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Abstract: Making contact with purpose is a central part of robot manipulation
and remains essential for many household tasks – from sweeping dust into a dust-
pan, to wiping tables; from erasing whiteboards, to applying paint. In this work,
we investigate learning language-conditioned, vision-based manipulation policies
wherein the action representation is in fact, contact itself – predicting contact for-
mations at which tools grasped by the robot should meet an observable surface.
Our approach, Contact-Aware and Language conditioned spatial Action MAp-
ping for contact-RIch manipulation (CALAMARI), exhibits several advantages
including (i) benefiting from existing visual-language models for pretrained spa-
tial features, grounding instructions to behaviors, and for sim2real transfer; and
(ii) factorizing perception and control over a natural boundary (i.e., contact) into
two modules that synergize with each other, whereby action predictions can be
aligned per pixel with image observations, and low-level controllers can optimize
motion trajectories that maintain contact while avoiding penetration. Experiments
show that CALAMARI outperforms existing state-of-the-art model architectures
for a broad range of contact-rich tasks, and pushes new ground on embodiment-
agnostic generalization to unseen objects with varying elasticity, geometry, and
colors in both simulated and real-world settings.
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1 Introduction
Contact-rich manipulation is ubiquitous in our day-to-day lives, encompassing a broad range of tasks
including sweeping dust into a dustpan, wiping tables, erasing a whiteboard, and applying paint with
a brush. A key challenge in performing these tasks lies in controlling the interactions between tools
and their environments. For instance, when sweeping, it is crucial to ensure continuous contact
between the bristles and the surface while directing the collected dust towards the dustpan.

Language-conditioned representations and policies are a promising approach to addressing the chal-
lenges of contact-rich manipulation, particularly for domestic applications. For one, language is
a powerful tool for creating abstractions that enable generalization for a wide variety of tasks and
environments. Secondly, language will be among the most common methods to command robots
such as when performing tasks in the home. Recent work has demonstrated how large pretrained
visual-language models (VLMs), such as CLIP [1] and PaLM-E [2], enable zero-shot transfer of
visual-semantic reasoning based on language prompts and well-structured visual and language em-
bedding spaces [3, 4, 5, 6, 7, 8, 9, 10]. However, previous efforts have predominantly focused on
rearrangement-based tasks and have not adequately addressed the reasoning involved in contact-rich
manipulations, thereby limiting their applicability to tasks like wiping, sweeping, or scooping.

In this paper, we introduce a novel language-conditioned and contact-aware spatial action map rep-
resentation that predicts planar contact affordances – contact formations at which tools grasped by
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Figure 1: CALAMARI is a contact-aware and language-conditioned spatial-action mapping for contact-rich
manipulation. We show that (A) wiping, sweeping, and pushing tasks, trained solely on simulations with a
single task and prompt, can be (B) directly transferred to the real world and applied to new environments with
unseen tools, robot setups, table elevations, and prompts.

the robot should meet an observable surface in order to perform a tabletop task. Our novel multi-
modal spatial action maps are specifically for contact-rich manipulation where each pixel represents
a binary indication of extrinsic contact between an object and the environment, and the entire map
is implicitly linked to the tool pose and robot configuration. Notably, our extrinsic contact policies
remains agnostic to intricacies of specific tools and physical robot platforms, unlocking possibilities
for generalization to unseen objects with distinct elasticity, geometry, and colors, both in sim and
the real world.

The key contributions of this paper are: 1) multi-modal extrinsic contact policy with novel spatial-
action maps that outperforms SOTA language-guided manipulation methods for contact-rich tasks;
2) an MPPI controller algorithm compatible with the predicted contact goal and contact constraint;
and 3) generalization to unseen objects with various elasticity, geometry, and colors in both simula-
tion and the real world without requiring fine-tuning of the extrinsic contact policy.

2 Related Works
Language Grounding for Manipulation: The recent advancements in large language models
(LLMs) [11, 12, 13] and visual-language models [1, 2] have enabled language-grounded manip-
ulation. Numerous approaches [4, 9, 3, 14, 8, 15, 6, 16], have emerged and demonstrated remark-
able multi-task performance, particularly for pick-and-place tasks. These end-to-end methods map
directly from RGB or voxel observations to robot configurations. However, one drawback of end-
to-end approaches is their reliance on extensive real-world data collection, which can span sev-
eral weeks or months [15, 6]. To address this real-world data efficiency challenge, [9] achieved
significant improvements by predicting only key frames and discretizing input and action spaces.
Nevertheless, like end-to-end models, [9] faces the challenge of effectively handling novel tool ma-
nipulations, as the tool variations must be captured in the training demonstrations. We show that
our approach CALAMARI can efficiently handle contact-rich tasks while reducing the burden on
real-world data collection via zero-shot sim2real transfer.

Planning with Extrinsic Contact: Controlling extrinsic contacts for planning and manipulation
has been an active area of research, with several notable contributions in recent years[17, 18, 19, 20,
21, 22, 23, 24]. Kim et al. [17] developed a method for simulataneously estimating and controlling
extrinsic contacts of rigid objects using tactile signitures, while [18] focused on planning with ex-
trinsic point contact for planar manipulation scenarios. Van der Merwe et al. [21, 22] demonstrated
extrinsic contact detection for deforming tool manipulation, specifically scraping with spatulas, in-
corporating predefined contact goals and learned dynamics. Wi et al. [23, 24] presented a technique
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Figure 2: Overview. As shown in the left panel, our method utilizes the history of RGB and language
instructions as inputs and predicts the contact patch goal as a binary mask from the input image frame. The
three yellow blocks (e.g., ‘CLIP’) represent the pretrained models, which are not updated during training.

for predicting dense contact patches for compliant tools using learned tool dynamics. CALAMARI
provides a framework for policies with contact goals, allowing for the seamless integration of the
contact dynamics models [21, 22, 23] into a broader context of planning and manipulation.

3 Methodology
3.1 Problem Statement
Our objective is to learn a function F that predicts the next desired contact patch goal, denoted
as Cgoal

t , at time t. This function takes as input a sequence of RGB key frames and language
instructions to compute contact goals: F ((It−w+1, l0), . . . , (It, l0)) = Cgoal

t , where It is an RGB
image, l0 is a language instruction, and w dictates the observation time window considered for
making predictions. The output is the contact patch goal Cgoal

t ∈ Rw×h, a 2D binary mask in It’s
camera frame and is particularly well-suited to for contact-rich planar tasks [5, 25]. The contact
patch Cgoal

t can be de-projected to a point cloud by overlaying the predicted mask onto a depth
map that excludes objects/tools (Dnominal). The point cloud conversion enables the utilization of a
model predictive controller to achieve the desired contact formation. In this work, data is provided
in the form of demonstrations consisting of variable-length T key frame trajectories, denoted by
τ = ((I0,C0, l0), . . . , (IT ,CT , l0)). Here, Ct ∈ Rw×h is the contact patch between the object
(e.g., grasped tool) and environment represented by a binary mask from the camera perspective. The
contact patch from the demonstrations serves as the ground truth contact goal for the function F .

3.2 Behavior Cloning Tool-Environment Interactions
Vision-Language Pre-Processing: CALAMARI has two key vision-language pre-processing steps
to convert raw observations into CLIP features. Firstly, we generate word-wise heatmaps that high-
light the spatial locations in the RGB images corresponding to specific words in the language in-
struction. The Heatmaps, denoted as Ht = f(I, l), are grayscale images with dimensions w × h,
obtained through the image-language relevancy extraction introduced in [26]. Using heatmaps in-
stead of raw RGB input is particularly advantageous for sim2real and generalization to novel objects
and environments, as long as similar heatmap distributions are present. This is because heatmaps
provide abstract representation that is less sensitive to variations in visual appearance caused by
factors like object colors and lighting conditions. The heatmap is subjected to further abstraction
through a pretrained heatmap encoder [27], resulting in word-wise heatmap features. These features
are organized based on the word sequence and serve as the query input for the Visual-language trans-
former, which will be discussed in detail in the subsequent section. Additional information about
the selection of heatmap encoders can be found in Appendix-A.4.1.

Similarly, we convert the language prompts into embeddings using CLIP’s language encoder. In
this case, we combine both sentence and word embeddings to capture the contextual information
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Figure 3: We generate the key contact goal via CALAMARI (magenta) and reach the contact goal via MPPI,
which is linked with corresponding low-level actions. We visualize the tool’s contact trajectory in blue until it
reaches the contact goal. Once we have reached it, we generate a new contact goal until the task terminates.

conveyed by the language prompt while focusing on individual words. These embeddings are also
arranged in accordance with the word order and serve as inputs for the subsequent transformer
networks in the following section.

Architecture: The CALAMARI architecture (Fig. 2) consists of of two types of transformers,
visual-language (v-l) transformer and temporal transformer. Drawing inspiration from the LAVA
structure [14], our v-l transformer is responsible for encoding inputs into multi-modal features and
our temporal transformer fuses latent observation over time to generate spatial-actions. In contrast
to [14], the language query is comprised of a set of sentence and word embeddings, denoted as
Q ∈ R(l+1)×dft . Here, l represents the sentence length and dft is the feature dimension. The
keys and values, denoted as K and V ∈ Rl×dft respectively, are word-wise heatmap embeddings.
The temporal transformer takes into account the history of latent observations from the v-l trans-
former, considering the w most recent time stamps. Using the history of observation is important
in contact-rich manipulation as it often involves occlusion caused by tools and the robot itself. The
temporal transformer utilizes self-attention multi-modal features stacked with time, represented as
Q = K = V ∈ Rw×dft . The outputs of the temporal transformer are decoded using a grayscale
image decoder, similar to the decoder architecture of the UNet model proposed by [28], without
incorporating skipping layers.

Training Loss: The loss function is a standard supervised behavioral cloning loss similar to the
prior works [6, 29, 30]. Specifically, we use L2 regression between predicted contact patch Cgoal

t

and the ground truth contact patch Cgt
t as the following: ∥Cgoal

t −Cgt
t ∥.

3.3 MPPI controller and Contact Goals
We use the Model Predictive Path Integral (MPPI) [31] controller to plan a sequence of robot actions
with corresponding contact patches to reach the desired contact goal Cgoal

t . The input to MPPI
consists of the current pose of the end-effector and initial guess for the action trajectories. We define
an action as the displacement in Cartesian SE(3) pose of the end effector and denote an action
trajectory as a = (a0,a1, . . . ,aw−1). Next, we define the controller cost:

w∑
i=1

dist(Cgoal
t ∗Dnominal,Pt+i) + λ(1− IoU(Cgoal

t ,Ct+i))

where Pt+i is the predicted contact pointcloud from applying the end-effector delta change in pose
ai to the object. We estimate Pt+i by transforming objects with known geometry to the world frame
and identifying intersections with environment (Appendix A.5.4). Ct+i is a 2D projection of Pt+i

to the camera frame. The first term of our cost function minimizes the mean Euclidean distance
between the center of Pt+i and the contact goal center. To do so, we uses Cgoal

t ∗ Dnominal to
get the contact goal pointcloud by overlaying contact goal mask with the nominal depth map. The
second term promotes matching the shape of future contact to the goal using Intersection over Union
(IoU). We align the center of the prediction and the goal of contacts by subtracting the mean to focus
on matching the contact shape (Appendix A.5.6).

Our MPPI has two contact constraints, implemented via penalty costs. The first constraint is to
maintain contact via ∥Ct∥ > 0. This penalizes any actions that makes no contact. The second
constraint is max

z
(Dnominal − Pt+i) > ϵp. This lower bounds the distance in z axis from the

environment to the transformed objects with epsilon ϵp > 0. The entire control algorithm we use is
described in Appendix Alg. 1.

4



Figure 4: We visualize the dataset by displaying the language prompt alongside the RGB and contact patch
sequences extracted from key contact frames in the demonstrations. The wiping task typically includes 7 to 12
key contact frames, sweeping involves 4 key contact frames, and the press button tasks have 1 contact patch.

4 Experiments and Result
Datasets: Both our model and baseline were trained using 100 demonstrations per task on Cop-
peliaSim [32, 33]. Each task involved manipulating a single object and a single language prompt, as
described in Fig. 4. In Sec. 4.1, we investigate the generalization performance using various unseen
objects and prompts. This paper focuses on three different types of contact-rich tasks: multi-step
patch contact ‘wipe desk’, three-step patch contact ‘sweep to dustpan’, and single-step point con-
tact ‘press button’. For the wiping task, we improvised our own closed-loop demonstration where
the sponge moves towards the center of dust clusters computed from DBScan [34]. The other two
tasks use open-loop demonstrations predefined in [33]. Each demonstration consists of a language
prompt and a sequence of RGB observations along with the corresponding contact patches obtained
from the key contact frames (Fig. 4 ). The key contact frames were identified when the robot reached
the waypoints defined in the demonstrations. However, frames where the contact patch was the same
as the previous waypoints were removed to eliminate redundancy. Ground truth contact patches are
computed via CoppeliaSim’s contact detection algorithm.

4.1 Simulation Results

The task performance of our model across the tasks is presented in Table 1, where the scores are
averaged over 25 test episodes. Here, we utilized a 4 DoF action space (x, y, z, yaw) to focus on
planar manipulation, and we have included a full 6DoF manipulation result in Appendix A.5.3. We
conducted three different objects/tools for evaluations: one being the training object and the other
two being held out objects (Fig. 5). Our objective in directly transferring to these held out ob-
jects is twofold: 1) To demonstrate the robustness of our contact goal policy in effectively adapting
to shifts in heatmap distribution from variations in object’s structural/visual features. 2) To show-
case the flexibility of our MPPI controller in accommodating previously unseen contact formations
from unseen object geometries. Note that we employed new task-specific language prompts for the
push button task’s heldout objects to accommodate color change.

Evaluation Metrics: The evaluation metrics are the task success rates ranging from 0% to 100%.
We evaluate wipe desk and sweep to dustpan tasks with the percentage of dust removal. For the
push button tasks, binary metrics were used, where 0% indicated failure and 100% represented
success without partial credits.

wipe desk: We evaluated the wiping performance after 20 contact goal generations, which is the
point at which task performance plateaus (see Appendix Fig. 14). This task involves clearing one
hundred dust particles with size 0.6x0.6x0.1cm that are randomly spawned within the bounding
box of size 15cmx15cm. We show in Tab. 1 that CALAMARI achieves 98% of dust removal with
the training object. To assess the performance with heldout tools, we conducted two tests. Test1
examined the ability of our MPPI controller to manipulate objects with 55% decreased contact patch
area. Test2 evaluated the robustness of CALAMARI against out-of-distribution broom geometry
with a long handle. As shown in Tab. 1, our method performance only decreased by 2% for test1
when handling smaller contact patches. Additionally, our goal generation exhibited robustness to
heatmaps variations as test2 results are comparable to training object performance.

sweep to dustpan: We evaluated sweeping task with 3 contact goal generations as in the demon-
stration. sweep to dustpan task involves 5 dust particles with the size of 1x1x1cm. Details of the
task environments are in Appendix A.2.1. Using training object, we achieved a 93% success rate in
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Method wipe desk sweep to dustpan push button

train test1 test2 train test1 test2 train test1 test2

Ours 98% 96% 90% 93% 73% 84% 92% 60% 60%
PerAct 97% 97% 9% 86% 0% 0% 63% 0% 24%
CLIPORT 92% 89% 45% 88% 0% 13% 84% 8% 20%

Table 1: RLBench success rate of each tasks in test cases using to train objects denoted as ‘train’ and heldout
objects denoted as ‘test1’ and ‘test2’

Figure 5: Train and test objects in simulation of four different tasks. The heldout objects exhibit variations
not only in color, size, and shape but also in structural attributes, such as the handle locations. The third row
indicates object dimensions in centimeter either as width× depth× height or as radius.
test cases for sweeping to a dustpan. We then transferred the pretrained model to two test objects:
one with a longer handle, similar to the original, and another with a handle on the side. We noticed
that larger visual discrepancies between the objects resulted in greater performance drops as test 2
shows worse performance than test1.

push button: We altered the prompt “push the {} button” from the word “red” to “green” and
“blue”. This change resulted in varying CLIP heatmap intensities and word embedding inputs ,or
the queries of our visual-language transformer. Nevertheless, our test results revealed that even with
training based on a single word, our model achieved contact goal accuracy of less than 2.5cm in
60% of the two heldout cases. These findings emphasize the robustness and effectiveness of our
approach in accurately pushing buttons of different colors.

Baseline-PerAct: In this section, we compare our methods with PerAct, a state-of-the-art language-
conditioned manipulation study that also utilizes CLIP features. Details of implementation are de-
scribed in Appendix A.3.1. Our method outperforms PerAct mostly across the three tasks (Tab. 1),
both in training and testing with heldout objects. For the wiping task, PerACT shows significantly
worse performance for test2 when compared to test1 and the training object. There are two main
factors that explain the performance drop. First, PerAct is sensitive to larger changes in the transfor-
mations between the grasped position and the contact surface. We can observe this trend consistently
across the sweeping tasks for the test objects as well. Second, PerAct is sensitive to variation in vi-
sual cues of the objects, as further supported by the sweep task. Our model is more robust as these
changes have less impact on our contact planning than on the robot configuration. The results of
push button task show that, while PerAct fails to detect buttons not in the training prompts, CALA-
MARI leverages VLM’s generalization ability for interacting with unseen prompts of different
colored buttons.

Baseline-CLIPORT: CLIPORT is particularly suited for tabletop manipulation with 2D affordance
prediction [5]. The CLIPORT baseline shares a number of important similarities to CALAMARI, in-
cluding using an image action space and known tool geometry and pose. Details of implementation
are described in Appendix A.3.2. Tab. 1 demonstrates that CALAMARI consistently outperforms
the CLIPORT baseline. Wiping and sweeping results show that CLIPORT also struggles to gener-
alize to unseen objects and tools with significant visual and geometrical variations. This is because
CLIPORT encodes raw RGB-D without further abstraction unlike CALAMARI. Moreover, CLI-
PORT also faces difficulty in generalizing to unseen prompts with color variations for the pushing
task, similar to PerAct with significant drop in performance for these tasks.

4.2 Sim2Real
In this section, we directly transferred the pretrained model from simulation to the real world without
fine-tuning. The quantitative analysis (Tab. 2) was conducted using 10 runs for each object with
consistent resetting across all tasks. We utilized 2 Franka-emika robots and an Intel Realsense D435
camera for our real-world setup. The distance between the robot and camera between the real-world
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Figure 6: We demonstrate the ability of our model to generate goals for non-rigid tools. We repeat the
sweeping task with a compliant tool, using a learned dynamics model to servo the contact of the tool with the
tabletop. The predicted contact goal is visualized in magenta while the contact feature predictions from the
dynamics model are overlaid in blue.

Figure 7: We visualized CALAMARI’s contact patch goals in magenta. The first row represents the predictions
when using the test1 object, while the second row corresponds to the test2 object. Our model can navigate back
and forth until all the dots are erased using a closed loop policy. In real-world scenarios where the pressure
exerted by a sponge on the board is not evenly distributed, this ability becomes particularly significant as the
sponge may fail to erase certain dots even when it passes over them.

and simulation environments was [0.18m, 0.02m, -0.21m] in the x, y, and z directions. We found that
the spatial-action map allows us to accurately predict contact patches in the camera frame regardless
of the differences in camera positioning between simulation and real-world set-ups.
wipe desk: For the reset, we draw one hundred dots within a bounding box measuring 17cmx17cm
with an black marker. We generated 20 contact goals per run and counted the number of erased
particles for evaluation. Fig. 7 shows our contact patch goals, where we visualize the first and last
three frames when contacts goals are generated. We also conducted experiment to erase different
distributions of dots with the test1 object in Appendix Fig. 15.

sweep to dustpan: We performed resets by arranging the dustpan in 10 different configurations
within a bounding box measuring 9cmx14cm. Each configuration included 10 1cm3 cubes placed
in front of the dustpan. For evaluation, we counted the number of cubes successfully swept into the
dustpan. Fig. 8 visualizes our contact goals, which directed the broom to align with the dustpan and
sweep towards it. Interestingly, our real-world results show a dust sweeping rates of 91-92% from
test1 and test2 brooms, which surpassed performance in simulation with unseen tools.

Figure 8: The real-world sweeping results were obtained using two brooms with small width margins (1-3 cm)
with the target dustpan. Left panel shows three contact goal generations, visualized in magenta. The results
in the last column demonstrate that our policy exhibits excellent zero-shot transfer to the real-world, even with
unseen tool geometries. Furthermore, we demonstrate that our method is agnostic to the arrangement of the
robot, as the same policy was applied to both the right and left arm.
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Figure 9: Our model, trained in CoppeliaSim on the prompt “press the red button,” can be directly transferred
to the real world without fine-tuning (first column). Our spatial action space is not limited to the tabletop
(second column) and is robust to visual distribution (second and third column). It also handles unseen prompts
like “press the green/blue button” (last two columns). The contact goal is visualized in magenta in the first row,
while the second row shows the actual execution results

wipe desk test1 91%
test2 98%

sweep to dustpan
test1 91%
test2 92%

comp. 85%

push button
red 90%

green 60%
blue 40%

Table 2: Direct transfer to real-world using test
objects described in Fig. 7, 8, 9. ‘comp’ utilizes
learned compliant tool dynamics as in Sec. 4.3.

push button: We positioned three buttons (red, green,
blue) in 10 predefined line and triangular arrangements
on the desk. For evaluation, we assessed whether the
end-effector successfully made contact with the target
button. The real-world outcomes aligned with the sim-
ulation results for the red and green buttons (training
and test1), but pressing the blue button exhibited a per-
formance discrepancy of 20%. Fig. 9 demonstrates the
adaptability of our pretrained model to diverse, unseen
setups involving variations in elevation and the number
of buttons in the scene.

4.3 Compliant Tool Manipulation

In this section, we demonstrate our model performance on a real world, compliant tool manipu-
lation task. By decoupling goal generation and dynamics, our method can generate valid contact
goals for tasks using compliant tools, so long as dynamics of the tool are available. We execute the
sweep to dustpan task with a compliant brush (compare tool deformation in Fig. 6 to Fig. 8). Note
that the goal generation is learned on rigid tools in CoppeliaSim and transferred without finetuning
to a deformable tool in the real-world. We replace rigid dynamics with a learned contact feature
dynamics to estimate Pdyn

t+i [21]. Full details of the contact feature dynamics can be found in Ap-
pendix A.2.5. Quantitative results are shown in Tab. 2 and a qualitative sweep is shown in Fig. 6.
Our method can effectively predict contact goals for a deforming tool, yielding 82% performance.

5 Limitations
Our approach offers versatility in manipulating objects on various planar manipulation scenarios,
including elevated and potentially inclined planes. However, our ability to predict contact is limited
to a 2D binary contact patch, therefore, it is challenging to directly apply our method for more
intricate contact-rich manipulation scenarios like screwing bulbs or peg insertions. Moreover, we
assume the region of interest (e.g., areas to wipe, sweep, or push) is already within the camera’s field
of view. Lastly, our approach lacks support for discontinuous contact. As a future work to enable
CALAMARI to effectively address more complex contact-rich scenarios, we suggest an extension to
3D contact mask prediction, potentially leveraging state-of-the-art surface reconstruction techniques
(e.g., [26] ). Additionally, we suggest integrating binary contact prediction with a contact mask to
inform the controller to switch between free space motion and in-contact mode.
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Figure 10: Using contact goals as points instead of patches results in a loss of control over the contact
orientation. As demonstrated in this figure, CALAMARI successfully reorients the broom to maximize dirt
sweeping. The magenta color indicates contact goal in all figures.

A Appendix

A.1 Ablation Studies

A.1.1 Contact Patch Verses Point Predictions

Predicting contact patches is crucial for precise contact-rich manipulation. For instance, optimiz-
ing contact patch orientation can greatly increase efficiency in sweeping up larger amount of dust
simultaneously. Our proposed model-predictive control approach tracks desired contact patches,
in particular matching contact patch size and orientation. To demonstrate the importance of contact
patch control, we present our validation in the following ablation section and Fig.10 where the initial
broom orientation is set to π/4 rad to the world-frame. Here, we extracted the center of the contact
patch goal and executed our MPPI algorithm without the Intersection over Union (IoU) cost. Our
results show that using the point contact goal results in a 14 % success rate, which is significantly
lower than CALAMARI’s performance with contact patch goal and the same orientation offset (93
%).

A.1.2 Temporal Transformer

To evaluate the impact of CALAMARI’s temporal transformer, we conducted a comparison between
the wiping task performance with and without the temporal transformer (Tab. 3. We chose the
wiping task because it is characterized by the longest planning horizon among our tasks and exhibits
the most significant scene occlusions due to the robot arm and tool. In the ‘without temporal’
experiment, we directly used the latent state from the visual-language transformer as an input to the
grayscale contact goal decoder. We kept the hyperparameters fixed across trials. The training loss
curve is shown in Fig. 11. We note that the task success rate using train object without temporal
transformer was 93%, which is 4% lower than that of our proposed architecture.

A.2 Results Details

A.2.1 CoppeliaSim Sweep Task
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wipe desk train test1 test2

CALAMARI 97 % 93% 78%
without temporal 93 % 86% 74%

Table 3: Performance analysis with and without temporal transformer.

Figure 11: Training loss curve of CALAMARI with and without temporal transformer.

Among our tasks, sweep to dustpan involves two different objects in the scene: broom and dustpan.
To assess the robustness of CALAMARI and the baselines towards unseen scenarios, both objects
were modified, as illustrated in Fig. 12. Each broom was created from scratch, designed after real-
world brooms commonly found in retail stores. As for the dustpan, we employed the same mesh used
for training, but altered its color to match that of the broom. Additionally, we introduced geometric
variance by scaling the dimensions along the x, y, and z directions. We note the dustpan dimension
for training was 25cmx30cmx7cm, while for Test1, the dimension was 20cmx35cmx17cm, and for
Test2, the dimension was 20cmx25cmx3cm.

A.2.2 Real-world Setup Details

Fig. 13 shows our experimental setup using a single accessible vision sensor from the front view. We
note that only one arm was used for manipulation. We found that RGB image noise could adversely
influence the scale of the heatmap signal, which in turn affect goal generation of our method on
the sweep to dustpan task. This is due to the heatmap’s sensitivity to high-frequency RGB noise,
not present in simulation, resulting in a mild divergence in subsequent contact goal predictions for
nearly identical inputs. As such, for the sweep to dustpan task, and compliant variant, we repeated
each trial twice and reported the better performing result.

Figure 12: For the sweeping, we not only used unseen brooms, but also augmented the dustpan to
different colors and dimensions.
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Figure 13: We used 2 Franka-emika robots and an Intel Realsense D435 for real-world setup.

Figure 14: Details on wiping performance with training object over the number of goal generated (first)
and time (second). Second plot visualizes each 25 tests’ dust removal rate over time. Finally we show the
distribution of success rate after 20 goals.

A.2.3 Real-world Wipe Desk

Fig. 15 shows generalization of our wiping task to unseen dot arrangements. This results in different
heatmap distributions. As in the main experiment, we run the wiping until it generates 20 contact
goals.

Figure 15: We examined the wiping results using the test1 object on different dot arrangements, leading to
an unseen heatmap distribution for the model, which was originally trained only on square-shaped dot clus-
ters. From the top left to the bottom right, we conducted tests on circle, triangle, star, quatrefoil, infinite, and
hourglass shapes. Our observations show the first four shapes were nearly entirely erased after the wiping. In
contrast, we observed a disparity in performance with the last two shapes, characterized by unfilled holes in
their centers, leaving behind 10% and 54% of the dots, respectively.

14



Figure 16: First row indicates generated contact goal indicated in magenta pixels. The second row indicates
robot execution results.

A.2.4 Real-world Push Button

Fig. 16 shows more example results on button pushing task with unseen numbers of buttons in the
scene, unseen table elevation, and unseen prompts.

A.2.5 Compliant Sweep Task

Our method decouples contact goal generation from the low-level controller responsible for real-
izing the contact goals. To control contact between a deforming tool and the tabletop, we use the
contact feature dynamics model from Van der Merwe et al. [21]. The model predicts contact geome-
tries (represented as lines in 3D) given candidate actions, conditioned on point cloud and wrench
observations. The contact point cloud Pt+i is obtained by sampling evenly between the end points
of the predicted contact line.

15



Figure 17: (B) depicts the rigid object geometries utilized in our experiment, corresponding to the actual
objects shown in (A). While the object models do not encompass the intricate details of the object geometry,
our research demonstrates that relying solely on the coarse dimensions of the geometry – such as the object’s
collision model, commonly employed for collision avoidance during robot planning – proved sufficient for
successfully executing our task.

We train the model by performing randomized actions and label contact lines using a heuristic on
the observed point clouds. Specifically, we threshold for points near the surface, then fit a line to the
resulting points projected onto the tabletop. Point cloud observations are obtained by a Photoneo
Phoxi 3D scanner (L) and a Photoneo MotionCam-3D Color (M+) scanner. Wrench observations
are obtained by an ATI gamma force torque sensor, attached between the end effector and compliant
tool. The dynamics model is trained on 3236 sampled transitions.

A.2.6 Grasped Tool Geometry

For the object geometries, we crafted their meshes via trimesh Python package utilizing rough object
dimensions as shown in Figure 17(B). Constructing meshes required less than 10 minutes to create
each for the objects we employed. While we haven’t specifically explored automating this process
in our current work, it is plausible that SOTA 3D shape completion techniques from partial object
point cloud measurements can be used to generate meshes.

A.2.7 Task Performance Robustification

We achieved robustification of contact goal generations by applying robot workspace mask to the
RGB images using a known transformation from the camera to the robot and by employing heatmap
augmentations. These heatmap augmentations include flipping and translation( both horizontal and
vertical) ranging from 10 to 30 pixels. Furthermore, we introduced four different levels of Gaussian
noise to the RGB before generating the heatmap, enhancing the robustness of our method against
high-frequency noise in real-world RGB images.

A.3 Baseline Details

A.3.1 PerAct

PerAct employs voxel inputs from a multiple calibrated RGB-D camera setup, while our method
relies solely on a single front camera view. In contrast, our MPPI controller requires additional
information about the model’s geometry and object pose, whereas the baseline does not require
such object-related details. For this experiment, PerAct was trained from scratch with a 512 latent
dimension. To align the baseline with our experimental setup, we trained PerAct with a single-task
using the same dataset. During testing, we reduced the action space to (x, y, z, yaw) by providing
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Figure 18: Blue is a training loss curve when training image encoder from scratch and the red is the trainind
loss curve when training with frozen pretrained ResNet18. Other than the encoder, we used the same training
settings. The dataset used for this experiment is 50 demonstrations of press button dataset.

ground truth values for the other actions (pitch, roll, gripper state, and collision prediction) as well
as ground truth grasping.

A.3.2 CLIPORT

CLIPORT’s inputs consist of a single RGB-D and language instruction, whereas the outputs are
three affordances for picking, placing, and a discrete end-effector angle for placing. To elaborate,
CLIPORT outputs (u,v) for picking and (u,v,yaw) for placing, where u and v denote pixel coordinates
in the tabletop view. These table-top pixel coordinates are then projected into the world frame (x,y,z)
using a known transformation. Subsequently, we employ the known tool geometry and pose to
transform the target point (x,y,z) into the robot end effector frame, ensuring that the bottom center
of the tool reaches the target point with the desired wrist rotation (yaw). We provide ground truth z
corresponding to the table height.

A.4 Input Processing Details

A.4.1 Heatmap Encoder

We implemented two gray-scale image encoder. The first was based on pytorch’s ResNet implemen-
tation by changing the first encoder’s input dimension as 1 instead of 3. We used 4 residual blocks
and 2 convolution layers for each residual blocks following the original pytorch implementation.
We trained this encoder from scratch along with other modules of CALAMARI. The second was
the pretrained ResNet18 [27] trained on ImageNet. The network is for RGB image, such that we
repeated the grayscale heatmap inputs for three times and stacked in depth to match the desired the
input dimension. We note that the pretrained image encoder’s parameters are frozen without fining
tuning. Our experiment shows that the second encoder gives faster convergence and lower training
loss as shown in Fig. 18.

A.5 Controller Details

A.5.1 Control Pipeline

Alg. 1 explains our hierarchical controller in the context of other components of CALAMARI.
When given the contact patch goal, we repeat a control process consisting of the MPPI (Alg. 1
line 8) and the impedance controller (Alg. 1 line 9). The control loop continues until the grasped
objects achieves the contact goal, measured as cost using the same MPPI cost function (Alg. 1 line
5). If the current pose of the object resulting from the impedance controller has a smaller cost than
the threshold δ, a new contact goal is generated via generate contact goal using visual-language
observation(Alg. 1 line 5). Task is finished when the task objective is achieved (Alg. 1 line 12); for
example, when all the dust is swept, when all the dots are erased, and when the button has been
pushed correctly. Tasks are also finished when the number of contact goals exceed the number of
goal threshold (Alg. 1 line 14), where the contact goal threshold (gthres) is set to 20 for wiping, 3
for sweeping, and 1 for pushing.

Next, we provide additional details about our MPPI controller, building upon the description pro-
vided in Sec. 3.3. The role of MPPI is to compute a sequence of robot actions that result in the
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Algorithm 1
1: t← 0
2: g ← 0
3: complete← False
4: while not complete do
5: if cost(st) ≤ δ then Cgoal = generate contact goal(obst)
6: g ← g + 1
7: end if
8: at ← mppi(st,C

goal)
9: env.step(at)

10: t← t+ 1
11: if task.get completed then
12: complete← True
13: end if
14: if g > gthres then
15: complete← True
16: end if
17: end while

desired contact goals given by our representation, Fig. 3. Here, we define an action as the change in
Cartesian SE(3) pose of the end effector and denote an action trajectory as a = (a0,a1, . . . ,aw−1).
The input to MPPI consists of the current pose of the end-effector and initial guess for the action tra-
jectories. Given the cost function described in Section 3.3, the output of MPPI is the action sequence
with the lowest cost. To predict contact locations using action samples, given a goal at each time
step, we predict contact patches of a tool given sampled end-effector actions. For rigid object contact
estimation, we apply the end-effector Cartesian change in position to the grasped tool (assuming a
fixed grasp) and compute the intersecting geometry with the environment resulting in the contact
patch. This is achieved by comparing the transformed tool mesh/pointcloud with the Dnominal.
For the compliant tool, we use the Extrinsic Contact Servoing approach [21] which directly yields
the contact lines, utilizing wrench measurements and a partial point cloud given the action to be
executed. One may substitute of models including [23].

A.5.2 Controller Parameters

For the mppi, the actions were sampled from N (0, σ) and clipped using the action bound. Our
MPPI framework is based on the external repository following the prior works [21] and we set the
parameters for the mppi as follows: action high =[x, y, z, r, p, y]=[0.04, 0.04, 0.001, 0., 0., 0.3],
action low=[x, y, z, r, p, y]=[-0.04, -0.04, -0.001, 0., 0., -0.3], num samples=1000, nx=6, lambda=
0.000001, horizon=1, and

σ =


0.01 0. 0. 0. 0. 0.
0. 0.01 0. 0. 0. 0.
0. 0. 0.001 0. 0. 0.
0. 0. 0. 0.0005 0. 0.
0. 0. 0. 0. 0.0005 0.
0. 0. 0. 0. 0. 0.01


.

A.5.3 6-DoF Manipulation

In this section, we present the results of the full 6DoF manipulation by expanding the action bounds
of r and p, as well as the noise sigma. Now, all rotation components share the same action bounds:
action high = [x, y, z, r, p, y] = [0.04, 0.04, 0.001, 0.3, 0.3, 0.3], and action low = [x, y, z, r, p, y] =
[-0.04, -0.04, -0.001, -0.3, -0.3, -0.3]. Other MPPI settings, such as the number of samples, lambda,
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(σr, σy) wipe desk sweep to dustpan

(0.01, 0.01) 95 % 92 %
(0.05, 0.05) 94 % 87%
(0.1, 0.1) 91 % 84%

Table 4:

6-DoF manipulation experiments with different roll and pitch action sampling parameters.

horizon, and more, remain unchanged. Consequently, we update the action noise sigma as:

σ =


0.01 0. 0. 0. 0. 0.
0. 0.01 0. 0. 0. 0.
0. 0. 0.001 0. 0. 0.
0. 0. 0. σr 0. 0.
0. 0. 0. 0. σp 0.
0. 0. 0. 0. 0. 0.01


Here, σr and σp are scalar values associated with the standard distribution of roll and pitch actions,
respectively. In Tab. 4, we evaluate different combinations of (σr, σp) in two of our more intri-
cate control tasks, using the “train object” in Coppeliasim. The final row, which utilizes (σr, σy)
= (0.1, 0.1), representing a scenario where all rotation components share the same action sampling
distribution. The Tab. 4 shows the task performance may decrease as we increase the action noise.
Keeping the number of samples constant while increasing action noise for MPPI results in sampling
deficiencies, which lead to suboptimal control result. Finally, our robot’s Cartesian impedance con-
troller stiffness parameters was set to [3000.0, 3000.0, 3000.0, 300.0, 300.0, 300.0] for rigid tool
manipulation and [2000.0, 2000.0, 1000.0, 100.0, 200.0, 200.0] for complaint tool manipulation.

A.5.4 Contact Patch Prediction

To obtain the intersections between the object’s point cloud and the environment, we first extract
the lowest 10% of the point cloud, which serves as the contact candidates. Using contact candidates
enhances calculation efficiency. If the z-coordinate of the contact candidate is lower than or equal to
that of the closest point in the environment in Manhattan distance on the x and y axes, we consider
the candidate pixel to be in contact.

A.5.5 Environment Geometry

We define the environment as a point cloud or the depth map without tools and non-collidable
objects. In the CoppeliaSim simulation, we utilized set model renderable(False) for the tools and
non-collidable objects in the scene during task initialization. In the real world, we set aside the tools
from the camera’s angle at the task initialization and capture a depth map to obtain the environment
geometry.

A.5.6 Intersection over Union

Before calculating the IoU, we align the centers of contact patch predictions with the contact goal
mask to ensure that the IoU metric focuses purely on shape matching. This alignment is achieved by
subtracting the mean pixel values of each 2D mask. We found that using IoU metrics without this
center offset can lead to undesirable yaw movements of the object. This is because yaw motions can
lead to higher IoU scores by creating larger overlaps between the tool’s actual contact and the contact
goal, especially when the tool can only partially reach the goal with the action. Consequently, IoU
scores without this alignment do not accurately reflect the deviations from the desired contact’s
shape and orientation.
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