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Abstract: We present ChainedDiffuser, a policy architecture that unifies action
keypose prediction and trajectory diffusion generation for learning robot manipu-
lation from demonstrations. Our main innovation is to use a global transformer-
based action predictor to predict actions at keyframes, a task that requires multi-
modal semantic scene understanding, and to use a local trajectory diffuser to pre-
dict trajectory segments that connect predicted macro-actions. ChainedDiffuser
sets a new record on established manipulation benchmarks, and outperforms both
state-of-the-art keypose (macro-action) prediction models that use motion plan-
ners for trajectory prediction, and trajectory diffusion policies that do not predict
keyframe macro-actions. We conduct experiments in both simulated and real-
world environments and demonstrate ChainedDiffuser’s ability to solve a wide
range of manipulation tasks involving interactions with diverse objects.
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1 Introduction

While learning manipulation policies from demonstrations is a supervised learning problem, the
multimodality and diversity of action trajectories poses significant challenges to machine learning
methods. Some tasks, such as placing a cup in a cabinet, can be handled by a policy that provides
only a desired goal pose for the cup [1, 2, 3], while others, such as wiping off dirt on the floor,
necessitate the policy to generate a continuous action trajectory [4, 5] for the grasped mop.

One line of manipulation learning methods models action trajectories from demonstrations. These
methods either reactively map vision and language to dense temporal actions [6, 7, 8, 5, 9], or
model the input-action compatibility using energy-based models [10, 11, 12, 13]. Despite recent
progress, these methods may struggle with multimodal action trajectory distributions, or experience
training stabilities [14, 13, 15]. Building on successes in diffusion models [16, 17, 18], a recent
line of work proposes to train diffusion-based policies [14, 4, 19] for generating action trajectories.
These approaches have demonstrated stable training behavior and impressive capability in captur-
ing multimodal action trajectory distributions. Yet, they have not yet been tested on long-horizon
manipulation tasks.

Another line of works casts the problem of robot manipulation as predicting a sequence of discrete
end-effector actions on keyframes [1, 20, 12, 21]. This paradigm extracts keyframes from continuous
demonstrations and predicts end-effector actions in these keyframes [2, 22, 3, 21]. Subsequently, a
low-level path planner connects the predicted keyposes (macro-actions), and returns full trajectories
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that adhere to both environmental and task constraints. Leveraging recent advances in attention-
based architectures [23], a number of methods extend keyframe action prediction to 6-DoF language-
instructed manipulation tasks [2, 3, 22, 24, 21].

The assumptions behind keyframe prediction hinder its applicability to manipulation tasks that ex-
tend beyond pick-and-place type of actions. Many tasks, such as wiping a table, opening a door
while respecting the kinematic constraints, etc., can only be solved via continuous interactions with
the environment. Moreover, the dependence on low-level path planning further restricts these meth-
ods’ capability: while a range of tasks need collision-free trajectories, other tasks, such as object
pushing [24, 3, 25], necessitate that the motion planner disregards collision avoidance. Although
supervision for this additional reasoning is readily available in simulated datasets [26], real-world
human demonstrations typically lack such data, not to mention that collision-free motion planning
in the real world requires accurate state estimation, which presents its own challenges.

In light of the above, we present ChainedDiffuser, a neural architecture that unifies the two afore-
mentioned paradigms. ChainedDiffuser is a policy architecture that takes as input visual signals
and, optionally, a language instruction and outputs temporally dense end-effector actions. At a
coarse level, it predicts macro-step end-effector actions (which we will call macro-actions), a high-
level task that requires global comprehension of the visual environment and the task to complete,
with a global transformer-based action predictor. Then, a low-level trajectory diffuser generates lo-
cal trajectory segments to connect the predicted macro-actions. In comparison to transformer-based
macro-step prediction methods [2, 3, 22, 24], our model predicts smooth trajectories to accommo-
date tasks that require continuous interactions and collision-free actions. In comparison to diffusion-
only trajectory generation methods [14, 15, 4, 19], our hierarchical approach handles long-horizon
tasks in a more structured manner and allows different modules to concentrate on the tasks at which
they excel.

We test ChainedDiffuser on RLBench [26], an established benchmark for manipulation learning
from demonstrations. We evaluate our model across a variety of tasks and scenarios studied in
previous literature [22, 24]. ChainedDiffuser sets a new state of the art, and outperforms ablative
versions that do not predict macro-actions or use regression or motion planners for keyframe-to-
keyframe trajectory prediction. Furthermore, we validate our model in real-world scenarios with a
number of long-horizon manipulation tasks, using a handful of human demonstrations for training.

2 Related Work

Learning from Demonstrations [27, 28] has been a common paradigm for robotics but requires
demonstration data collection in the real world [6, 29, 30] or simulation [26, 31, 32]. To improve data
efficiency, several approaches learn the policy on top of pre-trained visual representations that ex-
ploit large vision-only datasets [33, 34, 35, 36, 37, 38]. Orthogonal to this, other approaches abstract
every task as a sequence of subgoals, expressed as pick-and-place primitives [1, 2] or keyframes
[39, 40]. In this case, hand-designed low-level controllers are employed to plan the end-effector’s
motion between intermediate subgoals. While data-efficient, this abstraction does not generalize
adequately to scenarios where only few specific trajectories that respect all physical constraints are
valid [41], such as manipulations of deformable [42, 43] or articulated [44] objects, motions of
closed-chain robotic systems [45, 46], or trajectories through obstacles in a cluttered environment
[47]. As a result, recent works resort to semi-manual cost specification for each additional constraint
(e.g., collision avoidance, trajectory smoothness [4]). Closer to our approach, James and Abbeel [41]
learn to score trajectories proposed by either hand-designed or learning-based planners. Instead, we
train scene conditioned diffusion models to generate trajectories that connect predicted keyposes.

Transformers for Robotics Following their success in natural language processing [23, 48, 49] and
computer vision [50, 51], numerous recent works use Transformer-based architectures for robotics
and control [52, 53, 6, 54, 55, 21]. One main motivation is the flexibility of attention for long-horizon
prediction when combining information from multiple sensory streams, such as visual observations
and language instructions [56, 22]. Most related to ours is the stream of multi-tasking Transformer-
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Figure 1: ChainedDiffuser is a robot manipulation policy architecture that predicts a set of robot keyposes
and links them using predicted trajectory segments. It featurizes input multi-view images using pre-trained 2D
image backbones and lifts the resulting 2D feature maps to 3D using sensed depth. In (b) we visualize the
3D feature cloud using PCA and keeping the 3 principal components, mapping them to RGB. The model then
predicts end-effector keyposes using coarse-to-fine attention operations to estimate a 3D action map for the
end-effector’s 3D location and regress the robot’s 3D orientation, similar to [21] (d). It then links the current
end-effector pose to the predicted one with a trajectory predicted using a diffusion model conditioned on the
3D scene feature cloud and predicted keypose (e).

based models, that are trained on diverse datasets to achieve higher in-distribution [3, 24] or out-
of-distribution generalization [6, 57, 58, 59]. Our model comprises of two attention-based modules,
one for macro-step action prediction and one for local trajectory optimization, that can leverage
different input modalities and operate over different abstractions.

Diffusion Models [60, 18, 16, 17] learn to approximate the data distribution through an iterative
denoising process, and have shown impressive results on both unconditional and conditional image
generation [61, 62, 63, 64]. In the field of robotics, diffusion models find applications on planning
[15, 65, 66], scene re-arrangement [67, 68], controllable motion optimization [69, 70], video gener-
ation [71] and imitation learning [14, 19]. Their main advantage is that they can better capture the
action trajectory distribution compared to previous generative models. Recent works use diffusion
model to predict complete trajectories, often auto-regressively [14, 72]. Instead, we use diffusion
models to generate local trajectories that are chained together with macro-actions.

3 ChainedDiffuser

3.1 Overview

The architecture of ChainedDiffuser is illustrated in Figure 1. ChainedDiffuser combines macro-
action prediction with conditional trajectory diffusion. Its input comprises of visual observations
of the environment and a natural language description l of the task. At each step, ChainedDiffuser
predicts a macro-action ât using a global policy πglobal, and then feeds ât together with its current
end-effector state qt to a low-level local trajectory generator πlocal(qt, ât) to generate dense micro-
actions connecting qt and ât, as shown in Figure 1. Both at and qt share the same space A =
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{apos, arot, agrip}, consisting of the end-effector’s 3D position apos, rotation arot represented as a
4D quaternion, and a binary flag agrip indicating whether the gripper is open. For each task, we
assume access to a dataset D = {ζ1, ζ2, ..., ζm} of m expert demonstrations, where ζi contains
the language instructions l, visual observations o and end-effector states qt for all timesteps in the
demonstration.

Input Encoding ChainedDiffuser operates in a 3D space to achieve robustness across changing
camera viewpoints – an important advantage over prior 2D methods which assume fixed camera
viewpoints [22, 24, 14]. Compared to prior robotic architectures which rely on voxel-based 3D
representation (e.g., [3, 40]), ChainedDiffuser employs a point-based representation, that facilitates
sparse computation and circumvents precision loss during voxelization. ChainedDiffuser uses a
frozen CLIP [73] to encode both the language instruction l and the RGB images ot into a set of
language and visual feature tokens respectively. Then, it uses the depth channel information to
unproject the 2D image feature tokens into a 3D feature cloud (Figure 1(b)), where each visual token
has 2D appearance information and 3D positional information. We also encode the proprioception
information qt with a simple MLP.

3.2 Macro-Action Predictor

Our macro-action predictor πglobal is based on Act3D [21], a state-of-the-art macro-action prediction
method that uses a point-based transformer that casts end-effector action prediction as 3D action map
prediction. We include its main pipeline here for completeness. Act3D samples iteratively 3D point
candidates and featurizes them using relative position attentions to a scene 3D feature cloud. Then,
a trainable query token Zquery is used to score a pool of N point candidates {Pi = ⟨xi, yi, zi⟩}Ni=1

in the scene and select a position for next macro-action. The point candidates are first uniformly
sampled within the robot’s empty workspace and only contain 3D positional information and a
trainable feature embedding Zpoint. The query token and the point candidates individually attend
to the concatenation (across the sequence dimension) of language tokens Zins, visual feature tokens
Zvis and proprioception token Zrobot (Figure 1(d)):

Z̃query = Attn
(
Zquery, ⟨Zins,Zvis,Zrobot⟩

)
(1)

Z̃point = Attn
(
Zpoint, ⟨Zins,Zvis,Zrobot⟩

)
(2)

where Attn(x, y) is an attention operation [23, 74] where the queries are formed from x, the keys
and values from y. After this contextualization step, the query token and the point candidates have
captured the task and scene information. We take the dot product of the contextualized query em-
bedding with all point candidates and select the best-matching point candidate for the position of the
predicted macro-action:

âpos = ⟨xî, yî, zî⟩, î = argmax
i

Z̃T
query · Z̃i

point (3)

Once we obtain the best point candidate, we predict the rotation and gripper open flag with a simple
MLP on top of the query:

⟨ârot, âgrip⟩ = MLP(Z̃query) (4)

3.3 Local Trajectory Diffuser

Once we obtain the macro-action ât for the current step t, we call upon our diffusion-based local
trajectory generator to fill up the gap in-between with micro-actions. We model such trajectory gen-
eration as a denoising process [18, 14, 4]: we start with drawing a sequence of S random Gaussian
samples {xK

s }Ss=1 in the normalized SE(3) space, and then perform K denoising iterations to trans-
form the noisy trajectories to a sequence of noise-free waypoints {x0

s}Ss=1. Each denoising iteration
is described by:

xk−1
s = λk(x

k
s − γkϵθ(x

k
s , k)) +N (0, σ2

kI), 1 ≤ s ≤ S (5)
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where ϵθ is the noise prediction network, k the denoising step, N (0, σ2
kI) the Gaussian noise added

at each iteration, and λk, γk, σk are scalar noise schedule functions dependent on k (Appendix 7.1).

The noise prediction network (Figure 1 (e)) is also an attention-based model that absorbs similar
input as the macro-action selector does, i.e., the language instruction l, RGB-D observations ot and
current end-effector state qt, but additionally conditions on the goal macro-action ât and the denois-
ing timestep k. The language tokens Zins, visual tokens Zvis and current end-effector state Zrobot

are featurized similarly to the Macro-Action Selector. We use an MLP to encode the goal macro-
action into Zmacro = MLP(ât). We encode the denoising timestep into Ztime using sinusoidal
positional embeddings [23], and encode the the sampled noise using an MLP into a sequence of
tokens Zk

s . We let this sequence iteratively cross-attend to all encoded inputs first:

Z̃k
s = Attn(Zk

s ,⟨Zins,Zvis,Zrobot,Zmacro,Ztime⟩),

and then self-attend to obtain a finalized Z̃k
s (note that we reuse the same symbol for presentation

clarity):

Z̃k
s = Attn(Z̃k

s , Z̃k
s )

Again, we use relative positional embeddings to encode all tokens’ spatial positions. For the tra-
jectory noise tokens, we additionally encode each sample’s temporal position s using sinusoidal
positional embeddings. These are added to the respective noise tokens Zk

s . The contextualized
noise sample is then fed into another MLP for noise regression:

ϵθ(x
k
s , k) = MLP(Z̃k

s ) (6)

After K denoising steps by substituting Equation 6 into 5, we convert the denoised samples back to
the actual micro-actions by unnormalizing them: at−1+s = Unnormalize(x0

s), 1 ≤ s ≤ S. For
more implementation and training details, please see the Appendix 3.4.

Noise schedulers We model local trajectory optimization as a discrete-time diffusion process,
which we implement using the DDPM sampler [18]. DDPM uses a non-parametric time-dependent
noise variance scheduler βk, which defines how much noise is added at each time step. We adopt
a scaled linear schedule for the position and a squared cosine schedule for the rotation of each
trajectory step.

3.4 Implementation and Training Details

ChainedDiffuser takes as input m multi-view RGB-D images of the scene. For experiments in
simulation, we use m = 3 (left, right, wrist) or m = 4 (with an additional front view), depending
on the settings of the baselines we compare with. For real-world experiments, we use k = 1, with a
single front-view camera. Each RGB-D image is 256× 256 and is encoded to 64× 64 visual tokens
with CLIP’s ResNet50 visual encoder [73]. The demonstration data contains end-effector states for
all timesteps. In order to extract macro-actions to supervise the action selection transformer, we use
a simple heuristic following previous literature [3, 22, 24]: a timestep is considered to be a keyframe
containing macro-action if the gripper opens or closes, or if the robot arm is not moving (when all
joint velocities approach zero). All dense actions present in the demonstration are used to supervise
the local trajectory diffuser. We resample the dense trajectories between extracted macro-actions to
a trajectory of fixed length S = 50. We found in practice, denoising fixed number of micro-actions
leads to more stable training, and works better than learning variable-length trajectory diffusion
with predicted trajectory length. We train both the action detector and the trajectory diffuser jointly,
using a cross-entropy (CE) loss to supervise the point candidate selection by predicting a probability
distribution q over all point candidates in the pool, and mean-sqaured error (MSE) losses to supervise
quaternion, gripper opening and trajectory noise regression:

L =
1

|D||ζ|
∑
ζ∈D

∑
t̂∈ζ

CE(q({Pi}N ), q∗({Pi}N )) +MSE(ât̂, â
∗
t̂
) +

t̂+S−1∑
t=t̂

MSE(ϵθ(x
k
s , k), ϵk)

 ,

(7)
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Figure 2: Simulation and real-world tasks we evaluate on.

where ∗ indicates predicted value, ât̂ = ⟨ârot, âgrip⟩, k is a randomly sampled denoising step, and ϵk
is the sampled ground truth noise. In order to speed up training in practice, we train the first 2 terms
till convergence, and then add the 3rd term for joint optimization, as opposed to using ground-truth
macro-actions for training the trajectory diffuser. This allows the trajectory diffuser to incorporate
certain error recovery capability to handle inaccurate macro-action predictions. In addition, at test
time, we normalize the predicted quaternion to ensure it respects the normalization constraint before
feeding it to the robot. We use a batch size of B = 24 and AdamW [75] optimizer with a learning
rate of 1e− 4 for all our experiments. Our single-task model is trained for 1 day on one A100 GPU,
and multi-task model is trained for 5 days on 4 A100 GPUs.

Control Our control algorithm is closed-loop at the macro-action level, which means the macro-
action predictor reasons about the surroundings and predicts actions to handle environment changes.
At the low-level, our controller is open-loop and follows a Cartesian-space end-effector trajectory
composed of the predicted micro-actions using position control, with a control frequency of 10Hz.
For our real-robot setup, we use the open source frankapy package [76] with ROS, which uses a
low-level PID controller at 1kHz.

4 Experiments

We test ChainedDiffuser in various manipulation tasks in both simulated and real-world environ-
ments. Our experiments aim to answer the following questions:

• How does ChainedDiffuser compare to previous SOTA 2D and 3D manipulation methods?

• Is macro-action prediction helpful in guiding trajectory generation?

• Does ChainedDiffuser work in the real-world where only a single camera and limited num-
ber of demonstrations are available?

4.1 Simulation Experiments

We run experiments in simulation using RLBench [26], a widely adopted manipulation benchmark
with diverse tasks concerning interactions with a wide range of objects, as shown in Figure 2. We
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Table 1: Success rates in 10 single-tasks of the Hiveformer experimental setting.
pick
& lift

pick-up
cup

push
button

put
knife

put
money

reach
target

slide
block

stack
wine

take
money

take
umbrella

Mean

Auto-λ [77] 87 78 95 31 62 100 36 23 38 37 55.0
HiveFormer [24] 92 77 100 70 96 100 95 82 82 90 88.4
InstructRL [22] 98 85 100 85 99 100 98 93 90 93 93.8
ChainedDiffuser (ours) 98 94 96 91 98 100 95 90 100 96 95.8

follow the same setting used in prior works [22, 24], where each task has multiple variations and
contains 100 demonstrations. We report success rates in each task averaged over 100 unseen test
episodes. For baselines, when possible, we use the official numbers reported in their papers.

Baselines We compare ChainedDiffuser with the following baselines:

1. Auto-λ [77] and HiveFormer [24], policy learners that operate on multi-view 2.5D images
and predict actions by offseting detected points in the input images.

2. InstructRL [22], a policy that operates on multi-view 2D images with pre-trained vision
and language encoders, and directly predicts 6-DoF end-effector actions.

3. Act3D [21], a policy that predicts keyframe end-effector macro-actions with a 3D action
detection transformer and relies on low-level motion planner to connect macro-actions.

4. Open-loop trajectory diffusion, which is ChainedDiffuser without the macro-action detec-
tor, making it a trajectory diffusion model.

5. Act3D+ trajectory regression, which replaces the local trajectory diffuser in ChainedDif-
fuser with a deterministic trajectory regression

Dataset We consider the following single-task experimental settings:

• 10 tasks considered in the Auto-λ [77] experimental setup. These tasks are considered by
many prior works and this allows us to compare our performance with them.

• 10 tasks in RLbench we identify to require continuous interaction with the environment,
such as wipe desk where a wiping trajectory is needed to remove the dirt from a desk, and
open fridge where a local trajectory needs to adhere to the kinematic constraint when the
robot is grasping the door handle. Most tasks in RLBench can be reasonably solved with
only macro-action prediction and motion planners. This set of tasks we consider highlights
the limitation of these approaches.

Results We train single-task ChainedDiffuser and the baselines. For Auto-λ, HiveFormer and
InstructRL we use the numbers reported in the corresponding papers. We show quantitative results
in Tables 1 and 2. ChainedDiffuser consistently achieves better performance than prior methods on
all task categories. On the set of challenging tasks for motion planners, ChainedDiffuser gives a
significant boost of 60% on average. ChainedDiffuser improves upon open-loop trajectory diffusion
model, which demonstrates that delegating global macro-action prediction to a high-level policy
to guide local trajectory diffusion helps. Act3D+ trajectory regression struggles where multi-modal
trajectories are present in demonstrations, e.g. cup in cabinet where multimodal trajectories exist
for grasping the cup and feeding into the cabinet in the training set. This demonstrates that modeling
trajectory generation as a multi-step denoising process is advantageous over regression-based model,
which aligns with conclusions from previous literature [14].

4.2 Real-world Experiments

We conduct experiments with a real-world setup, using a Franka Emika Panda robot with a parallel-
jaw gripper. We use a single Azure Kinect camera to collect front-view RGB-D image input. See Ap-
pendix 7.4 for more details on our hardware and data collection setup. We design 7 tasks that involve
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Table 2: Success rates on challenging tasks for motion planners.
unplug
charger

close
door

open
box

open
fridge

frame off
hanger

open
oven

books on
shelf

wipe
desk

cup in
cabinet

shoes out
of box

Mean

Act3D [21] 48 9 9 19 66 2 34 4 0 19 21.0
Open-loop trajectory diffusion 65 21 46 37 43 16 40 34 6 9 31.7
Act3D + trajectory regression 95 5 95 60 77 17 68 70 40 67 59.6

ChainedDiffuser (ours) 95 76 96 68 85 86 92 65 68 78 80.9

multi-step actions and continuous interactions with the scene (5 are shown in Figure 2), collected
10 − 20 demos for each tasks, and train a multi-task ChainedDiffuser for real-world deployment.

Task # Train Success

put mask in kit 20 6/10
fold and wipe coffee 20 8/10
stack cups 15 7/10
spread dough 15 7/10
fold and wip beans 20 6/10
put nails in box 20 6/10
press stapler 10 10/10

Table 3: Real-world tasks.

We refer the reader to our supplementary video
for qualitative executions of the robot. We eval-
uate it on 10 episodes for each task, and re-
port success rates in Table 3. ChainedDiffuser
is able to perform reasonably well on most of
the tasks, even for tasks with multiple action
modes and skills. The most common failure
case is caused by noisy depth image: we lever-
age point selection for macro-action prediction,
which would suffer from incorrect depth esti-
mation in the real world. This could potentially
be resolved by more accurate camera calibra-
tion with a multi-view camera setup and learning to recover from noisy input, which we leave as our
future work.

4.3 Limitations

Our method currently has the following limitations: 1) Our trajectory diffuser is conditioned on
end-effector poses in SE(3) space. It would be ideal to extend it to full joint configuration space for
more flexible trajectory prediction. 2) Our model performs closed-loop control on the macro-action
level, which restricts its flexibility in highly dynamic environments. That said, our framework can
be easily extended with closed-loop re-planning at the micro-action level, making the policy more
robust to environment dynamics, which we leave as our future work. 3) Following the standard
setting in RLBench, our method assumes access to calibrated cameras. We believe this assumption
is valid as mobile robots performing household tasks for humans in the future should have cameras
attached to the robots, where these cameras can be calibrated when coming out of the factories.

5 Conclusion

We presented ChainedDiffuser, a neural policy architecture for learning 6-DoF robot manipulation
from demonstrations. Our model achieves competitive performance on various task settings, in both
simulation and the real-world. Our experiments demonstrate that by unifying both transformer-
based macro-action detection and diffusion-based trajectory generation, ChainedDiffuser achieves
the best of both families and addresses their respective limitations. ChainedDiffuser outperforms
both keyframe prediction methods and trajectory diffusion alone, which justifies their unification
in our framework. It sets a new state-of-the-art in RLbench, and especially improves performance
on contact-rich tasks and tasks that involve articulated objects, where methods that rely on hand
designed planners typically struggle.
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7 Appendix

7.1 Noise schedulers for Local Trajectory Diffuser

We model local trajectory optimization as a discrete-time diffusion process, which we implement
using the DDPM sampler [18]. DDPM uses a non-parametric time-dependent noise variance sched-
uler βk, which defines how much noise is added at each time step. We adopt a scaled linear schedule
for the position and a squared cosine schedule for the rotation of each trajectory step.

xk−1 =

√
ᾱk−1βk

1− ᾱk
(xk − ϵθ(xk, k, )) +

√
αk(1− ᾱk−1)

1− ᾱk
xk +

1− ᾱk−1

1− ᾱk
βkz (8)

By defining αk = 1− βk, and ᾱk =
∏k

i=1 αi, we can now obtain the analytical form of λk, γk, σk

in Equation 5 as follows:

λk =
1

√
αk

(9)

γk =
1− αk√
1− ᾱk

(10)

σk =
1− ᾱk+1

1− ᾱk
βk (11)

where k is the diffusion denoising timestep.

7.2 Act3D Background and Implementation Details

Act3D is a language-conditioned end-effector 6-DoF keypose predictor that learns 3D perceptual
representations of arbitrary spatial resolution via recurrent coarse-to-fine 3D point sampling and
featurization. Act3D featurizes multi-view RGB images with a pre-trained 2D backbone and lifts
them in 3D using depth to obtain a multi-scale 3D scene feature cloud. It then iteratively predicts 3D
foci of attention in the empty 3D workspace, samples 3D point grids in their vicinity, and featurizes
the sampled 3D points using relative cross-attention to the physical scene feature cloud, language
tokens, and proprioception. Act3D detects the 3D point that corresponds to the next best end-effector
position using a detection Transformer head, and regresses the rotation, end-effector opening, and
planner collision avoidance from the decoder’s parametric query.

We extract two feature maps per 256 × 256 input image view: 32 × 32 coarse visual tokens and
64×64 fine visual tokens. We use three ghost point sampling stages: first across the entire workspace
(roughly 1 meter cube), then in a 16 centimeter diameter ball, and finally in a 4 centimeter diameter
ball. The coarsest ghost points attend to a global coarse scene feature cloud (32× 32×ncam coarse
visual tokens) whereas finer ghost points attend to a local fine scene feature cloud (the closest 32×
32×ncam out of the total 64×64×mcam fine visual tokens). During training, we sample 1000 ghost
points in total split equally across the three stages. At inference time, we trade-off extra performance
for additional compute by sampling more ghost points than the model ever saw at training time
(20, 000). We use 2 layers of cross-attention and an embedding size 60 for single-task experiments
and 120 for multi-task experiments. Training samples are augmented with random crops of RGB-D
images and ±45.0 yaw rotation perturbations (only in the real world as this degrades performance
in simulation).

7.3 Simulation Setup in RLBench

The RLBench simulation environment uses a Franka Panda robotic arm on a table-top setting. We
consider m = 4 camera inputs: left shoulder, right shoulder, wrist, and front, as shown in Figure
3. The wrist camera is attached to the robot’s end-effector and moves together with the robot. The
other 3 are static. To ensure a fair comparison, when comparing with PerAct, we use all 4 cameras
following PerAct setting, and use the first 3 cameras when compared with other baselines.
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Figure 3: Simulation setup.

7.4 Real-world Setup

Figure 4: Real-world setup.

Our real-robot setup contains a real Franka
Panda robotic arm equipped with a parallel jaw
gripper, as shown in Figure 4. We use a single
Azure Kinect sensor to provide RGB-D input
signal from the front view at 30Hz. The image
input is of resolution 1280 × 720, and we crop
and downsample it to 256 × 256 before feed-
ing it to our model. We calibrate the extrinsics
of the camera with respect to the robot base us-
ing the easy handeye1 ROS package. Our full
model generates dense trajectories, thus we do
not use low-level motion planners. We collect
6-DoF human demonstrations by tele-operating
the robot using a SpaceMouse2 at 30Hz, follow-
ing [14]. We use the same strategy for keyframe
extraction as in simulation. Our real-world
multi-task policy is trained on 4 A100 GPUs
for 3 days. Inference is done on a desktop with
a single RTX4090 GPU, running Ubuntu 20.04
and ROS Noetic. For robot control, we use the
open-source frankapy3 package to send real-
time position-control commands to the robot.

7.5 Discussion on contribution versus Act3D

The main contribution of Act3D is a lightweight point-based neural architecture that casts
keyframe/macro-action prediction as feature point selection with adaptive spatial computation,
which brings higher accuracy than previous voxel-based or 2D-based architectures at a lower com-
putation cost. It advances the previous SOTA but still falls under the paradigm of keyframe predic-
tion. ChainedDiffuser, on the other hand, presents a simple yet crucial idea: the unification of the
two existing popular paradigms in robotic imitation learning: keyframe abstraction and learnable

1https://github.com/IFL-CAMP/easy_handeye
2https://3dconnexion.com/us/product/spacemouse-compact/
3https://github.com/iamlab-cmu/frankapy
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Table 4: Success rate comparison with randomized camera viewpoint.
pick
& lift

pick-up
cup

push
button

put
knife

put
money

reach
target

slide
block

stack
wine

take
money

take
umbrella

Mean ∆

HiveFormer 26 74 98 43 63 98 13 45 77 85 62.2 -26.2

ChainedDiffuser 72 91 97 78 88 96 32 90 92 91 82.7 -13.1

diffusion-based trajectory generation. The two frameworks have been proven successful in the past,
but each presents their own drawbacks. ChainedDiffuser is built on top of Act3D, but the way it
unifies both frameworks is independent of the macro-action prediction method, and Act3D can be
easily swapped with any keyframe prediction approach later if needed. The detailed pipeline pro-
posed and evaluated in our paper is a realization of this unification idea, and proves its effectiveness
as a single method that’s applicable to a wider range of robotic manipulation tasks.

7.6 Robustness of 2D and 3D Methods under Varying Camera Viewpoints

In order to better understand how much it helps to use 3D information in ChainedDiffuser compared
with prior 2D methods, we conducted experiments to evaluate the robustness of ChainedDiffuser,
InstructRL and HiveFormer under varying camera viewpoint. At test time, we randomly perturb the
two shoulder cameras by [20, 30] degrees, while keeping the same camera look-at point. InstructRL
completely fails on all the tasks and yields unreasonable actions, as it operates purely on 2D inputs
and directly regresses action outputs. It fails to handle distribution shift in image input due to
changing camera viewpoint. HiveFormer uses depth image and 2.5D architecture: it selects the
highest-score pixel and uses its corresponding depth to compute 3D actions, thus presenting certain
robustness. We report numbers of HiveFormer and ChainedDiffuser in Table 6. Our model still
performs reasonably well when the cameras are perturbed, achieving the smallest performance drop,
showing desirable viewpoint-invariance. This is an advantage of reasoning directly in 3D.

Figure 5: Scene Feature Cloud Generation. We encode each image independently with a pre-
trained and frozen 2D vision backbone to get multi-scale feature maps, pass these feature maps
through a feature pyramid network and retain only two: a coarse feature map (at a granularity that
lets ghost points attend to all tokens within GPU memory) and a fine feature map (as spatially precise
as afforded by input images and the backbone). We lift visual tokens from these two feature maps
for each image to 3D scene feature clouds by averaging the 3D positions of pixels in each 2D visual
token.

7.7 Further Architecture Details

We explain here the our 3D visual backbone in more details, including the visual and language
encoding, 3D projection, and relative spatial encoding.
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Visual and language encoder Our visual encoder maps multi-view RGB-D images into a multi-
scale 3D scene feature cloud. We use a large-scale pre-trained 2D feature extractor followed by
a feature pyramid network to extract multi-scale visual tokens for each camera view. Our input
is RGB-D, so each pixel is associated with a depth value. After featurizing the image, we obtain a
feature map whose spatial resolution is lower than the original image. We associate every super-pixel
(2D grid location) in this feature map to a depth value, by averaging the depth values of the image
pixels that correspond to this super-pixel, i.e., the receptive field. Then we “lift” this 2D feature
vector to 3D using the pinhole camera equation and the camera intrinsics, as shown in Figure 5.
Each visual token in 3D uses the mean 3D position of all the 2.D pixels as its 3D position.

The language encoder featurizes instructions with a large-scale pre-trained language encoder. We
use the CLIP ResNet50 [73] visual encoder and language encoders to exploit their common vision-
language feature space for interpreting instructions and referential grounding. Our pre-trained visual
and language encoders are frozen during training.

Relative 3D cross-attentions ChainedDiffuser uses relative 3D positional encodings proposed in
[78, 79] to incorporate translational invariance. We featurize each of the 3D point candidates and a
parametric query (used to select via inner-product one of the point candidate as the next best end-
effector position in the decoder) independently through cross-attentions to the multi-scale 3D scene
feature cloud, language tokens, and proprioception. Our cross-attentions use relative 3D position
information and are implemented efficiently with rotary positional embeddings [79]. Given a point
p = (x, y, z) ∈ R3 and its feature x ∈ Rd, the rotary position encoding function PE is defined as:

PE(p,x) = M(p)x =

[
M1

. . .
Md/6

]
x, Mk =


cos xθk − sin xθk 0 0 0 0
sin xθk cos xθk 0 0 0 0

0 0 cos yθk − sin yθk 0 0
0 0 sin yθk cos yθk 0 0
0 0 0 0 cos zθk − sin zθk
0 0 0 0 sin zθk cos zθk


where θk = 1

100006(k−1)/d , k ∈ {1, .., d/6}. The dot product of two positionally encoded features is

PE(pi,xi)
TPE(pj ,xj) = xT

i M(pi)
TM(pj)xj = xT

i M(pj − pi)xj

which depends only on the relative positions of points pi and pj .
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