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Abstract: Contact is at the core of robotic manipulation. At times, it is desired (e.g.
manipulation and grasping), and at times, it is harmful (e.g. when avoiding obsta-
cles). However, traditional path planning algorithms focus solely on collision-free
paths, limiting their applicability in contact-rich tasks. To address this limitation,
we propose the domain of Language-Conditioned Path Planning, where contact-
awareness is incorporated into the path planning problem. As a first step in this
domain, we propose Language-Conditioned Collision Functions (LACO), a novel
approach that learns a collision function using only a single-view image, language
prompt, and robot configuration. LACO predicts collisions between the robot and
the environment, enabling flexible, conditional path planning without the need for
manual object annotations, point cloud data, or ground-truth object meshes. In both
simulation and the real world, we demonstrate that LACO can facilitate complex,
nuanced path plans that allow for interaction with objects that are safe to collide,
rather than prohibiting any collision.

Keywords: Robotic Manipulation, Path Planning, Collision Avoidance, Learned
Collision Function

1 Introduction
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Figure 1: Language-conditioned path plan-
ning enables finding a path, e.g., toward a
cup, with acceptable collisions, e.g., a plush
toy (right), whereas typical path planning
fails at finding a collision-free path (left).

Collision checking is a fundamental aspect of path plan-
ning in robotics [1, 2, 3, 4, 5, 6, 7], aiming to find a
path between initial and target robot configurations that
avoids collisions with the environment. However, tra-
ditional collision-free path planning approaches fall
short in scenarios where contact with the environment
is necessary, such as when manipulating objects or in-
teracting with the surroundings. In such cases, the strict
“collision-free” constraint becomes impractical and in-
hibits the robot’s ability to perform tasks effectively.

Traditional approaches for enabling contact in path
planning [8, 9] often require manual adjustments, such
as disabling collision checking for specific objects.
However, these approaches rely on access to object
state information, ground-truth object meshes, or extensive engineering efforts for each execution.
This poses significant challenges, particularly in vision-based contact-rich robotic manipulation tasks.

To overcome this limitation, we propose the domain of Language-Conditioned Path Planning
(LAPP), which integrates contact-awareness into the path planning problem. In this domain, path
planning is not solely concerned with avoiding collisions but also incorporates the ability to make
informed decisions about contact with the environment. This enables robots to perform complex
manipulation tasks that involve controlled interactions, such as holding a cup or opening a door.
Figure 1 provides an illustration of a typical scenario where a robot encounters multiple obstacles
and needs to interact with the environment.
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To facilitate flexible and adaptive contact-aware path planning, we propose Language-Conditioned
Collision Functions (LACO) as an initial step in the language-conditioned path planning domain.
LACO learns to predict a collision based on a single-view image, language prompt, and robot
configuration. By predicting collisions between the robot and the environment modulated by the
language prompt, LACO enables the generation of path plans that can handle both desired and
controlled collisions without requiring manual object annotations, point cloud data, or ground-truth
object meshes. This approach empowers robots to interact with objects that are safe to collide, rather
than rigidly avoiding all collisions.

In summary, our main contributions are threefold:

• We propose a novel domain of Language-Conditioned Path Planning (LAPP) that integrates
semantic language commands to enhance the robot’s understanding of how and what to interact
with in the environment. By fusing language instructions, we enable more intelligent and
context-aware planning.

• To enable language-conditioned path planning, we introduce Language-Conditioned Collision
Functions (LACO), a collision function that incorporates language prompts to modulate collision
predictions. LACO utilizes only a single-view camera, eliminating the need for object states or
point clouds. This allows for easier application in real-world scenarios and facilitates zero-shot
generalization to new language commands.

• We provide comprehensive demonstrations of LACO’s effectiveness in various path planning
tasks. Our experiments include simulations and real-world scenarios, highlighting the practicality
and robustness of our language-conditioned collision function.

2 Related Work

Path planning [1, 2, 3, 4, 5, 6, 7] finds a collision-free path between initial and target task con-
figurations – representing robot states and potentially environment states – by querying a collision
function with states along a path. However, these collision-free path planning methods struggle
at handling scenarios where collisions with the environment is desired. In this paper, we propose
language-conditioned path planning, which finds a contact-aware path following a language prompt.

Semantic planning [10, 11, 12] builds a semantic map with a specifically-designed perception
pipeline, consisting of, e.g., object detection, segmentation, and keypoint estimation modules. The
semantic map is then used to find a collision-free path for navigation. In contrast, we propose an
end-to-end language-conditioned collision function, which enables contact-aware path planning.

The recent success in large language models enables training multi-task robotic policies guided by
a language instruction [13, 14, 15] and high-level planning using a large language model [16, 17].
These language-conditioned “task” planning / solving approaches differ from our proposed language-
conditioned “path” planning domain in that they directly solve a specific set of tasks while our
language-conditioned path planning is agnostic to downstream tasks and can be used as a building
block for many robotics tasks.

A collision function is a fundamental component of path planning in robotics. However, the collision
function is assumed to be manually modelled or computed using state estimation. Instead of hand-
engineering a collision function, many recent work have learned end-to-end motion planners [18, 19,
20] or collision functions [21, 22, 23] from synthetically generated data in simulation. To understand
3D configuration of environments, these approaches use point clouds to represent the scenes. In this
paper, we propose to learn a collision function from only a single camera input, not requiring depth
sensing nor precise camera calibration, which makes our method easily applied to many real-world
applications. More importantly, our learned collision function conditions on language describing
which objects to collide or not to collide, allowing acceptable or desired collisions for path planning.

2



LACO

initial target

Language-conditioned path planning (LAPP)

s2 s3s1

collision!

candidate paths

“pringles”

Tr
an

sf
or

m
er

Pr
ed

ic
ti

on
 N

et

CLIP Vision

Encoder

“pringles”

s=[θ1, ..,θDOF]

CLIP Lang

Encoder

MLP

zv0

zv196

.

..

zl0
.
..

zl0

zl196

zs

collision 
score

Language-conditioned collision function (LACO)

Figure 2: A language-conditioned collision function (LACO), C(o, s, l), predicts whether a robot
in a state s collides with objects other than collidable objects described in a language prompt l in a
scene o, e.g., C(o, s, ‘pringles’) = 1. To find a language-conditioned path plan, a path planning
algorithm asks LACO whether any waypoint si of a path collides with objects except for the ones
described in l.

3 Language-Conditioned Path Planning

In a cluttered real-world environment, a collision-free path can be highly sub-optimal or impossible
to find. We introduce the problem domain of language-conditioned path planning, which extends
traditional path planning to allow safe or desired collisions in a path via language, in Section 3.1.
Furthermore, we present a proof-of-concept framework for language-conditioned path planning that
first learns a language-conditioned collision function (Section 3.2) and leverages this learned collision
function for language-conditioned path planning (Section 3.3).

3.1 Language-Conditioned Path Planning (LAPP)

In robotics, a path planning problem is about finding a connected, collision-free path of robot
configurations (i.e. waypoints), p = (s0, s1, . . . , sg), starting from an initial configuration s0 to a
final configuration sg such that every configuration in the path has no collision with the environment,
∀st ∈ p, C(ot, st) = 0. ot and st denote the environment and robot configurations at time t,
respectively, and C(o, s) denotes a collision function that outputs 1 if the robot configuration s has
collision with the environment o, and 0, otherwise.

In this paper, we propose a Language-Conditioned Path Planning (LAPP) problem, which relieves
the strict collision-free constraint in path planning so that path planning can manage safe or desired
contacts with the world, especially guided by language. LAPP can be formulated as finding a path
p between two configurations, s0 and sg, such that ∀st ∈ p, C(ot, st, l) = 0, where l is a language
prompt modulating what needs to be considered as acceptable or desired collisions. For example, a
language prompt l can be “a robot can collide with plush toys” to specify safe-to-collide objects, as
illustrated in Figure 1, or “a robot can grasp a mug” to support contact-rich tasks.

3.2 Language-Conditioned Collision Function (LACO)

For language-conditioned path planning, a path planning algorithm should understand which collisions
are acceptable and which must be avoided described in language. In this paper, we address this
problem by adapting a collision function C(o, s) into a Language-Conditioned Collision Function
(LACO) C(o, s, l), which takes a language prompt l into account. Specifically, LACO learns a
collision function C(o, s, l), where o is a single-view image observation of the environment, s
is a queried robot joint state, and l is a language instruction corresponding to objects that allow
for collisions. Note that o does not need to correspond to s and represents only the environment
configuration. Thus, the same o can be used across multiple robot configurations s.
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(a) Training objects (b) Held-out objects (c) Real-world objects

Figure 3: We use ShapeNet objects [27] for our simulated experiments. (a) The training dataset
of ShapeNet classes includes: airplane, chair, pot, vessel, laptop, bus, cap, and bottle. (b) The
held-out evaluation dataset includes: basket, mug, train, bag, and can. (c) We also perform real-world
experiments with YCB objects [28]: Spam, Cheez-it, Pringles, Windex, mustard, and bleach.

We train C(o, s, l) on a dataset D = {(o, s, l, yl, y)}, where y indicates whether the robot state s has
any collision in the scene o; and yl indicates whether there is a undesirable contact under the language
instruction l. We optimize the cross-entropy losses for language-modulated collision prediction
(target yl) and collision prediction without language conditioning (target y) as an auxiliary task:

L = E(o,s,l,yl,y)∼D

[
CE

(
yl, C(o, s, l)

)
+ CE

(
y, Caux(o, s, l)

)]
, (1)

where Caux(o, s, l) is an additional MLP head attached to the last layer of C(o, s, l).

To take advantage of large vision-language models pretrained on a large corpus [24, 25], LACO uses
the vision and language encoders of CLIP [26] as the backbone networks. As illustrated in Figure 2,
we tokenize an input image o of size 256× 256 with the frozen pretrained CLIP ViT encoder and a
language prompt l with the frozen pretrained CLIP language model. We then get 197 visual tokens
zv0:196 and 197 language tokens zl0:196. For a robot state s, we use a 3-layer MLP to embed it to a
single state token zs. All these tokens are then fed into a 2-layer transformer and the average of the
transformer output tokens is used to predict the collision probabilities with two separate MLP heads,
C(o, s, l) and Caux(o, s, l). More hyperparameters are described in Appendix, Table 7.

3.3 Path Planning using LACO

Finally, language-conditioned path planning can be performed by simply replacing a collision checker
in any path planning algorithm with LACO. In this paper, we implement LAPP using an optimization-
based method, LAPP-TrajOpt [7]. Whenever LACO needs a binary output (collision or not), we apply
a threshold of 0.5 to the collision probability output of LACO. LACO is flexible to various styles
of path planning algorithms, such as sampling-based planning. We use a custom implementation of
TrajOpt [7] and the hyperparameters for TrajOpt can be found in Appendix, Table 8.

4 Experiments

In this paper, we introduce language-conditioned path planning (LAPP), and present a framework that
combines existing path planning algorithms and our proposed language-conditioned collision function
(LACO) as an initial step. Our evaluations are twofold: (1) we present a thorough investigation of
LACO’s performance in object- and language-level generalization, and (2) we showcase the potential
of LACO in the language-conditioned path planning domain.

4.1 Environment Setups

We use the UFACTORY xArm7, a low-cost 7-DOF robotic arm, and an Intel RealSense D435 camera.
For the real world, we use 6 YCB objects [28]: Spam, Cheez-it, Pringles, Windex, mustard, and
bleach. For simulation, we use ShapeNet v2 objects in CoppeliaSim [27, 29], which provides a
taxonomy of diverse, realistic set of 3D meshes with their labels, as shown in Figure 3.
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4.2 Data Collection

Figure 4: The real-world (left) and simulated
(right) environments.

To train LACO, we first collect data in both the sim-
ulation and real-world environments.

Simulation dataset. We use PyRep [30] based on
CoppeliaSim [31] to synthetically generate a diverse,
language-annotated dataset in simulation. Each scene
includes 2-5 randomly chosen objects in random
poses on the table. Instead of randomly initializ-
ing a robot pose, a set of robot poses are generated
by the built-in RRT* motion planner [6] for each
scene. These smooth trajectories bias the dataset to-
ward joint states likely to be queried by a path planner. We use the built-in collision checker for
the ground truth collision label y. Next, we sample combinations of 0, .., N − 1 objects in a scene
with N objects to generate language annotations (a list of ShapeNet names of the sampled objects)
and compute language-conditioned collisions yl. We generated 5000 unique scenes, which consist
of unique combinations and positions of objects. Each scene contains about 40 joint states and 10
language annotations.

Real-world dataset. Learning a collision function from real-world data poses additional challenges:
the increased visual complexity and the difficulty of collecting collision data. To address these
issues, we train LACO on a dataset collected from a domain-randomized twin simulator environment
(Figure 4) and then finetune on a small real-world dataset. We collect data from 20 real-world scenes
and 500 domain-randomized simulation scenes. For each scene, we extract 20-30 images with domain
randomization in simulation and camera perturbations in the real world. Similar to our simulation
dataset, we vary the number of objects in each scene from 3 to 5 and vary positions of objects.

4.3 Collision Prediction Results Across Language Conditioning

Table 1: We evaluate the language-conditioned collision
prediction accuracy of LACO in simulation. For reference,
we also evaluate SceneCollisionNet [21], which does not
support language conditioning and “Built-In Collision” refers
to the ground-truth collision checker.

Accuracy Per # Conditioned Objs (%)
Method 0 1 2 3 4

Built-In Collision 100.0 - - - -
SceneCollisionNet 67.0 - - - -

LACO 82.9 78.9 77.18 82.6 72.2

LACO possesses the ability to be mod-
ulated by language. In particular, any
number of objects in the scene can
be included in the language condition,
allowing for flexibility in path plan-
ning. This ability is not found in built-
in collision checkers or learned col-
lision checkers, such as SceneColli-
sionNet [21], which are agnostic to
desired and undesired collisions.

We evaluate the performance of
LACO across different number of ob-
jects included in the language condition in Table 1. To measure collision prediction accuracy, we
sample 10 trajectories with in total N ≈ 2000 states, and evaluate 1/N

∑N
i=1[y

l
(i) = 1C(oi,si,li)>0.5].

We find that LACO is robust to different numbers of conditioned objects, though it performs best
when not conditioned on any objects. In this special case, LACO becomes a typical collision checker,
without need to understand the semantics of the environment objects.

Even in the unconditional case, our method outperforms SceneCollisionNet [21], a point-cloud-based
learned collision function. We use the official implementation of SceneCollisionNet, which is trained
on a different simulator dataset. This distribution shift may be a reason for its poor performance in our
environment. While our primary contribution is presenting a new paradigm of collision checking and
path planning, the accuracy of our RGB-only method shows promise of collision checking without
extensive camera setups and point clouds.
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4.4 Generalization Experiments

One advantage of LACO is its ability to be modulated by language, which is flexible, abstract, and
simple. We may expect that with its pretrained vision-language backbone, LACO may generalize to
objects and language that are unseen in the training dataset.

Generalization to unseen language. We first evaluate generalization to unseen instructions of the
seen objects. We compare the language-conditioned collision prediction accuracy with the original
object name (Default), unseen synonyms of the object (Synonym), complex phrases describing the
object (Description), and correct and incorrect colors (Color). For example, a collision to “hat”
(Default) is evaluated with “beanie” for Synonym, “head-covering accessory” for Description, and
“blue hat” for Color. For Color, we also use incorrect colors, e.g., “white hat”, which ask LACO to
ignore the objects. The exhaustive list of such variations can be found in Appendix, Table 9.

Table 2: We evaluate generalization of LACO to
instructions with unseen language.

Default Synonym Description Color

78.9 63.9 71.4 77.0

In Table 2, we find strong generalization for Color,
where the language references the seen class name.
LACO also generalizes to Description, while Syn-
onym leads to 15.0% accuracy drop. One hypoth-
esis is that the descriptions, which are typically
longer and contain many keywords relating to the
object, may be more informative than just a synonym. Furthermore, short language conditions, like
“cap,” may even be ambiguous, as “cap” may refer to a bottle cap, a hat, or more. This suggests
promise in future work of exploring stronger and more descriptive annotations, as we limit our
language conditions to ShapeNet class names.

Table 3: Evaluation of LACO’s generalization to
new objects.

Seen Class Unseen Class
Seen Object Unseen Object Unseen Object

78.9 70.6 54.7

Generalization to unseen objects. We evalu-
ate generalization to unseen objects across seen
and unseen classes by measuring the collision
prediction accuracy for language-conditioning
on a single unseen object.

LACO achieves comparable collision prediction
accuracy for unseen objects from seen classes, showing its strong generalization due to the pretrained
vision encoder. However, LACO shows 24.2% lower accuracy for objects from unseen classes.
Unlike the generalization to unseen language alone in Table 2, generalization to the unseen classes is
more challenging as it has both class names and objects unseen during training.

4.5 Ablation Studies Table 4: Ablation on Single and Multi-View Encoders.

Accuracy Per # Conditioned Objs (%)
Method 0 1 2 3 4

LACO 82.9 78.9 77.2 82.6 72.2
Finetuning 71.5 64.9 65.14 72.9 68.9
From scratch 82.1 72.7 77.7 75.3 71.1

LACO + MV 68.8 69.4 76.3 73.4 68.9
Finetuning + MV 74.2 66.4 62.6 75.6 68.9
From scratch + MV 66.0 67.9 67.1 78.6 72.7

Pretrained observation encoder.
We investigate the benefit of using
pretrained encoder by comparing a
CLIP pretrained vision encoder and
a CLIP vision encoder trained from
scratch. In Table 4, we find that a pre-
trained CLIP encoder consistently out-
performs the one trained from scratch.

Multiview camera inputs. To extend to multi-camera RGB observations, we train a multi-view
MAE to replace the CLIP vision encoder. The multi-view MAE is trained end-to-end to predict image
reconstructions of two fixed camera views. Unlike MV-MAE [32] and Multi-MAE [33], we keep the
original MAE masking ratio of 80% per each view. When objects are entirely masked out from one
view, we find that they can be reconstructed if present in the second view. Sample reconstructions and
hyperparameters are included in Appendix C. In Table 4, we find that using a pretrained MV-MAE,
whether frozen or with finetuning, outperforms training from scratch. However, multi-view feature
extraction remains an open problem, as single-view features lead to stronger predictions.
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Table 5: The dataset size ablation examines how perfor-
mance varies as we alter the size of the dataset.

Accuracy Per # Conditioned Objs (%)
Dataset Size 0 1 2 3 4

50% 82.9 74.2 73.4 78.0 73.6
80% 81.2 70.0 72.6 72.2 65.8
100% 82.9 78.9 77.2 82.6 72.2

Dataset size. Although Section 4.4
shows the generalization capability of
LACO, its generalization to unseen classes
of objects is This may arise because we
are training on a limited dataset of objects.
As the quality and quantity of 3D assets
increases, we may expect improved perfor-
mance by training on more than a limited
set of classes. We verify our hypothesis by
varying the dataset size in Table 5. The results show that there is an improvement with the increased
size of the dataset, but the improvement is marginal.

4.6 Language-Conditioned Path Planning Demonstrations

In this section, we showcase three tasks using language-conditioned path planning with LACO:

• Reach Target (No Lang): This task resembles a traditional path planning task, which aims to
reach a target joint pose while avoiding obstacles. We do not condition on language.

• Reach Target (1 Lang): The objective is likewise to reach a target; however, 1 object is specified
as collidable, allowing for more flexibility in plans.

• Push Object (1 Lang): The objective is to push an object forward. For this task, collisions are
in fact desired, showcasing the usefulness of LAPP.

Table 6: We evaluate the success rates of
LAPP-TrajOpt on three path planning tasks.

No Lang 1 Lang
Reach Target Reach Target Push Object

7/10 8/10 9/10

We report the success rates of LAPP in Table 6. Each
path planning is considered successful if a valid path
is found and the path reaches a target or pushes
an object without undesirable collisions. The push
object task is particularly well-suited for language-
conditioned path planning: TrajOpt can be initialized
with a trajectory passing through the object and op-
timize collision constraints with other objects. Reaching targets and pushing objects can also be
composed to perform more complex tasks, such as avoiding all obstacles before reaching the object
the arm needs to push.

4.7 Real-World Experiments

We show real-world trajectories with LAPP-TrajOpt in Figure 5. LAPP-TrajOpt with LACO, pre-
trained on simulator data and finetuned with real-world data, is able to find plans in cluttered
environments, using the language condition to discover a path that would otherwise be regarded as a
trajectory with collisions.

5 Limitations

While LAPP with LACO offers promising advancements in contact-aware path planning, there are
several limitations that should be acknowledged:

Lack of environment dynamics. LACO does not explicitly consider environment dynamics. Once
an object is hit, it may react by being pushed or knocked down, potentially affecting the configu-
ration and positions of other nearby objects. This restricts the ability of LAPP to handle dynamic
environments and may lead to suboptimal or unsafe path plans when objects move significantly.

Limited language prompt scope. In our experiments, the language prompt is limited to specifying
objects that are desirable or safe to collide. While this provides valuable control over contact
conditions, the current scope of language prompts may not cover the full range of instructions
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Can collide with Pringles and Cheez-It box.

Can collide with Pringles.

Can collide with spam.

Figure 5: We demonstrate successful execution of the LAPP-TrajOpt path planning algorithm in the
real-robot system. A path to the goal, specified by the blue jar, is blocked by diverse objects on the
table, so the robot needs to collide with some object. We inform which object is safe and desired to
collide using the language prompts: “pringles, cheezit”, “pringles”, and “spam”, respectively.

or interactions that a user may desire. Including a wider variety of language instructions and
specifications could enhance the versatility and adaptability of LAPP and LACO.

Data generation efforts. The training process for LACO relies on a combination of synthetic
simulation data and manually collected real-world data. Both require significant human engineer-
ing and labeling efforts. Exploring advances in 3D asset availability [34] and simulation-to-real
techniques [35, 36, 37, 38] could alleviate this limitation and enable more efficient training of LACO.

6 Conclusion

In conclusion, our proposed domain of Language-Conditioned Path Planning (LAPP) addresses the
limitations of traditional collision-free path planning in contact-rich robotic manipulation tasks. By
integrating contact awareness into path planning, LAPP allows robots to make informed decisions
about contact with the environment, enabling them to perform complex manipulation tasks effectively.

As a first step towards LAPP, we propose to use Language-Conditioned Collision Functions (LACO),
which learns to predict collisions based on visual inputs, language prompts, and robot configurations.
This learned collision function eliminates the need for manual object annotations, point cloud data,
or ground-truth object meshes, enabling flexible and adaptive path planning that incorporates both
desired and controlled collisions.
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A Implementation Details

Table 7: LACO hyperparameters.
Hyperparameter Value

Learning rate 3e-5
Learning rate scheduler cosine decay to 1e-7
# Mini-batches 32
Training steps 300000

State tokenizer hidden units (4096, 4096, 4096)
Prediction net hidden units (512, 256)
Observation tokenizer/encoder CLIP B/16
Language tokenizer/encoder CLIP B/16

# Attention layers 4
# Attention heads 16
# Token dimension 768

Table 8: TrajOpt hyperparameters.
Hyperparameter Value

# Steps 10
Velocity constraint [-0.4, 0.4]

µ0 2
s0 0.01
c 0.75
τ+ 1.1
τ− 0.5
k 10
ftol 0.0001
xtol 0.0001
ctol 0.01

Solver ECOS
# Penalty iterations 5
# Convexify iterations 5
# Trust iterations 2
Min. trust box size 0.0001

B Language Prompts for Evaluation

Language prompts are included in Table 9.

Table 9: Language prompts for evaluation.
Original Noun Synonym Description
planter plant stand bin for plants
cap hat, snapback head-covering accessory, head-covering article of clothing
boat sailboat, cruise ship oceanic vehicle
yachting cap hat, sailor hat head-covering accessory
airplane aircraft, airline aerial vehicle, object that takes flight
omnibus vehicle long vehicle for travel, toy with wheels
bottle water bottle, bottle container container for fluids, travel-sized water container
flat cap hat, beanie head-covering accessory
laptop computer electronic device, laptop device for accessing internet, typing device for work

Colors red, yellow, blue, purple, pink, gray, black, white
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C Multi-View MAE

In addition to single-view observations, we also experiment with multi-view observations. Instead of
using the pre-trained CLIP encoder, we pretrain a multi-view MAE from scratch on the simulator
images. Then, we use multi-view features from the frozen multi-view MAE model for collision
prediction.

In particular, we do not apply any special masking strategies. Though recent works in multi-view
MAEs [33, 32] have applied such strategies, we find that even a basic MAE strategy leads to good
reconstruction, even of parts occluded in just one view. For instance, in Figure 6, the blue object is
completely masked out of the second view, yet the second view is able to successfully reconstruct the
object.

We use an encoder with 2 layers and 16 heads, a decoder with 2 layers and 16 heads, token dimension
of 768, patch size of 16, and masking ratio of 80%. Our image is preprocessed to be (224, 224),
following convention. The learning rate is 3 · 10−5. We add learned embeddings to the tokens for
each view.

The result in Table 4 shows that multi-view LACO is worse than single-view LACO. We hypothesize
that the use of pre-trained CLIP encoder is crucial for extracting useful features for collision prediction.
However, we believe if the multi-view MAE is trained with large web-scale data, it can outperform
single-view LACO.

Figure 6: We pretrain a multi-view MAE that is trained from scratch on a simulator images. k is the
number of unmasked tokens passed into each view. Note that the blue object is completely masked
out of the bottom view, yet it is able to be reconstructed.
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