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Abstract: We focus on developing efficient and reliable policy optimization
strategies for robot learning with real-world data. In recent years, policy gradi-
ent methods have emerged as a promising paradigm for training control policies
in simulation. However, these approaches often remain too data inefficient or un-
reliable to train on real robotic hardware. In this paper we introduce a novel pol-
icy gradient-based policy optimization framework which systematically leverages
a (possibly highly simplified) first-principles model and enables learning precise
control policies with limited amounts of real-world data. Our approach 1) uses
the derivatives of the model to produce sample-efficient estimates of the policy
gradient and 2) uses the model to design a low-level tracking controller, which is
embedded in the policy class. Theoretical analysis provides insight into how the
presence of this feedback controller addresses overcomes key limitations of stand-
alone policy gradient methods, while hardware experiments with a small car and
quadruped demonstrate that our approach can learn precise control strategies re-
liably and with only minutes of real-world data. Code is available at https:
//github.com/CLeARoboticsLab/LearningWithSimpleModels.jl

Figure 1: (Left) Schematic of the proposed policy structure, the crucial element of which is a low-level sta-
bilizing controller which improves the smoothness properties of the underlying problem, improving learning.
(Middle) Still frames depicting the approximate paths taken by a car and quadruped during test-time. (Overlaid)
Top-down view of the car executing two laps of around a figure-8 before and after training.

1 Introduction

Reliable, high-performance robot decision making revolves around the robot’s ability to learn a
control policy which effectively leverages complex real-world dynamics over long time-horizons.
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This presents a challenge, as constructing a highly accurate physics-based model for the system
using first-principles is often impractical. In recent years, reinforcement learning methods built
around policy gradient estimators have emerged as a promising general paradigm for learning an
effective policy using data collected from the system. However, in current practice these approaches
are often too data-inefficient or unreliable to train with real hardware data, leading many approaches
to train on high-fidelity simulation environments [1, 2, 3]. However, there inevitably exists a gap
between simulated and physical reality, leaving room to improve policy performance in the real
world. In this paper, we demonstrate how to systematically leverage a physics-based model to yield
highly efficient and reliable policy optimization techniques capable of learning with real-world data.

Modern techniques for policy learning generally fall into two categories: model-free [4, 5, 6, 7] and
model-based [8, 9, 10, 11, 12]. Model-free approaches learn a mapping from states to inputs directly
from data. These approaches are fully general and can synthesize high-performance policies, but
are extremely data-inefficient. In contrast, model-based approaches use the collected data to fit a
predictive model to estimate how the system will behave at points not contained in the training
set. While these approaches are more data-efficient, model inaccuracies introduce bias into policy
gradient estimators [13, 14], limiting the performance of the learned policy.

However, due to the unstable nature of many robotic systems, both of these paradigms suffer from a
more fundamental challenge: minute changes to the control policy can greatly impact performance
over long time horizons. This “exploding gradients” phenomenon [15], [16], [17] leads the variance
of policy gradient algorithms to grow exponentially with the time-horizon and renders the underlying
policy learning problem ill conditioned, making gradient-based methods slow to converge [18].
Moreover, model bias also compounds rapidly over time, limiting the effectiveness of otherwise
efficient model-based approaches [13].

As shown in Fig. 1, this paper systematically exploits an approximate physics-based model and low-
level feedback control to overcome these challenges in policy learning. Concretely, the contributions
are:

• We introduce a novel framework which uses the approximate model to simultaneously
design 1) a policy gradient estimator and 2) low-level tracking controllers which we then
embed into the learned policy class. Using the model to construct the gradient estimator
removes the need to learn about the real-world dynamics from scratch, while the low-level
feedback controller prevents gradient estimation error from “exploding”.

• Theoretical analysis and illustrative examples demonstrate how we overcome exponential
dependencies in the model-bias, variance and smoothness of policy gradient estimators.

• We validate our theoretical findings with a variety of simulated and physical experiments,
ultimately demonstrating our method’s data efficiency, run-time performance, and most
importantly, ability to overcome substantial model mismatch. Overall, this paper suggests
a new holistic paradigm for rapidly fine-tuning controllers using real-world data.

2 Related Work
Broadly speaking, there are two possible sources of bias when using a model for policy gradient
estimation. The first source of error can arise if the model is used to simulate or ‘hallucinate’
trajectories for the system which are then added to the data set [13, 19, 20, 21]. While this approach
yields a larger training set, it also introduces bias as the trajectories generated by the model can
rapidly diverge from the corresponding real-world trajectory. To overcome this source of error, a
number of works [14, 22, 23] have proposed policy gradient estimators which 1) collect real-world
trajectories and 2) use the derivatives of a (possibly learned) model to propagate approximate policy
gradient information along these trajectories. We adopt this form of estimator in this work, and note
strong connections to the updates used in the Iterative Learning Control literature [24].

Evaluating the gradient along real trajectories removes the first source of error. However, inaccu-
racies in the derivatives of the model lead to a second source of error and, as we demonstrate in
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Section 5, these errors can grow exponentially over long time horizons for unstable robotic sys-
tems. Moreover, prior works have demonstrated that exploding gradients lead to a large variance
for policy gradient estimators and ill-conditioning in the underlying policy optimization problem
[15], [16], [17]. We demonstrate how low-level feedback control can overcome this second source
of error, while reducing variance and improving conditioning. While the use of hiearchical control
architectures with embedded low-level feedback has been a key ingredient in many sim-to-real rein-
forcement learning frameworks [25], [26], [1], we argue that the combination of the aforementioned
pieces opens the door for a new real-world training paradigm that fully leverages our approximate
physics-based models.

3 Problem Formulation
We assume access to a simplified, physics-based model of the environment dynamics of the form:

xt+1 = F̂ (xt, ut), (1)

where xt ∈ X ⊂ Rn is the state, ut ∈ U ⊂ Rm is the input and the (potentially nonlinear) map
F̂ : X × U → X determines how the state evolves over discrete time steps t ∈ N. To make the
modelling process and down-stream controller synthesis tractable, such models are necessarily built
on simplifying assumptions. For example, the model we use to control the RC car in Fig. 1 neglects
physical quantities such as drag and motor time-delays. Nonetheless, such models capture the basic
structure of how controller inputs will affect desired quantities (such as position) over time, and are
highly useful for designing effective control architectures.

Although many reinforcement learning frameworks model the environment as a stochastic process,
to aid in our analysis, we will assume that the real-world dynamics evolve deterministically, accord-
ing to the (possibly nonlinear) relation:

xt+1 = F (xt, ut). (2)

To control the real-world system, we will optimize over a controller architecture of the form ut =
πθ
t (xt) where πθ = {πθ

t }T−1
t=0 represents the overall policy, T < ∞ is the finite horizon for the task

we wish to solve, θ ∈ Θ ⊆ Rp is the policy parameter, and each map πθ
t : X → U is assumed to be

differentiable in both x and θ. Thus equipped, we pose the following policy optimization problem:

max
θ∈Θ

J (θ) := Ex0∼D[JT (θ;x0)] where JT (θ;x0) :=

T∑
t=0

R(xt). (3)

Here, D is the probability density of the initial state x0 and R is the (differentiable) reward function.

4 Approximating the Policy Gradient with an Imprecise Dynamics Model
In this section we demonstrate how to calculate the policy gradient by differentiating the real-world
dynamics map F along trajectories generated by the current policy. We then introduce the estimator
used in this paper, which replaces the derivatives of F with the derivatives of the first-principles
model F̂ . We will initially focus on the gradient ∇JT (θ;x0) of the reward experienced when un-
rolling the policy from a single initial conditon x0 ∈ X , and then discuss how to approximate the
total policy gradient ∇J (θ) using a batch estimator. To ease notation, for each x0 ∈ X and θ ∈ θ
we capture the resulting real-world trajectory generated by πθ via the sequence of maps defined by:

ϕθt+1(x0) = F
(
ϕθt (x0), π

θ
t (ϕ

θ
t (x0))

)
, ϕθ0(x0) = x0.

Structure of the True Policy Gradient: Fix an initial condition x0 ∈ D and policy parameter
θ ∈ Θ. We let {xt}Tt=0 and {ut}T−1

t=0 (with xt = ϕθt (x0) and ut = πθ
t (xt)) denote the correspond-

ing sequences of states and inputs generated by the policy πθ. The policy gradient captures how
changes to the controller parameters will affect the resulting trajectory and the accumulation of fu-
ture rewards. The following shorthand captures the closed-loop sensitivity of the state and input to
changes in the policy parameters: ∂xt

∂θ := ∂
∂θϕ

θ
t (x0),

∂ut

∂θ := ∂
∂θπ

θ
t (ϕ

θ
t (x0)) These terms depend on

the derivatives of the dynamics, which we denote with:

At =
∂

∂x
F (xt, ut), Bt =

∂

∂u
F (xt, ut), Kt =

∂

∂x
πθ
t (xt;x0). (4)
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Proposition 1. The policy gradient is given by the following expression:

∇JT (θ;x0) =
T∑

t=0

∇R(xt) ·
∂xt
∂θ

, where (5)

∂xt
∂θ

=

t−1∑
t′=0

Φt,t′Bt′
∂πθ

t

∂θ
, Φt,t′ :=

t−1∏
s=t′+1

Acl
t , and Acl

t = At +BtKt.

For proof of the result see the supplementary material. The first expression in (5) calculates the
gradient in terms of the sensitivities ∂xt

∂θ , while the latter expressions demonstrate how to compute
this term using the derivatives of the model and policy. In (5) the term Φt,t′Bt′ captures how a
perturbation to the policy at time t′ and state xt′ propagates through the closed-loop dynamics to
affect the future state at time t > t′. As we investigate below, when the robotic system is unstable
these terms can grow exponentially large over long time horizons, leading to the exploding gradients
phenomenon and the core algorithmic challenges we seek to overcome.

Approximating the Policy Gradient Using the Model: We approximate the policy gradient
∇θJT (θ;x0) using the approximate physics-based model F̂ in (1). Holding x0 ∈ X , θ ∈ Θ,
and the resulting real-world trajectory {xt}Tt=0, {ut}T−1

t=0 fixed as above, we denote the derivatives
of the model along this trajectory as:

Ât =
∂

∂x
F̂ (xt, ut), B̂t =

∂

∂u
F̂ (xt, ut). (6)

We can then construct an estimate for ∇JT (θ;x0) of the form:

̂∇θJT (θ;x0) =

T∑
t=0

∇Rt(xt) ·
∂̂xt
∂θ

, where (7)

∂̂xt
∂θ

=

t−1∑
t′=0

Φ̂t,t′B̂t′
∂πθ

t

∂θ
, Φ̂t,t′ :=

t−1∏
s=t′+1

Âcl
s , and Âcl

t = Ât + B̂tKt.

Remark 1. Note that this estimator can be evaluated by 1) recording the real-world trajectory which
arises when policy πθ is applied starting from initial state x0, and then 2) using the derivatives of the
model F̂ to approximate the derivatives of the real-world system along that trajectory. Effectively,
the only approximation here is of the form Φt,t′Bt′ ≈ Φ̂t,t′B̂t′ when calculating the estimate of the

system sensitivity ∂xt

∂θ ≈ ∂̂xt

∂θ . In Sections 5 and 6, we study what causes this approximation to break
down over long time horizons, and how properly-structured feedback controllers can help.

Remark 2. While the policy gradient approximation given by (7) will prove convenient for analysis,
this formula requires numerous ‘forwards passes’ to propagate derivatives forwards in time along
the trajectory. As we demonstrate in the supplementary material, in practice this approximation can
be computed more efficiently by ‘back-propagating through time’.

Batch Estimation: To approximate the gradient of the overall objective ∇J (θ), we draw N initial
conditions {xi0}Ni=1 independently from the initial state distribution D, compute each approximate

gradient ̂∇JT (θ;xi0) as in (7), and finally compute:

∇J (θ) ≈ ĝNT (θ; {xi0}Tt=0) :=
1

N

N∑
i=1

̂∇JT (θ;xi0). (8)

We use this estimator in our overall policy gradient algorithm, which is outlined in Algorithm 1.

5 Exploding Gradients: Key Challenges for Unstable Robotic Systems

We now dig deeper into the structure of the policy gradient and our model-based approximation. We
repeatedly appeal to the following scalar linear system to illustrate how key challenges arise:

Running Example: Consider the case with true and modeled dynamics given respectively by:

xt+1 = F (xt, ut) = axt + but and xt+1 = F̂ (xt, ut) = âxt + b̂ut, (9)
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Algorithm 1 Policy Learning with Approximate Physical Models
1: Initialize Time horizon T ∈ N, number of samples per update N ∈ N, number of iterations
K ∈ N, step sizes {αk}N−1

k=0 and initial policy parameters θ1 ∈ Θ
2: for iterations k = 1, 2, . . . ,K do
3: Sample N initial conditions {xi0}Ni=1 ∼ DN

4: for i = 1, 2, . . . , N do
5: Unroll xi = {ϕθkt (xi0)}Tt=0 on (2) with πθk

t

6: Estimate ĝNT (θk) using (8) and trajectories {xi}Ni=1

7: Update θk+1 = θk + αkĝ
N
T (θ)

where a, â, b, b̂ > 0 and xt, ut ∈ R. Suppose we optimize over policies of the form ut = πθ
t (xt) =

ūt where θ = (ū0, ū1, . . . , ūT−1) ∈ RT are the policy parameters. In this case, the policy param-
eters {ūt}T−1

t=0 specify a sequence of open-loop control inputs applied to the system. Retaining the
conventions developed above, along every choice of {ūt}T−1

t=0 and the resulting trajectory {xt}Tt=0

we have At = a, Bt = b, Ât = â, B̂t = b̂ and Kt = 0, and thus we have Φt,t′ = at−t′−1 and
Φ̂t,t′ = ât−t′−1. When a, â > 1, the system (and model) are passively unstable [27, Chapter 5], and
small changes to the policy compound over time, as captured by and ∥Φt,t′∥ and ∥Φ̂t,t′∥ growing
exponentially with the difference t− t′, along with the formula for the gradients (5).

5.1 Exploding Model-Bias

Recall that the aforementioned estimator for ∇JT (θ;x0) only introduces error in the term ∂xt

∂θ ≈ ∂̂xt

∂θ

and in particular Φt,t′Bt′ ≈ Φ̂t,t′B̂t′ along the resulting trajectory. We will seek to understand how
the point-wise errors in the derivatives of the model ∆Acl

t := Âcl
t − Acl

t and ∆Bt := B̂t − Bt

propagate over time. Towards this end we manipulate the following difference:

Φ̂t,t′B̂t′ − Φt,t′Bt′ = Φt,t′B̂t′ +∆Φt,t′B̂t′ − Φt,t′Bt′ = Φt,t′∆Bt′ +∆Φt,t′B̂t′ (10)

= Φt,t′∆Bt′ +
( t−1∑
s=t′+1

Φt,s∆A
cl
s Φ̂s−1,t′

)
B̂t′ ,

The last equality in (10) provides a clear picture of how inaccuracies in the derivatives of the model
are propagated over time. For example, when approximating Φ̂t,t′B̂t,t′ ≈ Φt,t′Bt′ the error ∆Bt′ is
magnified by Φt,t′ , while the error ∆Acl

t′+1 is magnified by Φt,t′+1.

Running Example: Continuing with the scalar example, in this case we have ∆Bt = b̂ − b and
∆Acl

t = â−a. Moreover, using the preceding calculations, we have Φ̂t,t′B̂t′ −Φt,t′Bt′ = at−t′(b̂−
b)+

∑t−1
s=t′+1 a

t−s−1âs−t′−1b(â−a). Thus, when a, â > 1 and the system is unstable, the errors in
derivatives of the model are magnified exponentially over long time horizons when computing the

sensitivity estimate ∂xt

∂θ ≈ ∂̂xt

∂θ and ultimately the gradient estimate ∇JT (θ;x0) ≈ ̂∇JT (θ;x0).

5.2 Exploding Variance

We next illustrate how unstable dynamics can lead our batch estimator ĝNT to explode over long time
horizons T unless a large number of samples N are used.

Running Example: Consider the case where r(xt) = − 1
2∥xt∥

2
2 and the initial state distribution is

D uniform over the interval [−1, 1]. Consider the case where we apply θ = (ū1, . . . , ūT−1) =
(0, . . . , 0) so that no control effort is applied. In this case, for every initial condition x0, the
resulting state trajectory is given by xt = atx0, and thus our estimate for the gradient is
∇JT (θ;x0) =

∑T−1
t=0 (atx0) ·

∑t−1
t′=0 â

t−tb. Moreover, by inspection we see that the average
of the estimator is E[ĝNT (θ; {x0}Ni=1)] = E

[∑N
i=1 ĴT (θ;x0)] = 0 and thus the variance of

the estimator is 1
NE[∥ĝNT (θ; {x0}Ni=1) − E

[∑N
i=1 ĴT (θ;x0)]∥2] = 1

NE[∥ĝNT (θ; {x0}Ni=1)∥2] =
1
N ∥

∑T−1
t=0 (atx0) ·

∑t−1
t′=0 â

t−t′b∥2, a quantity which grows exponentially with the horizon T > 0.
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5.3 Rapidly Fluctuating Gradients

Let f : Rq → R be a potentially non-convex and twice differentiable objective, such as the ones
considered in this paper. In this general setting, well-established results for gradient-based methods
characterize the rate of convergence to approximate stationary points of the underlying objective,
namely, points z ∈ Rq such that ∥∇f(z)∥2 < ϵ for some desired tolerance ϵ > 0. A key quantity
which controls this rate is the smoothness of the underlying objective, which is typically character-
ized by assuming the existence of a constant L > 0 such that ∥∇f(z1)−∇f(z2)∥ < L∥z1−z2∥ for
each z1, z2 ∈ Rq . When the constant L is very large, the gradient can fluctuate rapidly, and small
step-sizes may be required to maintain the stability of gradient-based methods [18], slowing the rate
of convergence for these approaches. Many analyses control these fluctuations using the Hessian of
the objective by setting L := supz∈Rq ∥∇2F (z)∥i,2, where ∥ · ∥i,2 is the induced 2-norm.

Below, our main theoretical results will bound the magnitude of ∇2J(θ), characterizing the smooth-
ness of the underlying policy optimization problem and illustrating the benefits of embedded low-
level controllers. We demonstrate how to derive an expression for the Hessian in the Appendix, but
provide here a concrete illustration of how it can grow exponentially for unstable systems:

Running Example: Consider the case where the quadratic reward r(xt) = − 1
2∥xt∥

2
2 is applied

to our example scalar system. For every initial condition x0 and choice of policy parameters
θ = (ū1, . . . , ūT−1) by inspection we have xt = atx0 +

∑t
s=0 a

t−sbūs, so that the overall ob-
jective is concave and given by J(x0; θ) =

∑T
t=0

∑t−1
s=0 −∥atx0 +

∑t
s=0 a

t−sbūs∥. The Hes-
sian of the objective can be calculated directly; in particular the diagonal entries are given by
∂2

∂ū2
t

=
∑T

s=t+1 a
s−tb. This demonstrates that ∥∇2J(x0, θ)∥ ≥ | ∂2

∂ū2
t
|2 grows exponentially in

time horizon. From the discussion above, this implies that policy gradient methods will be very
slow to converge to optimal policies.

6 Embedding Low-Level Feedback into the Policy Class

We now demonstrate how we can overcome the these pathologies by using the model to design
stabilizing low-level feedback controllers which are then embedded into the policy class.

Running Example: Let us again consider the simple scalar system and model we have studied
thus far, but now suppose we use the model to design a proportional tracking controller of the form
ut = k(x̄t − xt), where {x̄t}Tt=0 represents a desired trajectory we wish to track and k > 0 is
the feedback gain. We then embed this controller into the overall policy class by choosing the
parameters to be θ = (x̄0, x̄1, . . . , x̄t) so that ut = πθ

t (xt) = k(x̄t − xt). Here, the parameters
of the control policy specify the desired trajectory the low-level controller is tasked with tracking.
In this case, along each trajectory of the system we will now have Acl

t = a − bk, Âcl
t = â − b̂k,

Bt = b and B̂t = b. If the gain k > 0 is chosen such that |a − bk| < 1 and |â − b̂k| < 1, then the
transition matrices Φ̂t,t′ = (Âcl

t )
t−t′−1 and Φt,t′ = (Acl

t )
t−t′−1 will both decay exponentially with

the difference t− t′. Thus, by optimizing through a low-level tracking controller designed with the
model we have reduced the sensitivity of trajectories to changes in the controller parameters.

Remark 3. In practice, we may select a control architecture as in Fig. 1 where our parameters are
those of a neural network which corrects a desired trajectory and low-level controller. The natural
generalization of the damping behavior displayed by the proportional controller above is that the
low-level controller is incrementally stabilizing, which means that for every initial condition x0 and
θ ∈ Θ we will have ∥Φt,t′∥ ≤ Mαt−t′ . There are many systematic techniques for synthesizing
incrementally stabilizing controllers using a dynamical model from the control literature [27, 28].

We are now ready to state our main result, which demonstrates the benefits using the model to design
the policy gradient estimator and embedded feedback controller:

Theorem 1. Assume that 1) the first and second partial derivatives ofRt, πθ
t , F and F̂ are bounded,

2) there exists a constant ∆ > 0 such that for each x0 ∈ X and u ∈ U the error in the model
derivatives are bounded by max{∥ ∂

∂xF (x, u)−
∂
∂x F̂ (x, u)∥, ∥

∂
∂uF (x, u)−

∂
∂u F̂ (x, u)∥} < ∆ and
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3) the policy class {πθ
t }θ∈Θ has been designed such that exists constants M,α > 0 such that for

each x0 ∈ X , θ ∈ Θ, and t > t′ we have: max{∥Φt,t′∥, ∥Φ̂t,t′∥} < Mαt′−t. Letting ḡT (θ) =
E[ĝNT (θ; {xi0}Ni=1)] denote the mean of our gradient estimator, there exist scalars C,W,K > 0 such
that the bias and variance of our policy gradient estimator are bounded as follows:

∥∇JT (θ)− ḡT (θ)∥ ≤

CT 2αT∆ if α > 1

CT 2∆ if α = 1

CT∆ if α < 1,

E
[
∥ĝNT (θ)− ḡT (θ)∥2

]
≤


WT4α2T

N
if α > 1

WT4

N
if α = 1

WT2

N
if α < 1.

Moreover, the smoothness of the underlying policy optimization problem is characterized via:

∥∇2JT (θ)∥2 ≤

KT 4α3T if α > 1

KT 4 if α = 1

KT if α < 1.

Proof of the result can be found in the supplementary material. The result formalizes the intuition
built with our example: when the system is passively unstable (and we can have α > 1), the core al-
gorithmic challenges introduced above can arise. However, embedding a (incrementally stabilizing)
low-level tracking controller into the policy class can overcome these pathologies (α ≤ 1). Note
that the condition max{∥Φt,t′∥, ∥Φ̂t,t′∥} < Mαt′−t in the statement of Theorem 1 requires that the
stabilizing controller (which has been designed for the model) is stabilizing the real-world system.
This is a reasonable condition, as under mild conditions stabilizing controllers are known to be ro-
bust to moderate amounts of model uncertainty [27]. However, it is an interesting matter for future
work to characterize the amount of model-mismatch our approach can handle without model-bias
exploding over long time horizons.

7 Experimental Validation

For each experiment we use a policy structure per Fig. 1 which embeds low-level feedback that aims
to stably track reference trajectories; a formal definition of this structure is given in Appendix B.1.

NVIDIA JetRacer: We begin by hardware-testing our approach on an NVIDIA JetRacer 1/10th

scale high-speed car using the following simplified dynamics model:xt+1

yt+1

vt+1

ϕt+1

 =

xt + vt cos (ϕt)∆t
yt + vt sin (ϕt)∆t

vt + at∆t
ϕt + vtωt∆t

 , (11)

where ∆t > 0 is the discrete time-step, (xt, yt, ϕt) ∈ SE(2) are the Cartesian coordinates and
heading angle of the car, vt > 0 is the forward velocity of the car in its local frame, and (at, ωt) ∈
U = [0, 1] × [−1, 1] are the control inputs where at is the throttle input percentage and ωt is the
steering position of the wheels. We note that this model makes several important simplifications:
(i) drag is significant on the actual car, but is missing from (11); (ii) proper scaling of the control
inputs (at, ωt) has been omitted; (iii) the actual car has noticeable steering bias, and does not follow
a straight line when ωt = 0; and (iv) physical quantities such as time-delays in the motor are ignored.

The task consists of tracking a figure-8 made up of two circles, 3 meters in diameter, with a nominal
lap time of 5.5 s. We implement a backstepping-based tracking controller [27, Ch. 6] for low-
level control. As shown in Fig. 1 this controller alone does not ensure accurate tracking, due to
inaccuracies in the model used to design it. We train a policy with 2.2min of real world data over 8
iterations, each 16.5 s long and see a clear improvement in tracking performance (Fig. 1).

Next, we use a high fidelity simulator of the car to benchmark our approach against state-of-the-art
reinforcement learning algorithms in Figure 2. All methods optimize over the feedback control ar-
chitecture described above and therefore were trained using the same action space as our approach.
We compare to the model-based approaches MBPO [13] and SVG [22] and the model-free ap-
proaches SAC [8] and PPO [9]. Each of these approaches learns about the dynamics of the system
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Figure 2: (Left) Training curves for different algorithms applied to a high-fidelity simulation model of an RC
car. (Right) One lap of the quadruped around the figure-8 task with corrected waypoints from a neural network.

from scratch; thus, it is unsurprising that our approach converges more rapidly as it exploits known
physics represented by the model. The use of feedback enables us to take this approach and ob-
tain a high-performing controller, even though the model we use is highly inaccurate, overcoming
model-bias. Additional details for the benchmark experiment can be found in Appendix B.

Go1 Quadrupedal Robot: We also replicate the figure-8 tracking experiment on a Unitree Go1 Edu
quadrupedal robot to demonstrate the effectiveness of our approach when using a highly simplified
model. The Go1 is an 18-degree-of-freedom system which we control in a hierarchical manner. At
the lowest level, a joint control module generates individual motor torques to actuate the robot’s
limbs to desired angles and velocities. At the next layer, a kinematic solver converts desired foot
placements to joint angles. A gait generation module determines trajectories of foot placements
from high-level linear and angular velocity commands issued to the robot. We provide these high-
level commands to the Go1 via Unitree’s ROS interface [29], as outputs from a backstepping-based
controller that was formulated using the following simplified dynamical model of the system:xt+1

yt+1

ϕt+1

 =

xt + vt cos (ϕt)∆t
yt + vt sin (ϕt)∆t

ϕt + ωt∆t

 , (12)

where (xt, yt) are the Cartesian coordinates of the base of the robot on the ground plane and ϕt is
its heading. The two inputs to the model are the desired forward velocity vt and the desired turning
rate wt. Note that this is an extremely simplified model for the system, with a dynamic structure
similar to the model for the car used in the previous example. Setting a nominal lap time of 37.7 s,
we trained the policy using 5.9min of real-world data over 7 iterations, each 50.9 s long. Even
though we used a highly simplified model for the dynamics, we again see a clear improvement in
performance after training (cf. Fig. 2).

8 Limitations

Our approach successfully learns high-performance control policies using limited data acquired on
physical systems. A key enabler to this end is the embedding of stabilizing low-level feedback
within the policy class and the use of an a priori physics-based model. However, there are several
key limitations. First, for situations such as contact-rich manipulation, it may not be clear how to
design a controller with the required (incremental) stability property or that can incorporate neces-
sary perceptual observations. Future work may address this limitations by incorporating techniques
for learning stabilizing controllers (e.g., the Lyapunov methods of [30, 31]) or by working with la-
tent state representations learned from vision modules. Additionally, while our method is highly
sample-efficient, it does not take advantage of many established techniques from the reinforcement
learning literature, such as value function learning and off policy training, leaving many directions
for algorithmic advances. One particularly interesting direction is to combine the proposed approach
with emerging model-based reward shaping techniques [32, 33].
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A Proofs

This appendix contains proofs of claims that were omitted in the main document and several support-
ive Lemmas. Section A.1 provides the derivation for Proposition 1, Section A.2 states and formally
derives the reverse-time representation of the gradient, while Section A.3 builds on this calculation
to derive a representation for the second variation, which is subsequently use to bound the Hessian.
Finally, Section A.5 contains the auxiliary lemmas.

A.1 Proof of Proposition 1

The expression for ∇JT (x0; θ) follows directly from the chain rule. To obtain the expression for
∂xt

∂θ we differentiate the dynamics xt+1 = F (xt, ut) to yield:

∂xt+1

∂θ
=

∂

∂x
F (xt, ut) ·

∂xt
∂θ

+
∂

∂u
F (xt, ut) ·

∂ut
∂θ

= Acl
t

∂xt
∂θ

+Bt
∂πθ

t

∂θ
,

where the second equality is obtained by noting that:

∂ut
∂θ

=
∂πθ

t

∂θ
+
∂πθ

t

∂x
· ∂xt
∂θ

=
∂πθ

t

∂θ
+Kt ·

∂xt
∂θ

.

The desired expression is then obtained by unrolling the recursion and noting that ∂xt

∂θ = 0.

A.2 Efficient Backwards Pass for Policy Gradient Computation

While the form for the policy gradient (5) and our model-based approximation in (7) will prove
convenient for analysis, computing the many approximate sensitivity terms ∂xt

∂θ —and in particular
the Φt,t′ terms—is highly complex and requires many forwards passes along the trajectory. In
practice, we can more efficiently compute the approximate gradient as follows:

Proposition 2. For each x0 ∈ X and θ ∈ Θ the policy gradient can be calculated via:

∇JT (θ;x0) =
T−1∑
t=0

(
pt+1Bt +∇Rt(xt)

)
· ∂π

θ
t

∂θ
, where (13)

pt = pt+1(Ât + B̂tKt) +∇Rt(xt) and pT = ∇RT (xt). (14)

Here, the recursion with the variables pt ∈ R1×n performs ‘back propagation through time’ along
the real-world trajectory using the derivatives of the model.

Proof. As before, let {xt}Tt=0 and {ut}T−1
t=0 denote the state trajectory that results from applying the

policy πθ from x0.

Permitting a slight abuse of notation, we can re-write the cost by moving the dynamics constraints
into the cost and weighting them with Lagrange multipliers:

J(θ;x0) =

T−1∑
i=0

Rt(xt) + pt+1

(
xt+1 − F (xt, π

t
θ(xt))

)
(15)

Define the Hamiltonian

Ht(xt, pt+1, θ) = pt+1F (xt, π
t
θ(xt)) +Rt(xt), (16)

and note that we may then re-write the cost as:

J(θ;x0) = RT (xT ) + ⟨pT , xT ⟩+ ⟨p0, x0⟩+
T−1∑
t=0

ptxt −Ht(xt, pt+1, θ) (17)
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To reduce clutter below we will frequently omit the arguments from Ht, since it is clear that the
map is evaluated at (xt, pt+1, θ). Let δθ ∈ Rp be a variation on the policy parameters and let
δxt =

∂ϕt
θ

∂θ δθ denote the corresponding first variation of the state. To first order, the change in the
cost corresponding to these variations is:

δJ |θ(δθ) = ⟨∇QT (xT ) + pT , δxT ⟩+
T−1∑
t=0

⟨pt −∇xHt, δxt⟩ − ⟨∇θHt, δθ⟩. (18)

To simplify the expression, let us make the following choices for the multipliers:

pT = ∇RT (xT ) (19)

p⊤t = ∇xHt(xt, pt+1, θ) (20)

= p⊤t+1

∂

∂x
F (x, πt

θ(x)) +∇Rt(xt) (21)

= p⊤t+1

∂

∂x
At +∇Rt(xt) (22)

where we have applied the short-hand from developed in Section 3 for the particular task. Plugging
this choice for the multipliers into (18) causes the δxt terms to vanish and yields:

δJ |θ(δθ) =
t−1∑
t=0

⟨∇θHt, δθ⟩ (23)

= ⟨p⊤t+1

∂

∂u
F (x, πt

θ)
∂πt

θ

∂θ
+∇Rt(xt)

∂πt
θ

∂θ
, δθ⟩ (24)

=

T−1∑
t=0

⟨p⊤t+1Bt + rt,
∂πt

θ

∂θ
δθ⟩ (25)

Since this calculation holds for arbitrary δθ this demonstrates that the gradient of the objective is
given by:

∇θJ(θ, x0) =

T−1∑
t=0

⟨p⊤t+1Bt + rt,
∂πt

θ

∂θ
⟩. (26)

A.3 Calculating the Second Variation

To calculate the Hessian of the objective we continue the Lagrange multiplier approach discussed
above. Now let δ2xt denote the second order variation in the state with respect to the perturbation
δθ. By collecting second order terms in (17) the attendant second-order variation to the cost is given
by:

δ2J |θ(δθ) = ⟨δx⊤t ∇2RT (xT ), δxt⟩+ ⟨∇RT (xT ) + pT , δ
2xT ⟩ (27)

+

T−1∑
t=0

(
⟨pt −∇xHt, δ

2xt⟩+ ⟨δx⊤t ∇2
xxHt(xt), δxt⟩

+ 2⟨δxt∇2
xθHt, δθ⟩+ ⟨δθ⊤∇2

θθHt, δθ⟩
)

(28)

By using the choice of costate introduced above, this time the second order state variations δ2xt
vanish from this expression so that we arrive at:

δ2J |θ(δθ) = +

T−1∑
t=0

⟨δx⊤t ∇2
xxHt(xt), δxt⟩+ 2⟨δxt∇2

xθHt, δθ⟩+ ⟨δθ⊤∇2
θθHt, δθ⟩. (29)
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By unravelling this expression, we observe that:

∇2JT (θ;x0) =
(∂xT
∂θ

)⊤ · ∇2RT (xT ) ·
∂xT
∂θ

+

T−1∑
t=0

(∂xt
∂θ

)⊤ · ∂
2

∂x2
Ht(xt, pt, θ) ·

∂xt
∂θ

+ 2

T−1∑
t=0

(∂xt
∂θ

)⊤ · ∂2

∂x∂θ
Ht(xt, pt+1, θ)

+

T−1∑
t=0

∂2

∂θ2
Ht(xt, pt+1, θ),

which, for the purposes of our analysis, we note does not depend on second variations of the state.

A.4 Restatement of Main Result and Proof

Theorem 1. Assume that the first and second partial derivatives of Rt, πθ
t , F and F̂ are bounded.

Further assume that there exists a constant ∆ > 0 such that for each x0 ∈ X and u ∈ U the error
in the model derivatives are bounded by max{∥ ∂

∂xF (x, u)∥, ∥
∂
∂uF (x, u)∥} < ∆. Finally, assume

that the policy class ϕθt has been designed such that exists constants M,α > 0 such that for each
x0 ∈ X , θ ∈ Θ, and t > t′ we have: max{∥Φt,t′∥, ∥Φ̂t,t′∥} < Mαt′−t. Then we may bound the
bias and variance of our policy gradient estimator as follows:

∥∇JT (θ)− ḡT (θ)∥ ≤

CT 2αT∆ if α > 1

CT 2∆ if α = 1

CT∆ if α < 1,

E
[
∥ĝNT (θ)− ḡT (θ)∥2

]
≤


WT4α2T

N
if α > 1

WT4

N
if α = 1

WT2

N
if α < 1.

Moreover, the smoothness of the underlying policy optimization problem is characterized via:

∥∇2JT (θ)∥2 ≤

KT 4α3T if α > 1

KT 4 if α = 1

KT if α < 1.

Proof. We first bound the bias of the gradient:

∥∇JT (θ)− ḡT (θ)∥ = ∥E[∇JT (θ;x0)− ĝT (θ;x0)]∥
≤ E[∥∇JT (θ;x0)− ĝT (θ;x0)∥]
≤ sup ∥∇JT (θ;x0)− ĝT (θ;x0)∥,

where the preceding expectations are over x0 ∼ D. The desired bound on the bias directly follows
by applying the bound on gradient errors from Lemma 2 below.

Next, to bound the variance estimate note that:

E[∥ĝNT (θ)− ḡT (θ)∥2] = 1
N2

∑N
i=1 E[∥ĝT (θ;x0)− ḡT (θ)∥2]

≤ 1
N sup ∥ĝT (θ;x0)− ḡT (θ)∥2

≤ 4
N sup ∥ĝT (θ;x0)∥2,

where the first expectation is over (xi0)
N
i=1 ∼ DN , the second is with respect (x0) ∼ D. The desired

bound on the variance follows via a direct application of Lemma 1 which provides a uniform upper-
bound on the gradient estimates.

Similar to before we have:

∥∇2JT (θ)∥ ≤ E(x0)∼D[∥∇2JT (θ;x0)∥]
≤ sup

(x0)∈D

∥∇2JT (θ;x0)∥.

The desired bound follows from Lemma 3, which uniformly bounds the task-specific Hessians.
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A.5 Supportive Lemmas

Lemma 1. Let the Assumptions of Theorem 1 hold. Then there exists β > 0 independent of the
parameters T ∈ N, M and α ∈ R such that for each x0 ∈ D and θ ∈ Θ we have:

∥∇θJT (θ;x0)∥ ≤

βT 2αT if α > 1

βT 2 if α = 1

βT if α < 1.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first and
second partial derivatives of Rt,πθ

t , F and F̂ . Fix a specific task x0 and set of policy parameters θ
and let At, Bt,Kt be defined along the corresponding trajectory as usual.

Recall from Section 3 that

∇JT (θ;x0) =
T−1∑
t=0

(
pt+1Bt +∇R(xt)

)
· ∂π

θ
t

∂θ
,

where the co-state pt ∈ R1×n is given by:

pt =

T−1∑
s=t+1

∇R(xt) · Φs,t,

by inspection. Thus, we may upper-bound the growth of the co-state as follows:

∥pt∥ ≤ LMαT−t +

T−1∑
s=t+1

(L+ L2)Mαs−t . (30)

By carrying out the summation, we observe that there exists C1 > 0 sufficiently large such that

∥pt∥ ≤


C1Tα

T if α > 1

C1T if α = 1

C1 if α < 1,

(31)

where we have used the fact that
∑T−1

s=t+1Mαs−t < M 1
1−α for the third case. We can bound the

overall gradient as follows:

∥∇JT (θ;x0)∥ =

T−1∑
t=0

L
(
L∥pt+1∥+ L

)
, (32)

which when combined with the bound on the costate above demonstrates the desired result for some
constant β > 0 sufficiently large to cover all choices of x0.

Lemma 2. Let the Assumptions of Theorem 1 hold. Then there exists C > 0 independent of T ∈ N,
M,∆A,∆B > 0 and α > 0such that for each x0 ∈ D and θ ∈ Θ we have:

∥∇θJT (θ;x0)− ĝT (θ;x0)∥ ≤


CT 3αT∆ if α > 1

CT 3∆ if α = 1

CT 2∆ if α < 1,

where ∆ = min{∆A,∆B}.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first and
second partial derivatives of Rt, πθ

t , F and F̂ . Fix a specific task x0 and set of policy parameters θ
and let At, Bt,Kt as usual.
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Using equations (7) and (10) we obtain:

∥∇JT (θ;x0)− ĝT (θ, x0)∥ = ∥
T∑

t=1

∇R(xt) ·
t∑

t′=0

(Φt,t′Bt′ − Φ̂t,t′B̂t′)∥

≤
T∑

t=1

∥∇R(xt)∥ ·
t∑

t′=0

∥Φt,t′∆Bt′ +
( t−1∑
s=t′+1

Φt,s∆A
cl
s Φ̂s−1,t′

)
B̂t′∥

≤
T∑

t=1

L

t∑
t′=0

(
Mαt−t′∆+

( t−1∑
s=t′+1

Mαt−s∆Mαs−t′
)
L
)
.

Note that the preceding analysis holds for any choice of θ and x0. Thus, noting that

t−1∑
s=t′+1

Mαt−s∆Mαs−t′ < M2 1

1− α
∆

in the case where α < 1, leveraging the preceding inequality we can easily conclude that there exists
C > 0 sufficiently large such that for each θ and x0 we have:

∥∇θJT (θ;x0)− ĝT (θ;x0)∥ ≤


CT 3αT∆ if α > 1

CT 3∆ if α = 1

CT 2∆ if α < 1,

which demonstrates the desired result.

Lemma 3. Let the Assumptions of Theorem 1 hold. Then there exists K > 0 independent of T ∈ N,
M and α ∈ R such that for each x0 ∈ D and θ ∈ Θ we have:

∥∇2
θJT (θ;x0)∥ ≤


KT 4α3T if α > 1

KT 4 if α = 0

KT if α < 1.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first and
second partial derivatives of Rt, πθ

t , F and F̂ . Fix a specific x0 and set of policy parameters θ.
Recall from that the Hessian can be calculated as follows:

∇2JT (θ;x0) =
(∂xT
∂θ

)⊤ · ∇2RT (xT ) ·
∂xT
∂θ

+

T−1∑
t=0

(∂xt
∂θ

)⊤ · ∂
2

∂x2
Ht(xt, pt, θ) ·

∂xt
∂θ

+ 2

T−1∑
t=0

(∂xt
∂θ

)⊤ · ∂2

∂x∂θ
Ht(xt, pt+1, θ)

+

T−1∑
t=0

∂2

∂θ2
Ht(xt, pt+1, θ).

Using the assumptions of the theorem, we observe that there exists a constant C1 > 0 sufficiently
large such that

max{ ∂
2

∂x2
Ht(xt, pt, θ),

∂2

∂x∂θ
Ht(xt, pt+1, θ),

∂2

∂x∂θ
Ht(xt, pt+1, θ)} ≤ C1(∥pt+1∥+ 1) (33)

and

∥∇2JT (θ;x0)∥ = L∥∂xT
∂θ

∥2 +
T−1∑
t=0

C1(∥pt+1∥+ 1)
[
∥∂xT
∂θ

∥2 + ∥∂xt
∂θ

∥+ 1
]

(34)

holds for all choices of x0 and θ.
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Using our preceding analysis, we can bound the derivative as the state trajectory as follows:

∥∂xt
∂θ

∥ = ∥
t−1∑
t′=0

Φt,t′Bt′
∂πθ

t

∂θ
∥

≤
t−1∑
t′=0

L2Mαt−t′

This demonstrates that there exists C2 > 0 sufficiently large such that:

∥∂xt
∂θ

∥ ≤


C2Tα

T if α > 1

C2T if α = 1

C2 if α < 1,

(35)

where in the case where α < 1 we have used the fact that
∑t−1

t′=0Mαt−t′ < M 1
1−α . Combining the

previous bounds (33), (31) and (34) then demonstrates the desired result.

B Additional Experiments and Details

Here, we provide additional simulation experiments and details for experiments presented in the
main paper.

B.1 Policy Structure for Experiments

Per Section 6, for each experiment, we construct our policy (Fig. 1) around a low-level controller
µ : X × X × Rk → U , which produces control inputs ut = µ(xt, x

des
t , Gt) to stably track ref-

erence trajectories {xdes
t }Tt=0 with controller gains Gt ∈ Rk. A task ψ : R → X produces the

reference trajectory xdes
t = ψ(t), however tracking is poor due to mismatch in dynamic model-

ing when forming the controller. To this end, a neural network NNθ : Rp × X → Rk × Rn

with parameters θ ∈ Θ generates corrections to the controller gains and to the reference trajec-
tory (∆Gt,∆x

des
t ) = (NN1

θ (ξ(t), xt), NN
2
θ (ξ(t), xt)) = NNθ(ξ(t), xt), where ξ : R → Rp

encodes task objectives. Our ultimate policy class is of the form πθ(t, xt; Ḡ) = µ(xt, ψ(t) +
NN2

θ (ξ(t), xt), Ḡ+NN1
θ (ξ(t), xt)) where Ḡ is a nominal set of feedback gains. Unless otherwise

specified, the neural network is a 64 × 64 multilayer perceptron with tanh(·) activations. For each
of the benchmarks in Appendices B.4 to B.6, all methods use the same low-level feedback con-
troller (as described in their respective sections) and the policy structure as described in this section.
Therefore, all methods were trained using the same action space.

B.2 The Benefit of Low-Level Feedback

In this experiment, we compare the policy class of Fig. 1 against a policy class in which a neural
network directly determines open-loop control inputs (as in Section 5, omitting a low-level stabiliz-
ing controller). We use the double pendulum model from [34], and the task requires moving the end
effector to a desired location, using a reward function based on Euclidean distance. The following
parameters were used for training: Random seeds: 64, Episodes: 50, Episode length: 300, Policy
calls per episode: 30, Epochs: 50, Batch size: 5. First experiment: We provide the true dynam-
ics to both approaches to observe the variance and conditioning, independent of model-mismatch.
Training curves for the best learning rate for each approach are depicted in Fig. 3a, which supports
the our main theoretical findings. Second Experiment: Next we feed Algorithm 1 an approximate
model that contains pendulum masses and arm lengths that are 70% and 90% of the actual values, re-
spectively. As shown in Fig. 3b, the unstable dynamics lead to significant model bias which limited
the asymptotic performance of the naive controller without embedded feedback controller.

B.3 NVIDIA JetRacer Actor Network Outputs

We now examine neural network outputs during a single execution of the figure-eight task for the
NVIDIA JetRacer hardware experiment, depicted in Fig. 4. We see that the neural network issues
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(a) Without model mismatch (b) With model mismatch

Figure 3: Training curves for the double pendulum experiment. Embedding low-level feedback results in better
performance both with and without model mismatch.

Figure 4: One lap of the car around the figure-8 task before/after training and neural network outputs.

corrections on the outside of the track, which is reasonable considering the untrained car was track-
ing the inside of the track. We note the following controller gains adjustments from the neural
network: (i) an overall negative value selected for the feedforward steering gain ∆Kω counteracts
the car’s inherent steering bias in the positive steering direction; (ii) lower values of forward veloc-
ity gain ∆Kv were selected when crossing the origin, allowing the car to more closely track at this
critical point; and (iii) elevated values of ∆Kv are selected to speed up the car for the rest of the
track, increasing reward.

B.4 Parameters for Simulated Car Benchmarks

Here, we report the details for the simulated car benchmark reported in Figure 2 in the main doc-
ument. For each algorithm the episode length is 300 steps of the environment, and the simulation
step was 0.1 seconds. For each method, a total of 10 random seeds was run and the actor network
was a 64× 64 feedforward network defining the splines tracked by the low-level controller. Further
details for each tested method are:

Our Method: Learning rate: 0.1, Episodes per iteration: 5. MBPO: Dynamics model: 2 layer
feedforward tanh network (256× 256), Models in ensemble: 5, Learning rate: 1× 10−3, Episodes
per iteration: 10, Critic Network: 2 layer feedforward tanh network (256 × 256). SVG: Dynamics
model: 2 layer feedforward tanh network (256 × 256), Learning rate: 2.5 × 10−3, Episodes per
iteration: 20 , Critic Network: 2 layer feedforward tanh network (256 × 256). PPO: Episodes per
iteration: 25, Learning rate: 1×10−5, Critic Network: 2 layer feedforward tanh network (256×256).
SAC: Episodes per iteration: 5, Learning rate: 1× 10−5, Critic Network: 2 layer feedforward tanh
network (256× 256).
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B.5 Cartpole Simulation Benchmark

In this benchmark presented in Figure 5, we attempt to track a desired end effector position for
the classic simulated cart-pole environment. In particular, we use a linearizing controller [27] to
approximately track desired positions for the end effector. For each algorithm the episode length
was 100, and the simulation step was 0.1 seconds. For each method, a total of 10 random seeds
were run and the actor network was a 64 × 64 feed-forward tanh network defining desired spline
parameters for the desired trajectory tracked by the low-level controller.

Our Method: Learning rate: 0.05, Episodes per iteration: 5, Simplified Model: constructed by
decreasing the mass and friction parameters of the true model by 50 percent. MBPO: Dynamics
model: 2 layer feedforward tanh network (256× 256), Models in ensemble: 5, Learning rate: 2.5×
10−3, Episodes per iteration: 10, Critic Network: 2 layer feedforward tanh network (256 × 256).
SVG: Dynamics model: 2 layer feedforward tanh network (256 × 256), Learning rate: 1 × 10−3,
Episodes per iteration: 20 , Critic Network: 2 layer feedforward tanh network (256 × 256). PPO:
Episodes per iteration: 25, Learning rate: 4 × 10−5, Critic Network: 2 layer feedforward tanh
network (256 × 256). SAC: Episodes per iteration: 5, Learning rate: 5 × 10−5, Critic Network: 2
layer feedforward tanh network (256× 256).

Figure 5: Training curves for different algorithms applied to the cart-pole environment.

B.6 Quadrotor Benchmark

Next we conduct a simulation benchmark using the quadrotor dynamics model from [35] and present
the results in Figure 2. The simulator timestep is 0.1s and each episode is 400 timesteps. The task is
to follow a figure-8 pattern in the air. A total of 10 random seeds were run for each method, and for
each algorithm the actor network was a 128 × 128 feed-forward tanh network, which specified the
splines and feedback gains for the tracking controller from [35].

Our Method: Learning rate: 0.1, Episodes per iteration: 10, Simplified model: constructed by
decreasing the mass and friction parameters of the true model by 50 percent. MBPO: Dynamics
model: 2 layer feedforward tanh network (256×256), Models in Ensemble: 5, Learning rate: 2.5×
10−4, Episodes per iteration: 10, Critic Network: 2 layer feedforward tanh network (256 × 256).
SVG: Dynamics model: 2 layer feedforward tanh network (256 × 256), Learning rate: 1 × 10−4,
Episodes per iteration: 20 , Critic Network: 2 layer feedforward tanh network (256 × 256). PPO:
Episodes per iteration: 25, Learning rate: 1 × 10−5, Critic Network: 2 layer feedforward tanh
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Figure 6: Training curves for different algorithms applied to the quadrotor environment.

network (256 × 256). SAC: Episodes per iteration: 5, Learning rate: 3 × 10−5, Critic Network: 2
layer feedforward tanh network (256× 256).

B.7 Dynamics Mismatch Study – Simulated Car

In simulation for the car experiment, we study the performance of our approach as model accuracy
degrades. We use the following actual dynamics model:xt+1

yt+1

vt+1

ϕt+1

 =

 xt + vt cos (ϕt)∆t
yt + vt sin (ϕt)∆t

vt +
(
βaat − cvv

2
t

)
∆t

ϕt + (βωωt − bω) vt∆t

 , (36)

where βa and βω represent control input scaling for acceleration and turn rate, respectively; cv is
the coefficient of drag; and bω represents bias in the car’s steering. The set A := {βa, βω, cv, bω}
parameterizes the actual dynamics of the car. We define a mismatch coefficient, γ, which scales
these parameters to cause mismatch between the actual model and the model used for training. That
is, we use the set B := {γβa, γβω, γcv, γbω} with Eq. (36) to form our approximate dynamics
model F̂ : xt+1

yt+1

vt+1

ϕt+1

 =

 xt + vt cos (ϕt)∆t
yt + vt sin (ϕt)∆t

vt +
(
γβaat − γcvv

2
t

)
∆t

ϕt + (γβωωt − γbω) vt∆t

 . (37)

Note that if γ = 1, then the two models match exactly.

Training Details: We perform training with various values of γ, over 10 random seeds, each with
15 training iterations, and present the results in Fig. 7 and Fig. 8. We find that, even in cases of large
model mismatch, a policy is learned which improves the performance of the car.
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Figure 7: Training curves for the simulated car experiment for varying degrees of model mismatch.

Figure 8: One lap of the car around the figure-8 task where training was performed with varying degrees of
model mismatch.
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