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Abstract: We propose a novel end-to-end pipeline for online long-range vector-
ized high-definition (HD) map construction using on-board camera sensors. The
vectorized representation of HD maps, employing polylines and polygons to rep-
resent map elements, is widely used by downstream tasks. However, previous
schemes designed with reference to dynamic object detection overlook the struc-
tural constraints within linear map elements, resulting in performance degradation
in long-range scenarios. In this paper, we exploit the properties of map elements
to improve the performance of map construction. We extract more accurate bird’s
eye view (BEV) features guided by their linear structure, and then propose a hier-
archical sparse map representation to further leverage the scalability of vectorized
map elements, and design a progressive decoding mechanism and a supervision
strategy based on this representation. Our approach, ScalableMap, demonstrates
superior performance on the nuScenes dataset, especially in long-range scenarios,
surpassing previous state-of-the-art model by 6.5 mAP while achieving 18.3 FPS.
Code is available at https://github.com/jingy1yu/ScalableMap.
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1 Introduction

To ensure the safety of autonomous vehicles on the road, downstream tasks such as trajectory pre-
diction and motion planning typically rely on high-definition (HD) maps as prior information [1, 2],
which provide centimeter-level location information for map elements. However, the production of
such HD maps is generally carried out offline, involving complex processes known for their high
labor and economic costs, making it difficult to construct maps that cover a wide area [3, 4].

Recent researches aim to construct local maps in real-time using on-board sensors. More studies
show the superiority of schemes based on bird’s-eye view (BEV) representation for unifying data
from various sensors. Early attempts [5, 6, 7, 8, 9] regard map construction as a semantic segmen-
tation task, using convolutional neural networks (CNN) to obtain occupancy grid map. However,
these schemes can only generate rasterized maps, which lack instance and structure information
about map elements and are therefore difficult to apply directly to downstream tasks [10].

HDMapNet [11] uses time-consuming heuristic post-processing algorithms to generate vectorized
maps. More recent approaches [12, 13] focus on constructing end-to-end networks similar to dy-
namic object detection schemes, treating map elements as ordered sets of vertices. However, the
properties of map elements are different from those of dynamic objects. Map elements are typically
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linear and often parallel to axes [14], which makes it difficult to define bounding boxes. Moreover, in
dense vehicle scenarios, the limited visibility of vertices with map elements in the image space hin-
ders accurate map shape inference solely based on heatmaps. While a recent approach [15] proposes
hierarchical query embeddings to better describe the arbitrary shape of an element by modeling each
vertex as a query, it requires dense points to ensure the shape of elements and need to predict a large
number of vertices simultaneously without structural guidance. This poses challenges to the conver-
gence speed and performance, particularly in long-range scenarios. Therefore, there is still a need
for an approach that can effectively capture the structural constraints within map elements to achieve
high accuracy in long-range HD map construction tasks.

In this paper, we aim to exploit the structural properties of vectorized map elements to address the
challenges of accurately detecting map elements at longer ranges. First, we extract position-aware
BEV features and instance-aware BEV features via two branches respectively and fuse them under
the guidance of linear structure to get hybrid BEV features. Next, we propose a hierarchical sparse
map representation (HSMR) to abstract map elements in a sparse but accurate manner. Integrating
this representation with cascaded decoding layers proposed by DETR [16], we design a progressive
decoder to enhance the constraints of structured information by exploiting the scalability of vector-
ized map elements and a progressive supervision strategy to improve the accuracy of inference. Our
scheme, ScalableMap, dynamically increases the sampling density of map to get inference results at
various scales, allowing us to obtain more accurate map information faster.

Contributions. Our contributions are summarized as follows: (i) We propose ScalableMap, a first
end-to-end long-range vectorized map construction pipeline. We exploit the structural properties
of map elements to extract more accurate BEV features, propose a HSMR based on the scalable
vectorized elements, and design a progressive decoder and supervision strategy accordingly. All
of these result in superior long-range map perception. (ii) We evaluate the performance of Scal-
ableMap on the nuScenes dataset [17] through extensive experiments. Our proposed approach
achieves state-of-the-art results in long-range HD map learning, surpassing existing multimodal
methods by 6.5 mAP while achieving 18.3 FPS.

2 Related work

Lane Detection The lane detection task has been a popular research topic for many years. Early
approaches to these tasks [18, 5] usually rely on segmentation schemes that require complex post-
processing to obtain the final result. In order to obtain structured information, some schemes [19,
20] aim to find a unified representation of curves, while others [21, 22, 23, 24] utilize anchor-
based schemes to abstract map elements with open shapes. Compared with the above solutions, our
thinking is closer to HRAN [4], which directly outputs structured polylines. However, it relies on
a recurrent network that is known to be computationally inefficient. Our ScalableMap is capable
of handling real map elements with complex geometric structures, while the previously mentioned
methods can only handle a single type or regular shape.

Boundary Extraction Boundary extraction aims to predict polygon boundaries for object in-
stances on images. Polygon-RNN [25, 26] adopts recurrent structure to trace each boundary se-
quentially, which is not suitable for scenarios with real-time requirements. Some works [22, 27, 28]
achieve good results in boundary extraction, but they are generally designed for polygons in image
space and are not suitable for map construction tasks. The closest to our proposed scheme is Bound-
aryFormer [29], which uses queries to predict vertices of polygons to obtain vectorized polygon
boundaries. However, the differentiable loss it defines for closed-shape elements in image space
is not suitable for map element that is dominated by open-shape linear elements, as they have less
concentrated features compared to dynamic objects.

Vectorized HD Map Construction Recent work tries to infer vectorized HD maps directly from
on-board sensor data. HDMapNet [11] generates vectorized maps using a time-consuming heuristic
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Figure 1: Overview of ScalableMap. (a) Structure-guided hybrid BEV feature extractor. (b) Hierar-
chical sparse map representation & Progressive decoder. (c) Progressive supervision.

post-processing method, while VectorMapNet [12] proposes a two-stage framework with an end-to-
end pipeline using a slow auto-regressive decoder to recurrently predict vertices. InstaGraM [13]
proposes a graph modeling approach based on vertex and edge heatmaps to reason about instance-
vertex relations, which may be difficult to infer some vertices of a map element appeared in multiple
views. Given the challenge of dealing with arbitrary shapes and varying numbers of vertices in
elements, MapTR [15] tackles this by employing a fixed number of interpolations to obtain a uni-
form representation. But MapTR’s hierarchical query design primarily focuses on the structural
association of elements during the initialization phase, resulting in slow convergence and deterio-
rating performance as the perception range increases. Only SuperFusion [30] is a relevant work
for long-range vectorized HD map construction, which also uses post-processing to obtain vector-
ized results. Our model is the first end-to-end scheme that utilizes the structural properties of map
elements throughout the entire process to construct long-range vectorized maps.

3 Methodology

3.1 Overview

Given a set of surround-view images {I1, ..., Ik} captured from k on-board cameras, the goal of
ScalableMap is to predict M local map elements {L(j); j = 1, ...,M} within a certain range
in real-time, including lane dividers, road boundaries, and pedestrian crossings. Each map el-
ement is represented by a sparse set of ordered vertices, which can be described as L(j) =
{(x0, y0, z0), ..., (xmj , ymj , zmj )}, where mj is the number of vertices of element L(j) and (x, y, z)
are the coordinates of each vertex in a unified vehicle coordinate system.

The architecture of ScalableMap is illustrated in Figure 1. We build the model with three com-
ponents to construct long-range vectorized HD maps: (1) structure-guided hybrid BEV feature ex-
tractor: transforming camera sensor data into BEV features with structure-guided fusion (Section
3.2) ; (2) progressive decoder: layer by layer map element decoding based on the proposed HSMR
(Section 3.3) ; (3) progressive supervision: bipartite matching and training for HSMR (Section 3.4).
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3.2 BEV Feature Extractor

The ill-posed nature of 2D-3D transformation is exacerbated by the elongated and linear character-
istics of map elements, leading to feature misalignment and discontinuity. To obtain hybrid BEV
features, we utilize one branch for extracting position-aware BEV features and another branch for
extracting instance-aware BEV features. These branches are then fused together, guided by the
structural properties of map elements.

Perspective View Converter. We start by extracting image features through ResNet. Method
proposed by BEVFormer [31] is adopted to obtain position-aware BEV features F p

bev , which utilizes
deformable attention [32] to enable spatial interaction between BEV queries and corresponding
image features based on a predefined 3D grid and calibration parameters. Additionally, we use
several multi-layer perception (MLP) layers to obtain instance-aware BEV features F i

bev since they
are effective at preserving continuous features in image space [33]. k image features are individually
converted to their respective top-views using k MLPs. To further improve feature continuity across
views, we use a linear layer to transform top-view features into a unified BEV feature.

Structure-Guided Feature Fusion. To enhance the robustness of features for accurate map con-
struction, we propose a mutual correction strategy that leverages information from two distinct fea-
tures: F p

bev with relatively precise positional data for select map vertices, and F i
bev encompassing

comprehensive shape information for map elements. By directly summing these features, we pro-
duce the updated F i′

bev . Additionally, we introduce a segmentation head to F i′

bev , guiding it to focus
on the drivable area to learn the transformation scale. Subsequently, F p

bev is concatenated with the
refined F i′

bev , and their fusion is executed through a convolutional layer. This fusion process corrects
misalignments in F p

bev , producing an hybrid BEV feature with enhanced richness and accuracy.

3.3 Progressive Decoder

The varied shapes of vectorized map elements present challenges for conventional abstraction
schemes like bounding box-based and anchor-based approaches. To address this, we introduce a
HSMR as the core idea of our approach. HSMR provides a sparse and unified representation that
accurately describes the actual shape of elements while supporting fast inference. Building upon
this, we design a progressive decoder inspired by the DETR paradigm. Moreover, we incorporate a
module that generates structural queries first and then dynamically inserts queries, acting as a vital
bridge to connect maps of different densities.

Hierarchical Sparse Map Representation. Polyline representations of map elements are typi-
cally obtained by sampling points where the curvature exceeds a threshold, thus resulting in varying
numbers of vertices for each element. We define the number of vertices forming each element as the
map density to ensure a consistent representation. Based on this density, we employ uniform point
sampling for elements with an excessive number of vertices, while for elements with fewer vertices
than the desired density, we perform point subsampling based on distances between the original ver-
tices. This approach allows us to obtain representations of the same element at arbitrary densities.
By combining the iterative optimization idea of DETR paradigm with the dynamically adjustable
density of the vectorized map, we hierarchically utilize a low-density map as an abstract representa-
tion of the high-density map. The low-density map captures map element shapes adequately while
being sufficiently sparse. A visual depiction of HSMR and its performance is provided in Figure 4.

Decoder Layers. We define query qn,m responsible for the m-th vertex of the n-th element. Lever-
aging the hierarchical sparse representation of map elements, a small number of queries are initially
generated to capture the approximate shape of each map element. Each query is formed by adding an
instance embedding qinsn and a position embedding qposn,m. Our progressive map element decoder is
composed of multiple decoder layers, each containing two types of attention mechanisms. These at-
tention mechanisms facilitate information exchange among vertices, and enable interaction between
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Figure 2: Visualization of progressive polyline loss.

each vertex and its corresponding BEV feature. The exchange between vertices is implemented us-
ing multi-head self-attention [34], while the other is implemented using deformable attention [32].

Structural Query Generation and Dynamic Query Insertion. To connect layers that handle
different densities, we exploit the positional constraints among adjacent vertices within the same
element to augment the map density. We introduce new queries by taking the mean value of two
adjacent queries that share an edge, and dynamically insert new queries between these two queries.
Rather than employing traditional methods that initialize a large number of queries simultaneously
and update them iteratively, we adopt a strategy of initializing each element with only a limited num-
ber of queries and gradually increasing the map density layer by layer. This enables the module to
focus on the original sparse instance features and leverage the structural characteristics of vectorized
map elements, ensuring robust long-range perceptual capabilities.

3.4 Progressive Supervision

During training, we infers N map elements {L̂i}Ni=1 in each layer, and N is set to be larger than
the typical number of elements in a scene. Assume there are M targets {Li}Mi=1, which is padded
with ∅ to form a set of size N . Following [16, 35], bipartite matching is employed to search for a
permutation σ ∈ Σ with the lowest cost. Σ includes the equivalent permutation for each element, as
multiple vertex orders can represent the actual shape of an element in map construction task:

σ∗ = argminσ∈Σ

N∑
i=1

[−1{ci ̸=∅}p̂σ(i)(ci) + 1{ci ̸=∅}Lmatch(L̂σ(i), Li)] (1)

where p̂σ(i)(ci) is the probability of class ci for the prediction with index σ(i) and Lmatch is a
pair-wise polyline matching cost between prediction L̂σ(i) and ground truth Li. We use Hungarian
algorithm [36] to find the optimal assignment σ∗. We employ focal loss to supervise the element
category and drivable area, and additional loss terms are incorporated in the following loss function:

Lpolyline = λvLvertex + Ledge (2)

Vertex Loss. Considering HSMR involves subsampling process, we differentiate the supervision
between original vertices and newly added vertices. A visual representation of the supervision mech-
anism for the progressive polyline loss is shown in Figure 2. For each of predicted original vertex
v̂σ∗(i),j assigned to vertex vi,j , we employ L1 distance to ensure prediction accuracy. With N l

v

standing for the number of original vertices in layer l, vertex loss of each element is formulated as:

Lvertex =

N∑
i=1

1{ci ̸=∅}

N l
v−1∑
j=0

∥v̂σ∗(i),j − vi,j∥1 (3)

Edge Loss. We use edge loss to supervise edge shape, which includes distance from newly added
vertices {v̂σ(i),j,k}

Nj
v−1

k=1 corresponding to the current edge ei,j , edge slope, and angle formed by
adjacent edges. The distance component is supervised with L1 loss, while the slope and angle
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Table 1: Results on nuScenes validation dataset. C denotes camera only and C+L denotes camera-
LiDAR fusion. Range represents the perceived range along the Y-axis. FPS of ScalableMap is mea-
sured on a single RTX 3090 GPU, with batch size 1 and GPU warm-up. The metrics of MapTR*
are obtained by retraining the model while modifying only the perception range, following the of-
ficial code and ensuring consistency with the claimed specifications. Metric values marked with †
represents the AP value under a threshold of 1.0. Since SuperFusion only provides this metric, we
conduct the same benchmark test for a fair comparison.

Method Modality Range APped APdivider APboundary mAP FPS

HDMapNet C [-30.0, 30.0] 14.4 21.7 33.0 23.0 0.8
HDMapNet C+L [-30.0, 30.0] 16.3 29.6 46.7 31.0 0.5

VectorMapNet C [-30.0, 30.0] 36.1 47.3 39.3 40.9 2.9
VectorMapNet C+L [-30.0, 30.0] 37.6 50.5 47.5 45.2 -

InstaGraM C [-30.0, 30.0] 47.2 33.8 44.0 41.7 17.6
MapTR C [-30.0, 30.0] 56.2 59.8 60.1 58.7 11.2

ScalableMap C [-30.0, 30.0] 57.3 60.9 63.8 60.6 18.3
MapTR* C [-60.0, 60.0] 35.6 46.0 35.7 39.1 11.2

ScalableMap C [-60.0, 60.0] 44.8 49.0 43.1 45.6 18.3
SuperFusion C+L [0.0, 60.0] 22.3† 30.3† 53.4† 35.3† -

ScalableMap C [0.0, 60.0] 51.0† 55.1† 48.4† 51.5† 18.3

components are supervised with cosine similarity. The edge loss of each element is formulated as:

Le =

N∑
i=1

1{ci ̸=∅}{
N l

v−1∑
j=0

[λp

Nv,j−1∑
k=0

d(v̂σ∗(i),j,k, ei,j)+λsc(êσ∗(i),j , ei,j)]+λa

Nv−2∑
j=0

c(âσ∗(i),j , ai,j)}

(4)
where êσ∗(i),j is the edge formed by two adjacent vertices, âσ∗(i),j is the angle formed by two
adjacent edges, d(v̂, e) denotes the distance from vertex v to edge e, and c(â, a) denotes the cosine
similarity between two edges. Nv,j is the number of added vertices corresponding to edge eσ∗(i),j .

4 Experiments

4.1 Experimental Settings

Dataset and Metrics. We evaluate ScalableMap on the nuScenes dataset, which consists of 1000
scenes. Each scene has a duration of approximately 20 seconds. The dataset provides a 360-degree
field of view around an ego-car, captured by six cameras. Following previous works [12, 13, 15], we
use the average precision(AP) metric to evaluate the performance, and chamfer distance to determine
which positive matches the ground truth. We calculate the AP for the three categories, and for each
category, AP is computed under several thresholds {0.5, 1.0, 1.5}.

Implementation Details. We train ScalableMap for 110 epochs on RTX 3090 GPUs with
batch size 32. The perception range for regular range test is [−15.0m, 15.0m] along the X-
axis and [−30.0m, 30.0m] along the Y -axis, and the perception range for long-range test is ex-
panded to [−60.0m, 60.0m] along the Y -axis. To unify the representation of vertices, we use the
Ramer–Douglas–Peucker algorithm [37] to simplify the original polyline with a threshold of 0.05m
before subsampling. For training, we set the loss scales λcls as 2.0, λv, λp as 5.0 and λs, λa as 5e−3

respectively. The progressive decoder is composed of six decoder layers.

4.2 Results.

Comparison with Baselines. We evaluate the performance of ScalableMap by comparing it with
that of state-of-the-art methods on nuScenes validation test. As shown in Table 1, under camera
modality, ScalableMap performs slightly better than MapTR, achieving 1.9 higher mAP and faster
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Figure 3: Visualization of qualitative results of ScalableMap in challenging scenes from nuScenes
validation dataset. The left column is the surround views, the middle column is the inference results
of the ScalableMap, the right column is corresponding ground truth. Green lines indicate boundaries,
red lines indicate lane dividers, and blue lines indicate pedestrian crossings.

inference speed within the conventional perception range of [−30.0m, 30.0m] along the Y-axis.
When the same models are directly applied to [−60.0m, 60.0m] scenario, ScalableMap achieves
45.6 mAP and 18.3 FPS, while MapTR’s corresponding values are 39.1 and 11.2. It is noted that
SuperFusion is the only method which publishes experiment results in this range. However, it is a
fusion model of lidar and single-view camera. The mAP achieved by our approach is higher than that
of SuperFusion by 16.2 under the same benchmark, demonstrating the superior performance even
in a multi-view camera modality with near real-time inference speed. The results demonstrate that
our scheme effectively meets the real-time requirements of online map construction tasks, delivering
superior accuracy in both conventional perception range tests and long-range tests.

Qualitative Results Visualization. The visualization of qualitative results of ScalableMap on
nuScenes validation dataset in long-range test is shown in Figure 3. More visualization results
of challenging scenarios are presented in Appendix B for more visualization results of challenging
scenarios. Our model still performs well even in curved roads, intersections, congested roads, and
night scenes. We further visualize three out of six decoder layers of MapTR* and ScalableMap
in Figure 4. Our strategy demonstrates a faster ability to focus on the instance features, while the
progressive iteration yields more precise shapes of elements.
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Figure 4: Visualization of prediction from three decoder layers of MapTR* and ScalableMap. The
perception range along the Y-axis is [−60.0m, 60.0m]. The light-colored lines on the image repre-
sent ground truth, while the dark-colored lines represent the inference results.

4.3 Ablation Studies

We conduct ablation experiments on nuScenes validation set to verify the effectiveness of the com-
ponents of the proposed method and different design. Settings of all experiments are kept the same
as mentioned before. Additional ablation experiments are provided in Appendix A.

Ablation of Proposed Components. Table 2 presents
experimental results showcasing the impact of our pro-
posed components. HSMR demonstrates effective per-
formance in long-range perception with sparse repre-
sentation. SQG&DQI enhances structural information
within map elements, while the SGFF module signifi-
cantly enhances performance.

Table 2: Ablations about modules.

HSMR SQG&DQI SGFF mAP

40.1
✓ 39.7
✓ ✓ 42.6
✓ ✓ ✓ 45.6

Ablation of Number of Vertices. Ablations of the
effect of number of vertices forming each element on
long-range perception in each decoder layer are pre-
sented in Table 3. The experimental results show that,
based on our proposed HSMR, the model performance
is quite stable with the number of vertices. We trade-off
accuracy and speed to select the appropriate parameters.

Table 3: Ablations about vertex number.

Number of Vertices mAP FPS

2/3/5/9/9/9 43.6 19.2
3/5/9/17/17/17 45.6 18.3

4/7/13/25/25/25 44.2 17.6

5 Discussion

We propose ScalableMap, an innovative pipeline for constructing long-range vectorized HD maps.
We exploit the inherent structure of map elements to extract accurate BEV features, propose the con-
cept of HSMR based on the scalable vectorized maps, and design progressive decoder and supervi-
sion strategy accordingly to ensure fast convergence. Through these designs, our method effectively
captures information over long distances. Experiment results on nuScenes dataset demonstrate com-
pelling performance, particularly in long-range scenarios, thus affirming its real-time applicability
and effectiveness in real-world environments.

Limitations. Our method relies solely on real-time camera sensor data, thus its performance de-
pends on the visibility of the scenarios, which may be limited in situations like traffic congestion
or extreme weather conditions. Additionally, accurate camera calibration parameters are assumed,
which can pose a constraint in practical deployment. Future research can focus on reducing the
reliance on calibration parameters by developing calibration-free approaches or incorporating on-
line calibration methods. Exploring the integration of positional constraints among map elements or
leveraging global coarse maps as prior knowledge may further enhance the robustness and accuracy.
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A Ablation Study

A.1 The Way of Feature Fusion.

Given that SGFF employs a mutual correction strategy, we conduct ablation experiments to validate
the efficacy of this feature fusion approach. Specifically, we consider two scenarios: first, without
correcting the position-aware features, where the two features are directly combined for fusion;
and second, without correcting the instance-aware features, where the two features are directly fed
into the convolutional layer for fusion. The result of these experiments robustly underscore the
effectiveness of SGFF.

Table 4: Ablation studies on feature fusion approaches.

Fusion Method Ped Crossing Divider Boundary mAP

w/o position-aware feature correction 39.9 43.7 38.6 40.7
w/o instance-aware feature correction 42.3 46.0 39.0 42.4

SGFF 44.8 49.0 43.1 45.6

A.2 Effectiveness of Edge Loss

Edge loss in ScalableMap comprises three crucial elements: the loss associated with newly intro-
duced vertices concerning their corresponding edges, the loss concerning edge slopes, and the loss
encompassing the angle formed by three consecutive vertices. The first element holds particular
significance as it directly influences the shape regression of the map element, while the latter two el-
ements exert their influence indirectly on the map element’s shape. We conduct ablation experiments
to underscore their efficacy in the context of map construction tasks.

Table 5: Ablation studies on edge loss.

Loss Item Ped Crossing Divider Boundary mAP

w/o edge loss 43.9 47.6 42.7 44.7
with edge loss 44.8 49.0 43.1 45.6

A.3 Influence of Vertex Count on Convergence Speed

Figure 5 illustrates the convergence
curves of our model in three abla-
tion experiments conducted under
different vertex configurations for
long-range tests. Excessive vertices
can hinder convergence, whereas
insufficient counts can compromise
the accuracy of shape representa-
tion. By carefully fine-tuning the
number of vertices through abla-
tion experiments, we strive to strike
a balance. This fundamental ap-
proach aligns closely with the nu-
anced perspective presented in our
paper, further strengthening the ro-
bustness of our findings.

Figure 5: Visualization of convergence curves.
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B Qualitative visualization

We present visual results of ScalableMap operating in adverse weather conditions and dealing with
occlusion scenarios on nuScenes validation set as shown in Figure 6, Figure 7 and Figure 8.

Figure 6: Visualization of qualitative results of ScalableMap in rainy scenes from nuScenes valida-
tion dataset. The left column is the surround views, the middle column is the inference results of the
ScalableMap, the right column is corresponding ground truth. Green lines indicate boundaries, red
lines indicate lane dividers, and blue lines indicate pedestrian crossings.
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Figure 7: Visualization of qualitative results of ScalableMap in nightly scenes from nuScenes vali-
dation dataset. The left column is the surround views, the middle column is the inference results of
the ScalableMap, the right column is corresponding ground truth. Green lines indicate boundaries,
red lines indicate lane dividers, and blue lines indicate pedestrian crossings.
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Figure 8: Visualization of qualitative results of ScalableMap in occlusion scenes from nuScenes
validation dataset. The left column is the surround views, the middle column is the inference results
of the ScalableMap, the right column is corresponding ground truth. Green lines indicate boundaries,
red lines indicate lane dividers, and blue lines indicate pedestrian crossings.
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