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Abstract: The advancement of robots, particularly those functioning in complex
human-centric environments, relies on control solutions that are driven by ma-
chine learning. Understanding how learning-based controllers make decisions is
crucial since robots are often safety-critical systems. This urges a formal and
quantitative understanding of the explanatory factors in the interpretability of
robot learning. In this paper, we aim to study interpretability of compact neu-
ral policies through the lens of disentangled representation. We leverage decision
trees to obtain factors of variation [1] for disentanglement in robot learning; these
encapsulate skills, behaviors, or strategies toward solving tasks. To assess how
well networks uncover the underlying task dynamics, we introduce interpretability
metrics that measure disentanglement of learned neural dynamics from a concen-
tration of decisions, mutual information and modularity perspective. We showcase
the effectiveness of the connection between interpretability and disentanglement
consistently across extensive experimental analysis.
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Figure 1: Understand robot behaviors by extracting logic programs as
factors of variation to measure interpretability with disentanglement.

Interpretability of learning-based
robot control is important for
safety-critical applications as it af-
fords human comprehension of
how the system processes inputs
and decides actions. In general,
achieving interpretability is diffi-
cult for learning-based robot con-
trol. The robot learning models
make decisions without being ex-
plicitly programmed to perform the
task and are often very large, thus it
is impossible to synthesize and explain their reasoning processes. This lack of transparency, often
referred to as the ”black box” problem, makes it hard to interpret the workings of learning-based
robot control systems. Understanding why a particular decision was made or predicting how the
system will behave in future scenarios remains a challenge, yet critical for physical deployments.

Through the lens of representation learning, we assume that neural networks capture a set of pro-
cesses that exist in the data distribution; for robots, they manifest learned skills, behaviors, or strate-
gies, which are critical to understand the decision-making of a policy. However, while these factors
of variation [1] (e.g., color or shape representations) are actively studied in unsupervised learning
for disentangled representation, in robot learning, they are less well-defined and pose unique chal-
lenges due to the intertwined correspondence of neural activities with emergent behaviors unknown
a priori. In the present study, we aim to (i) provide a useful definition of factors of variation for
policy learning, and (ii) explore how to uncover dynamics and factors of variation quantitatively as a
measure of interpretability in compact neural networks for closed-loop end-to-end control applica-
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tions. In this space, an entanglement corresponding to multiple neurons responsible for an emergent
behavior can obstruct the interpretation of neuron response even with a small number of neurons
[2, 3, 4, 5]. To this end, the disentanglement of learned representations [6, 7, 8] in compact neural
networks is essential for deriving explanations and interpretations for neural policies.

We posit that each neuron should learn an abstraction (factor of variation) related to a specific strat-
egy required for solving a sub-component of a task. For example, in locomotion, one neuron may
capture periodic gait, where the numerical value of the neuron response may be aligned with dif-
ferent phases of the gait cycle; another neuron may account for recovery from slipping. Retrieving
the abstraction learned by a neuron is, however, non-trivial. Directly observing the neuron response
along with sensory information provided as input to the policy can be extremely inefficient and
tedious for identifying behaviors and interpreting decision-making.

In this work, our objective is to formulate an abstraction that represents the decision-making of a
parametric policy to quantify the interpretability of learned behaviors, specifically from the perspec-
tive of disentangled representations. To this end, we make the following key contributions:

• Provide a practical definition of factor of variation for robot learning by programmatically extract-
ing decision trees from neural policies, in the form of logic program grounded by world states.

• Introduce a novel set of quantitative metrics of interpretability to assess how well policies uncover
task structures and their factors of variation by measuring the disentanglement of learned neural
dynamics from a concentration of decisions, mutual information, and modularity perspective.

• Experiment in a series of end-to-end policy learning tasks that (a) showcase the effectiveness of
leveraging disentanglement to measure interpretability, (b) demonstrate policy behaviors extracted
from neural responses, (c) unveil interpretable models through the lens of disentanglement.

2 Related Work
Compact neural networks. Compact neural networks are ideal in resource constraints situations
such as robotics and by nature easier to interpret due to a smaller number of neurons [2, 4]. Com-
pact networks can be obtained by pruning [9] or compressing neural networks in end-to-end training
[10]. Regularization has also been used to generate compact neural networks [11]. Compact repre-
sentation of features can be learned using discriminative masking [12]. Neural Ordinary Differential
Equations have also been used for learning compact network [13, 4]. In this work, we formally study
the interpretability of compact neural policies through the lens of disentangled representation.

Interpretable neural networks. An interpretable neural network could be constructed from a phys-
ically comprehensible perspective [14, 15]. Knowledge representation is used to obtain interpretable
Convolutional Neural Network [16]. An active line of research focuses on dissecting and analyzing
trained neural networks in a generic yet post-hoc manner [17, 18, 19, 20]. Another active line of
research is to study disentangled explanatory factors in learned representation [8]. A better repre-
sentation should contain information in a compact and interpretable structure [1, 21]. Unlike prior
works that study disentanglement based on factors of variations such as object types, there is no no-
tion of ground-truth factors in robot learning and thus we propose to use decision trees to construct
pseudo-ground-truth factors that capture emergent behaviors of robot for interpretability analysis.

Interpretability in policy learning. Explainable AI has been recently extended to policy learn-
ing like reinforcement learning [22] or for human-AI shared control settings [23]. One line of
research analyzes multi-step trajectories from the perspective of options or compositional skills
[24, 25, 26, 27, 28, 29]. A more fine-grained single-step alternative is to extract policies via imitation
learning to interpretable models like decision tree [30]. Another line of work directly embeds the
decision tree framework into the learning-based model to strike a balance between expressiveness
and interpretability [31, 32, 33]. Explanation of policy behaviors can also be obtained by searching
for abstract state with value function [34] or feature importance [35]. In this work, we aim to offer a
new perspective of disentangled representation to measure interpretability in robot policy learning.

3 Method
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Algorithm 1 Extract Abstraction via Decision Tree

Data Trajectories rollout from a compact neural policy Ddt = {(o0, s0, a0, z0, . . . )j}Nj=1

Result Interpreters of neuron response {f i
S}i∈I

for i ∈ I do
Train a decision tree Tθi from state {st} to neural response {zit}.
Collect dataset Ddp with neuron response {zit} and decision paths {Pi

st}.
Train neuron response classifier qϕi : R → {P} with Ddp.

Obtain decision path parser ri : {P} → L by tracing out {Pi
k}K

i

k=1 in Tθi .
Construct the mapping f i

S = ri ◦ qϕi .
end for

In this section, we describe how to obtain factor of variation by predicting logic programs from
neuron responses that reflect the learned behavior of the policies (Section 3.1), followed by a set of
quantitative measures of interpretability in the lens of disentanglement (Section 3.2).

3.1 Extracting Abstraction via Decision Tree

Our goal is to formulate a logic program that represents the decision-making of a parametric policy
to serve as an abstraction of learned behaviors, summarized in Algorithm 1. First, we describe a
decision process as a tuple {O,S,A, Pa, h}, where at a time instance t, ot ∈ O is the observation,
st ∈ S is the state, at ∈ A is the action, Pa : S × A × S → [0, 1] is the (Markovian) transition
probability from current state st to next state st+1 under action at, and h : S → O is the observation
model. We define a neural policy as π : O → A and the response of neuron i ∈ I as {zit ∈ R}i∈I ,
where I refers to a set of neurons to be interpreted. For each neuron i, we aim to construct a mapping
that infers a logic program from neuron response, f i

S : R → L, where L is a set of logic programs
grounded on environment states S. Note that f i

S does not take the state as an input as underlying
states may be inaccessible during robot deployment. In the following discussion, we heavily use the
notation Pi

∗ for the decision path associated with the i’th neuron, where the subscript ∗ refers to the
dependency on state if with parenthesis (like (st)) and otherwise indexing based on the context.

From states to neuron responses. Decision trees are non-parametric supervised learning algo-
rithms for classification and regression. Throughout training, they develop a set of decision rules
based on thresholding one or a subset of input dimensions. The relation across rules is described by
a tree structure with the root node as the starting point of the decision-making process and the leaf
nodes as the predictions. The property of decision trees to convert data for decision making to a set
of propositions is a natural fit for state-grounded logic programs. Given a trained neural policy π,
we collect a set of rollout trajectories Ddt = {τj}Nj=1, where τj = (o0, s0, a0, z0, o1, . . . ). We first
train a decision tree Tθi to predict the ith neuron response from states,

θi∗ = argmin
θi

∑
(st,zi

t)∈Ddt

Ldt(ẑ
i
t, z

i
t), where ẑit = Tθi(st) (1)

where Ldt represents the underlying classification or regression criteria. The decision tree Tθi de-
scribes relations between the neuron responses and the relevant states as logical expressions. During
inference, starting from the root node, relevant state dimensions will be checked by the decision rule
in the current node and directed to the relevant lower layer, finally arriving at one of the leaf nodes
and providing information to regress the neuron response. Each inference traces out a route from the
root node to a leaf node. This route is called a decision path. A decision path consists of a sequence
of decision rules defined by nodes visited by the path, which combine to form a logic program,

∧
n∈Pi

(st)
,j=g(n)

(sjt ≤ cn)←→ Behavior extracted from ẑit via Tθi (2)

where ∧ is the logical AND, Pi
(st)

is the decision path of the tree Tθi that takes st as inputs, g
gives the state dimension used in the decision rule of node n (assume each node uses one feature for
notation simplicity), and cn is the threshold at node n.

From neuron responses to decision paths. So far, we recover a correspondence between the neuron
response zt and the state-grounded program based on decision paths Pi

(st)
; however, this is not
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sufficient for deployment since the decision tree Tθi requires as input the ground-truth state and not
the observable data to the policy (like ot, zt). To address this, we find an inverse of Tθi with neuron
responses as inputs and pre-extracted decision paths as classification targets. Based on the inference
process of Tθi , we can calculate the numerical range of neuron responses associated with a certain
decision path Pi

(st)
from the predicted ẑt and then construct the pairs of zt and Pi

st . We collect
another dataset Ddp and train a classifier qϕi to predict decision paths from neuron responses,

ϕi∗ = argmin
ϕi

∑
(zi

t,Pi
(st)

)∈Ddp

Ldp(qϕi(zit),Pi
(st)

) (3)

where Ldp is a classification criterion. While Pi
(st)

is state-dependent, there exists a finite set of

decision paths {Pi
k}K

i

k=1 given the generating decision tree. We define the mapping from the decision
tree to the logic program as r : {P} → L, which can be obtained by tracing out the path as described
above. Overall, the desired mapping is readily constructed as f i

S = ri ◦ qϕi .

3.2 Quantitative Measures of Interpretability

Programmatically extracting decision trees for constructing a mapping from the neuron response to
a logic program offers a representation that facilitates the interpretability of compact neural poli-
cies. Furthermore, building on the computational aspect of our approach, we can quantify the inter-
pretability of a policy with respect to several metrics through the lens of disentanglement.

A. Neuron-Response Variance. Given decision paths {Pi
k}K

i

k=1 associated with a tree Tθi at the ith
neuron, we compute the normalized variance of the neuron response averaged across decision paths,

1

|I|
∑
i∈I

1

Ki

Ki∑
k=1

Var (st,z
i
t)∈Ddt

t∈{u|Pi
(su)=Pi

k}

[ zit
Zi

]
(4)

where Zi is a normalization factor that depends on the range of response of the ith neuron. The
set {u|Pi

(su)
= Pi

k} contains all time steps that exhibit the same behavior as entailed by Pi
k. For

example, suppose we have a trajectory consisting of behaviors including walking and running, and
that walking is depicted as Pi

k, the set refers to all time steps of walking. This metric captures the
concentration of the neuron response that corresponds to the same strategy represented by the logic
program defined by Tθi . In practice, we discretize all neuron responses to N bins, compute the
index of bins to which a value belongs, divide the index by N and compute their variance.

B. Mutual Information Gap. Inspired by [21, 8], we integrate the notion of mutual information
in our framework to extend disentanglement measures for unsupervised learning to policy learning.
Specifically, while previous literature assumes known ground-truth factors for disentanglement such
as object types, viewing angles, etc., there is no straightforward equivalence in neural policies since
the emergent behaviors or strategies are unknown a priori. To this end, we propose to leverage the
decision path sets to construct pseudo-ground-truth factors Mdp =

⋃
i∈I{Pi

k}K
i

k=1 = {Pk}Kk=1.
Note that there may be a correlation across decision paths, i.e., P (Pi,Pj) ̸= P (Pi)P (Pj) for
i ̸= j. For example, one decision path corresponding to a logic program of the robot moving
forward at high speed has a correlation to another decision path for moving forward at low speed.
This may occur because a neuron of a policy can learn arbitrary behaviors. However, this leads to
a non-orthogonal ground-truth factor set and can be undesirable since high correlations of a neuron
to multiple ground-truth factors (e.g., I[zi;Pi] and I[zi;Pj ] are large) can result from not only
entanglement of the neuron but also the correlation between factors (e.g., I[Pi;Pj ] is large). Hence,
this urges the need to calibrate mutual information for computing disentanglement measures. We
start by adapting the Mutual Information Gap (MIG) [21] to our framework:

1

K

K∑
k=1

1

H[Pk]

(
I[zi

∗
;Pk]−max

j ̸=i∗
I[zj ;Pk]− I[zj ;Pk;Pkj ]

)
(5)

where H is entropy, I is interaction information that can take an arbitrary number of variables (with
2 being mutual information), i∗ = argmaxi I[zi;Pk], and kj = argmaxl I[zj ;Pl]. Intuitively,
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Table 1: Quantitative results of classical control.
Network

Architecture
Disentanglement Explanation Size ↓ Cognitive

Chunks ↓Variance ↓ MI-Gap ↑ Modularity ↑ Vertical Horizontal

FCs 0.0242.005 0.3008.025 0.9412.014 5.00.46 1.91.14 1.65.28

GRU 0.0329.004 0.2764.062 0.9096.022 4.90.80 1.96.17 1.65.25

LSTM 0.0216.003 0.2303.024 0.9355.008 4.75.39 2.02.12 1.90.14

ODE-RNN 0.0287.007 0.3062.041 0.9376.017 4.90.38 1.93.15 1.80.27

CfC 0.0272.004 0.2892.111 0.9067.039 4.70.65 1.82.33 1.50.47

NCP 0.0240.008 0.3653.052 0.9551.019 3.45.83 1.51.33 1.30.32

Table 2: Alignment between disen-
tanglement and explanation quality in
classical control.

Re-signed Rank
Correlation ↑

Explanation Size Cognitive
ChunksVertical Horizontal

Variance -0.146 0.002 0.040
MI-Gap 0.427 0.505 0.449
Modularity -0.114 0.156 0.032
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Figure 2: In classical control (Pendulum): (a) Phase portrait with empirically measured closed-loop dynamics
and neuron response. Each arrow and colored dot are the results averaged around the binned state space. (b)
Emergent strategies from logic programs. (c) Decision tree extracted for command neuron 3 in NCP.

this measures the normalized difference between the highest and the second-highest mutual informa-
tion of each decision path with individual neuron activation, i.e., how discriminative the correlation
between the neuron response is with one decision path as opposed to the others. For example, neuron
response correlated to multiple factors of variation will have lower MIG than those to one only. The
last term I[zj ;Pk;Pkj ] is for calibration and captures the inherent correlation between zj and Pk

resulted from potentially nonzero I[Pk;Pkj ] with Pkj being a proxy random variable of zj in the
ground-truth factor set. We show how to compute I[zj ;Pk]−I[zj ;Pk;Pkj ] in Appendix Section C.

C. Modularity. We compute modularity scores from [36] with the same calibration term,

1

I
∑
i∈I

1−
∑

k ̸=k∗(I[zi;Pk]− I[zi;Pk;Pk∗ ])2

(K − 1)I[zi;Pk∗ ]2
, (6)

where k∗ = argmaxl I[zi;Pl]. For a ideally modular representation, each neuron will have high
mutual information to a single factor of variation and low mutual information with all the others.
Suppose for each neuron i has the best ”match” with a decision path (ground-truth factor) k∗, non-
modularity of that neuron is computed as the normalized variance of mutual information between
its neuron response and all non-matched decision paths {Pk}k ̸=k∗ . In practice, we discretize neuron
responses into N bins to compute discrete mutual information.

4 Experiments
We conduct a series of experiments in various policy-learning tasks to answer the following: (i) How
effective is disentanglement to measure the interpretability of policies? (ii) What can we extract from
neural responses? (iii) What architecture is more interpretable through the lens of disentanglement?

4.1 Setup

Network architecture. We construct compact neural networks for each end-to-end learning to con-
trol task. For all tasks, our networks are constructed by the following priors: (i) Each baseline net-
work is supplied with a perception backbone (e.g., a convolutional neural network) (ii) We construct
policies based on different compact architectures that take in feature vectors from the perception
backbone and output control with comparable cell counts (instead of actual network size in memory
as we assess interpretability metrics down to cell-level). The perception backbone is followed by
a neural controller designed by compact feed-forward and recurrent network architectures includ-
ing fully-connected network (FCs), gated recurrent units (GRU) [37], and long-short term memory
(LSTM) [38]. Additionally, we include advanced continuous-time baselines designed by ordinary
differential equations such as ODE-RNN [39], closed-form continuous-time neural models (CfCs)
[40], and neural circuit policies (NCPs) [4]. We interpret the dynamics of the neurons in the last
layer before the output in FCs, the command-neuron layer of NCPs, and the recurrent state of the
rest. We then extract logic programs and measure interpretability with the proposed metrics.
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Table 3: Quantitative results of locomotion.
Network

Architecture
Disentanglement Explanation Size ↓ Cognitive

Chunks ↓Variance ↓ MI-Gap ↑ Modularity ↑ Vertical Horizontal

FCs 0.0187.002 0.1823.013 0.9622.008 5.66.46 2.54.12 4.02.55

GRU 0.0259.002 0.1830.022 0.9713.009 5.78.39 2.52.08 3.94.35

LSTM 0.0108.002 0.1453.025 0.9600.002 5.62.31 2.52.10 3.92.23

ODE-RNN 0.0210.003 0.1880.029 0.9701.007 6.00.50 2.57.11 4.16.43

CfC 0.0234.004 0.1596.019 0.9628.009 5.94.15 2.58.04 4.20.32

NCP 0.0107.001 0.2164.042 0.9791.005 3.94.25 2.08.02 2.72.18

Table 4: Alignment between disentan-
glement and explanation quality in lo-
comotion.

Re-signed Rank
Correlation ↑

Explanation Size Cognitive
ChunksVertical Horizontal

Variance 0.512 0.456 0.443
MI-Gap 0.422 0.504 0.481
Modularity 0.170 0.180 0.173
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Figure 3: Neural activations along a gait sequence on HalfCheetah [43]. We focus on neurons 7 and 3 for
illustration. Neuron 7 exhibits a periodic activation pattern that reacts to different phases of the gait cycle (left).
Neuron 3 displays peak activity in situations with the potential to destabilize gait, such as early touchdown (left)
and forward flipping (right). Our approach aids in failure detection by monitoring key neurons’ responses.

Evaluation. To evaluate the effectiveness of measuring interpretability through the lens of disen-
tanglement, we adopt the metrics proposed in [41], which studies human interpretability of decision
sets [42] (a representation of explanation similar to that in this work). They show human response
time and subjective satisfaction are highly correlated with explanation size and cognitive chunks.
Explanation size consists of vertical size , the number of cases (the number of decision paths per neu-
ron), and horizontal size, the complexity of each case (the length of each decision path). Cognitive
chunks refer to the presentation of newly defined concepts, which we quantify as the introduction
of new symbols in the logic program. Furthermore, we measure the alignment of disentanglement
quantification and the above-mentioned explanation quality metrics. We compute re-signed rank
correlation by re-signing Spearman’s rank correlation coefficient to make larger values always refer
to better alignment, e.g., given higher modularity being better while lower explanation size being
better, better alignment corresponds to negative correlation and we thus negate the coefficient.

4.2 Classical Control

Environment and policy learning. We use the OpenAI Gym Classical Control Pendulum task [43].
The environment has simple yet nonlinear dynamics and allows for straightforward visualization of
the entire state space. The environment states include θ (joint angle) and θ̇ (joint angular velocity).
θ is in the range of ±π with θ = 0 as the upright position. θ̇ is along the clockwise direction. The
control is u (joint torque). The goal is to stabilize at the upright position (θ = θ̇ = 0) with limited
control energy consumption (u ↓). We use Proximal Policy Optimization (PPO) [44] to train the
policy with early stop by reaching episode reward -500 or a maximal number of training iterations.
We run each model with 5 different random seeds and report average results.

Quantitative analysis. Table 1 shows that, among all models, NCP achieves the best performance
in disentanglement and explanation quality (i.e., explanation size and cognitive chunks), suggesting
that it is more interpretable from the perspective of both our work and [41]. Beyond alignment of
the best performance, Table 2 indicates the consistency of overall ranking between disentanglement
and explanation quality. We found that while variance and modularity are (partially) aligned in the
best performance in Table 1, only the mutual information gap is correlated to explanation quality
in the overall ranking. Another interesting finding is that CfCs have the lowest logic conflict. By
empirically checking the decision trees, they construct non-trivial but highly-overlapping decision
paths, thus leading to considerably fewer conflicts in logic programs across neurons.

Neuron responses and underlying behaviors. While all models learn reasonable strategies, as
exemplified by focusing on the sign of θ and θ̇, we now dive deeper into understanding individual
neural dynamics. To this end, we focus on NCPs as they provide a lower variance from the disentan-
glement perspective in their logic programs. We found different neurons roughly subdivide the state
space into quadrants and focus on their respective subsets. In Figure 2, we show the interpretability
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Table 5: Quantitative results of visual servoing.
Network

Architecture
Disentanglement Explanation Size ↓ Cognitive

Chunks ↓Variance ↓ MI-Gap ↑ Modularity ↑ Vertical Horizontal

FCs 0.0124 0.1354 0.9704 4.88 2.36 2.88
GRU 0.0158 0.1614 0.9801 3.88 1.94 1.75
LSTM 0.0172 0.1950 0.9851 4.25 2.06 2.38
ODE-RNN 0.0151 0.1588 0.9766 5.25 2.24 2.75
CfC 0.0191 0.1391 0.9677 5.50 2.43 3.00
NCP 0.0068 0.3902 0.9770 4.12 2.00 1.88

Table 6: Alignment between disentan-
glement and explanation quality in vi-
sual servoing.

Re-signed Rank
Correlation ↑

Explanation Size Cognitive
ChunksVertical Horizontal

Variance 0.371 0.314 0.314
MI-Gap 0.657 0.771 0.771
Modularity 0.257 0.314 0.314
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Figure 4: Explanation of neural policies for end-to-end visual servoing (Image-based Driving). (a) Phase
portrait of local heading error µ and lateral deviation d with empirically measured mean neuron response and
closed-loop dynamics. (b) Front-view images retrieved based on neuron response.

analysis of command neuron 3 as an example. This neuron developed fine-grained strategies for
different situations like swinging clockwise in the right or left downward positions, and stabilizing
positive angular velocity around the upright position, as shown in Figure 2 (b)(c). We further provide
phase portrait in Figure 2 (a). The arrows indicate empirically measured closed-loop dynamics (with
control from the policy) and the color coding indicates average neuron response at a specific state
from evaluation. The color of the neuron response (corresponding to logic programs) and the arrows
(which implicitly capture actions) highlight different fine-grained strategies in the phase portrait.
Notably, this finding applies not just to NCPs but also to other networks with similar functions.

4.3 Locomotion

Environment and policy learning. We consider a planar locomotion task based on OpenAI Gym’s
HalfCheetah environment [43]. The agent is rewarded for forward locomotion based on a simple
base velocity reward. We optimize our policies with PPO until a maximum number of episodes has
been reached. For each model, we run five trials with different random seeds and report average
results. Here, our objective is to extend our interpretability framework to a higher-dimensional
control task. Specifically, we investigate whether our approach is capable of extracting consistent
single-neuron activation patterns that align with individual phases of a periodic gait cycle.

Quantitative analysis. In Table 3, we observe consistent results with classical control that NCP
achieves the best performance in disentanglement and explanation quality. We further observe that
the LSTM achieves a desirable low disentanglement variance comparable to NCPs. LSTMs and
most networks compared to NCPs on the other hand show a lower Mutual Information Gap. This
suggests that in these networks neuron responses are concentrated for different decision paths but not
quite identifiable from a probabilistic perspective, as certain neuron activation cannot be uniquely
mapped to a decision path. Besides, Table 4 shows consistent findings that the mutual information
gap has the best ranking correlation with explanation quality. As opposed to classical control, the
ranking correlation is overall much higher and we hypothesize that more complex tasks may yield
better alignment in overall ranking between disentanglement and explanation quality.

Exploring Gait Pattern. As the state space is significantly larger than the Pendulum task, we com-
plement our quantitative interpretability results with qualitative results that focus on two exemplary
neurons, namely command neurons (CMDs) 3 and 7. Figure 3 provides the extracted decision trees
for CMDs 7 (left) and 3 (right). We find that the former displays periodic activation patterns that
align very well with individual phases of regular gait. In particular, it leverages position readings of
the back thigh joint in conjunction with fore shin velocity to coarsely differentiate between stance
and flight phase. More fine-grained coordination of lift-off and touchdown is handled by the leftmost
and rightmost branches, respectively. In addition to periodic neuron activations following regular
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gait, we also observe more specialized decision trees that respond to potential safety-critical sit-
uations. For example, the decision tree of CMD 3 includes two branching options that align with
variations of tripping due to premature touchdown during the flight phase corresponding to a forward
trip (6A) and a forward flip (6B). More quantitative analysis is shown in Appendix Section I.

4.4 End-to-end Visual Servoing

Environment and policy learning. We consider vision-based end-to-end autonomous driving
where the neural policy learns steering commands for lane-following. The model takes front-view
RGB images of the vehicle as input, and outputs control commands for the steering wheel and
speed. We use the high-fidelity data-driven simulator VISTA [45] as our environment. We adopt a
training strategy called guided policy learning that leverages VISTA to augment a real-world dataset
with diverse synthetic data for robust policy learning. The training dataset contains roughly 200k
image-and-control pairs and mean squared error is used as the training objective. For evaluation, we
initialize the vehicle at a random position throughout the entire track and evaluate the policy for 100
frames (roughly 10s) for 100 episodes. The performance is estimated as the ratio of the length of the
path traversed without a crash and the total path length. Notably, this task has two additional major
distinctions: (1) policy learning based on supervised learning as opposed to reinforcement learning
(2) policies take in data (images) different from states on which logic program is grounded.

Quantitative analysis. In Table 5, we have consistent findings that NCP achieves the best perfor-
mance in both disentanglement and explanation quality (more precisely, comparable with the best in
modularity, horizontal explanation size, and cognitive chunks). In Table 6, the mutual information
gap achieves consistently the best alignment in the overall ranking. Also, the correlation are much
higher than classical control and comparable with or higher than locomotion. This suggests again
that more complex tasks yield better alignment between disentanglement and explanation quality.

Maneuver strategies from visual inputs. In Figure 4, we show extracted behaviors for a neuron in
the NCP driving policy. While the state space of driving is higher dimensional, we focus on local
heading error µ and lateral deviation from the lane center d in the lane following task. We compute
the statistics and plot neuron response and closed-loop dynamics in the d-µ phase portrait. This
specific neuron develops more fine-grained control for situations when the vehicle is on the right of
the lane center, as shown in Figure 4(a), with images retrieved from neuron response in Figure 4(b).

5 Discussion and Limitation
We summarize all consistent findings to answer the questions asked at the beginning of Section 4.
First, disentanglement is highly indicative of explanation quality in the best performance across all
tasks, suggesting that, among all compact neural policies, the ones with more disentangled represen-
tation are more interpretable for humans [41] (with robustness analysis across hyperparameters in
Appendix Section F). In addition, compared to neuron response variance and modularity, the mutual
information gap consistently has the best alignment in the overall ranking with explanation quality.
Besides, there are certain network architectures (NCPs) that exhibit superior performance in disen-
tanglement and explanation quality consistently across experiments. Another interesting finding is
that more complex tasks yield better alignment between disentanglement and explanation quality
(by comparing between Table 2, 4, and 6). Finally, qualitative results showed that learned behaviors
of neural policies, e.g., gait patterns or maneuver strategies, can be extracted from neuron responses.
Limitation. The proposed framework involves extracting factor of variation relevant to strategies
and task structures; however, the empirical implementation only considers abstraction (i.e., logic
program) in a single time step. Extensions to temporal reasoning include temporal logic [46] or
using decision trees with temporal capability [33, 47]. Furthermore, the abstraction is grounded on
a set of world states pre-determined by human; however, these states may not be sufficiently expres-
sive to capture the learned behavior of the policy. This requires estimating the information carried
between observation and grounding symbols or methods to extract the latter from the former.
Acknowledgments. This work is supported by Capgemini Engineering, the Toyota Research In-
stitute (TRI). This research was also supported in part by the AI2050 program at Schmidt Futures
(Grant G-22-905 63172). It reflects only the opinions of its authors and not TRI or Toyota entity.
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A Compact Networks for Neural Policies

To obtain compact neural representations, there are three common approaches: 1) simply choose
an RNN with small number of units densely wired to each other (e.g., a long short-term memory,
LSTM, network [38], or a continuous-time network such as an ordinary differential equation, ODE, -
based network [48, 39]). 2) sparsify a large network into a smaller system (e.g., lottery ticket winners
[49], or sparse flows [50]), and 3) use neural circuit policies that are given by sparse architectures
with added complexity to their neural and synaptic representations but have a light-weighted network
architecture [3, 4, 40].

In the first approach the number of model parameters inversely affect interpretability, i.e., interpret-
ing wider and/or deeper densely wired RNNs exponentially makes the interpretation of the system
harder. Sparsity has been shown to help obtain a network with 95% less parameters compared to
the initial model. However, recent studies show that such levels of sparsity affect the robustness
of the model, thus make it more susceptible to perturbations [51]. Neural circuit policies (NCPs)
[4] on the other hand have shown great promise in achieving attractive degrees of generalizabil-
ity while maintaining robustness to environmental perturbations. This representation learning ca-
pability is rooted in their ability to capture the true cause and effect of a given task [5]. NCPs
are sparse network architectures with their nodes and edges determined by a liquid time-constant
(LTC) concept [3]. The state of a liquid network is described by the following set of ODEs [3]:
dx(t)
dt = −

[
1
τ +f(x(t), I(t), t, θ)

]
⊙x(t)+f(x(t), I(t), t, θ)⊙A. Here, x(D×1)(t) is the hidden state

with size D, I(m×1)(t) is an input signal, τ (D×1) is the fixed internal time-constant vector, A(D×1)

is a bias parameter, and ⊙ is the Hadamard product. In tasks involving spatiotemporal dynamics
these networks showed significant benefit over their counterparts, both in their ODE form and in
their closed-form representation termed Closed-form continuous-time (CfC) models [4, 5, 40].

Interpretation of Neuron Responses. Compact neural representations promise to enable the in-
terpretability of decision-making by focusing post-hoc analysis on a limited number of neural re-
sponses. However, having merely a lower-dimensional space for visualization is not sufficient to
identify consistent behaviors or strategies acquired by a learning agent. Emergent behaviors may
distribute responses across numerous neurons with a high degree of entanglement. Even for models
with a small number of neurons, it can be challenging to identify and interpret the behavior corre-
lated with observed response patterns. In this paper, we hypothesize that abstraction with respect
to a type of learned strategy within a single neuron is necessary for better interpretability of neural
policies. We further desire semantic grounding of the neuron response, that is, associating neuron
response to human-readable representation. The representation space should be abstract enough to
be human-understandable and expressive enough to capture arbitrary types of emergent behaviors
or strategies. We adopt the framework of logic programs due to their simple yet effective represen-
tations of decision-making processes.

B A Motivating Perspective Of Disentangled Representation

The underlying behaviors of neural policies involves descriptions with multiple levels of abstraction,
from detailed states at every time instance to high-level strategies toward solving a task, spanning
a continuum where the details can be summarized and reduced to gradually construct their concise
counterparts. Among these descriptions of behaviors, a right amount of abstraction should be con-
cise enough for human interpretability yet being sufficiently informative of how neural policies act
locally toward solving the overall task. Relevant concepts about abstraction have been explored in
the context of state abstraction in Markov Decision Process (MDP) [52], hierarchical reinforcement
learning [53], and developmental psychology [54]. In the following, we aim to more formally define
such abstraction for interpretability of neural policies and draw connection to disentangled repre-
sentations. First, we define a MDP as a tuple {S,A, Pa, R}, where at time instance t, st ∈ S is the
state, at ∈ A is the action, Pa : S × A × S → [0, 1] is the transition function, R : S × A → R is
the reward function. The goal of policy learning in a MDP is to find a policy π : S × A → [0, 1]
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that maximizes the expected future return (accumulated reward). The closed-loop dynamics (in
deterministic setting) can then be written as

st+1 = Pa(st, at), where at = π(st)

Then, we construct an abstract MDP, with state presumably being the abstraction we are looking
for interpretability, as a tuple {Ŝ, Â, P̂a, R̂} that follows similar definition to the above-mentioned
regular MDP. It follows the deterministic MDP homomorphism [55, 56] as follows,

∀st, st+1 ∈ S, at ∈ A Pa(st, at) = st+1 ⇒ P̄a(Q(st), Ā(at)) = Q(st+1)

∀st ∈ S, at ∈ A R(st, at) = R(Q(st), Ā(at))

where Q : S → Ŝ is the state embedding function and Ā : A → Â is the action embedding function.
The state embedding function can also be seen as an action-equivariant map that precisely satisfies
the MDP homomorphism [56]. Next, we start to draw connection to disentangled representation
from one of its formalism using symmetries and group theory [57]. Informally, disentanglement
refers to the level of decomposition in representation that reflects the factor of variation. For ex-
ample, one dimension of vector representations corresponds to color and the other corresponds to
shape. In [57], these factor of variations are formally defined as symmetries of world state (S in our
case). Given group G, binary operator ◦ : G×G→ G, group decomposition into a direct product of
subgroups G = G1×G2× . . . , and group action ·X : G×X → X with X as a set which the group
action act upon, the idea is to ”commute” symmetries from one set X to the other X ′. Suppose there
is a group G of geometries acting on the world state S via action ·S : G × S → S, we would like
to find a corresponding action acting on representation ·Z : G× Z → Z that reflects the symmetric
structure of S in Z (in our case neuron response zt ∈ Z). This entails the equivariance condition,

g ·Z ES )Z(st) = ES )Z(g ·S st)

where ES )Z commutes action across S and Z, and can be called a G-morphism or equivariant map.

G× S S

G× Z Z

idG×ES )Z

·S

ES )Z

·Z

A more concrete connection of group action to MDP can be seen in the analogy of agent-
environment interaction [58],

g ·S st = st+1 = Pa(st, at)

It is worth emphasizing the distinction of group action ·S and regular action at: not all regular action
at exhibit symmetry, as pointed out in [58]. And the group action upon neural state ·Z can be viewed
as the transition dynamics of neural policies,

g ·Z zt = zt+1 = πz(zt) = πs(Pa(st, πa(zt))

where π = πa ◦ πs, πa : Z → A, πs : S → Z is simply the decomposition of neural policies to
explicitly extract neuron responses zt and πz : Z → Z is the transition function of neural states
(note that this does not necessarily require recurrence structure of neural policies; instead this is
more of a convenient notation here). Following the definition of [57], an agent’s representation Z is
disentangled with respect to the decomposition G = G1 ×G2 × . . . if

1. There is a group action ·Z : G× Z → Z.

2. The map ES )Z : S → Z is equivariant between the group actions on S and Z.

3. There is a decomposition Z = Z1 × Z2 × . . . such that each Zi is fixed by the actions of
all Gj , j ̸= i and affected only by Gi.

For the first condition, We already define ·Z in the above. For the second condition, we show that
the equivariant map can follow the definition ES )Z = πz ◦ πs, i.e., zt+1 = ES )Z(st). This follows
the proof as,

g ·Z ES )Z(st) = g ·Z zt+1 = πz(zt+1) = πz(πs(st+1)) = (πz ◦ πs)(st+1) = ES )Z(g ·S st)
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Next, extending the formalism of disentangled representation in [57] with the above-mentioned
MDP homomorphism [55], we define the equivariance condition between the regular MDP
{S,A, Pa, R} and the abstract MDP {Ŝ, Â, P̂a, R̂},

g ·S EŜ )S(ŝt) = EŜ )S(g ·Ŝ ŝt)

where EŜ )S commutes action across Ŝ and S, and can be defined with MDP homomorphism,

ŝt+1 = Q(st+1)

P̂a(ŝt, ât) = Q(Pa(st, at))

g ·Ŝ ŝt = Q(g ·S st)

Q−1(g ·Ŝ ŝt) = g ·S Q−1(ŝt)

EŜ )S = Q−1

Note that theoretically the state embedding function Q may not have an inverse mapping since
going from S to Ŝ is supposed to be more abstract (and thus concise with equal or less information).
However, this does not matter since we don’t necessarily require this recipe to tell us how exactly
group actions in Ŝ commute to S. Overall, we establish the following group homomorphism across
set Ŝ, S, and Z,

G× Ŝ Ŝ

G× S S

G× Z Z

idG×EŜ )S

·Ŝ

EŜ )S

idG×ES )Z

·S

ES )Z

·Z

This connects the right amount of abstraction for interpretability discussed in the beginning, then
associated with MDP homomorphism, to factor of variation in disentangled representation, which is
formalized by symmetry and group theory. Disentanglement in Z can then be lifted to symmetries
in abstract state space Ŝ. In [57], disentanglement of representation is lifted up to the symmetries
in the world state space S, e.g., a factor of group decomposition Gi can be color of an object.
However, this is not sufficient to describe the behavior of policies since S lacks task structure.
Hence, we further go from S to Ŝ with MDP homomorphism to capture the essence of solving
a task. The factor of group decomposition Gi can then be task-related, e.g., relative pose to a
target object (which may be of high interest for tasks like object tracjing, and less so for tasks
like locomotion). Overall, this provides a motivation to cast the problem of searching for proper
description of the behavior of neural policies (for interpretability) to searching for disentanglement
in neuron responses. In this paper, we therefore study how to measure interpretability of compact
neural policies with disentangled representation.

C Calibration Of Mutual Information

Lemma C.1. The calibration term I[zj ;Pk] − I[zj ;Pk;Pkj ] in both MIG (5) and Modularity (6)
metrics, for j ̸= i∗, without loss of generality has the following lower bound:

I[zj ;Pk]− I[zj ;Pk;Pkj ] ≥ max(0, I[zj ;Pk]− I[Pk;Pkj ]) (7)

Lemma C.1 is necessary because to compute the calibration term, we need access to the conditional
distribution of the random variable (Pkj |zj), which is normally inaccessible. Hence, we derive a
lower bound for the calibrated mutual information.

Proof. In the main paper, we adapting Mutual Information Gap (MIG) [21] to our framework as,

1

K

K∑
k=1

1

H[Pk]

(
I[zi

∗
;Pk]−max

j ̸=i∗
I[zj ;Pk]− I[zj ;Pk;Pkj ]

)

15



and Modularity score [36] as,

1

I
∑
i∈I

1−
∑

k ̸=k∗(I[zi;Pk]− I[zi;Pk;Pk∗ ])2

(K − 1)I[zi;Pk∗ ]2

Both involve the computation of I[zj ;Pk;Pkj ]. Without loss of generality for both cases (and with
the notation of MIG), we simplify the calibration term for j ̸= i∗ as follows,

I[zj ;Pk]− I[zj ;Pk;Pkj ]

= I[zj ;Pk]− (I[zj ;Pk]− I[zj ;Pk|Pkj ])

= I[zj ;Pk|Pkj ]

= I[zj ;Pk] +H[Pkj |zj ] +H[Pkj |Pk]−H[Pkj |zj ,Pk]−H[Pkj ]

= I[zj ;Pk]− (H[Pkj ]−H[Pkj |Pk]) + (H[Pkj |zj ]−H[Pkj |zj ,Pk])

= I[zj ;Pk]− I[Pk;Pkj ] + I[Pkj |zj ;Pk]

≥ max(0, I[zj ;Pk]− I[Pk;Pkj ])

Most steps simply follow identities of mutual information and entropy. The last step requires access
to the conditional distribution of random variable (Pkj |zj), which is normally inaccessible. Hence,
we introduce an approximation that serves as a lower bound for the calibrated mutual information
in our implementation.

D Other Quantitative Measures

Decision Path Accuracy. During deployment, we use an inverse proxy qϕi for the decision tree
Tθi and hence we compute the approximation error by measuring the accuracy of a state-grounded
decision path inferred from the neuron response with qϕi compared to true states,

1

|I|
∑
i∈I

1

|Ddt|
∑

(st,zi
t)∈Ddt

1

|qϕi(zit)|
∑

n∈qϕi (z
i
t)

j=g(n)

1[sjt ≤ cn] (8)

where 1 is an indicator function, qϕi(zit) is the inferred decision path with norm as number of
decision rules. The condition sjt ≤ cn validates if the current state sjt complies with the inferred rule
defined by cn (which is from Tθi ). Since the discrepancy is computed at the decision rule level, it
captures not only the error of the classifier model qϕi but also how accurately f i

S parses zit.

Cross-neuron Logic Conflict. When interpreting a neural policy as a whole instead of inspecting
individual neuron response, it is straightforward to find the intersection across logic programs ex-
tracted from different neurons lt = reduce(∧i∈I lit), where reduce summarizes and reduces logic
programs to a more compact one. Intuitively, the neuron-wise logic program should summarize the
operational domain of the strategy currently executed by the neuron, where intersection describes
the domain of a joint strategy across neurons. However, the reduction of intersection can be invalid
if there is conflict in the logical formulae across neurons, e.g., a ≤ 3 from the first neuron and
a ≥ 4 from the second neuron. The conflict may imply, under the same configuration of fS , that (1)
the policy fails to learn compatible strategies across neurons or (2) there is an error induced by the
interpreter due to insufficient or ambiguous connection between the logic program and the neuron
response, which implicitly indicates lack of interpretability.

Experimental Results. For classical control, we verify in Table 7 that all models achieve compara-
ble performance when learning toward target -500 episode reward. For locomotion, in Table 8, most
models achieve comparable task performance except for GRU and ODE-RNN being slightly worse.
For end-to-end visual servoing, in Table 9, all models achieve good performance (> 0.9) except for
ODE-RNN, which fails to learn a good policy within maximal training iterations.
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Table 7: Other quantitative results of classical control.

Network
Architecture

Decision Path
Accuracy ↑

Logic
Conflict ↓ Performance ↑

FCs 0.3015.069 0.2104.065 -488.55010.99

GRU 0.2504.104 0.2832.080 -559.82114.07

LSTM 0.2392.031 0.5072.103 -467.95024.53

ODE-RNN 0.2980.065 0.2506.101 -533.93122.47

CfC 0.2509.138 0.1556.099 -489.28007.66

NCP 0.4726.114 0.2026.088 -556.64116.75

Table 8: Other quantitative results of locomotion.

Network
Architecture

Decision Path
Accuracy ↑

Logic
Conflict ↓ Performance ↑

FCs 0.5285.054 0.1035.011 5186.502458.84

GRU 0.4924.054 0.1500.032 3857.211448.57

LSTM 0.5283.073 0.2155.042 4122.741751.04

ODE-RNN 0.4959.057 0.1474.024 3472.691734.91

CfC 0.4841.045 0.1581.031 5195.462292.67

NCP 0.5859.019 0.1105.026 5822.730512.73

E Implementation Details

NCPs are designed by a four-layer structure consisting of sensory neurons (input layer), interneu-
rons, command neurons (with recurrent connections), and motor neurons (output layer). To make a
fair comparison, we augment all non-NCP models by a feed-forward layer, which is of equivalent
size to the inter-neuron layer in NCPs.

E.1 Classical Control (Pendulum)

Network Architecture. With 3-dimensional observation space and 1-dimensional action space, we
use the following network architecture for compact neural policies.

• FCs: a 3→ 10→ 4→ 1 fully-connected network with tanh activation.

• GRU: a 3 → 10 fully-connected network with tanh activation followed by GRU with cell
size of 4, outputting a 1-dimensional action.

• LSTM: a 3 → 10 fully-connected network with tanh activation followed by LSTM with
hidden size of 4, outputting a 1-dimensional action. Note that this effectively gives 8 cells
by considering hidden and cell states.

• ODE-RNN: a 3 → 10 fully-connected network with tanh activation followed by a neural
ODE with recurrent component both of size 4, outputting a 1-dimensional action.

• CfC: with backbone layer = 1, backbone unit = 10, backbone activation silu, hidden size
= 4 without gate and mixed memory, outputting a 1-dimensional action.

• NCP: with 3 sensory neurons, 10 interneuron, 4 command neurons, 1 motor neuron, 4
output sensory synapses, 3 output inter-synapses, 2 recurrent command synapse, 3 motor
synapses.

For all policies, we use a 3→ 64→ 64→ 1 fully-connected networks with tanh activation as value
function. We interpret the layer of size 4 for each policy.

Training details. We use PPO with the following parameters for all models. Learning rate is 0.0003.
Train batch size (of an epoch) is 512. Mini-batch size is 64. Number of iteration within a batch is 6.
Value function clip parameter is 10.0. Discount factor of the MDP is 0.95. Generalized advantage
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Table 9: Other quantitative results of visual servoing.

Network
Architecture

Decision Path
Accuracy ↑

Logic
Conflict ↓ Performance ↑

FCs 0.5379 0.1354 1.0000
GRU 0.6160 0.1884 0.9210
LSTM 0.5174 0.4504 1.0000
ODE-RNN 0.5483 0.3786 0.4239
CfC 0.5549 0.2274 0.9922
NCP 0.5960 0.1067 1.0000

estimation parameter is 0.95. Initial coefficient of KL divergence is 0.2. Clip parameter is 0.3.
Training halts if reaching target average episode reward 150. Maximal training steps is 1M.

Interpreter details. For the decision tree Tθi , we set minimum number of samples required to be
at a leaf node as 10% of the training data, criterion of a split as mean squared error with Friedman’s
improvement score, the maximum depth of the tree as 3, complexity parameter used for minimal
cost-complexity pruning as 0.003; we use scikit-learn implementation of CART (Classification and
Regression Trees). For simplicity, we use another decision tree as decision path classifier qϕi with
maximal depth of tree as 3, minimum number of samples in a leaf node as 1% of data, complexity
parameter for pruning as 0.01, criterion as Gini impurity. The state grounding S of the interpreter
f i
S is {θ, θ̇}, where θ is joint angle and θ̇ is joint angular velocity. We use the offline data collected

during the closed-loop policy evaluation for the training dataset, which consists of 100 trajectories
with each having maximally 100 time steps (default in the environment).

E.2 Locomotion (HalfCheetah)

Network Architecture. With 17-dimensional observation space and 6-dimensional action space,
we first use feature extractors of a shared architecture as a 17 → 256 fully-connected network,
which then output features to compact neural policies with the following architectures,

• FCs: a 256→ 20→ 10→ 6 fully-connected network with tanh activation.

• GRU: a 256 → 20 fully-connected network with tanh activation followed by GRU with
cell size of 10, outputting a 6-dimensional action.

• LSTM: a 256→ 20 fully-connected network with tanh activation followed by LSTM with
hidden size of 10, outputting a 6-dimensional action. Note that this effectively gives 20
cells by considering hidden and cell states.

• ODE-RNN: a 256→ 20 fully-connected network with tanh activation followed by a neural
ODE with recurrent component both of size 10, outputting a 6-dimensional action.

• CfC: with backbone layer = 1, backbone unit = 20, backbone activation silu, hidden size
= 10 without gate and mixed memory.

• NCP: with 256 sensory neurons, 20 interneuron, 10 command neurons, 6 motor neuron,
4 output sensory synapses, 5 output inter-synapses, 6 recurrent command synapse, 4 input
motor synapses.

For all policies, we use a 17 → 256 → 256 → 1 fully-connected networks with tanh activation as
value function. We interpret the layer of size 10 for each policy.

Training details. We use PPO with the following parameters for all models. Learning rate is 0.0003.
Train batch size (of an epoch) is 65536. Mini-batch size is 4096. Number of iteration within a batch
is 32. Value function coefficient is 10.0. Discount factor of the MDP is 0.99. Generalized advantage
estimation parameter is 0.95. Initial coefficient of KL divergence is 1.0. Clip parameter is 0.2.
Gradient norm clip is 0.5. Training halts if reaching target average episode reward −500. Maximal
training steps is 12M.
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Interpreter details. For the decision tree Tθi , we set minimum number of samples required to be
at a leaf node as 10% of the training data, criterion of a split as mean squared error with Friedman’s
improvement score, the maximum depth of the tree as 3, complexity parameter used for minimal
cost-complexity pruning as 0.001; we use scikit-learn implementation of CART (Classification and
Regression Trees). For simplicity, we use another decision tree as decision path classifier qϕi with
maximal depth of tree as 3, minimum number of samples in a leaf node as 1% of data, complexity
parameter for pruning as 0.01, criterion as Gini impurity. The state grounding S of the interpreter
f i
S is {hR, θR, θT,B , θS,B , θF,B , θT,F , θS,F , θF,F , ẋR, ḣR, θ̇R, θ̇T,B , θ̇S,B , θ̇F,B , θ̇T,F , θ̇S,F , θ̇F,F },

where hR, ḣR are position and velocity of z-coordinate of the front tip, θR, θ̇R are angle and an-
gular velocity of the front tip, θT,B , θ̇T,B are angle and angular velocity of the thigh in the back,
θS,B , θ̇S,B are angle and angular velocity of the shin in the back, θF,B , θ̇F,B are angle and angular
velocity of the foot in the back, θT,T , θ̇T,T are angle and angular velocity of the thigh in the front,
θS,T , θ̇S,T are angle and angular velocity of the shin in the front, θF,T , θ̇F,T are angle and angular
velocity of the foot in the front, ẋR is the velocity of x-coordinate of the front tip. We use the offline
data collected during the closed-loop policy evaluation for the training dataset, which consists of
100 trajectories with each having maximally 1000 time steps (default in the environment).

E.3 End-to-end visual servoing (Image-based Driving)

Network Architecture. With image observation space of size (200, 320, 3) and 2-dimensional ac-
tion space, we first use feature extractors of a shared architecture as a convolutional neural network
(CNN) in Table 10, which then output features to compact neural policies with the following archi-
tectures,

• FCs: a 1280→ 20→ 8→ 2 fully-connected network with tanh activation.

• GRU: a 1280 → 20 fully-connected network with tanh activation followed by GRU with
cell size of 8, outputting a 2-dimensional action.

• LSTM: a 1280→ 20 fully-connected network with tanh activation followed by LSTM with
hidden size of 8, outputting a 2-dimensional action. Note that this effectively gives 20 cells
by considering hidden and cell states.

• ODE-RNN: a 1280 → 20 fully-connected network with tanh activation followed by a
neural ODE with recurrent component both of size 8, outputting a 2-dimensional action.

• CfC: with backbone layer = 1, backbone unit = 20, backbone activation silu, hidden size
= 8 without gate and mixed memory.

• NCP: with 1280 sensory neurons, 20 interneuron, 8 command neurons, 2 motor neuron,
4 output sensory synapses, 5 output inter-synapses, 6 recurrent command synapse, 4 input
motor synapses.

Training details. Batch size is 64. Sequence size is 10. Learning rate is 0.001. Number of epochs
is 10. We perform data augmentation on RGB images with randomized gamma of range [0.5, 1.5],
brightness of range [0.5, 1.5], contrast of range [0.7, 1.3], saturation of range [0.5, 1.5].

Interpreter details. For the decision tree Tθi , we set minimum number of samples required to be
at a leaf node as 10% of the training data, criterion of a split as mean squared error with Friedman’s
improvement score, the maximum depth of the tree as 3, complexity parameter used for minimal
cost-complexity pruning as 0.003; we use scikit-learn implementation of CART (Classification and
Regression Trees). For simplicity, we use another decision tree as decision path classifier qϕi with
maximal depth of tree as 3, minimum number of samples in a leaf node as 1% of data, complexity
parameter for pruning as 0.01, criterion as Gini impurity. The state grounding S of the interpreter
f i
S is {v, δ, d,∆l, µ, κ}, where v is vehicle speed, δ is heading, d is lateral deviation from the lane

center, ∆l is longtitudinal deviation from the lane center, µ is local heading error with respect to
the lane center, κ is road curvature. We use the offline data collected during the closed-loop policy
evaluation for the training dataset, which consists of 100 trajectories with each having maximally
100 time steps.
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Layer Hyperparameters
Conv2d (3, 24, 5, 2, 2)

GroupNorm2d (16, 1e-5)
ELU -

Dropout 0.3
Conv2d (24, 36, 5, 2, 2)

GroupNorm2d (16, 1e-5)
ELU -

Dropout 0.3
Conv2d (36, 48, 3, 2, 1)

GroupNorm2d (16, 1e-5)
ELU -

Dropout 0.3
Conv2d (48, 64, 3, 1, 1)

GroupNorm2d (16, 1e-5)
ELU -

Dropout 0.3
Conv2d (64, 64, 3, 1, 1)

AdaptiveAvgPool2d reduce height dimension

Table 10: Network architecture of CNN feature extractor for end-to-end visual servoing. Hyperparameters for
Conv2d are input channel, output channel, kernel size, stride, and padding; for GroupNorm2d, they are group
size and epsilon; for Dropout, it is drop probability.

F Robustness Analysis

We propose to study the interpretability of neural policies through decision trees and present several
quantitative measures of interpretability by analyzing various properties on top of neuron responses
and corresponding decision trees, including Neural-Response Variance, Mutual Information Gap,
Modularity, Decision Path Accuracy, and Logic Conflict. However, the extracted decision trees may
differ across different configurations. Hence, to validate the robustness of the proposed metrics to
hyperparameters, we compute all metrics with different decision tree parameters in classical control
environment (Pendulum). We report the averaged results with 5 random seeds in Table 11 (Neural-
Response Variance), Table 12 (Mutal Information Gap), Table 13 (Modularity), Table 14 (Decision
Path Accuracy), Table 15 (Logic Conflict). Most metrics (variance, MI-gap, decision path accuracy,
logic conflict) yield consistent top-1 results and agree with similar rankings among network archi-
tectures, except for modularity that is slightly less robust against hyperparameters yet still consistent
in the top-3 set of models. This results demonstrate the reliability of the proposed interpretability
analysis for neural policies.

Table 11: Robustness to hyperparameters for Neural-Response Variance. The results are averaged across 5
random seeds in classical control (Pendulum).

[Variance ↓] Network Architecture FCs GRU LSTM ODE-RNN CfC NCP

Cost Complexity Pruning
0.001 0.0232 0.0304 0.0209 0.0266 0.0254 0.0207
0.003 0.0242 0.0329 0.0216 0.0287 0.0272 0.0240
0.01 0.0261 0.0371 0.0221 0.0315 0.0267 0.0305

Minimal Leaf Sample Ratio
0.01 0.0154 0.0261 0.0138 0.0193 0.0189 0.0186
0.1 0.0242 0.0329 0.0216 0.0287 0.0272 0.0240
0.2 0.0334 0.0387 0.0284 0.0354 0.0295 0.0285
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Table 12: Robustness to hyperparameters for Mutual Information Gap. The results are averaged across 5
random seeds in classical control (Pendulum).

[MI-Gap ↑] Network Architecture FCs GRU LSTM ODE-RNN CfC NCP

Cost Complexity Pruning
0.001 0.0284 0.2686 0.2026 0.2891 0.2544 0.3403
0.003 0.3008 0.2764 0.2303 0.3062 0.2892 0.3653
0.01 0.3482 0.3065 0.2547 0.3142 0.3567 0.3664

Minimal Leaf Sample Ratio
0.01 0.2824 0.2632 0.2040 0.2819 0.2433 0.3456
0.1 0.3008 0.2764 0.2303 0.3062 0.2892 0.3653
0.2 0.3798 0.3387 0.2528 0.3168 0.3342 0.3429

Table 13: Robustness to hyperparameters for Modularity. The results are averaged across 5 random seeds in
classical control (Pendulum).

[Modularity ↑]
Network Architecture FCs GRU LSTM ODE-RNN CfC NCP

Cost Complexity Pruning
0.001 0.9519 0.9558 0.9327 0.9485 0.9228 0.9438
0.003 0.9471 0.9550 0.9402 0.9486 0.9116 0.9551
0.01 0.9532 0.9598 0.9445 0.9487 0.8970 0.9593

Minimal Leaf Sample Ratio
0.01 0.9638 0.9702 0.9547 0.9630 0.9333 0.9651
0.1 0.9471 0.9550 0.9402 0.9486 0.9116 0.9551
0.2 0.9475 0.9372 0.9197 0.9404 0.8755 0.9301

G Counterfactual Analysis via Removal of Neurons

There exist some neurons with logic programs that are sensible but may have little effect on task
performance. For example, in NCPs (not confined to this specific architecture but just focus on
it for discussion), we find a neuron that aligns its response purely with vehicle speed. Given the
task objective is lane following without crashing, such neuron pays attention to useful (for temporal
reasoning across frames) but relatively unnecessary (to the task) information. Furthermore, there
are neurons that don’t exhibit sufficient correlation with any of the environment state and fail to
induce decision branching. In light of these observation, we try to remove neurons that we suspect
to have little influence on the performance by inspecting their logic program. We show the results
in Table 16. Removing neurons 3, 4, 7 has a marginal impact on task performance. Among them,
neuron 3 and 4 mostly depends on vehicle speed v with a small tendency to the lateral deviation d.
Neuron 7 fails to split a tree.

H Interpretation Of Driving Maneuver

In Figure 4, we describe interpretations similar to classical control (for a neuron in NCP). While
the state space of driving is higher dimensional (5 with bicycle model for lane following), states
of interest only include local heading error µ and lateral deviation from the lane center d in lane
following task. We compute the statistics and plot neuron response and closed-loop dynamics in
the d-µ phase portrait. This specific neuron develops more fine-grained control for situations when
the vehicle is on the right of the lane center, as shown in Figure 4(a). We further show front-view
images retrieved based on neuron response in Figure 4(b).

I Additional Quantitative Analysis on Locomotion Behaviors

In Figure 3 (right), we demonstrate interesting qualitative examples on discovered gaits critical
for failure modes like early touchdown or forward flipping. In Table 17, we conduct quantitative
analysis to further justify our findings. Since Gym Half-Cheetah does not have early termination,
we did analysis on the stepwise reward, specifically the run reward (horizontal distance incremented
across the consecutive time steps). Recall in Section 3.1 paragraph “From neuron responses to
decision paths”, we can infer the decision path (or branch) by the range of neuron responses. We use
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Table 14: Robustness to hyperparameters for Decision Path Accuracy. The results are averaged across 5 random
seeds in classical control (Pendulum).

[Decision Path Accuracy ↑]
Network Architecture FCs GRU LSTM ODE-RNN CfC NCP

Cost Complexity Pruning
0.001 0.2815 0.2415 0.2195 0.2904 0.2250 0.4294
0.003 0.3015 0.2504 0.2392 0.2980 0.2509 0.4726
0.01 0.3074 0.3330 0.3161 0.3707 0.2864 0.4390

Minimal Leaf Sample Ratio
0.01 0.2950 0.2637 0.2270 0.2574 0.2452 0.4287
0.1 0.3015 0.2504 0.2392 0.2980 0.2509 0.4726
0.2 0.3572 0.3587 0.2794 0.3322 0.2784 0.4684

Table 15: Robustness to hyperparameters for Logic Conflict. The results are averaged across 5 random seeds in
classical control (Pendulum).

[Logic Conflict ↓]
Network Architecture FCs GRU LSTM ODE-RNN CfC NCP

Cost Complexity Pruning
0.001 0.2451 0.3348 0.5240 0.2641 0.2048 0.3159
0.003 0.2104 0.2832 0.5072 0.2506 0.1556 0.2026
0.01 0.1766 0.1877 0.4325 0.1401 0.1121 0.2924

Minimal Leaf Sample Ratio
0.01 0.2672 0.4298 0.6791 0.3575 0.2654 0.2607
0.1 0.2104 0.2832 0.5072 0.2506 0.1556 0.2026
0.2 0.1796 0.1664 0.3842 0.2001 0.1089 0.1111

Table 16: Removing a single neuron based on explanation.

Remove Neuron 0 1 2 3 4 5 6 7

Performance ↑ 0.24 0.07 0.09 1.00 0.969 0.29 0.03 1.00
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Figure 5: Driving profile when removing neurons according to decision tree interpretation.

this technique (e.g., 6B corresponds to CMD03 ¡= -0.914) to retrieve all time steps that fall into the
branch 6A (early touchdown) or 6B (forward flipping) and compute average reward of the next few
time steps. We also compute the non-branch results to serve as a reference, i.e., comparison between
branch X and not branch X. For early touchdown (6A), we can observe from the quantitative results
that the reward drops immediately when such a branch is “activated”; this makes sense as early
touchdown brakes the robot right away, leading to smaller distance increments. For forward flipping
(6B), we observe a higher reward at the closer time steps, which then quickly falls off to relatively
much lower value; this is also reasonable as flipping motion carries the robot body forward a lot in
the beginning stage yet leaves the robot body in a very bad pose to move forward afterward.
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Table 17: Quantitative analysis on failure mode of locomotion.

Step Run Reward At Time t+1 t+2 t+3 t+4

Branch 6A (early touchdown) 5.405 5.414 6.048 6.730
Not Branch 6A 6.235 6.233 6.031 5.813
Branch 6B (forward flipping) 7.145 6.431 5.392 4.998
Not Branch 6B 5.360 5.794 6.425 6.664

Table 18: Extension to larger models with Decision Transformer [60] as an example.

Method Variance MI-Gap Modularity

Decision Transformer 0.007.003 0.167.088 0.981.017

J Potential Extension to Larger Models

While our work focuses only on compact neural networks, our method can be extended to larger-
scale models by selecting a “bottleneck” layer and extract interpretation from neurons in that layer.
Take transformers as examples. To start with, at a high level, transformer-based policies are con-
structed with an encoder-decoder architecture [59, 60] with inputs/outputs either being tokenized or
kept to be directly mapped from continuous values to embeddings. The natural selection of the bot-
tleneck is then the last hidden state of the encoder, which is a common way to do feature extraction
from large transformer-based models [61, 62]. Overall, we believe there are promising extensions
of our work toward larger-scale models.

Furthermore, in Table 18, we conduct an experiment using Decision Transformer [60] to demonstrate
the future potential of our work. We apply our method to a pre-trained checkpoint that can achieve
∼ 10,000 reward in Gym Half-Cheetah. Given Decision Transformer adopts an encoder-decoder
transformer-based architecture (similar to most language models), we extract the latest time step
of the “last hidden state” of the encoder (following the terminology of Huggingface-Transformers
here); specifically, last hidden state refers to the last layer of the stacked attention blocks and the
latest time step refers to the last time step of the input sequence, e.g., in natural language, the “robot”
in the sentence “I like robot”. As discussed earlier, such technique is commonly adopted to extract
features from large-scale transformer-based models. So far, in Decision Transformer, we get a (3,
128) feature, where 3 corresponds to return, action, and state prediction respectively. We take the
dimension that is used to predict action, eventually leading to a 128-dimensional feature vector. We
apply our method on this 128-dimensional feature vector and report the metrics.

Interestingly, Decision Transformer gives very good performance in neuron response variance and
modularity, and slightly below average performance in MIG. Besides, we also show some samples
of extracted logic programs. (Please refer to Section E.2 paragraph “Interpreter details” for detailed
description of each symbol)

• ḣR <= -1.959 ∧ θS,B <= -0.256

• θ̇S,B <= -2.139 ∧ θT,T > -0.995

• θ̇S,B <= -0.945 ∧ ḣR <= 0.109

Furthermore, as there are 128 neurons interpreted, which leads to a much larger set of possible
decision paths and hence larger-sized logic programs, it drastically increases the cognitive load of
humans interpreting the programs. To remedy this issue, we try to extract the decision path set
from a smaller number of neurons by performing dimension reduction and only considering the
principal components. Such an approximation can be surprisingly effective in practice as from the
perspective of representation learning, the feature may exhibit a highly-structured distribution in the
128-dimensional space. We can empirically verify this by checking the explained variance (E.V.) of
the principal components (P.C.) as shown in Table 19. We can see that the 10 principal components
can achieve over 80% of explained variance. Note that the dimension reduction is only performed
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Table 19: Explained variance of the dimension-reduced space of Decision Transformer’s features.

Principle
Components 1 2 3 4 5 6 7 8 9 10

Explained
Variance (E.V.) 0.247 0.179 0.133 0.109 0.044 0.028 0.025 0.022 0.017 0.013

Accumulated
E.V. 0.247 0.426 0.559 0.669 0.713 0.742 0.767 0.789 0.807 0.821

Table 20: Results for the human study.

Method Accuracy Subjective Satisfaction

Non-NCP 0.603.053 0.814.021

NCP 0.648.065 0.971.078

at constructing the decision path set for factors of variation and we are still interpreting all 128
neurons. We will then get much smaller-sized logic programs after performing the logic reduction
step (as discussed in the Section D paragraph “Cross-neuron Logic Conflict”). Immediate research
questions then arise here like does this dimension reduction step still produce the factors of variation
with similar amounts of information to the original ones?, or how sensitive is it to the methods and
hyperparameters that extract the factors of variation?, etc. These studies are extremely interesting
yet go beyond this work and we leave these to future exploration.

While this additional study only provides a minimal experiment and analysis, we believe it demon-
strates the potential of extending the proposed concept to larger-scale models and we will keep on
exploring along this research direction in the future.

K Minimal Human Study as Validation

We design a questionnaire adapted from [41] to measure accuracy, response time, and subjective
satisfaction. An example is shown in Figure 6. We show the human subject the observation of
the policy (the image below what the robot sees) and the logic programs extracted from neuron
responses (the text below In the mind of the robot), and ask the subject to guess what the robot will
do next (the two different angles of the steering wheels). One of the options corresponds to the actual
control predicted by the policy and the other is randomly sampled with the opposite sign from the
actual control to avoid ambiguity. The user can choose between the two angles or non-selected (i.e.,
I don’t know or I am not sure). Also, we put a checkbox below if the user thinks the logic program
is not helping to measure subjective satisfaction. We record the answers of the subjects along with
their response time.

The questionnaire consists of 144 questions, which takes roughly 20 minutes to finish. We sample
62 questions based on NCP’s results and 62 questions based on non-NCP’s since this specific archi-
tecture has the most distinction from the others across all tasks, thus potentially easier for minimal
human experiment. We collected the results from 10 subjects, shown in the below table with super-
script as standard deviation. Both accuracy and subjective satisfaction are between 0 and 1, where 0
is the worst and 1 is the best. The subjective satisfaction is the rate of the subject not checking the
checkbox that indicates the logic program is not helping. The results are shown in Table 20. First,
we can see that all accuracy are larger than 0.5 (random guess), which indicates that the logic pro-
grams are indeed useful for human users to understand the decision making of robots. Besides, we
see positive correlation between subjective satisfaction and accuracy, which means when the human
users think the logic programs are useful, they are indeed useful.

Note that, however, these results should be only viewed as a minimal experiment that augments
the evaluation and analysis from [41, 42], which performs detailed user study on the human inter-
pretability of the decision set (conceptually the same as logic programs used in our work). The
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Figure 6: The demo of the user study questionnaire (adapted from [41]). We show the human subject the
observation of the policy (the image below what the robot sees) and the logic programs extracted from neuron
responses (the text below In the mind of the robot), and ask the subject to guess what the robot will do next (the
two different angles of the steering wheels). One of the option corresponds to the actual control predicted by
the policy and the other is randomly sampled with the opposite sign from the actual control to avoid ambiguity.
The user can choose between the two angles or unselected (i.e., I don’t know or I am not sure). Also, we put
a checkbox below if the user thinks the logic program is not helping to measure subjective satisfaction. We
record the answers of the subjects along with their response time.

more thorough and rigorous study with human subjects on interpretability in robot learning should
be further explored in the future research.

L Logic Program from Decision Trees

Here we show the corresponding logic program of the finite set of decision path {r(Pi
k)}K

i

k=1 for
every interpreted neuron in all network architectures. The symbols used in the logic program follow
the state grounding definition in Section E. We also briefly summarize the size of associated decision
trees by computing the number of decision rules for each model (before logic program reduction and
conflict checking).

In classical control (Pendulum), the extracted logic program are shown in Table 21 (FC; of size 39),
Table 22 (GRU; of size 54), Table 23 (LSTM; of size 43), Table 24 (ODE-RNN; of size 40), Table 25
(CfC; of size 20), Table 26 (NCP; of size 26).

In locomotion (HalfCheetah), the extracted logic program are shown in Table 27 (FC; of size 171),
Table 28 (GRU; of size 158), Table 29 (LSTM; of size 148), Table 30 (ODE-RNN; of size 156),
Table 31 (CfC; of size 149), Table 32 (NCP; of size 81).

In end-to-end visual servoing (Image-based Driving), the extracted logic program are shown in
Table 33 (FC; of size 92), Table 34 (GRU; of size 60), Table 35 (LSTM; of size 70), Table 36
(ODE-RNN; of size 94), Table 37 (CfC; of size 107), Table 38 (NCP; of size 66).

In a logic program, ”conflict” indicates there are conflict between predicates within the logic pro-
gram as elaborated in Section 3.2.
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Model Neuron Logic Program

FC

0

0: (θ̇ <= 0.69) ∧ (θ <= −2.18)

1: (θ̇ > 0.69) ∧ (θ <= −2.18)
2: (conflict)
3: (θ <= 2.41) ∧ (θ > −2.18)
4: (θ > 2.41)

1

0: (θ̇ <= −1.16) ∧ (θ <= −0.34)

1: (θ̇ <= 1.73) ∧ (θ̇ > −1.16) ∧ (θ <= −0.34)

2: (θ̇ > 1.73) ∧ (θ <= −0.34)
3: (θ <= 2.03) ∧ (θ > −0.34)
4: (θ <= 2.62) ∧ (θ > 2.03)
5: (θ > 2.62)

2

0: (θ̇ <= −1.54) ∧ (θ <= −1.68)

1: (θ̇ <= 1.47) ∧ (θ̇ > −1.54) ∧ (θ <= −1.68)

2: (θ̇ > 1.47) ∧ (θ <= −1.68)
3: (conflict)
4: (θ <= 2.48) ∧ (θ > −1.68)
5: (θ > 2.48)

3

0: (θ <= −2.76)
1: (conflict)
2: (θ <= 0.05) ∧ (θ > −2.76)
3: (θ > 0.05)

Table 21: Logic program of FC in classical control (Pendulum).

Model Neuron Logic Program

GRU

0

0: (θ <= −0.06)
1: (conflict)
2: (θ̇ <= −0.30) ∧ (θ > −0.06)

3: (θ̇ <= 1.75) ∧ (θ̇ > −0.30) ∧ (θ > −0.06)

4: (θ̇ > 1.75) ∧ (θ > −0.06)

1

0: (θ̇ <= −2.30) ∧ (θ <= −1.27)

1: (θ̇ <= 1.83) ∧ (θ̇ > −2.30) ∧ (θ <= −1.27)

2: (θ̇ <= −0.37) ∧ (θ > −1.27)

3: (θ̇ <= 1.83) ∧ (θ̇ > −0.37) ∧ (θ > −1.27)

4: (θ̇ <= 3.10) ∧ (θ̇ > 1.83)

5: (θ̇ > 3.10)

2

0: (θ̇ <= −0.11) ∧ (θ <= −0.05)

1: (θ̇ <= −0.11) ∧ (θ > −0.05)
2: (conflict) ∧ (θ > −0.05)

3: (θ̇ > −0.11) ∧ (θ <= −2.09)

4: (θ̇ > −0.11) ∧ (θ <= 0.41) ∧ (θ > −2.09)

5: (θ̇ <= 1.61) ∧ (θ̇ > −0.11) ∧ (θ > 0.41)

6: (θ̇ > 1.61) ∧ (θ > 0.41)

3

0: (θ <= −2.61)

1: (θ̇ <= 2.44) ∧ (θ <= 0.21) ∧ (θ > −2.61)

2: (θ̇ > 2.44) ∧ (θ <= 0.21) ∧ (θ > −2.61)

3: (θ̇ <= −1.76) ∧ (θ > 0.21)

4: (θ̇ <= 0.39) ∧ (θ̇ > −1.76) ∧ (θ > 0.21)

5: (θ̇ > 0.39) ∧ (θ > 0.21)

Table 22: Logic program of GRU in classical control (Pendulum).
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Model Neuron Logic Program

LSTM

0

0: (θ <= −2.16)
1: (conflict)
2: (θ <= 0.01) ∧ (θ > −2.16)

3: (θ̇ <= 0.48) ∧ (θ > 0.01)

4: (θ̇ <= 3.00) ∧ (θ̇ > 0.48) ∧ (θ > 0.01)

5: (θ̇ > 3.00) ∧ (θ > 0.01)

1

0: (θ̇ <= −2.57)
1: (conflict)
2: (θ̇ > −2.57) ∧ (θ <= 0.35)

3: (θ̇ > −2.57) ∧ (θ <= 2.03) ∧ (θ > 0.35)

4: (θ̇ > −2.57) ∧ (θ > 2.03)

2

0: (θ̇ <= 4.79) ∧ (θ <= −2.31)

1: (θ̇ <= 4.79) ∧ (θ <= 1.72) ∧ (θ > −2.31)

2: (θ̇ <= −3.13) ∧ (θ > 1.72)

3: (θ̇ <= 4.79) ∧ (θ̇ > −3.13) ∧ (θ > 1.72)

4: (θ̇ > 4.79)

3

0: (θ <= −2.32)
1: (θ <= 0.93) ∧ (θ > −2.32)

2: (θ̇ <= −3.98) ∧ (θ > 0.93)

3: (θ̇ > −3.98) ∧ (θ <= 2.04) ∧ (θ > 0.93)

4: (θ̇ > −3.98) ∧ (θ > 2.04)

Table 23: Logic program of LSTM in classical control (Pendulum).

Model Neuron Logic Program

ODE-RNN

0
0: (θ̇ <= −1.48) ∧ (θ <= −0.02)

1: (θ̇ <= −1.48) ∧ (θ > −0.02)

2: (θ̇ > −1.48)

1

0: (θ̇ <= −0.08) ∧ (θ <= −1.45)

1: (θ̇ > −0.08) ∧ (θ <= −1.45)
2: (θ <= 2.05) ∧ (θ > −1.45)
3: (θ <= 2.50) ∧ (θ > 2.05)

4: (θ̇ <= −0.40) ∧ (θ > 2.50)

5: (θ̇ <= 0.03) ∧ (θ̇ > −0.40) ∧ (θ > 2.50)

6: (θ̇ > 0.03) ∧ (θ > 2.50)

2

0: (θ̇ <= −0.56)

1: (θ̇ > −0.56) ∧ (θ <= −2.16)

2: (θ̇ > −0.56) ∧ (θ <= 2.44) ∧ (θ > −2.16)
3: (conflict) ∧ (θ > 2.44)

4: (θ̇ > −0.56) ∧ (θ > 2.44)

3

0: (θ <= −2.18)
1: (θ <= 0.04) ∧ (θ > −2.18)
2: (θ <= 2.65) ∧ (θ > 0.04)

3: (θ̇ <= −0.21) ∧ (θ > 2.65)

4: (θ̇ > −0.21) ∧ (θ > 2.65)

Table 24: Logic program of ODE-RNN in classical control (Pendulum).
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Model Neuron Logic Program

CfC

0

0: (θ <= −0.03)
1: (conflict)
2: (conflict)
3: (θ > −0.03)

1

0: (θ <= −0.05)
1: (conflict)
2: (conflict)
3: (θ > −0.05)

2 0: (θ <= −2.02)
1: (θ > −2.02)

3

0: (θ <= −0.12)
1: (θ <= 0.24) ∧ (θ > −0.12)
2: (θ <= 2.14) ∧ (θ > 0.24)
3: (θ > 2.14)

Table 25: Logic program of CfC in classical control (Pendulum).

Model Neuron Logic Program

NCP

0 0: (θ̇ <= 0.33)

1: (θ̇ > 0.33)

1

0: (θ <= −0.07)
1: (conflict)
2: (θ <= 0.27) ∧ (θ > −0.07)
3: (θ > 0.27)

2

0: (θ̇ <= 4.80) ∧ (θ <= −1.27)

1: (θ̇ <= 4.80) ∧ (θ <= 1.66) ∧ (θ > −1.27)

2: (θ̇ <= 4.80) ∧ (θ > 1.66)

3: (θ̇ > 4.80)

3

0: (θ̇ <= −0.33)

1: (θ̇ <= 0.44) ∧ (θ̇ > −0.33)

2: (θ̇ > 0.44) ∧ (θ <= −1.31)

3: (θ̇ > 0.44) ∧ (θ <= 1.44) ∧ (θ > −1.31)

4: (θ̇ > 0.44) ∧ (θ > 1.44)

Table 26: Logic program of NCP in classical control (Pendulum).
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Model Neuron Logic Program

FC

0

0: (θ̇R <= −0.22) ∧ (θ̇T,F <= −3.26)

1: (θ̇R > −0.22) ∧ (θ̇T,F <= −3.26)

2: (θ̇T,F <= 6.46) ∧ (θ̇T,F > −3.26) ∧ (θF,F <= −0.50)

3: (θ̇T,F <= 6.46) ∧ (θ̇T,F > −3.26) ∧ (θF,F > −0.50)

4: (θ̇T,F > 6.46) ∧ (hR <= 0.05)

5: (θ̇T,F > 6.46) ∧ (hR > 0.05)

1

0: (θF,B <= −0.05) ∧ (θS,F <= 0.61) ∧ (θT,B <= 0.05)
1: (θF,B <= −0.05) ∧ (θS,F > 0.61) ∧ (θT,B <= 0.05)

2: (θ̇T,F <= −11.24) ∧ (θF,B > −0.05) ∧ (θT,B <= 0.05)

3: (θ̇T,F > −11.24) ∧ (θF,B > −0.05) ∧ (θT,B <= 0.05)
4: (θT,B > 0.05) ∧ (θT,F <= 0.40)
5: (θT,B > 0.05) ∧ (θT,F <= 0.62) ∧ (θT,F > 0.40)

6: (θ̇T,B <= 2.08) ∧ (θT,B > 0.05) ∧ (θT,F > 0.62)

7: (θ̇T,B > 2.08) ∧ (θT,B > 0.05) ∧ (θT,F > 0.62)

2

0: (θ̇F,F <= −12.45) ∧ (θF,B <= 0.06)

1: (θ̇F,F > −12.45) ∧ (θF,B <= 0.06) ∧ (θS,F <= 0.65)

2: (θ̇F,F > −12.45) ∧ (θF,B <= 0.06) ∧ (θS,F > 0.65)

3: (θ̇T,B <= 6.33) ∧ (θF,B > 0.06) ∧ (θT,F <= 0.33)

4: (θ̇T,B <= 6.33) ∧ (θF,B > 0.06) ∧ (θT,F > 0.33)

5: (θ̇T,B > 6.33) ∧ (θF,B > 0.06)

3

0: (θF,B <= 0.38) ∧ (θS,F <= 0.17) ∧ (θT,F <= 0.58)
1: (θF,B <= 0.38) ∧ (θS,F <= 0.17) ∧ (θT,F > 0.58)
2: (θF,B <= 0.38) ∧ (θS,F > 0.17) ∧ (θT,B <= 0.07)
3: (θF,B <= 0.38) ∧ (θS,F > 0.17) ∧ (θT,B > 0.07)
4: (θF,B > 0.38)

4

0: (θ̇S,B <= 1.79) ∧ (θR <= 0.19) ∧ (θT,B <= 0.06)

1: (θ̇S,B > 1.79) ∧ (θR <= 0.19) ∧ (θT,B <= 0.06)

2: (θ̇F,F <= 9.07) ∧ (θR > 0.19) ∧ (θT,B <= 0.06)

3: (θ̇F,F > 9.07) ∧ (θR > 0.19) ∧ (θT,B <= 0.06)
4: (θR <= −0.03) ∧ (θT,B > 0.06)
5: (θR > −0.03) ∧ (θF,F <= −0.49) ∧ (θT,B > 0.06)
6: (θR > −0.03) ∧ (θF,F > −0.49) ∧ (θT,B > 0.06)

5

0: (θ̇T,B <= 1.10) ∧ (θ̇T,F <= −6.72) ∧ (θT,F <= 0.67)

1: (θ̇T,B <= 1.10) ∧ (θ̇T,F > −6.72) ∧ (θT,F <= 0.67)

2: (θ̇T,B <= 1.10) ∧ (θT,F > 0.67)

3: (θ̇T,B > 1.10) ∧ (ḣR <= −0.33) ∧ (θR <= 0.29)

4: (θ̇T,B > 1.10) ∧ (ḣR > −0.33) ∧ (θR <= 0.29)

5: (θ̇T,B > 1.10) ∧ (ḣR <= −0.48) ∧ (θR > 0.29)

6: (θ̇T,B > 1.10) ∧ (ḣR > −0.48) ∧ (θR > 0.29)

6

0: (θ̇R <= −0.83) ∧ (θ̇F,B <= 4.65) ∧ (θ̇F,F <= −0.07)

1: (θ̇R <= −0.83) ∧ (θ̇F,B > 4.65) ∧ (θ̇F,F <= −0.07)

2: (θ̇R > −0.83) ∧ (θ̇F,F <= −0.07) ∧ (θS,B <= −0.33)

3: (θ̇R > −0.83) ∧ (θ̇F,F <= −0.07) ∧ (θS,B > −0.33)

4: (θ̇F,F > −0.07) ∧ (θR <= 0.52)

5: (θ̇F,F > −0.07) ∧ (θR > 0.52)

7

0: (θ̇T,F <= −0.36) ∧ (θR <= 0.33) ∧ (θS,F <= 0.56)

1: (θ̇T,F <= −0.36) ∧ (θR > 0.33) ∧ (θS,F <= 0.56)

2: (θ̇T,F <= −0.36) ∧ (θS,F > 0.56)

3: (θ̇T,F <= 6.91) ∧ (θ̇T,F > −0.36) ∧ (θS,B <= 0.09)

4: (θ̇T,F > 6.91) ∧ (θS,B <= 0.09)

5: (θ̇T,F > −0.36) ∧ (θS,B > 0.09)

8

0: (θ̇R <= −0.10) ∧ (θ̇T,B <= −3.31)

1: (θ̇R > −0.10) ∧ (θ̇T,B <= −3.31)

2: (θ̇T,B <= 0.97) ∧ (θ̇T,B > −3.31)

3: (θ̇T,B > 0.97) ∧ (θS,B <= −0.35)

4: (θ̇T,B > 0.97) ∧ (θR <= 0.20) ∧ (θS,B > −0.35)

5: (θ̇T,B > 0.97) ∧ (θR > 0.20) ∧ (θS,B > −0.35)

9

0: (θ̇F,B <= 0.63) ∧ (θ̇S,F <= 3.07)

1: (θ̇F,B <= 0.63) ∧ (θ̇S,F > 3.07) ∧ (θR <= 0.46)

2: (θ̇F,B <= 0.63) ∧ (θ̇S,F > 3.07) ∧ (θR > 0.46)

3: (θ̇F,B > 0.63) ∧ (θ̇T,F <= 5.96) ∧ (hR <= 0.03)

4: (θ̇F,B > 0.63) ∧ (θ̇T,F <= 5.96) ∧ (hR > 0.03)

5: (θ̇F,B > 0.63) ∧ (θ̇T,F > 5.96) ∧ (θT,F <= 0.38)

6: (θ̇F,B > 0.63) ∧ (θ̇T,F > 5.96) ∧ (θT,F > 0.38)

Table 27: Logic program of FC in locomotion (HalfCheetah).
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Model Neuron Logic Program

GRU

0

0: (θ̇R <= 1.54) ∧ (θ̇T,B <= −2.33) ∧ (θR <= 0.52)

1: (θ̇R > 1.54) ∧ (θ̇T,B <= −2.33) ∧ (θR <= 0.52)

2: (θ̇T,B > −2.33) ∧ (θR <= 0.11)

3: (θ̇T,B > −2.33) ∧ (θR <= 0.52) ∧ (θR > 0.11)

4: (θ̇T,F <= −7.48) ∧ (θR > 0.52)

5: (θ̇T,F > −7.48) ∧ (θR <= 0.97) ∧ (θR > 0.52)

6: (θ̇T,F > −7.48) ∧ (θR > 0.97)

1

0: (θ̇S,B <= 10.33) ∧ (θR <= 0.50) ∧ (θF,B <= −0.41)

1: (θ̇S,B <= 10.33) ∧ (θR <= 0.50) ∧ (θF,B > −0.41)

2: (θ̇S,B <= 10.33) ∧ (ḣR <= −0.07) ∧ (θR > 0.50)

3: (θ̇S,B <= 10.33) ∧ (ḣR > −0.07) ∧ (θR > 0.50)

4: (θ̇S,B > 10.33)

2

0: (θ̇T,B <= 3.33) ∧ (θR <= 0.12)

1: (θ̇T,B > 3.33) ∧ (θR <= 0.12)

2: (θ̇T,B <= 6.59) ∧ (θR > 0.12) ∧ (θT,F <= 0.70)

3: (θ̇T,B <= 6.59) ∧ (θR > 0.12) ∧ (θT,F > 0.70)

4: (θ̇T,B > 6.59) ∧ (θR <= 0.54) ∧ (θR > 0.12)

5: (θ̇T,B > 6.59) ∧ (θR > 0.54)

3

0: (θ̇R <= −0.78) ∧ (θT,F <= 0.17)

1: (θ̇R > −0.78) ∧ (θR <= 0.68) ∧ (θT,F <= 0.17)

2: (θ̇R > −0.78) ∧ (θR > 0.68) ∧ (θT,F <= 0.17)

3: (ḣR <= 0.64) ∧ (θT,B <= −0.14) ∧ (θT,F > 0.17)

4: (ḣR <= 0.64) ∧ (θT,B > −0.14) ∧ (θT,F > 0.17)

5: (ḣR > 0.64) ∧ (θT,F > 0.17)

4

0: (θ̇S,B <= 1.92) ∧ (θS,F <= 0.02)

1: (θ̇S,B > 1.92) ∧ (θS,F <= 0.02)

2: (θ̇S,B <= 6.10) ∧ (θ̇S,F <= 7.21) ∧ (θS,F > 0.02)

3: (θ̇S,B <= 6.10) ∧ (θ̇S,F > 7.21) ∧ (θS,F > 0.02)

4: (θ̇S,B > 6.10) ∧ (θS,F > 0.02)

5

0: (θ̇T,B <= 2.59) ∧ (θF,B <= 0.10) ∧ (θT,B <= −0.16)

1: (θ̇T,B <= 2.59) ∧ (θF,B <= 0.10) ∧ (θT,B > −0.16)

2: (θ̇T,B > 2.59) ∧ (θF,B <= 0.10)

3: (θ̇T,B <= 1.45) ∧ (θ̇T,F <= 6.43) ∧ (θF,B > 0.10)

4: (θ̇T,B > 1.45) ∧ (θ̇T,F <= 6.43) ∧ (θF,B > 0.10)
5: (conflict) ∧ (θF,B > 0.10)

6: (θ̇T,F > 6.43) ∧ (θF,B > 0.10)

6

0: (θR <= 0.17) ∧ (θF,B <= −0.12)
1: (θR <= 0.62) ∧ (θR > 0.17) ∧ (θF,B <= −0.12)

2: (θ̇F,B <= 6.66) ∧ (θR <= 0.62) ∧ (θF,B > −0.12)

3: (θ̇F,B > 6.66) ∧ (θR <= 0.62) ∧ (θF,B > −0.12)

4: (θ̇T,B <= −5.47) ∧ (θR > 0.62)

5: (θ̇T,B > −5.47) ∧ (θR <= 0.89) ∧ (θR > 0.62)

6: (θ̇T,B > −5.47) ∧ (θR > 0.89)

7

0: (ḣR <= −0.27) ∧ (θT,F <= 0.20)

1: (θ̇T,B <= −0.25) ∧ (ḣR > −0.27) ∧ (θT,F <= 0.20)

2: (θ̇T,B > −0.25) ∧ (ḣR > −0.27) ∧ (θT,F <= 0.20)

3: (ḣR <= 0.12) ∧ (θR <= 0.77) ∧ (θT,F > 0.20)

4: (ḣR <= 0.12) ∧ (θR > 0.77) ∧ (θT,F > 0.20)

5: (ḣR > 0.12) ∧ (θT,F > 0.20)

8

0: (ḣR <= 0.13) ∧ (θF,B <= −0.16) ∧ (hR <= 0.07)

1: (ḣR <= 0.13) ∧ (θF,B > −0.16) ∧ (hR <= 0.07)

2: (ḣR <= 0.13) ∧ (hR > 0.07)

3: (ḣR <= 1.11) ∧ (ḣR > 0.13) ∧ (hR <= 0.08)

4: (ḣR > 1.11) ∧ (hR <= 0.08)

5: (ḣR > 0.13) ∧ (hR > 0.08)

9

0: (θ̇T,F <= 0.51) ∧ (θS,F <= −0.07)

1: (θ̇F,F <= 3.81) ∧ (θ̇T,F <= 0.51) ∧ (θS,F > −0.07)

2: (θ̇F,F > 3.81) ∧ (θ̇T,F <= 0.51) ∧ (θS,F > −0.07)

3: (θ̇T,F > 0.51) ∧ (θF,B <= 0.34)

4: (θ̇R <= −1.78) ∧ (θ̇T,F > 0.51) ∧ (θF,B > 0.34)

5: (θ̇R > −1.78) ∧ (θ̇T,F > 0.51) ∧ (θF,B > 0.34)

Table 28: Logic program of GRU in locomotion (HalfCheetah).
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Model Neuron Logic Program

LSTM

0

0: (θ̇R <= 2.01) ∧ (θS,B <= 0.53) ∧ (θT,F <= −0.28)

1: (θ̇R <= 2.01) ∧ (θS,B <= 0.53) ∧ (θT,F > −0.28)

2: (θ̇R > 2.01) ∧ (θS,B <= 0.53)
3: (θS,B > 0.53)

1

0: (θF,F <= 0.02) ∧ (θT,F <= −0.35)

1: (θ̇F,F <= 1.23) ∧ (θF,F <= 0.02) ∧ (θT,F > −0.35)

2: (θ̇F,F > 1.23) ∧ (θF,F <= 0.02) ∧ (θT,F > −0.35)
3: (θF,F > 0.02) ∧ (θT,F <= −0.07)

4: (θ̇F,F <= 0.95) ∧ (θF,F > 0.02) ∧ (θT,F > −0.07)

5: (θ̇F,F > 0.95) ∧ (θF,F > 0.02) ∧ (θT,F > −0.07)

2

0: (θF,F <= −0.46) ∧ (hR <= −0.07)

1: (θ̇F,B <= −4.76) ∧ (θF,F > −0.46) ∧ (hR <= −0.07)

2: (θ̇F,B > −4.76) ∧ (θF,F > −0.46) ∧ (hR <= −0.07)
3: (θR <= 0.11) ∧ (hR > −0.07)
4: (θR > 0.11) ∧ (hR > −0.07)

3

0: (θ̇S,B <= 0.14) ∧ (θT,F <= −0.01) ∧ (hR <= −0.11)

1: (θ̇S,B <= 0.14) ∧ (θT,F > −0.01) ∧ (hR <= −0.11)

2: (θ̇S,B > 0.14) ∧ (θS,B <= 0.42) ∧ (hR <= −0.11)

3: (θ̇S,B > 0.14) ∧ (θS,B > 0.42) ∧ (hR <= −0.11)
4: (θT,B <= 0.27) ∧ (hR > −0.11)
5: (θT,B <= 0.53) ∧ (θT,B > 0.27) ∧ (hR > −0.11)
6: (θT,B > 0.53) ∧ (hR > −0.11)

4

0: (θF,F <= −0.00)
1: (conflict)
2: (θR <= 0.12) ∧ (θF,F <= 0.39) ∧ (θF,F > −0.00)
3: (θR > 0.12) ∧ (θF,F <= 0.39) ∧ (θF,F > −0.00)

4: (θ̇R <= −0.51) ∧ (θF,F > 0.39)

5: (θ̇R > −0.51) ∧ (θF,F > 0.39)

5

0: (θ̇R <= 0.07) ∧ (θF,F <= −0.05)

1: (θ̇R <= 0.07) ∧ (θF,F <= 0.35) ∧ (θF,F > −0.05)

2: (θ̇R > 0.07) ∧ (θF,F <= 0.35) ∧ (hR <= −0.18)

3: (θ̇R > 0.07) ∧ (θF,F <= 0.35) ∧ (hR > −0.18)

4: (θ̇S,B <= −2.15) ∧ (θF,F > 0.35)

5: (θ̇S,B > −2.15) ∧ (θF,F > 0.35)

6

0: (θ̇T,F <= 1.81) ∧ (ḣR <= −1.08) ∧ (θT,F <= −0.14)

1: (θ̇T,F <= 1.81) ∧ (ḣR > −1.08) ∧ (θT,F <= −0.14)

2: (θ̇T,F > 1.81) ∧ (θT,F <= −0.14)

3: (ḣR <= −0.47) ∧ (θT,F > −0.14)

4: (θ̇T,B <= −1.89) ∧ (ḣR > −0.47) ∧ (θT,F > −0.14)

5: (θ̇T,B > −1.89) ∧ (ḣR > −0.47) ∧ (θT,F > −0.14)

7

0: (θF,F <= −0.07) ∧ (θT,F <= 0.36)
1: (θF,F <= −0.07) ∧ (θT,F > 0.36)
2: (ẋR <= 4.14) ∧ (θF,F > −0.07) ∧ (θT,B <= 0.34)
3: (ẋR > 4.14) ∧ (θF,F > −0.07) ∧ (θT,B <= 0.34)

4: (θ̇T,F <= −2.37) ∧ (θF,F > −0.07) ∧ (θT,B > 0.34)

5: (θ̇T,F > −2.37) ∧ (θF,F > −0.07) ∧ (θT,B > 0.34)

8

0: (θ̇F,B <= 11.09) ∧ (θ̇F,F <= 1.05) ∧ (θT,F <= −0.46)

1: (θ̇F,B <= 11.09) ∧ (θ̇F,F <= 1.05) ∧ (θT,F > −0.46)

2: (θ̇F,B > 11.09) ∧ (θ̇F,F <= 1.05)

3: (θ̇F,F > 1.05) ∧ (θ̇T,B <= −11.38)

4: (θ̇F,F > 1.05) ∧ (θ̇T,B > −11.38) ∧ (θR <= 0.16)

5: (θ̇F,F > 1.05) ∧ (θ̇T,B > −11.38) ∧ (θR > 0.16)

9

0: (θF,F <= −0.40) ∧ (θS,B <= −0.33)
1: (θF,F <= −0.40) ∧ (θS,B > −0.33)

2: (θ̇T,F <= −10.21) ∧ (ḣR <= −0.80) ∧ (θF,F > −0.40)

3: (θ̇T,F > −10.21) ∧ (ḣR <= −0.80) ∧ (θF,F > −0.40)

4: (ḣR > −0.80) ∧ (θF,B <= −0.14) ∧ (θF,F > −0.40)

5: (ḣR > −0.80) ∧ (θF,B > −0.14) ∧ (θF,F > −0.40)

Table 29: Logic program of LSTM in locomotion (HalfCheetah).
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Model Neuron Logic Program

ODE-RNN

0

0: (ḣR <= −0.27) ∧ (θS,B <= −0.49)

1: (ḣR > −0.27) ∧ (θS,B <= −0.49)

2: (ḣR <= −0.00) ∧ (θF,F <= −0.22) ∧ (θS,B > −0.49)

3: (ḣR <= −0.00) ∧ (θF,F > −0.22) ∧ (θS,B > −0.49)

4: (ḣR > −0.00) ∧ (θS,B > −0.49) ∧ (θT,B <= 0.22)

5: (ḣR > −0.00) ∧ (θS,B > −0.49) ∧ (θT,B > 0.22)

1

0: (θ̇T,B <= −2.91) ∧ (θF,B <= −0.39)

1: (θ̇T,B > −2.91) ∧ (ḣR <= −0.21) ∧ (θF,B <= −0.39)

2: (θ̇T,B > −2.91) ∧ (ḣR > −0.21) ∧ (θF,B <= −0.39)

3: (θ̇R <= −0.00) ∧ (θF,B > −0.39)

4: (θ̇R > −0.00) ∧ (θR <= −0.04) ∧ (θF,B > −0.39)

5: (θ̇R > −0.00) ∧ (θR > −0.04) ∧ (θF,B > −0.39)

2

0: (θR <= 0.02) ∧ (θT,B <= −0.16)
1: (θR <= 0.02) ∧ (θT,B > −0.16) ∧ (hR <= 0.00)
2: (θR <= 0.02) ∧ (θT,B > −0.16) ∧ (hR > 0.00)
3: (θR > 0.02) ∧ (hR <= −0.02)
4: (θR > 0.02) ∧ (conflict)
5: (θR > 0.02) ∧ (hR > −0.02)

3

0: (ḣR <= 0.55) ∧ (θR <= 0.08) ∧ (θT,B <= 0.42)

1: (ḣR > 0.55) ∧ (θR <= 0.08) ∧ (θT,B <= 0.42)
2: (θR <= 0.08) ∧ (θS,B <= 0.16) ∧ (θT,B > 0.42)
3: (θR <= 0.08) ∧ (θS,B > 0.16) ∧ (θT,B > 0.42)
4: (θR > 0.08) ∧ (θT,B <= 0.42) ∧ (hR <= −0.05)
5: (θR > 0.08) ∧ (θT,B <= 0.42) ∧ (hR > −0.05)
6: (θR > 0.08) ∧ (θT,B > 0.42)

4

0: (θ̇T,B <= −3.83) ∧ (θ̇T,F <= −0.87)

1: (θ̇T,B <= −3.83) ∧ (θ̇T,F > −0.87) ∧ (hR <= −0.08)

2: (θ̇T,B <= −3.83) ∧ (θ̇T,F > −0.87) ∧ (hR > −0.08)

3: (θ̇T,B > −3.83) ∧ (θS,B <= −0.11) ∧ (hR <= −0.09)

4: (θ̇T,B > −3.83) ∧ (θS,B > −0.11) ∧ (hR <= −0.09)

5: (θ̇T,B > −3.83) ∧ (θT,B <= −0.33) ∧ (hR > −0.09)

6: (θ̇T,B > −3.83) ∧ (θT,B > −0.33) ∧ (hR > −0.09)

5

0: (ẋR <= 3.31)
1: (ẋR > 3.31) ∧ (θS,B <= 0.01) ∧ (θT,F <= 0.57)
2: (ẋR > 3.31) ∧ (θS,B > 0.01) ∧ (θT,F <= 0.57)
3: (ẋR > 3.31) ∧ (θT,F > 0.57)

6

0: (θ̇T,B <= 1.22) ∧ (θS,B <= −0.54)

1: (θ̇T,B > 1.22) ∧ (θS,B <= −0.54)

2: (θ̇T,B <= −3.70) ∧ (θS,B > −0.54) ∧ (θT,B <= 0.16)

3: (θ̇T,B <= −3.70) ∧ (θS,B > −0.54) ∧ (θT,B > 0.16)

4: (θ̇T,B > −3.70) ∧ (conflict)
5: (θ̇T,B > −3.70) ∧ (θS,B > −0.54)

7

0: (ḣR <= 0.02) ∧ (θS,F <= −0.19) ∧ (θT,B <= 0.53)

1: (ḣR <= 0.02) ∧ (θS,F <= −0.19) ∧ (θT,B > 0.53)

2: (ḣR > 0.02) ∧ (θS,F <= −0.19)

3: (θ̇R <= 0.53) ∧ (θS,F <= 0.16) ∧ (θS,F > −0.19)

4: (θ̇R <= 0.53) ∧ (θS,F > 0.16)

5: (θ̇R > 0.53) ∧ (θS,F > −0.19)

8

0: (θ̇T,B <= −0.39) ∧ (θT,B <= −0.37)

1: (θ̇T,B <= −0.39) ∧ (θS,B <= 0.04) ∧ (θT,B > −0.37)

2: (θ̇T,B <= −0.39) ∧ (θS,B > 0.04) ∧ (θT,B > −0.37)

3: (θ̇T,B > −0.39) ∧ (θT,B <= 0.55) ∧ (θT,F <= 0.09)

4: (θ̇T,B > −0.39) ∧ (θT,B <= 0.55) ∧ (θT,F > 0.09)

5: (θ̇T,B > −0.39) ∧ (θT,B > 0.55)

9

0: (θT,F <= −0.24)

1: (θ̇T,F <= −6.60) ∧ (conflict)
2: (θ̇T,F > −6.60) ∧ (conflict)
3: (θT,F > −0.24) ∧ (hR <= −0.11)
4: (θT,F <= 0.32) ∧ (θT,F > −0.24) ∧ (hR > −0.11)
5: (θT,F > 0.32) ∧ (hR > −0.11)

Table 30: Logic program of ODE-RNN in locomotion (HalfCheetah).

32



Model Neuron Logic Program

CfC

0

0: (θ̇F,F <= −9.40)

1: (θ̇F,F > −9.40) ∧ (θ̇T,B <= −1.68) ∧ (θF,F <= 0.23)

2: (θ̇F,F > −9.40) ∧ (θ̇T,B > −1.68) ∧ (θF,F <= 0.23)

3: (θ̇F,F > −9.40) ∧ (θ̇T,F <= −5.69) ∧ (θF,F > 0.23)

4: (θ̇F,F > −9.40) ∧ (θ̇T,F > −5.69) ∧ (θF,F > 0.23)

1

0: (θR <= 0.06) ∧ (θT,F <= −0.46)
1: (θR > 0.06) ∧ (θT,F <= −0.46)
2: (θR <= 0.02) ∧ (θT,F > −0.46)
3: (θR > 0.02) ∧ (conflict)
4: (θR > 0.02) ∧ (θT,F > −0.46)

2

0: (θ̇T,B <= 1.92) ∧ (θ̇T,F <= −0.59) ∧ (ḣR <= 0.43)

1: (θ̇T,B <= 1.92) ∧ (θ̇T,F > −0.59) ∧ (ḣR <= 0.43)

2: (θ̇T,B > 1.92) ∧ (θ̇T,F <= 5.02) ∧ (ḣR <= 0.43)

3: (θ̇T,B > 1.92) ∧ (θ̇T,F > 5.02) ∧ (ḣR <= 0.43)

4: (θ̇S,F <= 13.53) ∧ (ḣR > 0.43) ∧ (θF,B <= −0.01)

5: (θ̇S,F <= 13.53) ∧ (ḣR > 0.43) ∧ (θF,B > −0.01)

6: (θ̇S,F > 13.53) ∧ (ḣR > 0.43)

3

0: (θ̇T,F <= 8.70) ∧ (θS,F <= 0.53) ∧ (hR <= −0.09)

1: (θ̇T,F <= 8.70) ∧ (θS,F <= 0.53) ∧ (hR > −0.09)

2: (θ̇T,F <= 8.70) ∧ (θS,F > 0.53)

3: (θ̇T,F > 8.70) ∧ (θR <= 0.20)

4: (θ̇T,F > 8.70) ∧ (θR > 0.20)

4

0: (θT,F <= −0.51) ∧ (hR <= −0.04)
1: (θT,F <= −0.51) ∧ (hR > −0.04)

2: (θ̇T,B <= 0.58) ∧ (θT,F <= 0.50) ∧ (θT,F > −0.51)

3: (θ̇T,B <= 0.58) ∧ (θT,F > 0.50)

4: (θ̇T,B > 0.58) ∧ (ḣR <= −0.44) ∧ (θT,F > −0.51)

5: (θ̇T,B > 0.58) ∧ (ḣR > −0.44) ∧ (θT,F > −0.51)

5

0: (θ̇T,B <= 2.61) ∧ (θS,F <= 0.08) ∧ (hR <= 0.03)

1: (θ̇T,B <= 2.61) ∧ (θS,F <= 0.08) ∧ (hR > 0.03)

2: (θ̇R <= 0.63) ∧ (θ̇T,B <= 2.61) ∧ (θS,F > 0.08)

3: (θ̇R > 0.63) ∧ (θ̇T,B <= 2.61) ∧ (θS,F > 0.08)

4: (θ̇T,B > 2.61) ∧ (θT,F <= −0.13)

5: (θ̇T,B > 2.61) ∧ (θT,F > −0.13)

6

0: (θ̇T,B <= −0.60) ∧ (θF,F <= −0.11)

1: (θ̇T,B > −0.60) ∧ (θF,F <= −0.11) ∧ (hR <= −0.09)

2: (θ̇T,B > −0.60) ∧ (θF,F <= −0.11) ∧ (hR > −0.09)

3: (θ̇S,F <= 11.48) ∧ (θF,F > −0.11) ∧ (θT,B <= −0.10)

4: (θ̇S,F <= 11.48) ∧ (θF,F > −0.11) ∧ (θT,B > −0.10)

5: (θ̇S,F > 11.48) ∧ (θF,F > −0.11)

7

0: (θ̇T,F <= −8.38) ∧ (ḣR <= 0.45) ∧ (θT,F <= 0.47)

1: (θ̇T,F > −8.38) ∧ (ḣR <= 0.45) ∧ (θT,F <= 0.47)

2: (ḣR > 0.45) ∧ (θF,F <= 0.14) ∧ (θT,F <= 0.47)

3: (ḣR > 0.45) ∧ (θF,F > 0.14) ∧ (θT,F <= 0.47)
4: (θT,F <= 0.69) ∧ (θT,F > 0.47)
5: (θT,F > 0.69)

8

0: (θ̇T,B <= −6.34) ∧ (hR <= −0.02)

1: (θ̇T,B > −6.34) ∧ (hR <= −0.02)

2: (θ̇T,B > −6.34) ∧ (conflict)
3: (θ̇T,F <= 10.03) ∧ (θS,F <= 0.50) ∧ (hR > −0.02)

4: (θ̇T,F > 10.03) ∧ (θS,F <= 0.50) ∧ (hR > −0.02)
5: (θS,F > 0.50) ∧ (hR > −0.02)

9

0: (θ̇T,B <= 1.14) ∧ (θS,B <= −0.06) ∧ (θS,F <= 0.46)

1: (θ̇T,B <= 1.14) ∧ (θS,B > −0.06) ∧ (θS,F <= 0.46)

2: (θ̇T,B <= 1.14) ∧ (θS,F > 0.46)

3: (θ̇T,B > 1.14) ∧ (θT,F <= 0.56) ∧ (hR <= −0.10)

4: (θ̇T,B > 1.14) ∧ (θT,F <= 0.56) ∧ (hR > −0.10)

5: (θ̇T,B > 1.14) ∧ (θT,F > 0.56)

Table 31: Logic program of CfC in locomotion (HalfCheetah).
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Model Neuron Logic Program

NCP

0 0: (θF,B <= −0.05)
1: (θF,B > −0.05)

1 0: (θF,B <= −0.04)
1: (θF,B > −0.04)

2 0: (θT,B <= −0.29)
1: (θT,B > −0.29)

3

0: (θ̇T,F <= −6.91) ∧ (hR <= −0.08)

1: (θ̇T,F <= −6.91) ∧ (hR > −0.08)

2: (θ̇T,F > −6.91) ∧ (θF,F <= −0.13)

3: (θ̇T,F > −6.91) ∧ (θF,F > −0.13)

4

0: (θ̇F,B <= −6.37) ∧ (θT,B <= −0.36)

1: (θ̇F,B > −6.37) ∧ (θT,B <= −0.36)

2: (ḣR <= −0.59) ∧ (θT,B <= 0.59) ∧ (θT,B > −0.36)

3: (ḣR > −0.59) ∧ (θT,B <= 0.59) ∧ (θT,B > −0.36)

4: (θ̇F,B <= 0.64) ∧ (θT,B > 0.59)

5: (θ̇F,B > 0.64) ∧ (θT,B > 0.59)

5
0: (θF,B <= −0.02) ∧ (θT,B <= −0.40)
1: (θF,B <= −0.02) ∧ (θT,B > −0.40)
2: (θF,B > −0.02)

6

0: (θ̇F,F <= −3.61) ∧ (θF,B <= −0.06)

1: (θ̇F,F > −3.61) ∧ (θF,B <= −0.06)

2: (ḣR <= 0.51) ∧ (θF,B > −0.06) ∧ (θT,F <= −0.70)

3: (ḣR <= 0.51) ∧ (θF,B > −0.06) ∧ (θT,F > −0.70)

4: (ḣR > 0.51) ∧ (θF,B > −0.06)

7

0: (θT,B <= −0.27)
1: (conflict)
2: (θ̇S,F <= −8.45) ∧ (ḣR <= 0.18) ∧ (θT,B > −0.27)

3: (θ̇S,F <= −8.45) ∧ (ḣR > 0.18) ∧ (θT,B > −0.27)

4: (θ̇S,F > −8.45) ∧ (θF,B <= 0.22) ∧ (θT,B > −0.27)

5: (θ̇S,F > −8.45) ∧ (θF,B > 0.22) ∧ (θT,B > −0.27)

8

0: (θ̇F,B <= 6.33) ∧ (θ̇T,F <= 12.79) ∧ (θS,B <= −0.04)

1: (θ̇F,B > 6.33) ∧ (θ̇T,F <= 12.79) ∧ (θS,B <= −0.04)

2: (θ̇T,F <= 12.79) ∧ (θS,B > −0.04)

3: (θ̇T,F > 12.79)

9

0: (θ̇F,B <= 6.97) ∧ (hR <= −0.12)

1: (θ̇F,B <= 6.97) ∧ (θF,F <= 0.15) ∧ (hR > −0.12)

2: (θ̇F,B <= 6.97) ∧ (θF,F > 0.15) ∧ (hR > −0.12)

3: (θ̇F,B > 6.97) ∧ (θ̇S,B <= −8.53)

4: (θ̇F,B > 6.97) ∧ (θ̇S,B > −8.53)

Table 32: Logic program of NCP in locomotion (HalfCheetah).
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Model Neuron Logic Program

FC

0

0: (κ <= 0.00) ∧ (v <= 7.40)
1: (κ <= 0.00) ∧ (v <= 7.71) ∧ (v > 7.40)
2: (κ > 0.00) ∧ (v <= 7.71)
3: (κ <= 0.00) ∧ (d <= 0.12) ∧ (v > 7.71)
4: (κ <= 0.00) ∧ (d > 0.12) ∧ (v > 7.71)
5: (κ > 0.00) ∧ (v > 7.71)

1

0: (v <= 7.30)
1: (δ <= 0.00) ∧ (d <= 0.19) ∧ (v > 7.30)
2: (δ <= 0.00) ∧ (d > 0.19) ∧ (v > 7.30)
3: (δ > 0.00) ∧ (d <= 0.29) ∧ (v > 7.30)
4: (δ > 0.00) ∧ (d > 0.29) ∧ (v > 7.30)

2

0: (δ <= −0.02) ∧ (κ <= 0.02) ∧ (µ <= 0.01)
1: (δ > −0.02) ∧ (κ <= 0.02) ∧ (µ <= 0.01)
2: (κ > 0.02) ∧ (µ <= 0.01)
3: (µ > 0.01)

3

0: (κ <= −0.00)
1: (κ > −0.00) ∧ (µ <= 0.01) ∧ (d <= 0.07)
2: (κ > −0.00) ∧ (µ <= 0.01) ∧ (d > 0.07)
3: (κ > −0.00) ∧ (µ <= 0.02) ∧ (µ > 0.01)
4: (κ > −0.00) ∧ (µ > 0.02)

4

0: (κ <= 0.00) ∧ (µ <= 0.01) ∧ (v <= 7.66)
1: (κ <= 0.00) ∧ (µ <= 0.01) ∧ (v > 7.66)
2: (κ <= 0.00) ∧ (µ > 0.01)
3: (κ > 0.00) ∧ (µ <= −0.02)
4: (κ > 0.00) ∧ (µ <= 0.01) ∧ (µ > −0.02)
5: (κ > 0.00) ∧ (µ > 0.01)

5

0: (µ <= 0.01) ∧ (v <= 7.49)
1: (δ <= −0.02) ∧ (µ <= 0.01) ∧ (v > 7.49)
2: (δ > −0.02) ∧ (µ <= 0.01) ∧ (v > 7.49)
3: (µ <= 0.02) ∧ (µ > 0.01)
4: (µ > 0.02)

6

0: (κ <= −0.01)
1: (δ <= −0.01) ∧ (κ > −0.01) ∧ (µ <= 0.01)
2: (δ > −0.01) ∧ (κ > −0.01) ∧ (µ <= 0.01)
3: (κ > −0.01) ∧ (µ > 0.01)

7

0: (µ <= −0.02)
1: (δ <= 0.02) ∧ (µ <= 0.01) ∧ (µ > −0.02)
2: (δ > 0.02) ∧ (µ <= 0.01) ∧ (µ > −0.02)
3: (µ > 0.01)

Table 33: Logic program of FC in end-to-end visual servoing (Image-based Driving).
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Model Neuron Logic Program

GRU

0
0: (d <= −0.06)
1: (d <= 0.11) ∧ (d > −0.06)
2: (d > 0.11)

1
0: (µ <= 0.04)
1: (µ <= 0.09) ∧ (µ > 0.04)
2: (µ > 0.09)

2
0: (µ <= 0.04)
1: (µ <= 0.10) ∧ (µ > 0.04)
2: (µ > 0.10)

3

0: (v <= 5.26)
1: (µ <= 0.01) ∧ (v <= 6.88) ∧ (v > 5.26)
2: (µ > 0.01) ∧ (v <= 6.88) ∧ (v > 5.26)
3: (v <= 7.34) ∧ (v > 6.88)
4: (v > 7.34)

4 0: None

5

0: (v <= 5.26)
1: (µ <= −0.01) ∧ (d <= 0.20) ∧ (v > 5.26)
2: (µ <= −0.01) ∧ (d > 0.20) ∧ (v > 5.26)
3: (µ > −0.01) ∧ (v <= 6.81) ∧ (v > 5.26)
4: (µ > −0.01) ∧ (v > 6.81)

6

0: (δ <= −0.04)
1: (δ <= 0.05) ∧ (δ > −0.04) ∧ (v <= 7.81)
2: (δ <= 0.05) ∧ (δ > −0.04) ∧ (v > 7.81)
3: (δ <= 0.09) ∧ (δ > 0.05)
4: (δ > 0.09)

7

0: (κ <= 0.02) ∧ (µ <= −0.05) ∧ (d <= 0.61)
1: (κ <= 0.02) ∧ (µ > −0.05) ∧ (d <= 0.61)
2: (κ > 0.02) ∧ (d <= 0.61)
3: (δ <= 0.06) ∧ (µ <= −0.04) ∧ (d > 0.61)
4: (δ <= 0.06) ∧ (µ > −0.04) ∧ (d > 0.61)
5: (δ > 0.06) ∧ (d > 0.61)

Table 34: Logic program of GRU in end-to-end visual servoing (Image-based Driving).
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Model Neuron Logic Program

LSTM

0

0: (κ <= 0.00) ∧ (d <= 0.07)
1: (κ <= 0.00) ∧ (d > 0.07)
2: (κ <= 0.00) ∧ (κ > 0.00)
3: (κ > 0.00) ∧ (v <= 7.58)
4: (κ > 0.00) ∧ (v > 7.58)

1

0: (d <= −0.08) ∧ (v <= 7.54)
1: (d <= 0.04) ∧ (d > −0.08) ∧ (v <= 7.54)
2: (d <= 0.04) ∧ (v <= 7.68) ∧ (v > 7.54)
3: (d <= 0.04) ∧ (v > 7.68)
4: (d <= 0.30) ∧ (d > 0.04)
5: (d > 0.30)

2

0: (κ <= 0.00) ∧ (d <= −0.11)
1: (κ > 0.00) ∧ (d <= −0.11)
2: (d <= 0.03) ∧ (d > −0.11) ∧ (v <= 7.50)
3: (d <= 0.03) ∧ (d > −0.11) ∧ (v > 7.50)
4: (d <= 0.29) ∧ (d > 0.03)
5: (d > 0.29)

3

0: (v <= 7.25)
1: (d <= 0.03) ∧ (v <= 7.66) ∧ (v > 7.25)
2: (d > 0.03) ∧ (v <= 7.66) ∧ (v > 7.25)
3: (δ <= 0.00) ∧ (v > 7.66)
4: (δ > 0.00) ∧ (v > 7.66)

4

0: (δ <= 0.05) ∧ (κ <= 0.00) ∧ (d <= 0.23)
1: (δ <= 0.05) ∧ (κ > 0.00) ∧ (d <= 0.23)
2: (δ <= 0.05) ∧ (d > 0.23)
3: (δ > 0.05)

5 0: (δ <= 0.04)
1: (δ > 0.04)

6 0: None

7

0: (δ <= −0.01) ∧ (v <= 7.39)
1: (δ > −0.01) ∧ (v <= 7.39)
2: (κ <= 0.02) ∧ (d <= 0.01) ∧ (v > 7.39)
3: (κ > 0.02) ∧ (d <= 0.01) ∧ (v > 7.39)
4: (d > 0.01) ∧ (v > 7.39)

Table 35: Logic program of LSTM in end-to-end visual servoing (Image-based Driving).
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Model Neuron Logic Program

CfC

0

0: (δ <= −0.03) ∧ (µ <= 0.02)
1: (δ > −0.03) ∧ (µ <= −0.00)
2: (δ > −0.03) ∧ (µ <= 0.02) ∧ (µ > −0.00)
3: (µ > 0.02) ∧ (v <= 6.79)
4: (µ > 0.02) ∧ (v > 6.79)

1

0: (µ <= −0.05)
1: (δ <= −0.03) ∧ (µ > −0.05)
2: (δ > −0.03) ∧ (κ <= 0.00) ∧ (µ > −0.05)
3: (δ > −0.03) ∧ (κ > 0.00) ∧ (µ > −0.05)

2

0: (µ <= 0.02) ∧ (d <= 0.12) ∧ (v <= 7.23)
1: (µ <= 0.02) ∧ (d <= 0.12) ∧ (v > 7.23)
2: (µ <= 0.00) ∧ (d > 0.12)
3: (µ <= 0.02) ∧ (µ > 0.00) ∧ (d > 0.12)
4: (µ > 0.02) ∧ (v <= 6.79)
5: (µ > 0.02) ∧ (v > 6.79)

3

0: (δ <= −0.04)
1: (conflict)
2: (δ > −0.04) ∧ (d <= 0.16)
3: (δ > −0.04) ∧ (d > 0.16)

4

0: (κ <= 0.00) ∧ (µ <= −0.00)
1: (κ > 0.00) ∧ (µ <= −0.00)
2: (µ <= 0.02) ∧ (µ > −0.00) ∧ (d <= 0.40)
3: (µ <= 0.02) ∧ (µ > −0.00) ∧ (d > 0.40)
4: (µ > 0.02) ∧ (v <= 6.87)
5: (µ > 0.02) ∧ (v > 6.87)

5

0: (v <= 6.41)
1: (µ <= 0.00) ∧ (v <= 7.15) ∧ (v > 6.41)
2: (µ <= 0.00) ∧ (v > 7.15)
3: (µ > 0.00) ∧ (d <= 0.51) ∧ (v > 6.41)
4: (µ > 0.00) ∧ (d > 0.51) ∧ (v > 6.41)

6

0: (δ <= −0.00)
1: (conflict)
2: (δ <= 0.04) ∧ (δ > −0.00) ∧ (v <= 7.18)
3: (δ <= 0.04) ∧ (δ > −0.00) ∧ (v > 7.18)
4: (δ <= 0.07) ∧ (δ > 0.04)
5: (δ > 0.07)

7

0: (δ <= −0.02) ∧ (v <= 7.26)
1: (δ > −0.02) ∧ (v <= 6.56)
2: (δ > −0.02) ∧ (v <= 7.26) ∧ (v > 6.56)
3: (δ <= 0.00) ∧ (v <= 7.55) ∧ (v > 7.26)
4: (δ > 0.00) ∧ (v <= 7.55) ∧ (v > 7.26)
5: (v > 7.55)

Table 36: Logic program of ODE-RNN in end-to-end visual servoing (Image-based Driving).
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Model Neuron Logic Program

ODE-RNN

0

0: (d <= −0.04) ∧ (v <= 5.48)
1: (d <= −0.04) ∧ (v <= 7.46) ∧ (v > 5.48)
2: (µ <= 0.02) ∧ (d > −0.04) ∧ (v <= 7.46)
3: (µ > 0.02) ∧ (d > −0.04) ∧ (v <= 7.46)
4: (δ <= 0.05) ∧ (v <= 7.84) ∧ (v > 7.46)
5: (δ <= 0.05) ∧ (v > 7.84)
6: (δ > 0.05) ∧ (v > 7.46)

1

0: (d <= −0.72)
1: (d > −0.72) ∧ (v <= 5.80)
2: (δ <= −0.00) ∧ (d > −0.72) ∧ (v > 5.80)
3: (δ > −0.00) ∧ (d > −0.72) ∧ (v > 5.80)

2

0: (v <= 5.00)
1: (δ <= 0.09) ∧ (v <= 6.99) ∧ (v > 5.00)
2: (δ <= 0.09) ∧ (v > 6.99)
3: (δ > 0.09) ∧ (v <= 6.98) ∧ (v > 5.00)
4: (δ > 0.09) ∧ (v > 6.98)

3

0: (d <= −0.04)
1: (d <= 0.04) ∧ (d > −0.04)
2: (µ <= −0.11) ∧ (d > 0.04)
3: (µ > −0.11) ∧ (d <= 0.92) ∧ (d > 0.04)
4: (µ > −0.11) ∧ (d > 0.92)

4

0: (µ <= 0.02) ∧ (d <= 0.60) ∧ (v <= 7.04)
1: (µ <= 0.02) ∧ (d > 0.60) ∧ (v <= 7.04)
2: (µ > 0.02) ∧ (d <= −0.43) ∧ (v <= 7.04)
3: (µ > 0.02) ∧ (d > −0.43) ∧ (v <= 7.04)
4: (v <= 7.53) ∧ (v > 7.04)
5: (d <= 0.38) ∧ (v > 7.53)
6: (d > 0.38) ∧ (v > 7.53)

5

0: (v <= 5.38)
1: (δ <= −0.03) ∧ (d <= 0.10) ∧ (v > 5.38)
2: (δ > −0.03) ∧ (d <= 0.10) ∧ (v > 5.38)
3: (δ <= −0.02) ∧ (d > 0.10) ∧ (v > 5.38)
4: (δ > −0.02) ∧ (d > 0.10) ∧ (v > 5.38)

6

0: (µ <= 0.01) ∧ (d <= 0.18)
1: (µ <= 0.01) ∧ (d <= 0.47) ∧ (d > 0.18)
2: (δ <= 0.10) ∧ (µ > 0.01) ∧ (d <= 0.47)
3: (δ > 0.10) ∧ (µ > 0.01) ∧ (d <= 0.47)
4: (d > 0.47) ∧ (v <= 6.60)
5: (µ <= −0.00) ∧ (d > 0.47) ∧ (v > 6.60)
6: (µ > −0.00) ∧ (d > 0.47) ∧ (v > 6.60)

7

0: (v <= 5.15)
1: (µ <= 0.12) ∧ (d <= −0.08) ∧ (v > 5.15)
2: (µ <= 0.12) ∧ (d > −0.08) ∧ (v > 5.15)
3: (µ > 0.12) ∧ (v > 5.15)

Table 37: Logic program of CfC in end-to-end visual servoing (Image-based Driving).
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Model Neuron Logic Program

NCP

0

0: (δ <= −0.05)
1: (δ <= 0.02) ∧ (δ > −0.05) ∧ (µ <= −0.01)
2: (δ <= 0.02) ∧ (δ > −0.05) ∧ (µ > −0.01)
3: (δ <= 0.09) ∧ (δ > 0.02) ∧ (µ <= −0.01)
4: (δ <= 0.09) ∧ (δ > 0.02) ∧ (µ > −0.01)
5: (δ > 0.09)

1 0: (µ <= 0.05)
1: (µ > 0.05)

2

0: (δ <= 0.02) ∧ (µ <= −0.03)
1: (δ > 0.02) ∧ (µ <= −0.03)
2: (δ <= −0.02) ∧ (µ > −0.03)
3: (δ > −0.02) ∧ (µ > −0.03)

3

0: (v <= 7.41)
1: (v <= 7.72) ∧ (v > 7.41)
2: (d <= −0.02) ∧ (v > 7.72)
3: (d <= 0.10) ∧ (d > −0.02) ∧ (v > 7.72)
4: (d > 0.10) ∧ (v <= 8.05) ∧ (v > 7.72)
5: (d > 0.10) ∧ (v > 8.05)

4

0: (v <= 7.45)
1: (v <= 7.78) ∧ (v > 7.45)
2: (v <= 8.08) ∧ (v > 7.78)
3: (v > 8.08)

5

0: (d <= −0.15) ∧ (v <= 7.65)
1: (d <= −0.15) ∧ (v > 7.65)
2: (µ <= 0.06) ∧ (d <= 0.04) ∧ (d > −0.15)
3: (µ <= 0.06) ∧ (d > 0.04)
4: (µ > 0.06) ∧ (d > −0.15)

6

0: (δ <= −0.03) ∧ (v <= 7.73)
1: (δ <= −0.03) ∧ (v > 7.73)
2: (δ > −0.03) ∧ (µ <= 0.07) ∧ (d <= 0.02)
3: (δ > −0.03) ∧ (µ <= 0.07) ∧ (d > 0.02)
4: (δ > −0.03) ∧ (µ > 0.07)

7 0: None

Table 38: Logic program of NCP in end-to-end visual servoing (Image-based Driving).
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