
PreCo: Enhancing Generalization in Co-Design of
Modular Soft Robots via Brain-Body Pre-Training

Yuxing Wang1, Shuang Wu2, Tiantian Zhang1, Yongzhe Chang1∗ , Haobo Fu2,
Qiang Fu2, Xueqian Wang1

∗

1Tsinghua University 2Tencent AI Lab

Abstract: Brain-body co-design, which involves the collaborative design of con-
trol strategies and morphologies, has emerged as a promising approach to en-
hance a robot’s adaptability to its environment. However, the conventional co-
design process often starts from scratch, lacking the utilization of prior knowl-
edge. This can result in time-consuming and costly endeavors. In this paper,
we present PreCo, a novel methodology that efficiently integrates brain-body pre-
training into the co-design process of modular soft robots. PreCo is based on the
insight of embedding co-design principles into models, achieved by pre-training a
universal co-design policy on a diverse set of tasks. This pre-trained co-designer is
utilized to generate initial designs and control policies, which are then fine-tuned
for specific co-design tasks. Through experiments on a modular soft robot sys-
tem, our method demonstrates zero-shot generalization to unseen co-design tasks,
facilitating few-shot adaptation while significantly reducing the number of policy
iterations required. Our video is available here.

Keywords: Co-design, Pre-training, Modular Soft Robots

1 Introduction

Nature does not treat the development of the brain and body as separate processes, indicating that
cognitive processes are intricately connected to the body and the external environment in which
organisms operate [1, 2]. This theory holds significant implications for the robotics community.
To enable effective interaction with the environment, it is essential to prioritize the co-design of
both physical bodies and control systems of robots. In this work, we consider the co-design of
Modular Soft Robots (MSRs), which are a promising category of flexible robotic systems that offer
designers the ability to construct robot bodies by combining various types of deformable cubes, and
the control signals can be generated by adjusting cubes’ volume (Figure 1). Currently, the majority
of related co-design studies [3, 4, 5] for MSRs mainly focus on “one robot one task”, where the
primary objective is to discover the optimal robot morphology and controller for a specific task.
However, this approach seems to diverge from biological morphologies, such as the human body,
which inherently possesses the ability to perform multiple tasks.

As a matter of fact, even improving a robot morphology for a single task can be highly challenging
due to: (1) the presence of a severe combinatorial explosion within the robot design space and (2)
the existence of incompatible state-action spaces that necessitate training a separate control policy
for each morphology. Consequently, past studies [6, 7, 8, 9, 10] often address these challenges by
considering the evolution of body and control as separate processes, directly conducted within the
large, high-dimensional design space. In other words, these methods typically learn from scratch,
neglecting prior co-design knowledge, resulting in costly and inefficient endeavors. But how can we
leverage this knowledge to enhance the co-design process for new applications?

∗Correspondence to: Yongzhe Chang and Xueqian Wang {changyongzhe, wang.xq}@sz.tsinghua.edu.cn

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://yuxing-wang-thu.github.io/publication/2023-05-01-paper-title-number-1

Pre-trained Co-designer

Walk on flat terrain

Climb stairs

Traverse terrain

Jump across stairs

Brain-Body
Fine-TuningUniversal Design-and-

Control Policy

More uneven terrain

Brain-Body
Pre-Training

Descend stairs

Jump over gaps

Walk on soft bridge

Generalizable
Prototype

U
n

se
e
n

 C
o

-d
e
sig

n
 Ta

sk
s

D
iv

e
rse

 C
o

-D
e
sig

n
 Ta

sk
s

Empty voxel Rigid voxel Soft voxel Horizontal actuatorVertical actuator
…
…

…
…

Figure 1: Workflow of PreCo. At the heart of PreCo lies a universal co-design policy, which un-
dergoes pre-training using end-to-end deep reinforcement learning on a diverse set of co-design
tasks. The resulting pre-trained co-designer is utilized to generate initial designs and control poli-
cies, which are further fine-tuned for unseen tasks.

In this paper, we propose PreCo, a methodology that entails pre-training a universal co-design policy
to grasp the interdependencies between the robot morphology, control and tasks. Following this
foundational step, the policy is utilized to generate initial designs and control strategies, which are
then fine-tuned for unseen co-design tasks, thereby reducing the learning burden. Precisely, our
approach implies that both the morphologies and control strategies of a robot stem from the same
set of parameters. Any mutation to the parameter simultaneously affects the two, and they are trained
using deep reinforcement learning. In contrast to conventional co-design methods that segregate not
only the optimization processes of the brain and body but also the parameters that generate them,
we draw inspiration from pleiotropy in biology, which refers to a single gene expressing multiple
phenotypic traits [11, 12, 13]. Thus, our method eliminates the need for a robot population and
provides empirical evidence of its capacity to enhance the efficiency of the learning process.

Our study offers the following key contributions: Firstly, we introduce brain-body pre-training.
Subsequently, we present PreCo, a novel approach that learns a universal design-and-control policy
capable of handling multiple challenging co-design tasks for modular soft robots. Secondly, using
the pre-trained co-design policy, we showcase that properly integrating prior knowledge makes co-
design on new tasks easier in several ways: enabling improved sample efficiency, zero-shot general-
ization and effective few-shot adaptation, providing the benefit over training from scratch. Thirdly,
through empirical analysis, we demonstrate that the shared policy structure of PreCo exhibits greater
robustness in terms of mitigating premature convergence, resulting in improved exploration and
flexibility. Furthermore, our work provides the first experimental comparison among meta-learning,
curriculum learning and pre-training methods in addressing co-design problems.

2 Related Work

Robot Co-Design The process of developing both the physical body and the cognitive capabilities
in nature is intricately intertwined [14, 15]. To replicate this fundamental principle, robot designers
are tasked with concurrently optimizing the morphology and control strategy of robots. In the field
of Evolutionary Robotics (ER), researchers have extensively investigated the application of Evolu-
tionary Algorithms (EAs) for co-designing robotic systems [6, 8, 10, 16]. A prominent focus in this
field lies in the representation of robot morphologies. Various approaches, such as generative encod-
ing schemes [17, 18], have been explored to facilitate the discovery of novel and efficient designs.
Techniques like neural networks [19, 20], Neural Cellular Automata (NCA) [21, 22, 23] and Compo-
sitional Pattern-Producing Networks (CPPNs) [4, 24] have been employed to generate diverse and
complex robot morphologies, enabling the exploration of a broad design space. In addition, EAs
can also be integrated with Reinforcement Learning (RL), allowing robots to evolve and improve
their behaviors through interactions with the environment [3, 25]. These approaches, however, adopt

2

separate parameters for generating the robot morphology and control, which are optimized in a bi-
level fashion. Consequently, they rely on a population of design prototypes to facilitate exploration,
leading to challenges in terms of sample efficiency and computational requirements. In contrast to
these population-based approaches, we propose an alternative methodology that utilizes a universal
policy representation, enabling the robot morphology and control strategy to be derived from the
same set of parameters and jointly optimized. Through empirical experiments, we demonstrate that
this shared representation facilitates the exploration of the design space, leading to enhanced sample
efficiency and increased flexibility.

In addition to EA methods, when we have access to certain aspects of the system’s physical dynam-
ics, a model-based differentiable simulator can be employed to jointly optimize the design parame-
ters and control using Back-Propagation Through Time (BPTT) [26, 27, 28, 29, 30, 31]. In contrast,
our work specifically addresses the model-free setting, where system modeling is not required. To
achieve this, Policy Gradient (PG) methods can be used to approximate the gradient of design param-
eters or evaluate the fitness of a robot morphology [5, 32, 33, 34, 35]. Building upon this technology,
PreCo is introduced as a novel approach that distinguishes itself from previous works by tackling a
more challenging objective of addressing multiple co-design tasks simultaneously.

Many endeavors have been conducted to bring robot co-design to real-world settings, including
co-designing soft hands [36], voxel-based soft robots [37, 38], soft robotic fishes [39, 40] and soft
legged robots [41]. To enable effective sim-to-real transfer, numerical mathematic techniques like
Finite Element Method (FEM) [42] or Material Point Method (MPM) [43] together with a high-
quality simulator are required to model and simulate soft-body physics. Besides, factors like material
imperfections, air resistance, friction and many others come into play, iteratively refining the design
and control algorithms based on real-world feedback is also needed.

Multi-task Reinforcement Learning In this study, we approach the challenge of brain-body pre-
training by adopting a Multi-task Reinforcement Learning (MTRL) framework, which has garnered
considerable interest in the field of embodied intelligence [44, 45, 46, 47, 48]. MTRL involves the
training of an agent to perform multiple tasks concurrently, aiming to leverage shared knowledge
across tasks for improved learning efficiency and generalization. However, previous research based
on the transformer structure primarily focuses on training a universal controller for multiple robot
bodies [9, 49, 50, 51, 52, 53]. PreCo takes a further step by exploring how the intrinsic brain-body
connections can be utilized to improve efficiency and generalization when facing new applications.
In essence, our method aims to avoid learning from scratch, sharing a similar spirit with curriculum
learning [5, 19, 54] and meta-learning [25, 55, 56, 57] but differs in its framework.

3 Preliminaries

Reinforcement Learning In our study, we approach the problem of brain-body pre-training for a
set of K co-design tasks by formulating it as a MTRL problem. In the domain of RL, the problem
is typically formulated as a Markov Decision Process (MDP), defined by a 5-tuple (S,A, P, r, γ).
Here, S represents the state space and A represents the action space. The transition function P :
S × S × A → [0, 1] determines the probability of transitioning from one state to another given a
specific action. The reward function r(s, a) : S × A → R assigns a numeric value to the state-
action pairs, indicating the desirability of taking a particular action in a given state, and the discount
factor γ ∈ (0, 1] specifies the degree to which rewards are discounted over time. Our goal is to find
policy parameters θ which can maximize the average expected reward across all co-design tasks:
1
K

∑K
k=1

∑∞
t=0 γ

trkt (st, at), here the policy is represented by a deep neural network parameterized
as πθ(at|st), which maps from states to distributions over actions.

We employ Proximal Policy Optimization (PPO) [58], a popular RL algorithm that is widely used
in a variety of robot tasks. The algorithm utilizes a surrogate objective function that approximates
the policy gradient, and the objective function of PPO is:

J(θ) = Et

[
πθ(at|st)
πθold(at|st)

Ât − βDKL(πθold(·|st)∥πθ(·|st)]
]

(1)

3

...

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

× 𝒌

Shared Transformer Blocks

Modular
observation

C
o

n
tro

l A
ctio

n
 D

e
co

d
e
r

...

Lin
e
a
r P

ro
je

ctio
n

Design observation 𝒔𝒅

Task-related
observation

...

D
e
sig

n
 A

ctio
n

 D
e
co

d
e
r

P
o

sitio
n

 e
m

b
e
d

d
in

g

...

Concatenate

𝒔𝟎
𝒅 𝑠1

𝑑 𝑠𝑁
𝑑 𝑠𝑁+1

𝑐 𝑠𝑁+2
𝑐 ……

𝑎0
𝑑 𝑎𝑁+1

𝑐

Design Control

𝒔𝑻
𝒄

𝑟𝑒𝑟 = 0

𝒂𝒄

𝒂𝒅

𝒔𝒄

…

Policy

Figure 2: Architecture of the co-design policy. Our policy is designed with a shared structure
that influences both morphology and control. It receives unified design-and-control observations
and generates corresponding actions. This policy operates under the framework of reinforcement
learning, where the design and control processes are unified as a single MDP (gray box).

where Ât is the advantage estimation, Et represents the empirical average over a batch of generated
samples. By iteratively collecting experiences and optimizing J(θ), the policy πθ(at|st) is updated
in the direction of maximizing the cumulative reward.

Transformer Transformer [59] is a popular neural network architecture that has revolutionized the
domain of natural language processing and computer vision [60, 61, 62, 63, 64], and has become
a fundamental component in many cutting-edge models. At its core, transformer employs a pow-
erful self-attention mechanism to capture the dependencies and relationships among elements in a
sequence. It allows the model to dynamically allocate attention to different parts of the input se-
quence based on their relevance. In each self-attention layer, attention weights are computed for
each element by considering its interactions with all other elements in the sequence. These weights
play a crucial role in aggregating information from the entire sequence, enabling the transformer to
generate comprehensive and informative representations for each element.

The transformer architecture is well-suited for modular robot systems because it is agnostic to in-
compatible state-action spaces. In our work, we model the co-design of modular soft robots as a
sequence-to-sequence task. Under this framework, the local observations from all voxels are or-
ganized in sequences. By leveraging the self-attention mechanism, the co-design policy can focus
more on crucial parts of the state space and capture the internal dependencies between voxels, al-
lowing the policy to dynamically adjust its focus depending on the input context, which caters to the
need for dynamically accommodating changes in morphologies.

4 Brain-Body Pre-Training

Our motivation for employing brain-body pre-training is that given the assumption of the existence
of underlying structural similarity between the pre-training tasks and the target tasks, properly inte-
grating prior co-design knowledge into a universal co-design policy makes robot co-design easier.
For instance, if a target task requires the robot to master a complex skill, such as traversing across
extremely uneven terrain, this skill can be broken down into some foundational abilities like walk-
ing, ascending stairs and surmounting minor obstacles. During pre-training, the universal co-design
policy aims to extract basic brain-body links from these tasks and merge them. When facing spe-
cific target tasks, it is anticipated to leverage the prior knowledge, thereby alleviating the co-design

4

challenge. In the remaining section, we describe details about our universal co-design policy, which
is optimized end-to-end through reinforcement learning within a unified state-action space.

Universal Co-Design Policy We start by reviewing co-design methods [5, 35] that utilize RL to
approximate the gradient of design and control parameters. At the start of each episode, a dedi-
cated design policy takes a finite number of actions in order to develop a robot morphology, and
no reward is assigned to the design policy during this period. Subsequently, the resulting robot is
consumed by a control policy to collect the environmental rewards, which also provides learning
signals for the design actions. Using the RL method, two policies are optimized jointly to maximize
the performance for the given task.

However, a notable issue of this approach is the presence of an imbalanced sample distribution
between design and control. While this imbalance might not be immediately evident during the
initial stages of learning, where both design and control steps are short, it becomes more pronounced
as training advances (the execution steps become much longer). When employing randomly sampled
experiences for training, the design policy, given the separate policy representation, tends to receive
fewer updates compared to the control policy. Consequently, it can quickly become optimized only
for a limited region around the local morphological optimum, which hinders the effective exploration
of the design space, as shown in Section 5.2.

To address this concern, our co-design policy (actor network) is designed to facilitate more infor-
mation sharing (Figure 2). While directly representing the intricate interplay between morphology
and controller is challenging, we employ shared parameters to implicitly capture their relationships.
This approach guarantees that both the “brain” and the “body” of a robot are derived from the same
set of parameters and developed together.

Unified State-Action Space Our study focuses on co-designing flexible MSRs comprising various
types of blocks, also known as voxels. Each voxel in the design space is represented by a discrete
value that corresponds to its material or type of actuator (e.g., empty voxel=0, soft voxel=1, rigid
voxel=2, horizontal actuator=3 and vertical actuator=4). In practice, we employ one-hot encoding
to represent these values. The co-design policy is uniformly denoted as πθ(at|st) and integrated
into the aforementioned design-and-control MDP. Here, st = {sdt , sct} represents the concatenation
of the design observation sdt and control observation sct at time step t in each episode. During the
design stage, sct of st will be set to zero and during the control stage, sdt of st will be consistent
with the state of the last design step and unchanged. Precisely, with N denoting the size of the
design space (e.g., N = 25 for a 5 × 5 design space), we define sdt = {sd1

t , sd2
t , ..., sdN

t }, where
sdi
t for voxel i is a vector comprising its type and the types of its Moore neighborhood, as shown

in Appendix A. sct is the control observation, which comprises local observations from all voxels,
denoted as sct = {svt , s

g
t }. svt = {sv1t , sv2

t , ..., svNt } represents modular observations, where svit
includes the relative position of each voxel’s four corners with respect to the center of mass of the
robot. sgt represents task-related observations, such as the terrain information.

We utilize two feed-forward neural networks to decode shared information from the transformer-
based encoder. The output layer dimension of the design action decoder matches the total number
of material types (5 in our work), while the output layer dimension of the control action decoder
is set to 1. As we model the co-design of modular soft robots as a sequence-to-sequence task,
both the design and control actions have a length of N . During training, voxels are determined by
sampling from a categorical distribution, which is formulated based on the output logits. During
evaluation, the action corresponding to the highest logit value is selected. Additionally, the control
action decoder generates the mean value µ. By combining it with a constant standard deviation Σ,
control signals can be sampled from this Gaussian distribution and then clipped within the range
of [0.6, 1.6], which corresponds to gradual contractions/expansions of the actuators. We use action
masks to inform the policy whether an element in the output sequence is an actuator.

Learning Process Based on the unified MDP and standard RL practices, we use distributed trajec-
tory sampling with multiple CPU threads to collect training data. Given that we have K pre-training
tasks (or environments in RL terminology), each task is allocated to its respective CPU thread.

5

Therefore, K also signifies the number of threads we deploy. During each RL interaction, the state
fed to our policy is represented as {stask1

t , stask2
t , ..., staskK

t }, which can be viewed as a uniform
sampling process. Note that the time step t here may vary among tasks. We train our co-design pol-
icy using PPO [58], which is based on the popular actor-critic architecture. The critic network shares
the same architecture as the actor network (Figure 2), and it computes the value function, indicating
a probable policy distribution. Its output is a N × 1 continuous-valued vector where each element
corresponds to the estimated value of a voxel. Here, we represent the overall morphology value by
averaging the values across all voxels. With the policy gradient technique, the co-design policy is
updated to optimize the predicted morphology value. After completing the pre-training phase, the
resulting pre-trained co-designer is utilized to generate initial designs and control policies, which
are subsequently fine-tuned using PPO again for unseen tasks.

5 Experiments

In this section, we experimentally evaluate our proposed approach to answer the following ques-
tions: (1) Does our method, PreCo, effectively perform brain-body pre-training and discover robot
morphologies capable of executing multiple tasks? (2) How well does our method demonstrate zero-
shot generalization and brain-body fine-tuning capabilities when faced with unseen co-design tasks?
(3) What is the impact of the unified policy representations on the performance of PreCo?

5.1 Environments and Implementation

Based on the Evolution Gym platform [3], we establish a modular robot state-action space2 that
supports brain-body pre-training as described in Section 4. Our focus lies on a fixed design space of
size 5× 5 which includes 9 locomotion co-design tasks with open-ended environments: Walker-v0
(easy), PlatformJumper-v0 (hard), UpStepper-v0 (medium), ObstacleTraverser-v0 (medium),
BridgeWalker-v0 (easy), GapJumper-v0 (hard), DownStepper-v0 (easy), ObstacleTraverser-v1
(hard) and Hurdler-v0 (hard), as shown in Figure 1. The difficulty levels are determined based on
the performance of evolution-based co-design algorithms from the platform. For more information
regarding the environmental details, please refer to Appendix B.

We work on the assumption that there are structural similarities between the pre-training and target
co-design tasks. Guided by this understanding, we select the first four tasks for pre-training. The tar-
get tasks in our study essentially encompass different adaptations of the pre-training tasks, including
the following types: (1) More challenging scenarios, such as the transition from ObstacleTraverser-
v0 to ObstacleTraverser-v1 where the terrain becomes increasingly uneven; (2) Transfers of com-
parable difficulty, as seen when moving from Walker-v0 to BridgeWalker-v0 (with a shift to softer
terrain) or from PlatformJumper-v0 to GapJumper-v0, wherein the gap between steps expands but
the height of these steps reduces; (3) “Reverse” scenarios, exemplified by the transition from
UpStepper-v0 to DownStepper-v0, where the direction of the steps is inverted.

We compare PreCo against the following baselines that are also suitable for multiple co-design tasks:
(1) PreCo-Sep, which is based on PreCo but utilizes separate transformer-based design and control
policies. This baseline allows us to investigate the effectiveness of the unified policy representation;
(2) CuCo [5], a curriculum-based co-design method that consists of separate NCA-based design
policy and transformer-based control policy. We set the curriculum of CuCo to be 3 × 3 → 5 × 5;
(3) MeCo, which adopts the same network architecture as PreCo but is trained using Reptile [65], a
popular meta-learning method. We use a 3-layer transformer encoder and run all experiments with
the same number of policy iterations. More implementation details can be found in Appendix C.

5.2 Results

Brain-Body Pre-Training We show the learning curves and converged robot morphologies of all
methods in Figure 3. For each method, the learning curve is reported over 7 different runs. The

2https://github.com/Yuxing-Wang-THU/ModularEvoGym

6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iterations (×103)

0

1

2

3

4

5

Av
er

ag
e

Pe
rfo

rm
an

ce

Training Tasks
PreCo (ours)
CuCo
MeCo
PreCo-Sep

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iterations (×103)

0

2

4

6

Pe
rfo

rm
an

ce

Training Tasks
Walker-v0
UpStepper-v0
ObstacleTraverser-v0
PlatformJumper-v0

PreCo

PreCo-Sep MeCo

CuCo

Figure 3: Learning curves and converged morphologies of brain-body pre-training. In the left figure,
we demonstrate the mean and standard deviation of average task performance against the number of
policy iterations for all methods. The right figure displays the individual learning curves of PreCo.
The bottom figure shows two representative converged morphologies from each method.

BridgeWalker-v0 DownStepper-v0 ObstacleTraverser-v1 GapJumper-v0 Hurdler-v0
0

1

2

3

4

5

6

7

8

Pe
rfo

rm
an

ce

Unseen Co-Design Tasks
PreCo
PreCo-Sep
MeCo
CuCo

Figure 4: Evaluation of zero-shot generalization. The height of each bar represents the average
zero-shot performance of a method, and error bars indicate the corresponding standard deviation.

figure clearly demonstrates that our proposed method, PreCo, outperforms the baselines in terms of
learning speed and final performance. A comparison of the robot morphologies designed by each
method reveals intriguing distinctions. Both PreCo and PreCo-Sep are capable of discovering robot
bodies with rigid legs, which are essential for maintaining balance in various locomotion tasks.
PreCo, in particular, exhibits the ability to utilize empty voxels, resulting in robots with serrated and
hollow structures that potentially contribute to enhanced performance. On the other hand, CuCo
produces robots with several repeated body segments. Although it benefits from curriculum learn-
ing, as evident from its learning curve, it converges to a local morphological optimum with lower
performance. As for MeCo, the “meta-bodies” it discovered seem to prefer horizontal actuators,
which may not be efficient in certain jumping tasks. However, our primary interest lies in evaluating
its performance on the unseen co-design tasks.

Zero-Shot Generalization One of our objectives in this work is to train a co-design policy capable
of generating a single modular soft robot that can generalize to unseen co-design tasks. Figure 4
illustrates that PreCo consistently achieves higher zero-shot performance across new environments

7

Table 1: Final performance across environments and baselines, each result is reported over 7 differ-
ent runs. Methods on the left side of the divider are fine-tuned from their corresponding pre-trained
models, while those on the right side are trained from scratch on target tasks.

Environment PreCo-FT PreCo-Sep-FT MeCo-FT CuCo-FT PreCo-Scratch GA
BridgeWalker-v0 3.69± 0.63 3.11± 0.91 4.75± 0.62 4.37± 0.61 4.81± 0.21 5.31± 0.25
Hurdler-v0 4.10± 0.52 1.73± 2.19 1.88± 1.30 1.66± 1.24 2.76± 1.39 1.51± 0.25
DownStepper-v0 9.01± 0.02 8.90± 0.01 4.58± 0.74 8.65± 0.33 8.98± 0.01 8.91± 0.01
GapJumper-v0 5.78± 1.25 2.58± 0.19 2.83± 0.50 3.58± 0.87 3.48± 0.66 3.35± 0.15
ObstacleTraverser-v1 4.88± 0.12 3.88± 0.69 3.03± 0.50 2.00± 0.77 3.38± 0.69 2.98± 0.63

when compared to the baseline methods. Figure 7 in Appendix D shows that the robot designed
by PreCo demonstrates the ability to employ the skill of somersaulting for traversing challenging
terrains, relying on its environmental comprehension. Furthermore, it exhibits an understanding of
the necessity to lean back to preserve stability while descending stairs.

Brain-Body Fine-Tuning Besides the evaluation of zero-shot generalization, we also consider a
more general setting that allows the co-design policy to fine-tune its parameters to adapt to target
tasks. We aim to investigate whether brain-body fine-tuning is better than training from scratch.
Keeping this in mind, we introduce PreCo-Scratch and GA [3] as additional baselines, all of which
are trained from scratch on target tasks. Here, we limit the number of brain-body fine-tuning it-
erations to 300 and policy iterations of learning from scratch to 2000. Table 1 presents all results
across unseen environments. It is evident that PreCo outperforms the baseline algorithms in most
environments. For morphological results, Figure 8 in Appendix D demonstrates that PreCo exhibits
intelligent behavior by retaining the beneficial serrated structure for effective stair climbing and
obstacle traversal, while also making adaptive modifications to suit the new environment.

The Shared Policy Representation To go a step further, in Appendix E, we provide a performance
comparison between PreCo and PreCo-Sep when trained from scratch across 10 co-design tasks
(Table 3). Figure 9 and Figure 10 illustrate their learning processes in a complex task, Climber-v0,
which requires the policy to have a good exploration ability to grow irregular structures. Clearly,
PreCo exhibits the ability to explore beyond the local morphological optimum, allowing it to develop
thin limbs that aid in climbing. In summary, the shared policy representation creates additional
opportunities for exploring the design space. This is because, as the parameters of the “control
policy” undergo adjustments, the “design policy” is concurrently updated.

6 Limitations and Conclusion

We have introduced PreCo, a co-design method that utilizes brain-body pre-training to generate
modular soft robots capable of performing multiple tasks. Through the adoption of shared policy
representations, which capture the inherent brain-body connections across various co-design tasks,
we have observed its favorable zero-shot generalization and few-shot adaptation capabilities in ad-
dressing previously unseen co-design tasks.

There are a number of areas for improvement. As shown in Table 1, our method does not perform
very well in BridgeWalker. This might be because the selection of training tasks does not cover
the variation of soft terrain, potentially leading to ambiguities in the co-design policy. Exploring
the selection of pre-training co-design tasks could be interesting for future research. Addition-
ally, although our policy representation appears to facilitate the learning process, it is worth noting
that destructive mutations of the network parameters can still occur. Further investigation into the
genotype-phenotype-fitness mapping of this policy would be valuable. In our paper, we tested our
method using a simulator with relatively fundamental modules as a proof of concept to show its
effectiveness, developing a general pipeline for translating learned models to physical will definitely
be our next step. We also provide a detailed discussion of this sim-to-real issue in Appendix F
and envision our method serving as a foundation for subsequent research which tends to make the
co-design of modular robots more practical both in the simulation and the real world.

8

Acknowledgments

We sincerely thank the anonymous reviewers for their helpful comments in revising the paper. This
work was supported by the National Key R&D Program of China (2022YFB4701400/4701402).

References
[1] H. Lipson, V. SunSpiral, J. C. Bongard, and N. Cheney. On the difficulty of co-optimizing

morphology and control in evolved virtual creatures. In IEEE Symposium on Artificial Life,
2016.

[2] R. Pfeifer, F. Iida, and M. Lungarella. Cognition from the bottom up: on biological inspiration,
body morphology, and soft materials. Trends in Cognitive Sciences, 18:404–413, 2014.

[3] J. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik. Evolution gym: A large-scale benchmark
for evolving soft robots. In NeurIPS, 2021.

[4] N. Cheney, J. C. Bongard, V. SunSpiral, and H. Lipson. Scalable co-optimization of morphol-
ogy and control in embodied machines. Journal of The Royal Society Interface, 15, 2018.

[5] Y. Wang, S. Wu, H. Fu, Q. Fu, T. Zhang, Y. Chang, and X. Wang. Curriculum-based co-
design of morphology and control of voxel-based soft robots. In The Eleventh International
Conference on Learning Representations, 2023.

[6] K. Sims. Evolving 3d morphology and behavior by competition. Artificial Life, 1:353–372,
1994.

[7] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: evolving soft robots
with multiple materials and a powerful generative encoding. In GECCO ’13, 2013.

[8] E. Medvet, A. Bartoli, F. Pigozzi, and M. Rochelli. Biodiversity in evolved voxel-based soft
robots. Proceedings of the Genetic and Evolutionary Computation Conference, 2021.

[9] T. Wang, Y. Zhou, S. Fidler, and J. Ba. Neural graph evolution: Towards efficient automatic
robot design. ArXiv, abs/1906.05370, 2019.

[10] T. F. Nygaard, D. Howard, and K. Glette. Real world morphological evolution is feasible. Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, 2020.

[11] G. Williams. Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11,
1957.

[12] N. Solovieff, C. Cotsapas, P. H. Lee, S. M. Purcell, and J. W. Smoller. Pleiotropy in complex
traits: challenges and strategies. Nature Reviews Genetics, 14:483–495, 2013.

[13] D. Marzougui, M. Biondina, and F. Wyffels. A comparative analysis on genome pleiotropy for
evolved soft robots. Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2022.

[14] M. Farina. Embodied cognition: dimensions, domains and applications. Adaptive Behavior,
29(1):73–88, 2021.

[15] A. Cangelosi and M. Asada. Cognitive robotics. MIT Press, 2022.

[16] J. Nordmoen, F. Veenstra, K. O. Ellefsen, and K. Glette. Quality and diversity in evolutionary
modular robotics. 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages
2109–2116, 2020.

[17] F. Veenstra, A. Faı́ña, S. Risi, and K. Støy. Evolution and morphogenesis of simulated modular
robots: A comparison between a direct and generative encoding. In EvoApplications, 2017.

9

[18] E. Samuelsen, K. Glette, and J. Tørresen. A hox gene inspired generative approach to evolving
robot morphology. In Annual Conference on Genetic and Evolutionary Computation, 2013.

[19] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Poet: open-ended coevolution of environ-
ments and their optimized solutions. Proceedings of the Genetic and Evolutionary Computa-
tion Conference, 2019.

[20] K. Walker and H. Hauser. Evolution of morphology through sculpting in a voxel based robot.
In ALIFE, 2021.

[21] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin. Growing neural cellular automata.
Distill, 2020.

[22] S. Sudhakaran, E. Najarro, and S. Risi. Goal-guided neural cellular automata: Learning to
control self-organising systems. ArXiv, abs/2205.06806, 2022.

[23] R. B. Palm, M. G. Duque, S. Sudhakaran, and S. Risi. Variational neural cellular automata.
ArXiv, abs/2201.12360, 2022.

[24] F. H. K. dos Santos Tanaka and C. C. Aranha. Co-evolving morphology and control of soft
robots using a single genome. 2022 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1235–1242, 2022.

[25] Á. Belmonte-Baeza, J. Lee, G. Valsecchi, and M. Hutter. Meta reinforcement learning for
optimal design of legged robots. IEEE Robotics and Automation Letters, 7:12134–12141,
2022.

[26] T.-H. Wang, P. Ma, A. E. Spielberg, Z. Xian, H. Zhang, J. B. Tenenbaum, D. Rus, and C. Gan.
Softzoo: A soft robot co-design benchmark for locomotion in diverse environments. arXiv
preprint arXiv:2303.09555, 2023.

[27] P. Ma, T. Du, J. Z. Zhang, K. Wu, A. Spielberg, R. K. Katzschmann, and W. Matusik. Diffaqua:
A differentiable computational design pipeline for soft underwater swimmers with shape inter-
polation. ACM Trans. Graph., 40:132:1–132:14, 2021.

[28] M. Bächer, E. Knoop, and C. Schumacher. Design and control of soft robots using differen-
tiable simulation. Current Robotics Reports, 2(2):211–221, 2021.

[29] J. Z. Zhang, Y. Zhang, P. Ma, E. Nava, T. Du, P. Arm, W. Matusik, and R. K. Katzschmann.
Sim2real for soft robotic fish via differentiable simulation. arXiv preprint arXiv:2109.14855,
2021.

[30] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Ma-
tusik. Chainqueen: A real-time differentiable physical simulator for soft robotics. In 2019
International conference on robotics and automation (ICRA), pages 6265–6271. IEEE, 2019.

[31] T. Du, J. Hughes, S. Wah, W. Matusik, and D. Rus. Underwater soft robot modeling and control
with differentiable simulation. IEEE Robotics and Automation Letters, 6(3):4994–5001, 2021.

[32] K. S. Luck, H. B. Amor, and R. Calandra. Data-efficient co-adaptation of morphology and
behaviour with deep reinforcement learning. In CoRL, 2019.

[33] C. B. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter. Jointly learning to construct and
control agents using deep reinforcement learning. 2019 International Conference on Robotics
and Automation (ICRA), pages 9798–9805, 2019.

[34] D. R. Ha. Reinforcement learning for improving agent design. Artificial Life, 25:352–365,
2019.

10

[35] Y. Yuan, Y. Song, Z. Luo, W. Sun, and K. M. Kitani. Transform2act: Learning a transform-
and-control policy for efficient agent design. ArXiv, abs/2110.03659, 2022.

[36] R. Deimel, P. Irmisch, V. Wall, and O. Brock. Automated co-design of soft hand mor-
phology and control strategy for grasping. 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1213–1218, 2017. URL https://api.

semanticscholar.org/CorpusID:3037063.

[37] S. Kriegman, S. J. Walker, D. S. Shah, M. Levin, R. Kramer-Bottiglio, and J. C. Bongard.
Automated shapeshifting for function recovery in damaged robots. Robotics: Science and
Systems XV, 2019. doi:10.15607/rss.2019.xv.028.

[38] S. Kriegman, A. M. Nasab, D. S. Shah, H. Steele, G. Branin, M. Levin, J. C. Bongard, and
R. Kramer-Bottiglio. Scalable sim-to-real transfer of soft robot designs. 2020 3rd IEEE Inter-
national Conference on Soft Robotics (RoboSoft), pages 359–366, 2020.

[39] S.-D. Gravert, M. Y. Michelis, S. Rogler, D. Tscholl, T. Buchner, and R. K. Katzschmann.
Planar modeling and sim-to-real of a tethered multimaterial soft swimmer driven by peano-
hasels. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 9417–9423. IEEE, 2022.

[40] E. Nava, J. Z. Zhang, M. Y. Michelis, T. Du, P. Ma, B. F. Grewe, W. Matusik, and R. K.
Katzschmann. Fast aquatic swimmer optimization with differentiable projective dynamics and
neural network hydrodynamic models. In International Conference on Machine Learning,
pages 16413–16427. PMLR, 2022.

[41] C. Schaff, A. Sedal, and M. J. Walter. Soft robots learn to crawl: Jointly optimizing design and
control with sim-to-real transfer. Robotics: Science and Systems XVIII, 2022. doi:10.15607/
rss.2022.xviii.062.

[42] M. Dubied, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann. Sim-to-real for soft robots
using differentiable fem: Recipes for meshing, damping, and actuation. IEEE Robotics and
Automation Letters, 7(2):5015–5022, 2022.

[43] A. Spielberg, A. Amini, L. Chin, W. Matusik, and D. Rus. Co-learning of task and sensor
placement for soft robotics. IEEE Robotics and Automation Letters, 6(2):1208–1215, 2021.

[44] Y. W. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. M. O. Heess, and
R. Pascanu. Distral: Robust multitask reinforcement learning. In NIPS, 2017.

[45] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. ArXiv, abs/1802.01561, 2018.

[46] M. Hessel, H. Soyer, L. Espeholt, W. M. Czarnecki, S. Schmitt, and H. V. Hasselt. Multi-task
deep reinforcement learning with popart. In AAAI Conference on Artificial Intelligence, 2018.

[47] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-
task learning. ArXiv, abs/2001.06782, 2020.

[48] Z. Xu, K. Wu, Z. Che, J. Tang, and J. Ye. Knowledge transfer in multi-task deep reinforcement
learning for continuous control. ArXiv, abs/2010.07494, 2020.

[49] A. Sanchez-Gonzalez, N. M. O. Heess, J. T. Springenberg, J. Merel, M. A. Riedmiller, R. Had-
sell, and P. W. Battaglia. Graph networks as learnable physics engines for inference and control.
ArXiv, abs/1806.01242, 2018.

[50] W. Huang, I. Mordatch, and D. Pathak. One policy to control them all: Shared modular policies
for agent-agnostic control. In ICML, 2020.

11

https://api.semanticscholar.org/CorpusID:3037063
https://api.semanticscholar.org/CorpusID:3037063
http://dx.doi.org/10.15607/rss.2019.xv.028
http://dx.doi.org/10.15607/rss.2022.xviii.062
http://dx.doi.org/10.15607/rss.2022.xviii.062

[51] A. Gupta, L. J. Fan, S. Ganguli, and L. Fei-Fei. Metamorph: Learning universal controllers
with transformers. ArXiv, abs/2203.11931, 2022.

[52] B. Trabucco, M. Phielipp, and G. Berseth. Anymorph: Learning transferable polices by infer-
ring agent morphology. In ICML, 2022.

[53] G. Cheng, L. Dong, W. Cai, and C. Sun. Multi-task reinforcement learning with attention-
based mixture of experts. IEEE Robotics and Automation Letters, 8:3811–3818, 2023.

[54] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and K. O. Stanley. Enhanced poet:
Open-ended reinforcement learning through unbounded invention of learning challenges and
their solutions. In ICML, 2020.

[55] T. Anne, J. Wilkinson, and Z. Li. Meta-reinforcement learning for adaptive motor control in
changing robot dynamics and environments. ArXiv, abs/2101.07599, 2021.

[56] T. Yu, D. Quillen, Z. He, R. C. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, 2019.

[57] K. Rakelly, A. Zhou, D. Quillen, C. Finn, and S. Levine. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. ArXiv, abs/1903.08254, 2019.

[58] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. ArXiv, abs/1707.06347, 2017.

[59] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. ArXiv, abs/1706.03762, 2017.

[60] K. He, X. Chen, S. Xie, Y. Li, P. Doll’ar, and R. B. Girshick. Masked autoencoders are scalable
vision learners. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15979–15988, 2021.

[61] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hier-
archical vision transformer using shifted windows. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9992–10002, 2021.

[62] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. ArXiv,
abs/1910.10683, 2019.

[63] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context. ArXiv, abs/1901.02860, 2019.

[64] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. ArXiv,
abs/2004.05150, 2020.

[65] A. Nichol and J. Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, 2019.

[67] A. Antoniou, H. Edwards, and A. Storkey. How to train your maml. In Seventh International
Conference on Learning Representations, 2019.

[68] C. Zhang, P. Zhu, Y. Lin, Z. Jiao, and J. Zou. Modular soft robotics: Modular units, connection
mechanisms, and applications. Advanced Intelligent Systems, 2(6):1900166, 2020.

12

[69] M. Tebyani, A. Spaeth, N. Cramer, and M. Teodorescu. A geometric kinematic model for
flexible voxel-based robots. Soft Robotics, 10(3):517–526, 2023.

[70] J. Legrand, S. Terryn, E. Roels, and B. Vanderborght. Reconfigurable, multi-material, voxel-
based soft robots. IEEE Robotics and Automation Letters, 8(3):1255–1262, 2023.

[71] N. Kellaris, V. Gopaluni Venkata, G. M. Smith, S. K. Mitchell, and C. Keplinger. Peano-hasel
actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation.
Science Robotics, 3(14):eaar3276, 2018.

[72] S. Kriegman, S. Walker, D. S. Shah, M. Levin, R. Kramer-Bottiglio, and J. C. Bongard. Auto-
mated shapeshifting for function recovery in damaged robots. ArXiv, abs/1905.09264, 2019.

A Parameterization of the Design Space

Padding

7 × 75 × 5

Sliding window

7 × 7

Cropping
…

𝒔𝒕
𝒅

Flatten

…

25 × 3 × 3

25 × 9

Moore Neighborhood

𝒔𝒕
𝒅 =

0, 0, 0, 0, 3, 3, 0, 2, 2
0, 0, 0, 3, 3, 2, 2, 2, 4

…

4, 0, 0, 0, 0, 0, 0, 0, 0

Empty voxel=0 Soft voxel=1 Rigid voxel=2 Horizontal actuator=3 Vertical actuator=4

25 × 9

Figure 5: Parameterization of the design space. Initially, the design space is surrounded by empty
voxels. Each voxel is denoted by a discrete value, reflecting its material characteristic. Then, a
sliding window is used to get each voxel’s local state, which is composed of its type and the types
of its Moore neighbors. Finally, the design state is formulated as an ordered sequence.

B Environment Details

Our experiments are based on the simulation platform from [3, 5]. In this section, we provide
additional details of the used environments (Figure 6).

Position. po is a 2-dim vector that represents the position of the center of mass of an object o in the
simulation at time t. pox and poy are x and y components of this vector, respectively. po is calculated
by averaging the positions of all the point-masses that make up object o at time t.

Velocity. vo is a 2-dim vector that represents the velocity of the center of mass of an object o in the
simulation at time t. vox and voy are x and y components of this vector, respectively. vo is calculated
by averaging the velocities of all the point-masses that make up object o at time t.

Orientation. θo is a 1-dim vector that represents the orientation of an object o in the simulation at
time t. Let pi be the position of point mass i of object o. θo is computed by averaging over all i the
angle between the vector pi − po at time t and time 0. This average is a weighted average weighted
by ||pi − po|| at time 0.

Other observations. ho
b(d) is a vector of length (2d+1) that describes elevation information around

the robot below its center of mass. More specifically, for some integer x ≤ d, the corresponding
entry in vector ho

b(d) will be the highest point of the terrain which is less than poy between a range
of [x, x+ 1] voxels from pox in the x-direction.

13

Figure 6: Visualization of all environments used in our work.

B.1 Walker-v0

In this task, the robot is rewarded by walking as far as possible on flat terrain. The task-specific
observation is vrobot, and the reward R is:

R = ∆probotx (2)

which rewards the robot for moving in the positive x-direction. The robot receives a reward of 1 for
reaching the end of the terrain. The episode duration reaches a 500 time steps.

B.2 BridgWalker-v0

In this task, the robot is rewarded by walking as far as possible on a soft rope-bridge. The task-
specific observation is {vrobot, θrobot}, and the reward R is:

R = ∆probotx (3)

which rewards the robot for moving in the positive x-direction. The robot receives a reward of 1 for
reaching the end of the terrain. The episode duration reaches a 500 time steps.

B.3 Upstepper-v0

In this task, the robot climbs up stairs of varying lengths. The task-specific observation is formed by
concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (4)

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain. The episode duration reaches a 600 time steps.

B.4 Downstepper-v0

In this task, the robot climbs down stairs of varying lengths. The task-specific observation is formed
by concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (5)

14

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain, and a one-time penalty of −3 for rotating more than
90 degrees from its originally orientation in either direction. The episode duration reaches a 500
time steps.

B.5 ObstacleTraverser-v0

In this task, the robot walks across terrain that gets increasingly more bumpy. The task-specific
observation is formed by concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (6)

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain, and a one-time penalty of −3 for rotating more than
90 degrees from its originally orientation in either direction. The episode duration reaches a 1000
time steps.

B.6 ObstacleTraverser-v1

In this task, the robot walks through very bumpy terrain. The task-specific observation is formed by
concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (7)

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
reward of 2 for reaching the end of the terrain. The episode duration reaches a 1000 time steps.

B.7 Hurdler-v0

In this task, the robot walks across terrain with tall obstacles. The task-specific observation is formed
by concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (8)

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
penalty of −3 for rotating more than 90 degrees from its originally orientation in either direction.
The episode duration reaches a 1000 time steps.

B.8 GapJumper-v0

In this task, the robot traverses a series of spaced-out floating platforms all at the same height.
The task-specific observation is formed by concatenating vectors {vrobot, θrobot, hrobot

b (5)}, and the
reward R is:

R = ∆probotx (9)

which rewards the robot for moving in the positive x-direction. The robot also receives a one-time
penalty of −3 for falling off the platforms. The episode duration reaches a 1000 time steps.

B.9 PlatformJumper-v0

In this task, the robot traverses a series of floating platforms at different heights. The tar-
get design space is 5 × 5. The task-specific observation is formed by concatenating vectors
{vrobot, θrobot, hrobot

b (5)}, and the reward R is:

R = ∆probotx (10)

which rewards the robot for moving in the positive x-direction, The robot also receives a one-time
penalty of −3 for rotating more than 90 degrees from its originally orientation in either direction or
for falling off the platforms (after which the environment resets). The episode duration reaches a
1000 time steps.

15

C Implementation Details

C.1 Hyperparameters and Training Procedure

We use PyTorch [66] to implement all the models used in our work. We take the official imple-
mentation of transformer from Pytorch which uses TransformerEncoderLayer module, and add a
learnable position embedding. All hyperparameters of PreCo are listed in Table 2.

Our co-design policy can be trained in an end-to-end RL manner because we unify the design and
control processes as a single MDP. That is, at the start of each RL episode, the policy first takes
a finite number of design actions to develop a robot morphology, and no reward is assigned to the
policy during this period. Subsequently, the resulting robot is controlled by this policy to collect the
environmental rewards, which also provides learning signals for the design actions. Once the desired
number of trajectories is collected using distributed trajectory sampling (described in Section 4), the
policy is updated using PPO. We also ensure that the baselines and our method use the same number
of policy iterations (simulation steps) for optimization.

Table 2: Hyperparameters of PreCo.

Hyperparameter Value

GAE True
GAE λ 0.95
Learning rate 2.5 · 10−4

Linear learning rate decay True
Clip parameter 0.1
Value loss coefficient 0.5
Entropy coefficient 0.01
Time steps per rollout 5120

PPO Optimizer Adam
Evaluation interval 10
Discount factor γ 0.99
Clipped value function True
Observation normalization True
Observation clipping [−10, 10]
Reward normalization True
Reward clipping [−10, 10]
Policy epochs 8

Neighborhood Moore
Design steps 1
Number of layers 3
Number of attention heads 1

Transformer Embedding dimension 128
Feedforward dimension 256
Non linearity function ReLU
Dropout 0.0

C.2 Details of the Baseline Algorithms

For baseline algorithms, we use the official implementation of GA from Evolution Gym [3] and
employ a population of 12 agents. It’s worth noting that the inner loop of control optimization is
also driven by PPO, while the outer loop of morphology optimization is implemented using the
evolutionary algorithm. Additionally, we use the official implementation of CuCo from [5] and
Reptile from [65]. In the remaining section, we demonstrate details about these baselines.

16

GA GA directly encodes the robot’s morphology as a vector where each element is tailored to the
voxel’s material property in order. It uses elitism selection and a simple mutation strategy to evolve
the population of robot designs. The selection keeps the top x% of the robots from the current
population as survivors and discards the rest, and the mutation can randomly change each voxel of
the robot with a certain probability (mutation rate). In our study, the survivor rate starts at 60% and
decreases linearly to 0%, and the mutation rate is set to 10%.

CuCo CuCo is a curriculum-based co-design method that consists of separate NCA-based design
policy and transformer-based control policy. This curriculum-based method expands the design
space from a small size to the target size using reinforcement learning with a predefined curriculum.
In our study, we set the curriculum of CuCo to be 3 × 3 → 5 × 5 and adhere to the original
hyperparameter settings of CuCo as presented in [5].

MeCo MeCo utilizes the same network architecture as PreCo but is trained with the Reptile [65],
a popular meta-learning method. Reptile is designed to identify model parameters that serve as
an optimal starting point for adaptation across various tasks. When encountering a novel task, the
model is expected to need fewer updates or episodes to achieve proficient performance. In contrast
to another meta-learning method, MAML[67], which necessitates second-order gradients (gradients
of gradients) during its meta-update step, Reptile simply averages the updates. This characteristic
makes Reptile more computationally efficient and easier to implement. In our study, we set the
meta-learning rate to 0.25, and the update iteration for each training task is configured to be 20.

C.3 Computational Cost

We use distributed trajectory sampling with multiple CPU threads to collect training data (described
in Section 4). For pre-training experiments in the paper, it takes around 2 days to train our model on
a standard server with 40 CPU cores and an NVIDIA RTX 3090 GPU.

D Visualization Results

In this section, we provide some visualization results of brain-body pre-training and brain-body
fine-tuning, as shown in Figure 7 and Figure 8, respectively.

Zero-Shot
Generalization

Training Tasks

Climb stairsCross uneven terrain

More uneven terrain

Descend stairs

Figure 7: Visualization of PreCo’s zero-shot behavior. The figure shows screenshots at consecutive
time intervals of the designed robot’s behavior. Compared with training tasks, We find that PreCo
shows favorable generalization properties and intriguing behavior when facing new environments
(beginning from 00 : 28 in this video).

E Ablation of the Shared Policy Representation

The performance results of PreCo and PreCo-Sep in Figure 3 and Table 1 suggest that a shared policy
representation facilitates zero-shot generalization and few-shot adaptation, surpassing methods that
employ separated representations. Furthermore, we present a comparison of the performance of

17

https://yuxing-wang-thu.github.io/publication/2023-05-01-paper-title-number-1

Brain-Body
Pre-Training

Brain-body
Fine-Tuning

Figure 8: Visualization of brain-body fine-tuning. The pre-trained co-design policy shows the ability
to swiftly adjust both the morphology and control strategy to adapt to new co-design tasks (beginning
from 00 : 42 in this video).

Table 3: Performance results across 10 co-design
tasks. All methods are trained from scratch.

Environment PreCo-Scratch PreCo-Sep-Scratch
Walker-v0 10.47± 0.01 10.46± 0.01
Climber-v0 2.23± 0.87 0.43± 0.02
Hurdler-v0 2.76± 1.39 2.07± 1.33
UpStepper-v0 7.23± 1.46 4.06± 0.28
DownStepper-v0 8.98± 0.01 7.46± 0.71
GapJumper-v0 3.48± 0.66 3.51± 0.53
BridgeWalker-v0 4.81± 0.21 5.46± 1.01
PlatformJumper-v0 6.12± 0.82 3.97± 0.33
ObstacleTraverser-v0 6.03± 2.34 5.08± 0.19
ObstacleTraverser-v1 3.38± 0.69 2.78± 1.06

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iterations (×103)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rfo

rm
an

ce

Climber-v0
PreCo-Scratch
PreCo-Sep-Scratch

Figure 9: Learning curves in Climber-v0.

P
re

C
o
-S
c
ra
tc
h

P
re

C
o
-S
e
p
-S
c
ra
tc
h

Iteration: 25 Iteration: 50 Iteration: 100 Iteration: 250 Iteration: 500 Iteration: 1000

Figure 10: Morphological results of the two methods obtained during their learning processes.

these two methods when trained from scratch across 10 co-design tasks, the results are shown in
Table 3. Figure 9 and Figure 10 illustrate their learning processes in a complex task, Climber-v0.

F Discussion of the Sim-to-Real Issue

In our paper, we tested our method using a simulator with relatively fundamental modules as a proof
of concept to show its effectiveness. In this section, We discuss the sim-to-real issue of our work.

From the perspective of “Sim”, the EvolutionGym platform [3] used in our work employs several
simplifications to reach a trade-off between the simulation quality and velocity. Thus, for more
realizable sim-to-real transfer, an improved version of its physics engine is needed to model soft-
body physics in 3D space. We believe that using the Finite Element Method (FEM) numerical
simulation would be one of the feasible ways to narrow this sim-to-real gap because the voxel-based
design provides a naturally organized mesh, and its resolution and element type could be relatively

18

https://yuxing-wang-thu.github.io/publication/2023-05-01-paper-title-number-1

0.01 0.05 0.10 0.15 0.20 0.25 0.30
Iterations (×103)

2

1

0

1

2

3

4

Pe
rfo

rm
an

ce

Fine-tunig on ObstacleTraverser-v1
ObstacleTraverser-v1
Walker-v0
UpStepper-v0
ObstacleTraverser-v0
PlatformJumper-v0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iterations (×103)

0

1

2

3

Av
er

ag
e

Pe
rfo

rm
an

ce

Training Co-Design Tasks
PreCo (ours)

Figure 11: Additional experiments. Left: visualization of the fine-tuning process. Right: learning
curve of brain-body pre-training on more diverse co-design tasks.

easily determined. Moreover, FEM has shown promise for real-world soft robotic models when
combined with highly stable implicit Euler integration [42].

In our study, we focus on the model-free co-design problem where system modeling is not required,
and we use reinforcement learning to approximate the gradient of design and control. This endeavor
requires a large amount of training data. However, when considering the real-world problem, it
is possible to transfer to the model-based setting. By leveraging the differentiable properties of
certain FEM models [40], the universal parameterized co-design policy can be updated using Back-
Propagation Through Time (BPTT), resulting in more efficient brain-body pre-training. When we
move to the 3D modular robot design space, we would like to adapt the parameterization method
depicted in Figure 5 to its 3D version. By using a “3D convolutional kernel”, we can easily create
input design observation sequences for the transformer-based policy. Although transformer has suf-
ficient capacity to handle long sequences, a more expansive design space (e.g., thousands of voxels)
would necessitate a more complex transformer model. This, in turn, could demand significantly
higher computational power.

From the perspective of “Real”, one of the foremost considerations is the material selection, which
should be predicated upon the required flexibility, durability, and functionality [68, 69]. With this
criterion, the Diels-Alder (DA) polymer [70] or silicone voxels [38], in conjunction with multi-
material cubic blocks produced through 3D printing, may serve as ideal components for constructing
the body of a MSR. To establish the local observation space, each voxel could be equipped with an
array of sensors, such as touch, pressure and velocity sensors. Alternatively, soft sensors, crafted
from conductive elastomers that alter resistance upon deformation, could offer valuable feedback to
the control system. Furthermore, Peano-HASEL actuators [71] or pneumatic actuators [72] might be
suitable for volumetric actuation (probably limited to expansion for efficient simulation), and closed-
loop control could be achieved by utilizing Neural Networks (NNs). In the real-world setting, factors
like material imperfections, air resistance, friction and many others come into play, we also need to
iteratively refine the design and control algorithms based on real-world feedback.

We acknowledge that each point discussed above presents its challenges but is well worth in-depth
investigation, and we aspire for our work to serve as a catalyst for future research into the co-design
of modular soft robots.

G Additional Experiments

G.1 How Does Fine-Tuning on the Target Task Affect Performance on the Training Tasks?

It is worth noting that when a pre-trained co-design policy undergoes fine-tuning for a new target
task, it can experience what’s known as “catastrophic forgetting”. This means that it might for-

19

Figure 12: Morphological results of brain-body pre-training.

get certain information or patterns it learned during the pre-training phase, potentially leading to a
decrease in performance on the original training tasks.

We track the performance changes on 4 pre-training tasks when the co-design policy is fine-tuned
on ObstacleTraverser-v1. The left side of Figure 11 illustrates a consistent decrease in performance
for Walker-v0 and PlatformJumper-v0 due to the significant disparity between the target task and the
original tasks. In contrast, If the target task is similar to the pre-training tasks, the co-design policy
might retain more of its initial knowledge. For instance, performance on tasks like UpStepper-v0
and ObstacleTraverser-v0 remains less affected throughout the fine-tuning.

G.2 Pre-Training on More Diverse Co-design Tasks

In our paper, we select 4 locomotion tasks for pre-training and 5 tasks for testing. As we focus on co-
designing modular soft robots to perform multiple tasks, the wealth of brain-body links embedded
within the enormous combined search space offers sufficient diversity for effective policy learning.

To further explore the potential of PreCo, we also conduct an additional experiment that encom-
passes more diverse co-design tasks for pre-training. In this experiment, except for the original 4
pre-training tasks, we add Pusher-v0 (the robot is encouraged to push a box initialized in front of
it as far as possible) and Carrier-v0 (the robot is encouraged to carry a box initialized above it as
far as possible) to the co-design policy’s learning procedure. Moreover, we add Thrower-v0 (the
robot is encouraged to throw a box initialized above it as far as possible) to the test tasks. The right
side of Figure 11 demonstrates the learning curves, and the result is averaged over 5 different runs.
The results of Figure 12, Figure 13 and Figure 14 show that PreCo still performs well on zero-shot
generalization and few-shot adaptation.

20

Figure 13: Morphological results of zero-shot generalization.

Figure 14: Morphological results of brain-body fine-tuning.

21

	Introduction
	Related Work
	Preliminaries
	Brain-Body Pre-Training
	Experiments
	Environments and Implementation
	Results

	Limitations and Conclusion
	Parameterization of the Design Space
	Environment Details
	Walker-v0
	BridgWalker-v0
	Upstepper-v0
	Downstepper-v0
	ObstacleTraverser-v0
	ObstacleTraverser-v1
	Hurdler-v0
	GapJumper-v0
	PlatformJumper-v0

	Implementation Details
	Hyperparameters and Training Procedure
	Details of the Baseline Algorithms
	Computational Cost

	Visualization Results
	Ablation of the Shared Policy Representation
	Discussion of the Sim-to-Real Issue
	Additional Experiments
	How Does Fine-Tuning on the Target Task Affect Performance on the Training Tasks?
	Pre-Training on More Diverse Co-design Tasks

