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Abstract: Navigating safely and efficiently in dense and heterogeneous traffic
scenarios is challenging for autonomous vehicles (AVs) due to their inability to
infer the behaviors or intentions of nearby drivers. In this work, we introduce a
distributed multi-agent reinforcement learning (MARL) algorithm for joint trajec-
tory and intent prediction for autonomous vehicles in dense and heterogeneous en-
vironments. Our approach for intent-aware planning, iPLAN, allows agents to infer
nearby drivers’ intents solely from their local observations. We model an explicit
representation of agents’ private incentives: Behavioral Incentive for high-level
decision-making strategy that sets planning sub-goals and Instant Incentive for
low-level motion planning to execute sub-goals. Our approach enables agents to
infer their opponents’ behavior incentives and integrate this inferred information
into their decision-making and motion-planning processes. We perform exper-
iments on two simulation environments, Non-Cooperative Navigation and Het-
erogeneous Highway. In Heterogeneous Highway, results show that, compared
with centralized training decentralized execution (CTDE) MARL baselines such
as QMIX and MAPPO, our method yields a 4.3% and 38.4% higher episodic re-
ward in mild and chaotic traffic, with 48.1% higher success rate and 80.6% longer
survival time in chaotic traffic. We also compare with a decentralized training de-
centralized execution (DTDE) baseline IPPO and demonstrate a higher episodic
reward of 12.7% and 6.3% in mild traffic and chaotic traffic, 25.3% higher success
rate, and 13.7% longer survival time.

Keywords: Autonomous Driving, Multi-agent Reinforcement Learning, Repre-
sentation Learning

1 Introduction

In this work, we consider the task of trajectory planning for autonomous vehicles in dense and het-
erogeneous traffic. High density is typically measured in the number of vehicles per square meter
and high heterogeneity refers to a large variance in agents’ driving styles ranging from aggressive
to conservative, vehicle dynamics, and vehicle types [1]. For example, these agents may include
two-wheelers, cars, buses, and trucks. The key challenge to efficient trajectory planning in such
environments is to be able to accurately infer the behavior of these heterogeneous agents [2]. There-
fore, many solutions perform trajectory planning by jointly predicting the agents’ future trajectories
along with their intent [3].

Trajectory prediction is the task of predicting the future states of an agent [4] which typically con-
sists of spatial coordinates, and heading angle, but may also include first-order information such as
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velocity. Intent prediction focuses on inferring neighboring agents’ behavior using local informa-
tion [5]. In the context of autonomous driving, some studies have approached intent prediction by
classifying driving behaviors into predefined classes [6, 2] such as aggressive or conservative.

Although many methods for joint trajectory and intent prediction [7, 8, 3, 5] have been extensively
studied for planning in both industry and academia, most of the existing approaches are trained
and evaluated on datasets like The Waymo Open Motion Dataset [9] and the NuScenes dataset [10],
which primarily consist of homogeneous traffic and lack variation in driver behavior [3]. As a result,
these methods [7, 8, 3, 5] often struggle to reliably predict the intentions of heterogeneous agents in
unstructured and dense traffic [11].

On the other hand, simulators such as CARLA are designed to generate traffic agents with diverse,
kinodynamically feasible behaviors [12], addressing the lack of diverse behavior in datasets. Most
of the joint trajectory and intent prediction methods evaluated on the datasets discussed above can be
used with such simulators [13, 4]. But these methods typically require generating and collecting data
in offline storage, which defeats the purpose of a simulator [14]. Complementary to these offline
approaches, simulators [12] also offers the capability to model multiple agents and their interac-
tions simultaneously via multi-agent reinforcement learning (MARL), where the learning algorithm
can engage with the simulation environment [15]. MARL has demonstrated remarkable success
in many different multi-agent domains such as Go [16], chess [17], poker [18], Dota2 [19], and
StarCraft [20]. However, their applicability to autonomous driving has been relatively sparse [21].

Deep MARL for trajectory planning in autonomous driving only recently achieved significant mo-
mentum with the Highway-Env environment [22] proposed in the author’s doctoral thesis [23]. Since
then, several deep MARL approaches have been proposed [24, 25] for trajectory planning, but these
methods do not extend to heterogeneous traffic and also assume agents can communicate and share
information with each other. To the best of our knowledge, there is no prior decentralized training
decentralized execution (DTDE) MARL approach for joint intent and trajectory prediction for AVs
in heterogeneous traffic. More related works are included in Appendix B.

Main Contributions: In this paper, we propose a new intent-aware trajectory planning algorithm
for autonomous driving in dense and heterogeneous traffic environments. We cast the autonomous
driving problem as a hidden parameter partially observable stochastic game (HiP-POSG) [26, 27]
and solve it using a DTDE MARL framework, called iPLAN, built around a joint intent and tra-
jectory prediction encoder-decoder architecture. Given the current traffic conditions and historical
observations, iPLAN computes the optimal multi-agent policy for each agent in the environment,
relying solely on local observations without weight-sharing or communication.

Our main contributions include:

1. To the best of our knowledge, we propose the first DTDE MARL algorithm for joint trajectory
and intent prediction for autonomous vehicles in dense and heterogeneous environments. Our
algorithm is fully decentralized without weight sharing, communication, or centralized critics,
and can handle variable agents across episodes.

2. We model an explicit representation of agents’ private incentives that include (i) Behavioral
Incentive for high-level decision-making strategy that sets planning sub-goals and (ii) Instant
Incentive for low-level motion planning to execute sub-goals. These incentives enable behavior-
aware motion forecasting, which is more suited for heterogeneous traffic.

3. We perform experiments on two simulation environments, Non-Cooperative Navigation [28] and
Heterogeneous Highway [22]. The results show that, compared to centralized training decen-
tralized execution (CTDE) MARL baselines like QMIX and MAPPO, our method yields a 4.3%
and 38.4% higher episodic reward in mild and chaotic traffic and is 48.1% more successful with
an 80.6% longer survival time in chaotic traffic in Heterogeneous Highway. Compared to the
DTDE baseline IPPO, we demonstrate a higher episodic reward of 12.7% and 6.3% in mild and
chaotic traffic, a 25.3% higher success rate, and 13.7% longer survival time in the Heterogeneous
Highway.
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2 Problem Formulation

Problem Setting and Assumptions: We consider a multi-agent scenario with N ≥ 2 non-
cooperative agents [29], i.e., agents are controlled by individual policies that maximize their own
reward without weight sharing or communication. In each episode, agents interact with one an-
other and gain general experience without any prior knowledge about a specific agent from previous
episodes. Agents’ strategies remain the same within one episode, though strategies may evolve be-
tween episodes. We assume that all agents are driven by motivations behind their actions. These
motivations can arise from instantaneous reactions to environmental changes or more enduring pref-
erences. We denote them as incentives for agents’ strategies. While these incentives are private
and not explicitly known to other agents, they can be discerned through observing agents’ strate-
gies that offer insights into the incentives behind agents’ actions. In this work, we explicitly model
these private incentives with hidden parameters representing latent states. Therefore, we formu-
late this problem as a multi-agent hidden parameter partially observable stochastic game [30], or
HiP-POSG1.

Task and objective: We consider the tuple〈
N,S, {Ai}Ni=1 , {Oi}

N
i=1, {Ωi}Ni=1, {Zi}Ni=1, {fi}Ni=1, T , {ri}Ni=1, γ

〉
, (1)

where N is the number of agents. S is the set of states. Ai is the set of actions for agent i. Oi
is the observation set of agent i of the global state S ∈ S, generated by agent i’s observation
function Ωi : S → Oi. In our problem, agent i’s observation oti at time t could be further specified
as oti = {oti,j}j∈Ni

, where Ni refers to the set of agents j in the neighborhood of i. The bold
oti denotes the set of agent i’s observation of its neighbors at time t. We denote the sequence of
agent i’s historical observations oi,j of opponent j up to time t as hti,j = {oki,j}tk=1. The bold
hti = {oki }tk=1 denotes agent i’s observation history of its neighbors. Here, we indicate that agent
i’s observation history of agent j only consists of its observation of agent j’s states, while agent
j’s actions and rewards are unobservable information by others. Zi denotes the latent state space
that represents the incentive of agent i’s strategy. fi : O1

i × O2
i × . . . × Oti × Zj → Zj is agent

i’s incentive inference function that makes an estimation ẑi,j of its opponent j’s actual incentive
zj from its observation history of opponent hti,j up to time t and its past estimation of zj . Here,
we assume agent i’s estimations of agent j’s incentive ẑi,j belongs to the same latent state space
Zj as agent j’s actual incentive zj . T : S × A1 × A2 × . . . × AN → ∆(S) is the (stochastic)
transition matrix between global states. ri : S × A1 ×A2 × . . .×AN → R is the reward function
for agent i. γ is the reward discount factor. Agent i decides its action ai ∈ Ai with policy πi :
Ot1 ×Ot2 × . . .×OtN ×Z1 ×Z2 × . . .×ZN → ∆(Ai) with its observations oti, own incentive zi,
and estimated opponents’ incentives ẑti,j at time t.

The objective of agent i is to find the optimal policy π∗
i , maximizing its γ-discounted cumulative

rewards over an episode of length T . The objective equation is given by

π∗
i = argmax

πi

Eπi

[
T∑
t=1

γtri

(
st,

{
ati
}N
i=1

)]
(2)

where ri is the reward function of agent i.

Incentive Latent Representation. In this work, we assume that agents’ actions are motivated by (i)
long-term planning tied to an agent’s driving behavior or personality and (ii) short-term collision
avoidance related to the current traffic state. To this end, we decouple agent i’s incentive zi into
a vector zi = {βi, ζi}. Our formulation is related to the task and motion planning literature [31]
where the behavior incentive follows a high-level decision-making strategy with the goal of setting
planning sub-goals whereas the instant incentive refers to the low-level motion planning with the
goal of executing the sub-goals. The behavior incentive biases the motion forecasting in a behavior-
aware manner such that it is better suited for heterogeneous traffic.

1an extension of the HiP-POMDP [26, 27]
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Behavioral Incentive βi models drivers’ driving styles which are deeply rooted in their personal-
ities [32]. Given the observations for the previous few seconds, behavior incentive performs high-
level decision-making and plans actions, or sub-goals, and asks, “What’s the most likely action of
this driver to take next?”. The answer is encoded via β̂ti . This tells an agent whether it should speed
up in empty traffic or slow down in dense traffic. It also is able to recognize conservative drivers
and the possible need to overtake. Therefore, this incentive is able to reason between aggressive and
conservative drivers.

Instant Incentive ζi signifies drivers’ instantaneous responses to proximate traffic, taking into ac-
count the positions and speeds of neighboring vehicles. Instant incentive then asks, ”How should I
execute this sub-goal/high-level action/plan using my controller so that I’m safe and still on track
towards my goal?”. Instant incentive measures classical efficiency metrics defined in robotics liter-
ature such as collision avoidance (safety), distance from goal, and smoothness.

Incentive Inference To cater to two different incentives, we split agent i’s incentive inference
function fi into two distinct functions, fi,β and fi,ζ : β̂ti,j ∼ fi,β(·|hti,j , β̂

t−1
i,j ) uses agent i’s

historical observation hti,j of opponent j up to time t and its previous estimation of opponent
j’s behavioral incentive β̂t−1

i,j to estimate opponent j’s new behavioral incentive β̂ti,j at time t.
ζ̂ti,j ∼ fi,ζ(·|oti,j , β̂ti,j , ζ̂

t−1
i,j ) uses agent i’s observation oti,j of opponent j at time t, its current

estimation over opponent j’s behavioral incentive β̂ti,j and its previous estimation of opponent j’s
instant incentive ζ̂t−1

i,j to estimate opponent j’s new instant incentive ζ̂ti,j at time t. With the esti-

mation of opponents’ incentives, agent i’s policy ati ∼ π(·|oti, β̂
t

i, ζ̂
t

i) decides its action ati with its
local observation, ego incentive, and estimations over opponents’ incentives. Here, β̂

t

i denotes the
combination of agent i’s behavioral incentive βi and its estimations over all its opponent agents’ be-
havioral incentives{β̂ti,j}Nj=1,j ̸=i at time t. ζ̂

t

i denotes the combination of agent i’s instant incentive
ζi and its estimations over all its opponent agents’ instant incentives {ζ̂ti,j}Nj=1,j ̸=i at time t.

3 iPLAN: Methodology

We demonstrate the overall architecture of our proposed framework in Figure 1. Agents interact with
the environment with continuous state space S. Here, we denote that an agent’s state includes its
ID, current position, and current velocity. An agent’s observation includes the states of its neighbors
within its observation scope. An agent i records its historical observations of its opponents’ states
for incentive inference. With historical observations hti,j , and intermediate observations oti, agent
i estimates opponent j’s behavioral incentive βj and instant incentive ζj . The controller of agent i
decides action ati based on its local observation oti, ego, and opponents’ estimated behavioral incen-
tives β̂

t

i, and instant incentives ζ̂
t

i. The action space A of the environment is discrete and consists
of the following high-level actions: {lane left, idle, lane right, faster, slower} in our Heterogeneous
Highway environment, or {idle, up, down, left, right} in our Non-cooperative Navigation environ-
ment (details in Appendix C), while a low-level motion controller (e.g., IDM model [33]) converts
the high-level actions into a sequence of x, y coordinates.

3.1 Behavioral Incentive Inference

The behavioral incentive inference module intends to estimate opponents’ behavioral incentives
by generating latent representations from their historical states. At time step t, agent i queries a
sequence of historical observations htij for opponent j from its observation history profile as the
input of the behavioral incentive inference module. For ease of computing, we truncate the full
historical interaction sequence into a fixed-length sequence that includes the observation history
from the previous th steps. We introduce an encoder Ei to update opponents’ behavioral incentive
estimation and a decoder Di to predict opponents’ state sequences in the next th steps with current
historical observations and behavioral incentive estimation. In practice, we parameterize encoder Ei
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Figure 1: Intent-aware planning in heterogeneous traffic: At time t, we show current vehicle states in solid
colors: ego vehicles i (solid yellow vehicle), aggressive vehicles (solid red), conservative vehicles (solid green),
and neutral vehicles (solid blue). The future states of each vehicle are shown with dotted colors. At time step
t, the ego-agent observes nearby vehicles and infers their behavioral and instant incentives. The behavioral
incentive inference (red block) uses agent i’s historical observations ht

i of other vehicle states (stacked gray
boxes of current observations, ot

i) to infer their behavioral incentives and predict future state sequences with
behavioral incentive inferences. The instant incentive inference (blue block) uses agent i’s current observations
ot
i (single gray box) and its inference of others’ behavioral incentives β̂

t

i (single red box) to infer other vehicles’
instant incentives ζ̂

t

i for trajectory prediction. Agent i’s controller (yellow block) selects its action at
i with its

current observations ot
i (gray) and its inference of others’ behavioral incentives β̂

t

i (red) and instant incentives
ζ̂
t

i (blue).

with θEi
, and decoder Di with θDi

. Hence, the encoder Ei approximates the behavioral incentive
inference function β̂ti,j ∼ fβ(·|hti,j , β̂

t−1
i,j ).

To capture the sequential nature within opponents’ state observation sequences, the encoder Ei em-
ploys a recurrent network that processes htij as a time series. This produces a new estimate of the
behavioral incentive of opponent j. As insights from cognitive science suggest, the human social
focus remains relatively stable [34]. Thus, we interpret the behavioral incentive inference for oppo-
nents as a gradual process, converging towards the true behavioral incentives of opponents without
abrupt transitions between updates. Starting with an initial neutral estimation of opponents’ behav-
ioral latent states, agents propose new estimates for opponents’ behavioral incentives at each time
step. However, they employ a gentle update strategy, using an additional coefficient η, to refine the
behavioral incentive estimates. This approach allows agents to produce more accurate estimates of
opponents’ behavioral incentives, managing the variability between consecutive updates, which in
turn ensures more stable agent policies.

β̂ti,j = ηEi(hti,j , β̂t−1
i,j ) + (1− η)β̂t−1

i,j . (3)

The decoder Di uses another recurrent network that concatenates agent i’s historical observations
htij of opponent j with its current behavioral incentive estimation β̂tij . The output is the predicted
state sequence ĥt+thi,j of opponent j from t to t+ th. We train our encoder and decoder with behav-
ioral incentive inference loss Jβi

, given by an average L1-norm error between the predicted state
sequence ĥt+thi,j = Di(hti,j , β̂ti,j) and the ground truth ht+thi,j .

Jβi
= min

Ei,Di

1

Nth

N∑
j=1

∥∥∥Di(hti,j , β̂ti,j)− ht+thi,j

∥∥∥
1
. (4)
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3.2 Instant Incentive Inference for Trajectory Prediction

The instant incentive inference module intends to estimate opponents’ instant incentives from cur-
rent observations of surrounding agents and their behaviors, which is used for trajectory prediction.
Similar to the behavioral incentive inference, we introduce another encoder-decoder structure with
encoder ϕi parameterized by θϕi and decoder ψi parameterized by θψi . The encoder ϕi approx-
imates the instant incentive inference function ζ̂ti,j ∼ fi,ζ(·|oti,j , β̂ti,j , ζ̂

t−1
i,j ) from agent i’s current

observations oti of agent i, current behavioral incentive estimations β̂
t

i, and previous instant incentive

estimations ζ̂
t−1

i . The instant latent state encoder ϕi uses a sequential structure with two networks.
The first network is a Graph Attention Network (GAT) [35]. For agent i, GAT reads its observation
oti at time t and the current behavioral incentive estimation β̂

t

i. The output of GAT is fed to an
undirected graph Gti that represents instantaneous interactions among agents at time t. Every node
in Gti represents an agent in the environment, while the attention weight over the edge between node
i and node j encodes the interaction between agent i and j with its relative importance. The second
part of the encoder ϕi is a recurrent neural network (RNN) to extract the temporal information from
interaction history. The RNN uses the graphical representation Gti of interactions as the input and

previous instant incentive estimation ζ̂
t−1

i as the hidden state. The output hidden state of this RNN
ζ̂
t

i is the updated instant incentive estimation over all opponents of agent i.

The decoderψi predicts all opponents’ trajectories over a pre-defined length tp from instant incentive

estimations ζ̂
t

i. We use another RNN that takes agent i’s current observation oti as the input and its
current instant incentive estimation ζ̂

t

i as the hidden state. The first output of this RNN is the
prediction of opponents’ states ôt+1

i at the next time step t+ 1. Then we use ôt+1
i as the new input

of RNN and iteratively predict opponents’ states. The sequence of opponents’ state predictions
{ôt+ki }tpk=1 ∼ ψi(oti, ζ̂

t

i) is the trajectory prediction from t + 1 to t + tp for all opponents of agent
i. We train our encoder and decoder with instant incentive inference loss Jζi , given by an average
L1-norm error between predicted trajectories {ôt+ki }tpk=1 and ground truth trajectories {ot+ki }tpk=1.

Jζi = min
ϕi,ψi

1

Ntp

N∑
j=1

tp−1∑
k=0

∥∥∥ψi(oti, ϕi(oti, β̂ti, ζ̂t−1

i ))− ot+k+1
i

∥∥∥
1

(5)

3.3 Implementation

The pseudocode (Algorithm 1) and flow graph (Figure 3) of our algorithm are given in Appendix
A. For each environmental step t in the execution (line 4), agent i gathers its current and historical
observations oti and hti (line 6), and uses this information to infer their opponents’ behavioral in-
centives βti and instant incentives ζti (lines 7 and 8). After that, agent i’s policy πi selects action ati
(line 9). The backbone algorithm for each agent’s controller is PPO [36], which includes a policy
network πi and a critic network Qi. For each gradient step in training, agent i updates its policy πi
and critic Qi (line 15) with sampled trajectories, computes the behavioral incentive inference loss
Jβi

(line 16) to update its behavioral incentive inference encoder θEi
and decoder θDi

with Jβi
, and

uses instant incentive inference loss Jζi (line 17) to update its instant incentive inference encoder
θϕi and decoder θψi .

4 Empirical Results and Discussion

We perform experiments over two non-cooperative environments, Non-Cooperative Navigation [28]
and Heterogeneous Highway [22]. Experiments are designed from two perspectives. The first is
to compare our approach’s performance with other CTDE and DTDE MARL approaches in non-
cooperative environments. In this paper, we compare our method with two CTDE MARL baselines,
QMIX [37] and MAPPO [38], and one DTDE MARL baseline, IPPO [39]. QMIX uses a central
network to assign credits among agents with respect to their Q-values and global states. MAPPO
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(a) Non-Cooperative Navigation: with 3 agents in the
(left) easy and (right) hard scenarios. 50 steps/episode.

(b) Heterogeneous Highway: with 5 agents in (left)
mild and (right) chaotic scenarios. 90 steps/episode.

Figure 2: Comparison of average episodic reward in the Non-Cooperative Navigation and Heterogeneous
Highway environments. Conclusion: iPLAN (orange) outperforms CTDE approaches like QMIX (blue) and
MAPPO (brown) as well as IPPO (green) in heterogeneous traffic environments.

uses a central critic that reads the observation of all agents and generates a critic value to update
distributed actors. IPPO uses a distinct PPO policy to control each agent without any centralized
training, weight-sharing, communication, or inference module. The other perspective is to show
the necessity of instant and behavioral incentive inference, especially under highly heterogeneous
scenarios. We further design two scenarios with different heterogeneity levels in both environ-
ments and perform ablation studies over two variants of our method, including iPLAN-BM a vanilla
IPPO controller without the instant incentive inference module, and iPLAN-GAT, a vanilla IPPO
controller without behavioral incentive inference module. Details regarding the experiment envi-
ronment design are given in Appendix C. Further details regarding implementation, visual results,
module design, and hyper-parameter study are given in Appendix D, E, F, and G.3, respectively.

4.1 Results on Non-Cooperative Navigation

Figure 2a compares episodic rewards in easy and hard scenarios. iPLAN outperforms other methods
with low deviation. iPLAN-GAT and vanilla IPPO have larger deviations, indicating the benefit of
behavioral incentive inference in stabilizing strategies. QMIX and MAPPO perform poorly with
negative episodic rewards in both scenarios. In Non-Cooperative Navigation, agents are attracted
to the closest landmark at each time step, allowing multiple agents to target the same landmark
simultaneously. As there is no consensus in destination assignment, agents must observe and infer
others’ strategies to modify their own. This reliance on observations and inference contributes to
the superior performance of DTDE MARL approaches over CTDE MARL approaches in Non-
Cooperative Navigation.

4.2 Results on Heterogeneous Highway

Figure 2b compares episodic rewards in the mild and chaotic traffic scenarios of the Heterogeneous
Highway. We find that iPLAN has the best episodic reward in both the mild and chaotic traffic.
iPLAN-GAT, iPLAN-BM, and vanilla IPPO have similar performances in mild traffic scenarios, but
iPLAN-GAT is slightly worse than iPLAN in the chaotic traffic. Notably, two CTDE MARL baselines
have much lower episodic rewards than DTDE MARL approaches in chaotic traffic, and QMIX has
a significant collapse compared with its performance in mild traffic.

In addition to the episodic reward curve comparison, we evaluate our method and baselines over
several navigation metrics, including:

Episodic Average Speed. Agents’ average speed during their lifetime in an episode. Agents are
encouraged to drive faster when driving between 20 and 30m/s.

Average Survival Time. The average time steps passed over all agents before they collide or reach
the end of this episode. Longer survival time reflects agents’ better ability to avoid collisions.
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Success Rate. The percentage of vehicles that still stay collision-free when an episode ends.

Table 1 shows navigation metrics for mild and chaotic traffic. High speed (closer to 30) correlates
with low survival time and success rate. This is because aggressive reward-exploiting policies in-
crease collision risk, reducing long-term reward. Approaches like iPLAN and iPLAN-GAT drive
slower (closer to 20) for safety and higher episodic reward. Instant incentive inference improves
episodic reward and success rates, especially in chaotic traffic. iPLAN maintains similar success
rates but a higher average speed in mild traffic, being more conservative and dependent in heteroge-
neous traffic. Comparing iPLAN and iPLAN-GAT, iPLAN drives faster in both scenarios for higher
episodic reward. iPLAN-GAT has a longer survival time in mild traffic, but the opposite in chaotic
traffic. This indicates that agents are more dependent on their instant incentive inference in mild
traffic when opponents’ trajectories are more predictable, and more dependent on their behavioral
incentive inference in chaotic traffic due to aggressive vehicles’ unpredictable behaviors. QMIX
performs well in mild traffic but poorly in chaotic traffic (success rate < 20%) due to environmental
heterogeneity effect on its credit assignment.

5 Conclusion, Limitations, and Future Work

Approach Avg. Speed
(m/s)

Avg. Survival Time
(# Time Steps) ↑

Success Rate
(%) ↑

M
ild

QMIX [37] 21.24± 0.09 75.98± 3.67 67.50± 6.34
MAPPO [38] 27.85± 0.40 48.94± 3.11 32.81± 5.22

IPPO [39] 22.63± 0.17 66.13± 4.13 49.06± 7.35
iPLAN-GAT 22.05± 0.11 75.54± 3.61 68.44± 6.64
iPLAN-BM 22.61± 0.16 64.11± 4.28 45.63± 6.33

iPLAN 22.91± 0.15 70.56± 3.81 68.44± 5.86

C
ha

ot
ic

QMIX [37] 27.06± 0.47 39.38± 2.64 19.69± 3.72
MAPPO [38] 29.46± 0.05 42.31± 2.43 16.25± 3.76

IPPO [39] 22.28± 0.13 67.01± 3.64 42.50± 7.12
iPLAN-GAT 20.91± 0.13 71.24± 3.83 61.88± 6.41
iPLAN-BM 21.65± 0.28 63.20± 3.51 35.31± 5.66

iPLAN 21.61± 0.16 76.20± 3.33 67.81± 5.91

Table 1: Navigation metrics in Heterogeneous Highway: Met-
rics are averaged over 64 episodes with 0.95 confidence. iPLAN
outperforms all other approaches in its highest success rate and sur-
vival time, though it tends to be conservative in its average speed.

This paper presents a novel intent-
aware distributed MARL algorithm
tailored for planning and navigation
in heterogeneous traffic. We model
two distinct incentives, the behavioral
incentive and the instant incentive,
for agents’ strategies. Our approach
enables agents to infer their oppo-
nents’ behavior incentives and inte-
grate this inferred information into
their decision-making and motion-
planning processes. Results show
that our approach shows a promis-
ing result in the two environments
we use, Non-Cooperative Navigation
and Heterogeneous Highway, with
a better performance in episodic re-
ward curves and navigation metrics
than baselines. Nonetheless, it is important to acknowledge certain limitations within our research:

Firstly, our evaluation has been confined to a simulation environment. Real-world autonomous
driving scenarios present a diverse array of traffic situations and driving behaviors, potentially posing
challenges for the generalization of our approach to unfamiliar strategies unseen during training.
Furthermore, attempting to predict the complete state of a multi-agent system in real-world contexts
may introduce the risk of significant and potentially hazardous errors, as agents might inaccurately
reconstruct or predict states.

Secondly, the design of our framework centers on the use of two incentives for representing and
inferring the objectives of other drivers in motion planning. However, in certain scenarios, such as
in more straightforward or mixed conditions, the necessity of dual incentives remains ambiguous
i.e. it might be that a singular incentive set is adequate. Future research could delve deeper into
the design of inference models. Additionally, while our contributions are empirically substantiated,
they currently lack a solid theoretical foundation. Therefore, forthcoming research initiatives should
prioritize the establishment of theoretical safety and convergence bounds for our approach.
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A Algorithm

A.1 Pseudocode

Algorithm 1 iPLAN: Intent-aware Planning in Heterogeneous Traffic via Distributed MARL

Require: Number of agents N , Number of experiences K for experience replay, Length of histori-
cal observation sequence th, Length of trajectory prediction tp

1: Initialize: Agent i’s network parameters θπi
, θQi

, θEi
, θDi

, θϕi
, θψi

, i = 1, 2, . . . , N

2: Initialize: Replay Buffer B ← ∅, Incentive Inferences β0
i ←

−→
0 , ζ0

i ←
−→
0 for i = 1, 2, . . . , N

3: for each environmental step t do
4: for i = 1, 2, . . . , N do
5: Gather current and historical observations oti and hti

6: Infer behavioral incentives β̂
t

i with Ei(hti, β̂
t−1

i )

7: Infer instant incentives ζ̂
t

i with ϕi(oti, β̂
t

i, ζ̂
t−1

i )

8: Select action ati with πi(·|oti, β̂
t

i, ζ̂
t

i)
9: end for

10: end for
11: for each gradient step do
12: Sample K experiences from the replay buffer B
13: for k = 1, 2, . . . ,K do
14: for i = 1, 2, . . . , N do
15: // Update PPO controller
16: Perform experience replay on experience k
17: Update policy θπi and critic θQi of the PPO controller
18: // Update behavioral incentive inference module
19: for each step tk in experience k do
20: Gather historical observation sequence ht

k

i from experience k

21: Infer behavioral incentives β̂
tk

i with Ei(ht
k

i , β̂
tk−1

i )

22: Predict future observation sequence ĥ
tk+th
i with Di(ht

k

i , β̂
tk

i )

23: Use predicted ĥ
tk+th
i and ground-truth ht

k+th
i to compute Jβi

in (4)
24: Update behavioral incentive encoder θEi

and decoder θDi
with Jβi

25: end for
26: // Update instant incentive inference module
27: for each step tk in experience k do

28: Gather current observation ot
k

i and behavioral incentives β̂
tk

i from experience k

29: Infer instant incentives ζ̂
tk

i with ϕi(ot
k

i , β̂
tk

i , ζ̂
tk−1

i )

30: Predict future trajectories {ôt
k+j
i }tpj=1 with ψi(ot

k

i , ζ̂
tk

i )

31: Use predicted {ôt
k+j
i }tpj=1 and ground-truth {ot

k+j
i }tpj=1 to compute Jζi in (5)

32: Update instant incentive encoder θϕi
and decoder θψi

with Jζi
33: end for
34: end for
35: end for
36: end for
37: Output: E∗i , ϕ∗i , π∗

i for each i.

14



A.2 Flow Diagram

To illustrate our algorithm in Algorithm 1, we create a flow diagram to visualize the execution and
training procedure performed by agent i in iPLAN. Details could be found in Fig. 3.

Figure 3: Flow Diagram for Algorithm 1
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B Related Work

Trajectory and Intent Prediction for Autonomous Driving. Trajectory prediction is a fundamen-
tal task in autonomous driving [40, 41, 42]. TraPHic and RobustTP [43, 8] use an LSTM-CNN
framework to predict trajectories in dense and complex traffic. TNT [44] uses target prediction,
motion estimation, and ranking-based trajectory selection to predict future trajectories. DESIRE [4]
uses sample generation and trajectory ranking for trajectory prediction. PRECOG [13] combines
conditioned trajectory forecasting with planning objectives for AVs. Additionally, many methods
focus on intent prediction to gain a better understanding of interactions between vehicles when pre-
dicting trajectories. Intent prediction can be done by physical-based methods like Kalman filter [45]
or Monte Carlo [46], classical machine learning like Gaussian processes (GP) [47, 48], Hidden
Markov Model (HMM) [49], and Monte Carlo Tree Search (MCTS) [50], or deep learning-based
methods such as Trajectron++ and CS-LSTM [7, 51]. [52] uses a Seq2Seq framework to encode
agents’ observations over neighboring vehicles as their social context for trajectory forecasting and
decision-making. [53] uses temporal smoothness in attention modeling for interactions and a se-
quential model for trajectory prediction. However, most methods overlook variations in driving
behaviors, which deteriorates their reliability in heterogeneous traffics.

Intent-aware Multi-agent Reinforcement Learning. As a large-scale and non-cooperative [54]
scenario, the awareness of opponents’ incentives is quite important when implementing MARL
in autonomous driving. Intent-aware multi-agent reinforcement learning [5] estimates an intrin-
sic value that represents opponents’ intentions for communication [55] or decision-making. Many
intent inference modules are based on Theory of Mind (ToM) [56] reasoning or social attention-
related mechanisms [57, 58]. [59] uses ToM reasoning over opponents’ reward functions from their
historical behaviors in performing multi-agent inverse reinforcement learning (MAIRL). [60] uses
game theory ideas to reason about other agents’ incentives and help decentralized planning among
strategic agents. However, many prior works oversimplify the intent inference and make some prior
assumptions about the content of intent. In the real world, agents’ incentives are more complex
and intractable during interactions among large groups of agents, so a more general and high-level
incentive representation is needed in intent-aware MARL.

Opponent Modeling. Opponent modeling [61] in multi-agent reinforcement learning usually de-
ploys various inference mechanisms to understand and predict other agents’ policies. Opponent
modeling could be done by either estimating others’ actions and safety via Gaussian Process [62]
or by generating embeddings representing opponents’ observations and actions [63]. Inferring op-
ponents’ policies helps to interpret peer agents’ actions [64] and makes agents more adaptive when
encountering new partners [65]. Notably, many works [66, 67] reveal the phenomenon whereby ego
agents’ policies also influence opponents’ policies. To track the dynamic variation of opponents’
strategies made by an ego agent’s influence, [68, 69] propose the latent representation to model
opponents’ strategies and influence based on their findings on the underlying structure in agents’
strategy space. [70] provides a causal influence mechanism over opponents’ actions and defines an
influential reward over actions with high influence over others’ policies. [71] proposes an optimiza-
tion objective that accounts for the long-term impact of ego agents’ behavior in opponent modeling.
A considerable limitation of many current methodologies is the underlying assumption that agents
continually interact with a consistent set of opponents across episodes. This assumption is a mis-
fit for real-world autonomous driving contexts. On roads, drivers constantly come across different
vehicles and drivers, necessitating the ability to infer the intentions of new opponents with minimal
prior knowledge.

C Experiment Details

C.1 Non-Cooperative Navigation

Non-Cooperative Navigation is developed based on the Multi-agent Particles Environment
(MPE) [28]. n agents are required to maximize their coverage over n landmarks without any ex-
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plicit cooperation or inter-agent communication mechanism. Instead of being assigned some pre-
determined landmarks as their destinations, agents are attracted to the immediate closest landmark
at each time step. This indicates that an agent’s destination is not fixed in an episode and that mul-
tiple agents can be attracted to a specific landmark simultaneously. Agents should properly select
their intended landmarks, reach and stay at their intended landmarks, and avoid any conflicts with
other agents. The length of each episode is 50 steps. Agents and landmarks are randomly initialized
within a 2 × 2 world space. All plots in Non-Cooperative Navigation are averaged over 5 random
seeds.

In Non-Cooperative Navigation, there are three different kinds of agents that are controllable by
MARL policies and one kind of agent that is controlled by the pre-defined random policy taking
random actions at each time step. Table 2 shows the parameters of different kinds of agents; their
major differences come from their sizes and acceleration values:

Agent Type Size Acceleration

Normal 0.08 1.0
Tiny 0.06 1.1

Bulky 0.10 0.9
Random 0.08 1.0

Table 2: Parameters for Agents in Non-cooperative Navigation

Scenarios. Two scenarios with different heterogeneity levels are included in this paper:

• Easy: 1 Normal agent, 1 Tiny agent, and 1 Bulky agent.

• Hard: 1 Normal agent, 1 Tiny agent, 1 Bulky agent, and 1 Random agent.

Note that all agents in the easy scenario are controllable. One uncontrollable agent exists along with
three controllable agents in the hard scenario, which makes this scenario more heterogeneous.

Observation Space. Non-Cooperative Navigation is a fully-observable environment with a con-
tinuous observation space for each agent. The observation vector of an agent is composed of state
vectors of all entities within the world space, including the states of all agents and landmarks. Here,
we denote the state of an entity in Non-Cooperative Navigation as a vector with its ID, current posi-
tion, and velocity. Within agent i’s observation vector, the positions of all entities are their positions
with respect to agent i. Agent i’s ego state vector locates it at the top of its observation vector and
uses its own absolute position in the world space. For those CTDE MARL algorithms requiring
the global state, the global state is the collection of all entities’ state vectors composed of their IDs,
absolute positions, and velocities in the world space.

Action Space. Non-Cooperative Navigation has a discrete action space with 5 identical high-level
actions, {idle, up, down, left, right}. Taking action in any direction (i.e., all actions except idle)
makes this agent accelerate by one step size in that direction. The acceleration step size varies in
different kinds of agents.

Reward. Each agent has an individual reward function in Non-Cooperative Navigation. An agent
gets a penalty that equals its distance from the closest landmark in the environment at each time
step. Notably, multiple agents may get this penalty with respect to their distances to a specific
landmark if this landmark is the closest to all of them. If a collision happens between two agents,
both will receive a penalty of −5. If an agent reaches the scope with a distance of less than 0.1 to
any landmarks, this agent receives a positive reward of 10. We denote this scope as the rewarding
scope. If all controllable agents reach and stay within the rewarding scope without conflicts, they
all receive a positive reward of 100.
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C.2 Heterogeneous Highway

Heterogeneous Highway is developed based on Highway-env [22], which is a 2D autonomous driv-
ing simulator based on PyGame. Traffic scenarios in our environment are designed based on the
Highway scenario given by Highway-env with simulated vehicles driving on a multi-lane highway.
The objective of vehicles controlled by MARL algorithms is to maintain a collision-free trajectory
with a proper speed between 20 and 30 m/s when driving through heterogeneous traffic. Uncon-
trollable vehicles are controlled by three different behavior-driven vehicle models modified from
models proposed in [72], and we denote them as Normal, Aggressive, and Conservative vehicles.
Their major differences come from their kinematic features, given in Table 3.

Kinematic Parameters Normal Aggressive Conservative

Max Speed (m/s) 40 50 40
Default Speed Range (m/s) [23, 25] [35, 40] [23, 25]
Max Acceleration (m/s2) 6.0 9.0 5.0

Desired Acceleration (m/s2) 3.0 6.0 2.0
Desired Deceleration (m/s2) −5.0 −9.0 −4.0
Desired Front Distance (m) 5.0 + l 0.5 8.0 + l

Time Wanted (Before Stop) (s) 1.5 1.2 1.8

Table 3: Kinematics for the behavior-driven vehicle model used in Heterogeneous Highway scenarios. All
vehicles are assumed to have the same size l.

The length of each episode is 90 steps. Initially, vehicles are randomly placed throughout the world
space with a density of 1. All results in Heterogeneous Highway have averaged over 5 random seeds.

Scenarios. Two scenarios under mild and chaotic traffic are included in this paper. Each scenario has
5 controllable vehicles and 50 behavior-driven vehicles uniformly distributed over an 8-lane high-
way. The compositions of different behavior-driven vehicles relate to the heterogeneity of traffic.
The mild traffic has mostly normal-behaving vehicles, so we consider this scenario more homoge-
neous. In the chaotic traffic scenario, more aggressive vehicles exist, which makes the environment
more heterogeneous. Here are the propositions of each kind of behavior-driven vehicle in mild and
chaotic traffic scenarios:

• Mild: 80% Normal vehicles + 10% Aggressive vehicles + 10% Conservative vehicles.

• Chaotic: 40% Normal vehicles + 30% Aggressive vehicles + 30% Conservative vehicles.

Observation Space. Heterogeneous Highway is a partially-observable environment in that agents
can only observe 15 other vehicles within their predefined observation scope. The observation scope
for each agent is 100 m in both directions of the x-axis and 20 m in both directions of the y-axis.
Each agent has a continuous observation space. The observation vector of an agent is composed
of stacked state vectors of all vehicles within its observable scope. Here, we denote a state vector
of a vehicle as a vector with its ID, current position, and velocity in the world space. For agent
i’s observation vector, its ego state vector locates it at the top of its observation vector and uses its
own absolute position in the world space. The remaining state vectors are state vectors of vehicles
observed by agent i using their positions relative to agent i. The global state for CTDE MARL
baselines is made up of concatenated state vectors of all controllable and uncontrollable vehicles
within the environment.

Action Space. The action space for each controllable agent is discrete with 5 distinct actions, {lane
left, idle, lane right, faster, slower}. Vehicles convert their high-level discrete action orders into a
sequence of x, y coordinates when taking actions. All vehicles’ low-level motion models follow the
Kinematic Bicycle Model [73], and their kinematic parameters are given in Table 3.

Reward. For DTDE MARL algorithms, each agent receives an individual reward, while for CTDE
MARL approaches, all agents receive a global reward by summing their individual rewards together.
Once an agent collides with other vehicles, this agent gets a −1 penalty. Agents are encouraged to
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keep right, and an agent gets a linear reward from 0 to 0.1 with respect to its distance to the rightmost
lane. Agents are encouraged to keep a speed within the rewarding speed range of 20 to 30m/s. At
each time step, an agent is rewarded with respect to its speed within the reward speed range. If an
agent can reach a speed of 30 or higher at this time step, it gets a reward of 0.4. If an agent keeps a
speed of 20 or lower at this time step, it gets a reward of 0.

D Visual Results

(a) (Mild) iPLAN: All 5 agents (green) are successful.

(b) (Chaotic) iPLAN: All 5 agents (green) are successful.

(c) (Mild) MAPPO: 2 agents (green) are successful. The first 3 agents crash (red vehicles).

(d) (Chaotic) MAPPO: 2 agents (green) are successful. The first, second, and fourth crash (red vehicles).

(e) (Mild) QMIX: 3 agents (green) are successful. The first and the last crash (red vehicles).

(f) (Chaotic) QMIX: 4 agents (green) are successful. The third vehicle crashes (red vehicle).

Figure 4: Qualitative results on Heterogeneous Highway: We visually compare the performance of iPLAN
with QMIX and MAPPO. Each baseline is tested with multiple learning agents shown in green, and each figure
above shows 5 such learning agents from their respective viewpoints. In each figure, we show cases when the
green agents succeeded versus when they crashed. Conclusion: All 5 agents succeed using iPLAN as shown in
Figures 4a and 4b whereas on average 2 or more agents crash using QMIX or MAPPO.
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E Implementation Details

Behavioral Incentive Inference. The encoder of the behavioral incentive inference module uses a
1-layer GRU network with a size of 32 and generates an 8-length vector as the latent representation
of the behavioral incentive. The decoder uses another 1-layer GRU network with a size of 64 to
predict future state sequences, with a dropout rate of 0.1. The truncated length th of the observation
history is 10 in the Heterogeneous Highway and 5 in Non-Cooperative Navigation. The learning
rate for behavioral incentive inference is 1× 10−4.

Instant Incentive Inference. The encoder of the instant incentive inference module uses a GAT
with a hidden-layer size of 32 and a 1-layer GRU with a hidden-layer size of 32. The decoder uses
another 32-size GRU to predict the trajectory, with a dropout of 0.1. The trajectory prediction length
tp is 5 in the Heterogeneous Highway and 2 in Non-Cooperative Navigation. The learning rate for
instant incentive inference is 2× 10−5.

IPPO Controller. The input of the PPO controller for an agent is the flattened vector of its ob-
servation of all entities’ (vehicles in Heterogeneous Highway; other agents and landmarks in Non-
Cooperative Navigation) states and the inference of all other agents’ (or other vehicles’) behavioral
incentive and instant incentive. The PPO controller has a buffer size of 256 and a learning rate of
5 × 10−4 for its actor and critic. All fully-connected and recurrent layers in the actor and critic of
PPO have a dimension of 64.
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Figure 5: Non-Cooperative Navigation with recurrent and fully-connected behavioral incentive inference
modules: Comparing the episodic reward in the (left) easy and (right) hard scenarios. Conclusion: iPLAN
(orange) performs better than others in the easy scenario. iPLAN-BM (green) outperforms iPLAN-BMFC (blue)
in the hard scenario.

F Supplementary Experiments: Behavioral Incentive Inference Module

F.1 Choice of Behavioral Incentive Inference Module

During our design process for the behavioral incentive inference module, we experimented with
different architectures in the encoder-decoder framework. Specifically, we tested the usage of a
recurrent layer and a fully-connected layer. While the latter design has been utilized in prior works
for similar tasks [68, 69, 65], we want to address the temporal relationship presented in the historical
observation sequences. To evaluate the performance of these two designs, we conduct experiments
on the comparison between iPLAN and an alternative approach that uses a fully-connected behavioral
incentive inference module.

In this module, we take the flattened historical observation sequence as input and employed a 3-layer
fully-connected network with a hidden layer dimension of 64 as the encoder. This encoder generates
an 8-length latent representation of the behavioral incentive. Additionally, we use another 3-layer
fully-connected network with the same hidden layer dimension as the decoder to predict future state
sequences for opponents. The learning rate for this alternative behavioral incentive inference module
is set to 1× 10−4.

We depict the episodic rewards over both environments in Figure 5 and Figure 6. In these figures,
the approach employing the fully-connected network in the behavioral incentive inference module
is denoted as iPLAN-FC, and the same notation applies to iPLAN-BMFC. The results indicate that
incorporating the recurrent layer improves the performance of the behavioral incentive inference
module. Specifically, our approach (iPLAN, orange curve) demonstrates better performance than
iPLAN-FC (red curve). Similarly, iPLAN-BM (green curve) outperforms iPLAN-BMFC (blue curve)
in general.

F.2 Soft Updating Policy

Another important aspect to consider in our behavioral incentive inference module design is the
updating policy for behavioral incentives. Drawing inspiration from previous works [68, 69, 65],
we divide the behavioral incentive inference within an episode into multiple sub-episodes. We aim
to update the behavioral incentive inferences at the end of each sub-episode. This updating pol-
icy is referred to as the hard-updating policy, in contrast to the soft-updating policy, which treats
the behavioral incentive inference as a converging procedure and iteratively updates the behavioral
incentive inferences.

In our experiments, we evaluate the performance of iPLAN and an alternative method, iPLAN-Hard,
which employs a hard-updating policy. In iPLAN-Hard, the behavioral incentive inference module
updates the behavior incentives at specific time intervals (e.g., t = 10, 20, 30, . . .), while the behav-
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Figure 6: Heterogeneous Highway with recurrent and fully-connected behavioral incentive inference
modules: Comparing the episodic reward in the (left) mild and (right) chaotic traffic scenarios. Conclusion:
Approaches using recurrent behavioral incentive inference modules, including iPLAN (orange) and iPLAN-BM
(green), outperform those using fully-connected behavioral incentive inference modules.

Figure 7: Non-Cooperative Navigation with and without soft-updating policy: Comparing the episodic
reward in the (left) easy and (right) hard scenarios. Conclusion: iPLAN-BM-Hard (blue) performs the best in
the easy scenario and the worst in the hard scenario. iPLAN (orange) has a better performance in general.

ior incentive inferences remain unchanged between these updating points (i.e., between t = 10 and
t = 20). All other hyperparameters used in the behavioral incentive inference module remain the
same.

Figure 7 and Figure 8 illustrate the results obtained with different behavior incentive updating poli-
cies. In Non-Cooperative Navigation,iPLAN-BM-Hard achieves the best performance in the easy
scenario but performs the worst in the hard scenario. This significant gap between scenarios may
stem from its inability to capture heterogeneity, considering that all agents in the easy scenario are
controllable. On the other hand, iPLAN exhibits overall better performance, ranking second in the
easy scenario and first in the hard scenario. This outcome demonstrates that the soft-updating pol-
icy helps address heterogeneity and stabilize agents’ strategies. In Heterogeneous Highway, iPLAN-
Hard denotes the approach that uses a hard-updating policy for behavioral incentives, and the same
notation applies to iPLAN-BM-Hard. The results reveal that despite the difference in updating poli-
cies, their performances remain relatively close in mild traffic for both comparison pairs (iPLAN v.s.
iPLAN-Hard, iPLAN-BM v.s. iPLAN-BM-Hard). However, in chaotic traffic, where instant incentive
inference is not available, the use of the soft-updating policy leads to a substantial improvement
for iPLAN. As agents become more reliant on their inference of others’ behaviors and intentions
in a highly heterogeneous environment, the reliability and flexibility of their behavioral incentive
inference become crucial, enabling them to gain a better understanding of their surroundings.

F.3 GAT-version Behavior Incentive Encoder

We perform an additional experiment that includes an alternative approach that uses a GAT module
after the behavior incentive encoder to discuss the possibility of incorporating a graphical network
in behavior incentive inference that may be helpful in addressing the changing observation set. We
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Figure 8: Heterogeneous Highway with and without soft-updating policy: Comparing the episodic reward
in the (left) mild and (right) chaotic traffic scenarios. Conclusion: iPLAN (orange) that uses a soft-updating
policy for behavioral incentive inference module greatly outperforms its alternative approach iPLAN-Hard (red)
that uses a hard-updating policy.

Figure 9: Non-Cooperative Navigation with and without graphical attention network in the behavioral
incentive inference module of iPLAN: Comparing the episodic reward in the (left) easy and (right) hard
scenarios. Conclusion: Using a graphical attention network in the behavioral incentive inference module of
iPLAN does not help to improve performance.

compare this alternative approach with iPLAN in the easy and hard scenarios of Non-Cooperative
Navigation.

Fig. 9 presents the comparison between the two approaches. According to the result in both easy
and hard scenarios, we find that iPLAN (orange) outperforms the alternative approach that uses a
GAT module inside the behavior incentive encoder, an approach named iPLAN-dual-GAT (blue),
with a clear margin between two episodic reward curves. Besides, using GAT in behavior incentive
inference also leads to a slower execution speed due to the additional complexity in the behavior
inference module. The result shows that using GAT in the behavior incentive inference does not
help to address the changing observation and additional network parameters introduced by the GAT
module deteriorate the performance of iPLAN in practice.
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Figure 10: Using L2 norm in loss function of behavioral and instant incentive inference module of iPLAN:
Comparing the episodic reward curve of iPLAN (orange) and iPLAN-L2 (blue) under the chaotic scenario of
Heterogeneous Highway, with testing episodes results generated over frozen models. Conclusion: iPLAN
using L1 norm in the loss function in two incentive inference modules performs better than iPLAN-L2 with a
clear margin between two episodic reward curves.

G Supplementary Experiments: Inference Module Design

G.1 L2-Norm Loss Function

Regarding the possibility of using an alternative loss function design with a different L-p norm, we
modify the loss function in Eq. (4) and Eq. (5) by using L2-norm, instead of L1 norm, in the loss
function for both incentive inference modules. We name this alternative approach as iPLAN-L2. The
new loss functions for both incentive inference modules are:

Behavior incentive inference loss function:

Jβi = min
Ei,Di

1

Nth

N∑
j=1

∥∥∥Di(hti,j , β̂ti,j)− ht+thi,j

∥∥∥
2
. (6)

Instant incentive inference loss function:

Jζi = min
ϕi,ψi

1

Ntp

N∑
j=1

tp−1∑
k=0

∥∥∥ψi(oti, ϕi(oti, β̂ti, ζ̂t−1

i ))− ot+k+1
i

∥∥∥
2

(7)

Algorithm Mean Std

iPLAN 53.321 9.490
iPLAN-L2 48.182 11.921

Table 4: Standard statistical test: Standard statistical test over the episodic reward of iPLAN and iPLAN-
L2 under the chaotic scenario of Heterogeneous Highway when training step = 950, 000. Perform standard
statistical test of iPLAN and iPLAN-L2 (iPLAN using L2 norm in loss function) Conclusion: iPLAN using L1
norm in the loss function in two incentive inference modules performs better than iPLAN-L2

We perform evaluation experiments under the chaotic scenario of the Heterogeneous Highway. We
train iPLAN and iPLAN-L2 models and test both models’ performance over frozen models. We
perform 32 testing episodes at the testing phase each time. The random seed we use is 59582679.
Fig. 10 shows the episodic reward curve over all testing phases performed, while Table. 4 provides
the standard statistical test results over frozen models of iPLAN and iPLAN-L2 after 950, 000 training
steps. From the result, we could conclude that the current loss function design of iPLAN, i.e. using
L1-norm in both incentive inference modules, leads to a better performance than the alternative
approach using L2-norm in loss functions of both incentive inference modules.

24



Figure 11: Heterogeneous Highway with different learning rates for instant incentive inference module:
Comparing the episodic reward in the (left) mild and (right) chaotic traffic scenarios (with 1.6M training time
steps). Conclusion: Using a smaller learning rate in instant incentive inference (iPLAN, orange) has a better
performance in the mild traffic

G.2 Weight Sharing

Regarding allowing weight sharing in iPLAN modules, we design an alternative approach of iPLAN
that shares weights between different agents’ behavior and instant incentive inference modules. We
name this alternative approach as iPLAN-weight-sharing. We perform evaluation experiments under
the chaotic scenario of the Heterogeneous Highway. We provide standard statistical test results over
frozen models of iPLAN and iPLAN-weight-sharing at 1, 200, 000 training steps. We perform 32
testing episodes at the testing phase each time. The random seed we use is 59582679. We compute
the p-values of the results by comparing the results of alternative approaches with iPLAN.

Algorithm Mean Std p-value

iPLAN 56.540 10.141 -
iPLAN-weight-sharing 52.876 11.848 0.195

Table 5: Standard statistical test: Standard statistical test over the episodic reward of iPLAN and iPLAN-
weight-sharing under the chaotic scenario of Heterogeneous Highway when training step = 1, 200, 000. Per-
form standard statistical test of iPLAN and iPLAN-weight-sharing.

Table. 5 shows the standard statistical test results performed over frozen models after 1, 200, 000
training steps. Results show that performing weight-sharing over inference modules degrades per-
formance. This is primarily due to the inherent challenges in harmonizing policies within a diverse
agent team. As discussed in our response to Weakness 2.2, even subtle disparities in controller
policies can lead to significant variances in incentive inference modules. Weight sharing does not
rectify this discrepancy. Furthermore, upholding distinct incentive inference modules without re-
sorting to weight sharing effectively manages the innate diversity of the multi-agent system, making
the approach more adept for intricate, heterogeneous systems.

G.3 Supplementary Experiments: Hyper-Parameter Study

G.3.1 Learning Rate in Instant Incentive Inference

Figure 11 compares the episodic rewards when using different learning rates for instant incentive
inference. iPLAN (orange curve) uses a learning rate of 2× 10−5 and iPLAN-large (blue curve) uses
a learning rate of 1 × 10−4. The result shows that using a smaller learning rate in instant incentive
inference has a better performance in practice.

G.3.2 Hidden Layer Dimension in Behavioral Incentive Inference

Figure 12 presents a comparison of the effect of hidden layer dimensions used in behavior incentive
inference. In this figure, we denote the alternative approach iPLAN that utilizes a hidden layer
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Figure 12: Non-Cooperative Navigation with different hidden layer dimensions for behavioral incentive
inference module: Comparing the episodic reward in the (left) easy and (right) hard scenarios. Conclusion:
Approaches like iPLAN-BM-128 (blue) and iPLAN-128 (red) that use a larger hidden layer dimension for be-
havioral incentive inference do not address the heterogeneity well and suffer from the overfitting problem.

dimension of 128 as iPLAN-128, and the same notation applies to the alternative approach iPLAN-
BM-128 of iPLAN-BM.

In the easy scenario, both iPLAN-BM-128 (blue curve) and iPLAN-128 (red curve) exhibit signifi-
cantly better performance than their counterparts using a hidden layer dimension of 64 in the first
half of training. However, their episodic rewards experience a substantial decline in the second half,
resulting in a lower ultimate episodic reward compared to iPLAN. This observation suggests that
these models are overfitting in the easy scenario.

In the hard scenario, iPLAN (orange curve) outperforms iPLAN-128 (red curve) and iPLAN-BM-128
(blue curve), as the episodic reward of iPLAN-BM-128 begins to decrease when iPLAN’s curve is
still increasing. This phenomenon demonstrates that using a larger hidden layer dimension does not
necessarily lead to performance improvement, as it can exacerbate the overfitting problem. Addi-
tionally, a larger hidden layer dimension may not effectively address the heterogeneity in a more
complex and heterogeneous environment, such as the hard scenario.

Overall, the results indicate that carefully selecting the hidden layer dimension is crucial. While a
larger dimension may offer some benefits, it can also lead to overfitting and failure in addressing the
challenges posed by heterogeneity in certain scenarios.

26



(a) iPLAN-QMIX (b) iPLAN-MAPPO

Figure 13: Heterogeneous Highway with the CTDE version of iPLAN: Comparing the episodic reward in the
chaotic scenario with approaches incorporating iPLAN (orange) with QMIX (left) and MAPPO (right). Con-
clusion: Incorporating iPLAN with centralized credit assignment MARL approaches does not help to achieve
better performance.

H Supplementary Experiments: CTDE Version of iPLAN

Regarding evaluating iPLAN with a centralized critic (MAPPO) and a mixing network (QMIX), in
the controller, we perform supplementary experiments that incorporate iPLAN incentive inference
module with two CTDE MARL baselines, QMIX and MAPPO. We name the alternative approach
combining QMIX and iPLAN as iPLAN-QMIX. Similarly, we name the alternative approach combin-
ing MAPPO and iPLAN as iPLAN-MAPPO. We evaluate the performance of alternative approaches
under the chaotic scenario of the Heterogeneous Highway. We compute and visualize the episodic
reward curve over a rigorous testing phase performed 32 testing episodes using frozen models. The
random seed we use is 59582679.

Algorithm Success Rate (%) Avg. Reward Avg. Survival Time
(# Time Steps)

Avg. Speed
(m/s)

QMIX 38.13± 8.37 54.29± 3.12 46.01± 5.23 23.50± 0.30
iPLAN-QMIX 54.38± 7.79 50.46± 3.40 64.96± 3.65 23.88± 0.19

iPLAN 64.38± 9.12 56.54± 3.51 74.92± 4.86 21.99± 0.17

Table 6: Navigation metrics of QMIX, iPLAN-QMIX, and iPLAN under chaotic scenario of Heterogeneous
Highway: Comparing the navigation metrics of QMIX, iPLAN-QMIX, and iPLAN acquired in the chaotic sce-
nario over frozen models after 1, 200, 000 training time steps. Conclusion: iPLAN shows a better performance
than the other two approaches, in terms of success rate, average episodic reward, and average survival time.

Algorithm Success Rate (%) Avg. Reward Avg. Survival Time
(# Time Steps)

Avg. Speed
(m/s)

MAPPO 26.88± 7.06 43.70± 3.50 44.60± 3.71 29.93± 0.02
iPLAN-MAPPO 23.75± 5.86 42.22± 3.09 42.20± 3.29 29.93± 0.02

iPLAN 64.38± 9.12 56.54± 3.51 74.92± 4.86 21.99± 0.17

Table 7: Navigation metrics of MAPPO, iPLAN-MAPPO, and iPLAN under chaotic scenario of Heteroge-
neous Highway: Comparing the navigation metrics of MAPPO, iPLAN-MAPPO, and iPLAN acquired in the
chaotic scenario over frozen models after 1, 200, 000 training time steps. Conclusion: iPLAN shows a better
performance than the other two approaches, in terms of success rate, average episodic reward, and average
survival time.

Fig. 13 presents the episodic reward variation throughout training. We train all models for 1.5
million time steps. Fig. 13 (a) presents the result of iPLAN (orange), QMIX (red), and iPLAN-
QMIX (blue). The result shows that iPLAN achieves a better overall performance, compared with
the other two approaches, and the CTDE version of iPLAN, iPLAN-QMIX, does not achieve a better
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performance, compared with QMIX. Fig. 13 (b) presents the result of iPLAN (orange), MAPPO
(red), and iPLAN-MAPPO (blue). The result shows that iPLAN outperforms the other two approaches
with a large margin between episodic reward curves, and iPLAN-MAPPO does not have a better
performance compared with vanilla MAPPO.

We also compute navigation metrics over QMIX, iPLAN-QMIX, and iPLAN, and MAPPO, iPLAN-
MAPPO, and iPLAN under the chaotic scenario. We compute results generated by 32 testing
episodes over frozen models after 1, 200, 000 training time steps. Table. 6 shows the results for
QMIX, iPLAN-QMIX, and iPLAN and Table. 7 shows the results for MAPPO, iPLAN-MAPPO,
and iPLAN. The result shows that iPLAN shows a much better performance than the other two
approaches, in terms of success rate, average episodic reward, and average survival time, when
evaluating the frozen model after 1, 200, 000 training time steps.
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Figure 14: Episodic reward curve of iPLAN and baselines with a rigorous testing phase. Comparing the
episodic reward curve of iPLAN (orange) and baselines, including QMIX (blue), MAPPO (red), and IPPO
(green) under the chaotic scenario of the Heterogeneous Highway, with testing episodes results generated over
frozen models. Conclusion: iPLAN shows a better performance than all other baselines in terms of episodic
reward.

I Supplementary Experiments: Standard Statistical Test

To address concerns regarding performing the standard statistical tests over iPLAN and baselines, in-
cluding QMIX, MAPPO, and IPPO, and perform the rigorous testing phase, we refined our codebase
and performed a rigorous testing phase over frozen models every 50, 000 training step. We present
the results over testing phases over 32 testing episodes throughout the training. We perform evalua-
tion experiments under the chaotic scenario of the Heterogeneous Highway. The random seeds we
use are 59582679, 763887655, and 312261940.

Fig. 14 shows the Episodic reward curves of iPLAN and baselines when performing a rigorous testing
phase. From the result, we find that iPLAN (orange) shows a better performance than all other
baselines in terms of episodic reward and there is a clear margin between iPLAN and other baselines
without overlap in their error bar.

To better present the results, we provide standard statistical test results over frozen models of iPLAN
and baselines, QMIX, MAPPO, and IPPO, at 200, 000 (Table. 8), 500, 000 (Table. 9), 1, 000, 000
(Table. 10), and 1, 450, 000 (Table. 11) training steps. We compute the p-values of the results by
comparing the results of alternative approaches with iPLAN (Tables could be found on the next page).

Standard statistical test results show that iPLAN outperforms all baselines included in our paper in
terms of episodic reward, and p-values (< 0.05) suggest results are statistically significant.
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Algorithm Mean Std p-value

iPLAN 45.866 11.863 -
QMIX 44.700 12.022 0.5017

MAPPO 43.317 10.990 0.1261
IPPO 46.463 11.700 0.7271

Table 8: Standard statistical test: Standard statistical test over the episodic reward generated by frozen models
of iPLAN and baselines, QMIX, MAPPO, and IPPO, under the chaotic scenario of the Heterogeneous Highway
when training step = 200, 000. Perform standard statistical test of iPLAN and iPLAN-weight-sharing.

Algorithm Mean Std p-value

iPLAN 50.568 10.379 -
QMIX 44.455 13.008 4.357× 10−4

MAPPO 41.855 10.785 5.150× 10−8

IPPO 53.986 12.287 3.968× 10−2

Table 9: Standard statistical test: Standard statistical test over the episodic reward generated by frozen models
of iPLAN and baselines, QMIX, MAPPO, and IPPO, under the chaotic scenario of the Heterogeneous Highway
when training step = 500, 000. Perform standard statistical test of iPLAN and iPLAN-weight-sharing.

Algorithm Mean Std p-value

iPLAN 54.445 11.718 -
QMIX 46.579 13.555 2.978× 10−5

MAPPO 41.911 10.192 2.681× 10−13

IPPO 50.836 12.023 3.751× 10−2

Table 10: Standard statistical test: Standard statistical test over the episodic reward generated by frozen mod-
els of iPLAN and baselines, QMIX, MAPPO, and IPPO, under the chaotic scenario of the Heterogeneous High-
way when training step = 1, 000, 000. Perform standard statistical test of iPLAN and iPLAN-weight-sharing.

Algorithm Mean Std p-value

iPLAN 53.514 11.252 -
QMIX 47.695 13.002 1.162× 10−3

MAPPO 42.903 9.401 3.160× 10−11

IPPO 49.502 10.207 1.080× 10−2

Table 11: Standard statistical test: Standard statistical test over the episodic reward generated by frozen mod-
els of iPLAN and baselines, QMIX, MAPPO, and IPPO, under the chaotic scenario of the Heterogeneous High-
way when training step = 1, 450, 000. Perform standard statistical test of iPLAN and iPLAN-weight-sharing.
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Figure 15: iPLAN evaluation under an advanced chaotic scenario of Heterogeneous Highway: Comparing
the episodic reward of iPLAN (blue) (denote as iPLAN-VH) in the chaotic-VH scenario with the episodic reward
of iPLAN (orange) and MAPPO (red) in the chaotic scenario. Conclusion: iPLAN shows a converging trend in
the chaotic-VH scenario with a lower episodic reward than the other two.

J Supplementary Experiments: More Complex Traffic

Regarding the possibility of implementing iPLAN under a more complex domain, we perform a
supplementary experiment that evaluates iPLAN under a more challenging traffic scenario. This
advanced setting, which we have termed chaotic-VH, mirrors the existing traffic distribution of
behavior-driven vehicles (Normal: Aggressive: Conservative = 4 : 3 : 3) in the current chaotic
scenario, but with a vehicle density that is twice as dense as our previously studied chaotic scenario.
Due to computational constraints during the rebuttal phase, our exploration was limited to a single
random seed over 1 million time steps. Despite this, the results of iPLAN evaluated under chaotic-VH
are promising.

Fig. 15 shows the episodic reward curve for all three experiments, while Table. 12 provides the nav-
igation metrics over these approaches evaluated over 32 testing episodes on frozen models trained
for 1 million time steps. We observe that though having a lower episodic reward curve than it used to
be in chaotic, iPLAN outperforms MAPPO in iPLAN-VH, in terms of episodic reward curve, average
episode length, and success rate.

Algorithm Success Rate (%) Avg. Reward Avg. Survival Time
(# Time Steps)

Avg. Speed
(m/s)

iPLAN 50.63± 9.33 41.15± 4.38 56.19± 6.62 19.77± 0.88
MAPPO 18.13± 4.37 32.49± 2.80 35.80± 3.42 24.02± 0.92

Table 12: Navigation metrics of iPLAN and MAPPO under an advanced chaotic scenario of Hetero-
geneous Highway: Comparing the navigation metrics of iPLAN and MAPPO acquired in the chaotic-VH
scenario Conclusion: iPLAN shows a promising performance under the chaotic-VH scenario as it has better
performance than MAPPO.
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K Further Discussion of Empirical Results

Centralized versus Decentralized Training Regime. In this work, we operated in the decentral-
ized training regime, based on the assumption that agents should learn navigation policies in a DTDE
manner without centralization in training. Empirically, we find that CTDE MARL approaches per-
form worse as the environmental heterogeneity increases due to the absence of consensus among
agents in heterogeneous environments. On the other hand, the awareness of opponents’ strategies
becomes more important in agents’ decision-making when the environment is heterogeneous, espe-
cially the awareness of agents’ instant reactions to surroundings. This need for increased awareness
makes intent-aware distributed MARL algorithms perform better in these environments.

To further investigate the empirical performance of CTDE and DTDE approaches under our prob-
lem setting, we conduct experiments integrating two incentive inference modules of iPLAN with two
CTDE approaches, QMIX and MAPPO, and compare its performance with iPLAN and other base-
lines. We include the experiment details and results in Appendix H. Results show that integrating
iPLAN inference module in CTDE approaches does not help to achieve a better performance in the
chaotic scenario of the Heterogeneous Highway than the current DTDE version of iPLAN.

Decoupled Incentive Inference. Individually, the incentives yield some benefit over a baseline
controller. For example, we find that both the behavior and instant incentive inference modules
individually help to achieve a higher reward, especially in more heterogeneous environments (See
Figure 2). However, our system works best when both incentives are jointly activated, for example
in Table 1, we find that the success rate drops significantly for iPLAN-GAT, compared to iPLAN
(61.88% versus 67.81%). This clearly indicates autonomous vehicles need the behavior incentive
module to survive in the more heterogeneous chaotic traffic scenario.
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