretization resolution of baselines at lower
resolutions, choosing the resolutions to maintain a similar amount of bins as in the 5-D scenarios.
Figure 4 shows that baselines perform well for 1-D and 2-D functions where they can afford a high
resolution. As dimensionality increases the baselines degrade significantly compared to GUARD.

Sample Efficiency: In Figure 5, we evaluate the models using a varying number of test samples
N = [200, 400, 600, 800, 1000] and show that GUARD outperforms the alternative methods with
fewer test samples as well. With increasing testing budget, GUARD gradually increases in accuracy
and coverage. Other approaches which rely on discretization grow in coverage. However, their
accuracy is heavily limited by the discretization resolution and improves slowly or not at all.

Ablations: We ablate some design choices of GUARD in Table 2. First, without the initial explo-
ration phase, there is a noticeable drop across the metrics. Next, we consider removing online kernel
learning, parameter normalization, and both. Removing either leads to drops in performance while
removing both leads to degenerate solutions which predict pass everywhere. This is expected as
without normalization or learnable lengthscales, a fixed lengthscale cannot model parameters with
different scales (i.e. velocity ∈ [20, 30]m/s, road curvature ∈ [−0.002, 0.002]). Finally, we ablate
the choice of the GP kernel. As described in Section 4.1, GUARD uses a product of Matern32
kernels on each parameter because each parameter affects the function output differently. Using a
single kernel which doesn’t consider each parameter individually degrades performance as expected.

7

Exp Norm Learn Prod Coverage(%) Bal. Acc(%) Pos. Acc(%) Neg. Acc(%) Err. Recall(%) FPR (%)

X X X X 94.3 ± 0.9 84.2 ± 5.3 99.2 ± 0.2 70.3 ± 10.6 58.9 ± 5.3 5.9 ± 3.1
— X X X 92.2 ± 1.9 82.4 ± 4.9 99.4 ± 0.2 65.4 ± 10.0 52.1 ± 8.8 7.5 ± 3.3
X — X X 93.2 ± 1.2 83.7 ± 2.3 99.0 ± 0.2 68.3 ± 4.6 56.3 ± 4.4 5.8 ± 1.6
X X — X 92.3 ± 0.8 84.1 ± 1.9 98.7 ± 0.2 69.7 ± 3.8 48.6 ± 3.9 6.2 ± 1.0
X — — X 0.04 ± 0.03 – – – – –
X X X — 93.3 ± 1.9 81.4 ± 4.1 99.0 ± 0.2 63.8 ± 8.3 51.6 ± 8.1 7.3 ± 1.9

Table 2: Ablating design choices of GUARD

4.3 Using GUARD In Practice

Different AV systems may have different failure modes and find different scenarios challeng-
ing. Since GUARD is agnostic to the system under test, it can evaluate any AV system
to discover where it passes and fails across. This is useful during development to iden-
tify regressions between two iterations of the AV. To demonstrate this, we use PLT as a
reference planner and introduce a variation adjusted to make the planner more aggressive.

Planner Pass Rate Fail Rate

Ref 69.8% 18.5%
Agg 66.9% 24.0%

Table 3: Comparing planners.

First, we evaluate both planners on our test scenarios to measure
the aggregate pass and fail rates. As shown in Table 4.3, GUARD
correctly identifies the aggressive planner as less safe. Further-
more, we can triage the regressions by visualizing the pass/fail
landscape which we show in Figure 6 below.

Reference Planner Aggressive Planner Regression Regions

Fail Pass Uncertain Regression

Figure 6: Identifying regression regions - refer-
ence planner passes, aggressive planner fails.

AV (start) Actor (start) Actor (1.5s)AV (1.5s)

Figure 7: Regression example. Top: Refer-
ence. Bottom: aggressive planner collides.

To aid autonomy development, we can sample any point from the regression region to yield a con-
crete test. We show one example of such a test in Figure 7. In this test, the ego truck attempts to
change into a neighboring lane while actors from an on-ramp are merging. The aggressive planner
does not lane change safely which ultimately leads to a collision. Revealing all of these regressions
in an automatic and scalable way is invaluable to autonomy development.

5 Limitations
The scope of testing is limited since we assume the pass/fail result is thresholded on a single measure
of safety, whereas it can be a combination of multiple measures. We also did not consider discrete
scenario parameters which can be categorical (e.g. vehicle type) or numerical (e.g. number of lanes).
Future works can incorporate these considerations to build a more complete testing framework. In
addition, GPs relies on the assumption that the landscape of the safety measure is smooth enough to
be modelled by the GP kernel. Investigating alternative probabilistic models such as neural GPs [42]
and probabilistic SVMs [43] is another exciting direction. Finally, the impact of our work and
simulation testing in general is highly dependent on the fidelity of the simulator. Reducing the
sim2real gap remains an open problem [44, 45, 46, 47].

6 Conclusion
This paper tackles coverage-based testing of AVs in parameterized scenarios. We formulate the
problem as sequencing a finite set of tests to estimate the probability of passing or failing across the
entire parameter space. Based on this formulation, we propose a testing framework GUARD that
efficiently samples tests to cover the parameter space and accurately evaluate the AV’s performance.
This framework can be used in practice with functional safety experts defining a comprehensive
set of safety requirements and a parameterized operational design domain (ODD). GUARD can
automatically generate concrete tests and validate the AV meets these requirements across the ODD.
Our work contributes to streamlined autonomy development, safety validation, and is ultimately a
step towards safely deploying autonomous vehicles.

8

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable feedback and sugges-
tions to improve the paper. We would also like to thank Paul Spriesterbach and Andre Strobel for
their input on how our work relates to functional safety guidelines. Finally we would also like to
thank Wenyuan Zeng and Sean Segal for their contributions in brainstorming and suggestions on
improving the manuscript.

References
[1] Iso 21448:2022 road vehicles — safety of the intended functionality. https://www.iso.

org/standard/77490.html, 2022.

[2] Iso 26262-1:2018 road vehicles — functional safety. https://www.iso.org/standard/
68383.html, 2018.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving
simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[4] P. Kaur, S. Taghavi, Z. Tian, and W. Shi. A survey on simulators for testing self-driving cars. In
2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD),
pages 62–70. IEEE, 2021.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[6] H. Weber, J. Bock, J. Klimke, C. Roesener, J. Hiller, R. Krajewski, A. Zlocki, and L. Eckstein.
A framework for definition of logical scenarios for safety assurance of automated driving.
Traffic injury prevention, 20(sup1):S65–S70, 2019.

[7] (grva) proposal for the 01 series of amendments to un regulation no. 157 (automated lane
keeping systems).

[8] A. Petrov, C. Fang, K. M. Pham, Y. H. Eng, J. G. M. Fu, and S. D. Pendleton. Hiddengems:
Efficient safety boundary detection with active learning. arXiv preprint arXiv:2210.13956,
2022.

[9] C. Fan, X. Qin, Y. Xia, A. Zutshi, and J. Deshmukh. Statistical verification of autonomous
systems using surrogate models and conformal inference. arXiv preprint arXiv:2004.00279,
2020.

[10] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:
Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9909–9918, 2021.

[11] A. Nonnengart, M. Klusch, and C. Müller. Crisgen: Constraint-based generation of critical
scenarios for autonomous vehicles. In International Symposium on Formal Methods, pages
233–248. Springer, 2019.

[12] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi. Scalable end-to-end au-
tonomous vehicle testing via rare-event simulation. Advances in neural information processing
systems, 31, 2018.

[13] T. Menzel, G. Bagschik, and M. Maurer. Scenarios for development, test and validation of
automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1821–1827.
IEEE, 2018.

[14] MS Windows NT kernel description. https://www.foretellix.com/resources_post/
coverage-driven-verification-for-ensuring-av-and-adas-safety-gtc-2020/.
Accessed: 2022-07-31.

9

https://www.iso.org/standard/77490.html
https://www.iso.org/standard/77490.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.foretellix.com/resources_post/coverage-driven-verification-for-ensuring-av-and-adas-safety-gtc-2020/
https://www.foretellix.com/resources_post/coverage-driven-verification-for-ensuring-av-and-adas-safety-gtc-2020/

[15] T. Zhao, E. Yurtsever, J. Paulson, and G. Rizzoni. Formal certification methods for automated
vehicle safety assessment. IEEE Transactions on Intelligent Vehicles, 2022.

[16] D. R. Kuhn, R. N. Kacker, Y. Lei, et al. Practical combinatorial testing. NIST special Publica-
tion, 800(142):142, 2010.

[17] A. Gotovos. Active learning for level set estimation. Master’s thesis, Eidgenössische Technis-
che Hochschule Zürich, Department of Computer Science,, 2013.

[18] A. Zanette, J. Zhang, and M. J. Kochenderfer. Robust super-level set estimation using gaussian
processes. In Machine Learning and Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part II 18,
pages 276–291. Springer, 2019.

[19] N. Paragios and R. Deriche. Geodesic active regions and level set methods for motion estima-
tion and tracking. Computer vision and image understanding, 97(3):259–282, 2005.

[20] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany. Generating useful accident-prone
driving scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 17305–17315, 2022.

[21] C. Yan, W. Xu, and J. Liu. Can you trust autonomous vehicles: Contactless attacks against
sensors of self-driving vehicle. Def Con, 24(8):109, 2016.

[22] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng, and R. Urtasun.
Physically realizable adversarial examples for lidar object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13716–13725,
2020.

[23] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang. Attacking vision-
based perception in end-to-end autonomous driving models. Journal of Systems Architecture,
110:101766, 2020.

[24] R. Duan, X. Ma, Y. Wang, J. Bailey, A. K. Qin, and Y. Yang. Adversarial camouflage: Hiding
physical-world attacks with natural styles. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1000–1008, 2020.

[25] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer, and R. Urtasun. Explor-
ing adversarial robustness of multi-sensor perception systems in self driving. arXiv preprint
arXiv:2101.06784, 2021.

[26] S. N. Shukla, A. K. Sahu, D. Willmott, and Z. Kolter. Simple and efficient hard label black-box
adversarial attacks in low query budget regimes. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, pages 1461–1469, 2021.

[27] D. Lee, S. Moon, J. Lee, and H. O. Song. Query-efficient and scalable black-box adversarial
attacks on discrete sequential data via bayesian optimization. In International Conference on
Machine Learning, pages 12478–12497. PMLR, 2022.

[28] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P. Jennings. Identifica-
tion of test cases for automated driving systems using bayesian optimization. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 1961–1967. IEEE, 2019.

[29] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial driving scenarios
in high-fidelity simulators. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8271–8277. IEEE, 2019.

[30] S. Silvetti, A. Policriti, and L. Bortolussi. An active learning approach to the falsification of
black box cyber-physical systems. In Integrated Formal Methods: 13th International Confer-
ence, IFM 2017, Turin, Italy, September 20-22, 2017, Proceedings 13, pages 3–17. Springer,
2017.

[31] T. Dreossi, A. Donzé, and S. A. Seshia. Compositional falsification of cyber-physical systems
with machine learning components. Journal of Automated Reasoning, 63:1031–1053, 2019.

10

[32] R. Lee, O. J. Mengshoel, A. Saksena, R. W. Gardner, D. Genin, J. Silbermann, M. Owen, and
M. J. Kochenderfer. Adaptive stress testing: Finding likely failure events with reinforcement
learning. Journal of Artificial Intelligence Research, 69:1165–1201, 2020.

[33] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer. Adaptive stress testing for autonomous
vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1–7. IEEE, 2018.

[34] S. Ghosh, F. Berkenkamp, G. Ranade, S. Qadeer, and A. Kapoor. Verifying controllers against
adversarial examples with bayesian optimization. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7306–7313. IEEE, 2018.

[35] B. Bryan, R. C. Nichol, C. R. Genovese, J. Schneider, C. J. Miller, and L. Wasserman. Ac-
tive learning for identifying function threshold boundaries. Advances in neural information
processing systems, 18, 2005.

[36] E. Thorn, S. C. Kimmel, M. Chaka, B. A. Hamilton, et al. A framework for automated driving
system testable cases and scenarios. Technical report, United States. Department of Trans-
portation. National Highway Traffic Safety . . . , 2018.

[37] A. Kesting, M. Treiber, and D. Helbing. Enhanced intelligent driver model to access the impact
of driving strategies on traffic capacity. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 368(1928):4585–4605, 2010.

[38] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun. Jointly learnable
behavior and trajectory planning for self-driving vehicles. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3949–3956. IEEE, 2019.

[39] D. Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, University
of Cambridge, 2014.

[40] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[41] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural
nets. Advances in neural information processing systems, 31, 2018.

[42] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural
networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

[43] V. Franc, A. Zien, and B. Schölkopf. Support vector machines as probabilistic models. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
665–672, 2011.

[44] J. Wang, S. Manivasagam, Y. Chen, Z. Yang, I. A. Bârsan, A. J. Yang, W.-C. Ma, and R. Urta-
sun. Cadsim: Robust and scalable in-the-wild 3d reconstruction for controllable sensor simu-
lation. In 6th Annual Conference on Robot Learning, 2022.

[45] Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun. Unisim: A
neural closed-loop sensor simulator. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1389–1399, 2023.

[46] W. Zhao, J. P. Queralta, L. Qingqing, and T. Westerlund. Towards closing the sim-to-real gap
in collaborative multi-robot deep reinforcement learning. In 2020 5th International conference
on robotics and automation engineering (ICRAE), pages 7–12. IEEE, 2020.

[47] S. Suo, K. Wong, J. Xu, J. Tu, A. Cui, S. Casas, and R. Urtasun. Mixsim: A hierarchical
framework for mixed reality traffic simulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9622–9631, 2023.

11

A Additional Experiments

Ablation on GP Kernels: While GUARD requires minimal tuning of GP kernel parameters due
to online kernel learning, the type of kernel is still a design choice. In GUARD we employ Matern32
kernels to model each parameter and take the product of individual kernels to obtain the final kernel.
In Table 4 we conduct an ablation that also considers 1) RBF kernels, 2) Using sum instead of
product, and 3) no composition, using one RBF or Matern32 kernel for all parameters. We first find
that without modeling each parameter separately, the results are poor. Also, using a sum operation
to aggregate kernels is ineffective as well. The best results are obtained from a product of RBF or
Matern32 kernels. We choose product of Matern32 as the lower false positive rate is critical for
ensuring safety. Furthermore, this choice also exhibits much lower variance in the metrics, making
it more reliable for testing.

BO Acquisition Functions: As mentioned in Section 2 of the main manuscript, many adversar-
ial example generation methods use Bayesian Optimization(BO) and employ acquisition functions
that minimize some adversarial objective. Since BO also leverages GPs and active learning sim-
ilar to GUARD, we can adopt these acquisition functions. In particular we use lower confidence
bound (LCB), expected improvement (EI), and probability of improvement (PI). For EI and PI we
adjust them to decrease the objective (expected decrease and probability of decrease). The results
in Table 5 show that these alternatives can achieve strong results but is not as effective as using the
Straddle acquisition function. This is because cost minimization oversample very negative points
and Straddle oversamples boundary points, but the former is more useful in partioning pass / fail
regions. The performance is however very close, and we hypothesize this is because the parameter
space is dominated by positive (passes). With very small negative regions, severe negatives are close
to boundary points.

2 4 6 8
Resolution

0

5000

10000

15000

20000

25000

Ti
m

e
(s

)
GUARD
HiddenGems

Figure 8: Runtime

Runtime Comparison A major implementation detail regard-
ing our baselines is the discretization resolution. For grid search
and t-way testing, there is a direct tradeoff between coverage and
balanced accuracy, error recall, false positive rate. Thus, we se-
lect a resolution which can cover most of the parameter space.
For HiddenGems, the resolution does not affect coverage since
it uses a levelset estimation algorithm to determine which bins
are covered. The limitation for our choice of resolution of 6 is
due to how the computation budget increases exponentially with
resolution. This is because the method requires running the GP
on all discretized bins at every iteration. And while running the
GP a single time is neglible compared to running simulation, the
exponential scaling makes the GP queries a bottleneck at higher
resolutions. As we show in Figure A, at this resolution the run-
time roughly equals GUARD.

Kernel Type Composition Coverage(%) Bal. Acc(%) Pos Acc(%) Neg Acc(%) Err. Recall(%) FPR(%)

RBF - 96.1 ± 0.8 80.2 ± 5.7 98.1 ± 0.5 62.4 ± 11.2 56.0 ± 10.6 10.6 ± 3.3
Matern32 - 87.3 ± 1.5 78.5 ± 4.2 99.3 ± 0.2 57.7 ± 8.4 36.8 ± 7.7 6.15 ± 1.1
RBF Sum 88.0 ± 6.7 58.6 ± 3.2 89.1 ± 11.4 28.2 ± 11.5 21.4 ± 12.0 20.2 ± 5.7
Matern32 Sum 90.4 ± 3.3 58.4 ± 3.3 88.0 ± 10.7 28.7 ± 13.7 23.6 ± 12.7 21.0 ± 3.1
RBF Product 96.8 ± 0.7 83.3 ± 7.0 97.9 ± 0.6 68.7 ± 13.9 62.6 ± 13.1 7.83 ± 4.0
Matern32 Product 94.3 ± 0.9 84.2 ± 5.3 99.2 ± 0.2 70.3 ± 10.6 58.9 ± 5.3 5.89 ± 3.1

Table 4: Ablation of different kernel choices for GUARD

Aquisition Fn. Coverage(%) Bal. Acc(%) Pos Acc(%) Neg Acc(%) Err. Recall(%) FPR(%)

PI 90.7 ± 1.6 82.2 ± 3.9 99.4 ± 0.1 64.9 ± 7.8 49.0 ± 7.5 8.23 ± 2.4
EI 91.8 ± 1.3 82.6 ± 2.3 99.4 ± 0.2 65.7 ± 0.5 50.7 ± 5.2 6.99 ± 1.4
LCB 91.5 ± 1.5 83.4 ± 1.8 99.6 ± 0.1 67.3 ± 3.6 52.4 ± 4.7 5.99 ± 1.4
Straddle 94.3 ± 0.9 84.2 ± 5.3 99.2 ± 0.2 70.3 ± 10.6 58.9 ± 5.3 5.89 ± 3.1

Table 5: Comparison of cost minimization acquisition functions versus Straddle acquistion function.

12

B Test Scenarios

We describe the 10 logical scenarios used in our experiments here:

1. Actor cut-in: An actor starts in an adjacent lane to the SDV and performs a cut-in maneu-
ver.

2. Shoulder actor cut-in: The SDV drives next to the road shoulder. An actor on the shoulder
cuts in front of the SDV.

3. Actor overtake cut-in: An actor starts behind the SDV, then rapidly accelerates to overtake
the SDV and cut-in front of it.

4. Actors merging: The SDV is driving on a merge lane and there are multiple actors merging
in.

5. Lead actor braking: An actor starts in front of the SDV and then brakes.
6. Lane change: The SDV attempts to lane change when there is an actor in ithe target lane.
7. Lane change beside merge: The SDV attempts to lane change into a merge lane and actors

are also merging into that lane.
8. Lane merge: The SDV is merging from an on-ramp, and there is an actor in the merge lane

that is very close to the SDV.
9. Lane merge multiple actors: The SDV is merging from an on-ramp and there are multiple

actors in the merge lane,.
10. Lane merge parallel on-ramp: The SDV is merging from a parallel on-ramp and there is

an actor in the merge lane that is very close to the SDV.

13

	Introduction
	Related Work
	Coverage-Based Testing
	Adversarial Example Generation

	Scalable Coverage-Based Testing
	Problem Formulation
	Gaussian Process
	Test Generation
	Automatic Kernel Tuning

	Experiments
	Experimental Setup
	Experiment Results
	Using GUARD In Practice

	Limitations
	Conclusion
	Additional Experiments
	Test Scenarios

