
Bootstrap Your Own Skills: Learning to Solve New
Tasks with Large Language Model Guidance

Jesse Zhang1, Jiahui Zhang1, Karl Pertsch1, Ziyi Liu1,
Xiang Ren1, Minsuk Chang2, Shao-Hua Sun3, Joseph J. Lim4

1University of Southern California, 2Google AI, 3National Taiwan University, 4KAIST
jessez@usc.edu

Abstract: We propose BOSS, an approach that automatically learns to solve new
long-horizon, complex, and meaningful tasks by growing a learned skill library
with minimal supervision. Prior work in reinforcement learning requires expert
supervision, in the form of demonstrations or rich reward functions, to learn long-
horizon tasks. Instead, our approach BOSS (BOotstrapping your own SkillS)
learns to accomplish new tasks by performing “skill bootstrapping,” where an
agent with a set of primitive skills interacts with the environment to practice new
skills without receiving reward feedback for tasks outside of the initial skill set.
This bootstrapping phase is guided by large language models (LLMs) that inform
the agent of meaningful skills to chain together. Through this process, BOSS
builds a wide range of complex and useful behaviors from a basic set of primi-
tive skills. We demonstrate through experiments in realistic household environ-
ments that agents trained with our LLM-guided bootstrapping procedure outper-
form those trained with naı̈ve bootstrapping as well as prior unsupervised skill
acquisition methods on zero-shot execution of unseen, long-horizon tasks in new
environments. View website at clvrai.com/boss.

1 Introduction
Robot learning aims to equip robots with the capability of learning and adapting to novel scenarios.
Popular learning approaches like reinforcement learning (RL) excel at learning short-horizon tasks
such as pick-and-place [1, 2, 3], but they require dense supervision (e.g., demonstrations [4, 5, 6, 7]
or frequent reward feedback [8, 9, 10]) to acquire long-horizon skills.

In contrast, humans can learn complex tasks with much less supervision—take, for example, the
process of learning to play tennis: we may initially practice individual skills like forehand and
backhand returns under close supervision of a coach, analogous to RL agents practicing simple pick-
place skills using demonstrations or dense rewards. Yet importantly, in between coaching sessions,
tennis players return to the tennis court and practice to combine the acquired basic skills into long-
horizon gameplay without supervision from the coach. This allows them to develop a rich repertoire
of tennis-playing skills independently and perform better during their next match.

Can we enable agents to similarly practice and expand their skills without close human supervision?
We introduce BOSS (BOotstrapping your own SkillS), a framework for learning a rich repertoire
of long-horizon skills with minimal human supervision (see Figure 1). Starting from a base set
of acquired primitive skills, BOSS performs a skill bootstrapping phase in which it progressively
grows its skill repertoire by practicing to chain skills into longer-horizon behaviors. BOSS enables
us to train generalist agents, starting from a repertoire of only tens of skills, to perform hundreds of
long-horizon tasks without additional human supervision.

A crucial question during practice is which skills are meaningful to chain together: randomly chain-
ing tennis moves does not lead to meaningful gameplay; similarly, random chains of pick-place
movements do not solve meaningful household tasks. Thus, in BOSS we propose to leverage the
rich knowledge captured in large language models (LLMs) to guide skill chaining: given the chain

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

jessez@usc.edu
https://www.clvrai.com/boss

Skill Library
Put 🥖 in ♨

Pick up 🥖

Pick up 🍎

Serve 🥖

Serve baked 🥖

Practice in Environment
Pick up 🥖

LLM

Sample
Initial Skill Guide Next

Skill Selection

Policy

Put 🥖 in ♨

LLMPolicy

Serve 🥖

Update Agent

Policy

Name New Skill
Pick up 🥖

Put 🥖 in ♨

Serve 🥖

LLM
Add New Skill to Library

(a) Skill Bootstrapping
(b) Target Task

Execution

Execute
New Task

Make 🥞

Policy with
Bootstrapped Skills

 CriticV(s, z)
 CriticV(s, z)

Figure 1: BOSS learns to execute a large set of useful, long-horizon skills with minimal supervision
by performing LLM-guided skill bootstrapping. (a): The agent starts with an initial skill library.
During bootstrapping, it practices chaining skills into new long-horizon behaviors using guidance
from an LLM. The collected experience is used to update the policy. Newly discovered skill chains
are summarized with an LLM and added as new skills into the library for further bootstrapping.
Thus, the agent’s skill repertoire grows over time. (b): After bootstrapping, we condition the policy
on novel instructions and show execution in the environment using the bootstrapped skill repertoire.

of executed skills so far, the LLM predicts a distribution over meaningful next skills to sample.
Importantly, in contrast to existing approaches that leverage the knowledge captured in LLMs for
long-horizon task planning [11, 12, 13, 14], BOSS can use unsupervised environment interactions
to practice how to chain skills into long-horizon task executions; this practice is crucial especially
if the target environment differs from the ones used to train the base skill set. This results in a more
robust policy that can compensate for accumulating errors from the initial skill repertoire.

We validate the effectiveness of our proposed approach in simulated household environments from
the ALFRED benchmark and on a real robot. Experimental results demonstrate that BOSS can
practice effectively with LLM guidance, allowing it to solve long-horizon household tasks in novel
environments which prior LLM-based planning and unsupervised exploration approaches fail at.

2 Preliminaries and Related Work
Reinforcement Learning Reinforcement learning (RL) algorithms aim to learn a policy π(a|s)
that maximizes the expected discounted return Ea∼π,P [

∑
t γ

tR(st, at, st+1)] in a Markov Decision
ProcessM = (S,A, P,R, γ), where S and A are state and action spaces, P : S × A × S → R+

represents the transition probability distribution,R : S × A× S → R denotes the reward function,
and γ is the discount factor. Temporal-difference algorithms are a class of RL algorithms that also
learn critic functions, denoted V π(s) or Qπ(s, a), which represent future discounted returns when
following the policy at state s or after taking action a from state s, respectively [15]. Standard RL
algorithms struggle with learning long-horizon tasks and can be prohibitively sample-inefficient.

Skill-based RL To solve long-horizon tasks, prior works have focused on pre-training skills, short-
horizon behaviors that can be re-combined into long-horizon behaviors [9, 16, 17, 18, 19]. These
skills can be represented as learned options [16, 18], sub-goal setting and reaching policies [20, 21],
a set of discrete policies [22, 23], or continuous latent spaces that represent behaviors [9, 10, 24, 25,
26]. Yet, most of these approaches need expert supervision (e.g., demonstrations [4, 5, 6, 7, 20, 21,
27], frequent reward feedback [9, 10, 23]). In contrast, BOSS learns to execute long-horizon tasks
with minimal human supervision via skill bootstrapping.

Unsupervised RL To learn skills without human supervision, recent works have introduced many
unsupervised RL objectives, e.g., based on curiosity [28], contrallability [29, 30], and behavior or
state diversification [31, 32, 33, 34, 35]. Because these works learn skills from scratch and explore
without supervision, they generally focus on locomotion tasks where most behaviors agents can ex-

2

plore, such as different running gaits, are already meaningful. Few works demonstrate learning of
manipulation tasks, but either require hand-crafted state or action spaces [28] or remain constrained
to learning simple, short-horizon skills [36, 37]. BOSS makes two improvements to enable boot-
strapping of long-horizon tasks: (1) We start from a base repertoire of language-conditioned skills
to enable coherent, long-horizon exploration. (2) We leverage an LLM to guide exploration towards
meaningful skill-chains within the exponential number of possible long-horizon behaviors.

Language in RL Prior works have employed language to parameterize rich skill sets to train multi-
task RL agents [38, 39, 40, 41, 42, 43]. Recent progress in training LLMs has enabled approaches
that combine LLMs with pre-trained language-conditioned policies to perform open-loop planning
over pre-trained skills [11, 12, 13, 14, 44]. These works do not perform any policy training or
finetuning when planning with the LLMs; but instead use the LLMs as top-down planners whose
plans are given to fixed low-level skill policies to execute. In contrast, BOSS pratices chaining
behaviors in the environment during skill bootstrapping and thus learns a more robust, closed-loop
policy. This leads to substantially higher success rate for executing long-horizon tasks.

ELLM [45], LMA3 [46], and IMAGINE [47] are closest to our work. ELLM and LMA3 both use an
LLM to generate tasks, with the former requiring a captioning model to reward agents and the latter
additionally using the LLM to hindsight label past agent trajectories for task completion; instead, we
expand upon a learned skill repertoire, allowing for building skill chains while automatically reward-
ing the agent based on the completion of skills in the chain. Meanwhile, IMAGINE uses language
guidance to generate exploration goals, requiring a “social partner” that modifies the environment
according to desired goals. In realistic settings, this social partner requires extensive human effort
to design. BOSS instead utilizes LLMs to propose goals in a target environment automatically.

3 Method
Our method, BOSS (BOotstrapping your own SkillS), automatically learns to solve new long-
horizon, complex tasks by growing a learned skill library with minimal supervision. BOSS consists
of two phases: (1) it acquires a base repertoire of skills (Section 3.1) and then (2) it practices chain-
ing these skills into long-horizon behaviors in the skill bootstrapping phase (Section 3.2). BOSS can
then zero-shot execute novel natural language instructions describing complex long-horizon tasks.

3.1 Pre-training a Language-Conditioned Skill Policy
We assume access to a datasetDL = {τz1 , τz2 , τz3 , ..., }where τzi denotes a trajectory of (s, a, s′, r)
tuples and zi is a freeform language description of the trajectory. We also assume access to a sparse
reward function for the primitive skills, e.g., an object detector that can detect if an object is placed
in the correct location. For example, if τzi demonstrates a robot arm picking up a mug, then zi =
“pick up the mug.” and r = 1 in the final transition in which the mug is picked up and 0 otherwise.
To obtain a language-conditioned primitive skill policy, we train a standard offline RL algorithm on
DL. In our experiments, we use Implicit Q-Learning (IQL) [48] as it is performant and amenable to
online fine-tuning. We condition the policy and critic networks on the trajectory’s natural language
annotation z, yielding a language-conditioned policy π(a|s, z) and a critic function V (s, z).

3.2 Skill Bootstrapping
After learning the language-conditioned primitive skill policy, we perform skill bootstrapping —
the agent practices by interacting with the environment, trying new skill chains, then adding them
back into its skill repertoire for further bootstrapping. As a result, the agent learns increasingly
long-horizon skills without requiring additional supervision beyond the initial set of skills.

Sampling initial skills. At the start of bootstrapping, the skill repertoire Z = {z1, z2, ...} is initial-
ized to the set of pre-trained base skills. Upon initializing the agent in the environment at state s1,
we must sample an initial skill. Intuitively, the skill we choose should be executable from s1 i.e.,
have a high chance of success. Therefore, in every bootstrapping episode, we sample the initial skill
according to probabilities generated from the pre-trained value function, V (s1, z). We then try to
execute the sampled skill until a timeout threshold is reached.

Guiding Skill Chaining via LLMs. If the first skill execution succeeds, the next step is constructing
a longer-horizon behavior by chaining together the first skill with a sampled next skill. Naı̈vely

3

choosing the next skill by, for example, sampling at random will likely result in a behavior that is
not useful for downstream tasks. Even worse, the likelihood of picking a bad skill chain via random
sampling increases linearly with the size of the skill repertoire and exponentially with the length
of the skill chain. For a modestly sized repertoire with 20 skills and a chain length of 5 there are
205 = 3.2M possible skill chains, only few of which are likely meaningful.

Thus, instead of randomly sampling subsequent skills, we propose to use large language models
(LLMs) to guide skill selection. Prior work has demonstrated that modern LLMs capture relevant
information about meaningful skill chains [11, 12, 14]. Yet, in contrast to prior top-down LLM
planning methods, we explore a bottom-up approach to learning long-horizon tasks: by allowing
our agent to iteratively sample skill chains and practice their execution in the environment, we train
more robust long-horizon task policies that achieve higher empirical success rates, particularly when
generalizing to unseen environments (see Section 4).

LLM Prompt Example

Predict the next skill from the fol-
lowing list: Pick up the mug; Turn on
the lamp; Put the mug in the coffee
machine; ...

1: Pick up the mug.
2:

Figure 2: A shortened LLM prompt.
See the full prompt in Appendix A.2.

To sample next skills, we prompt the LLM with the cur-
rent skill repertoire and the chain of skills executed so far.
For example, if the agent has just completed “Pick up the
mug”, we prompt the LLM with the list of skill annota-
tions in Z and then the following prompt: 1. PICK UP
THE MUG. 2. (see Figure 2). The LLM then proposes
the next skill by generating text following the prompt. We
then map this predicted next skill string back to the set of
existing skills in Z by finding the nearest neighbor of Z to
the proposed skill annotation in the embedding space of a

pre-trained sentence embedding model [49]. To encourage diversity in the practiced skill chains, we
repeat this process N times and sample the true next skill from the distribution of LLM-assigned
token likelihoods. Finally, if the sampled skill is successfully executed, we repeat the same process
for sampling the following skill.1

Learning new skills. Once an episode concludes, either because a skill times out or because a
defined maximum skill chain length is reached, we add the collected data back into the replay buffer
with a sparse reward of 1 for every completed skill. For example, if an attempted skill chain contains
a total of 3 skills, then the maximum return of the entire trajectory is 3. We then continue policy
training via the same offline RL algorithm used to learn the primitive skills—in our case, IQL [48].

Finally, to maximize data efficiency, we relabel the language instructions for the collected episode
upon adding it to the replay buffer. Specifically, following prior work [42], we aggregate consecutive
skills into composite skill instructions using the same LLM as for skill sampling. We then add the
composite skill instruction and associated experience to the replay buffer and also add it to our
skill repertoire for continued bootstrapping. We store new trajectories with both their lowest level
annotations and the LLM-generated composite instructions so the agent can fine-tune its base skills
while learning longer-horizon skill chains online. To ensure the agent does not forget its initial skill
repertoire, we sample data from the offline dataset DL with new data at equal proportions in batch.

Algorithm 1 BOSS Pseudocode.

1: Train policy π on initial skill repertoire
2: for skill bootstrapping episode do
3: Sample initial skill z and execute
4: while not episode timeout do
5: Sample next skill from LLM and execute
6: Construct composite skill and add to repertoire
7: Update policy π

In sum, we iterate through these three
steps to train a policy during the skill boot-
strapping phase: (1) Sampling initial skills
using the value function. (2) Sampling
next skills by prompting the LLM with
skills executed so far. (3) Adding learned
skills to the skill library and training on
collected agent experience. Algorithm 1
presents a brief overview. The implemen-
tation details can be found in Section B and Algorithm 2 in Appendix describes the full algorithm.

1Note that we do not treat invalid LLM skill chain proposals, like asking the agent to “put keys in a safe”
when it has not yet picked any keys up, in a special manner. If the proposal is poor, the agent will fail and the
value of the skill will drop with training, making it unlikely to sample the skill chain again.

4

1

2 3

4
5 6

"walk to the coffee
maker on the right"

"wash the mug in the sink"
"put the clean mug
in the coffee maker"

"pick up the mug and go
back to the coffee maker"

"pick up the dirty mug
from the coffee maker" "turn and walk to the sink"

visual navigation

visual navigation
memory

object interaction
state changes

visual navigationobject interaction

object interaction

Goal: "Rinse off a mug and place it in the coffee maker"

t 0= t 10= t 21=

t 50=t 27= t 36=

(a) ALFRED benchmark. (b) Real world Jaco arm setup.

Figure 3: Environments. (a) The ALFRED environment is a benchmark for learning agents
that can follow natural language instructions to fulfill household tasks. This illustration was drawn
from Shridhar et al. [50] with permission. (b) Real-world Jaco arm: Our real-world kitchen ma-
nipulation tabletop environment based on RGB image inputs.

4 Experimental Evaluation
The goal of our experiments is to test BOSS’s ability to acquire long-horizon, complex, and mean-
ingful behaviors. We compare to unsupervised RL and zero-shot planning methods in two challeng-
ing, image-based control environments: solving household tasks in the ALFRED simulator [50] and
kitchen manipulation tasks with a real-world Jaco robot arm. Concretely, we aim to answer the fol-
lowing questions: (1) Can BOSS learn a rich repertoire of useful skills during skill bootstrapping?
(2) How do BOSS’s acquired skills compare to skills learned by unsupervised RL methods? (3) Can
BOSS directly be applied on real robot hardware?

4.1 Experimental Setup
ALFRED Environment. We test our approach in the ALFRED simulator [50] (see Figure 3a), since
its 100+ floorplans with many interactable objects provide a rich environment for learning number-
ous long-horizon household tasks. We leverage a modified version of the ALFRED simulator [?]
that allows for online RL interactions via a gym interface with 300 × 300 egocentric RGB image
observations. The action space consists of 12 discrete action choices (e.g. turn left, look up, pick up
object), along with 82 discrete object types, first proposed by Pashevich et al. [51]. To train the skills
in our initial skill library, we leverage the ALFRED dataset of 73k primitive skill demonstrations
with language instructions. For bootstrapping we use four unseen floorplans. In each floorplan we
define 10 evaluation tasks, each of which requires 2 to 8 primitive skills to complete.

Real-Robot Kitchen Manipulation. We evaluate our method with a real-robot manipulation setup
in which a Kinova Jaco 2 robot arm needs to solve stylized kitchen tasks in a table-top environment
(see Figure 3b). The observations consist of concatenated RGB images from a third-person and
a wrist-mounted camera. The robot is controlled with continuous end-effector displacements and
discrete gripper open/stay/close commands at a frequency of 10Hz. To train the initial skills, we
collect a dataset of 6k language-annotated primitive skill demonstrations via human teleoperation.
We perform bootstrapping and evaluate the agents in a table setup with unseen object arrangements.

Training and Evaluation Procedure. We equip the policy with the initial primitive skill library
by training it for 150 epochs on the respective pre-collected demonstration datasets using IQL [48]
(see Section 3.1). We then perform 500,000 and 15,000 steps (∼17 min of robot interaction time) of
online skill bootstrapping in the respective unseen eval environments of ALFRED and the real robot
setup. Note that for ALFRED we train separate agents for each floorplan, mimicking a scenario in
which an agent is dropped into a new household and acquires skills with minimal supervision. After
bootstrapping, we evaluate the trained agents zero-shot on the held-out evaluation tasks by condi-
tioning the policy on the respective language instruction. To perform well in this evaluation setting,
an agent needs to acquire a large number of useful skills during online environment interactions.

5

Baselines. We compare BOSS to prior works that can learn a wide range of skills with minimal
supervision: (1) unsupervised RL approaches that, like BOSS, learn from environment interac-
tions without additional feedback and (2) large-language model based planners, that leverage the
knowledge captured in large pre-trained language models to “bootstrap” given skill libraries into
long-horizon behaviors. Concretely, we are comparing to the following approaches:

• CIC [52]: SoTA method on the unsupervised RL benchmark [53], expands its skill library with
a contrastive alignment objective during bootstrapping. For fair comparison, we pre-train CIC’s
policy on the same primitive skill dataset used in BOSS before unsupervised bootstrapping.

• SayCan [12]: Leverages a pre-trained LLM to break down a given task into step-by-step in-
structions, i.e., “primitive skills”, by ranking skills from a given library. We implement SayCan
using the same primitive skill policy pre-trained via offline RL as in BOSS. We use the same
LLM as our method, and adapt SayCan’s LLM prompt for our environment. Notably, SayCan
and similar LLM planning work have no mechanism for fine-tuning to new environments.

• SayCan+P: To evaluate the effects of online bootstrapping vs. top-down LLM planning in
isolation, we evaluate a SayCan variant that uses our LLM-based skill proposal mechanism,
which leverages the LLM to generate step-by-step instructions in place of SayCan’s original
skill ranking method. We found this to perform better than standard SayCan in our evaluation.

• SayCan+PF: SayCan+P on policies fine-tuned in the target environments for the same number
of steps as BOSS by sampling single skills with the value function and learning to execute
them. This compares the effect of BOSS learning to chain skills in the target environments.

Additionally, we evaluate (1) an Oracle that finetunes the pre-trained primitive skill policy directly
on the target tasks, serving as an upper bound, and (2) a pre-trained primitive skill policy without
any bootstrapping (No Bootstrap), serving as a performance lower bound.

All methods utilize the same base primitive skill policy pre-trained on the same demonstration data.
We implement a transformer policy and critic architecture based on Pashevich et al. [51] trained with
the IQL algorithm [48]. All results reported are inter-quartile means and standard deviations over
5 seeds [54]. Finally, Saycan and BOSS all use the LLaMA-13b open-source, 13-billion parameter
LLM [55]. For more baseline implementation and training details, see Appendix B.

4.2 BOSS Bootstrapping Learns Useful Skills
Table 1: Inter-quartile means (IQMs) and standard devia-
tions of oracle-normalized returns, i.e., number of solved
subtasks, broken down by task length, across the ALFRED
evaluation tasks. We also report oracle-normalized success
rate in the last column. We do not report results for length 6
and 8 tasks since not even the oracle was able to learn these.

Returns by Evaluation Task Length Average

Method Length 2 Length 3 Length 4 Return Success

No Bootstrap 0.03 +- 0.02 0.05 +- 0.07 0.08 +- 0.09 0.03 +- 0.01 0.00 +- 0.00
CIC [52] 0.02 +- 0.02 0.25 +- 0.08 0.18 +- 0.07 0.11 +- 0.01 0.00 +- 0.00
SayCan [12] 0.06 +- 0.02 0.14 +- 0.00 0.10 +- 0.12 0.06 +- 0.00 0.00 +- 0.00
SayCan + P 0.08 +- 0.04 0.28 +- 0.00 0.20 +- 0.15 0.12 +- 0.01 0.00 +- 0.00
SayCan + PF 0.64 +- 0.06 0.49 +- 0.20 0.59 +- 0.02 0.57 +- 0.05 0.00 +- 0.00
BOSS (ours) 0.47 +- 0.12 0.59 +- 0.13 0.81 +- 0.13 0.57 +- 0.06 0.57 +- 0.14

ALFRED. Overall, BOSS achieves
superior performance to all non-
oracle baselines, with better oracle-
normalized return at longer, length
3 and 4 tasks than the best base-
lines, and BOSS is the only method
to achieve non-zero success rates
across all lengths of tasks. From Ta-
ble 1, the gap between BOSS and best
baselines is largest on the length 4
tasks, indicating the benefit of BOSS’
LLM-guided skill bootstrapping in
learning difficult, longer-horizon tasks without task supervision. CIC can make some progress in
some length 3 and 4 tasks, but its contrastive objective generally fails to finetune the primitive skills
into meaningful long-horizon skills. Saycan+P performs better than Saycan, indicating that our pro-
posal mechanism better extracts a more meaningful distribution of skills from an LLM, but even
Saycan+P greatly falls short of BOSS’ performance as it is not robust to execution failures incurred
from directly using the pre-trained policy in unseen floor plans. Saycan+PF performs better as it first
fine-tunes its policies, but it still achieves a 0% success rate compared to BOSS’ 57%. Additional
analyses we perform in Appendix C.1 demonstrates that in SayCan+P, 95.8% of all unsuccessful
SayCan+P trajectories are caused by policy execution failures. SayCan+PF is only slightly better:
95.0% are caused by policy execution failures, indicating that naı̈ve fine-tuning in the target en-

6

Put sliced tomato in
microwave

Wash and store
lettuce

Cut the apple with a
knife

Figure 4: Left: The number of subtasks in skills executed during skill bootstrapping by BOSS in
one of the unseen ALFRED floorplans. BOSS progressively learns longer skill chains throughout
the course of training. Right: The number of newly acquired skills by BOSS throughout training.

(1) Go to the area between
the cabinets and the toilet

(2) Pick up the empty toilet
paper tube behind the
toilet brush

(3) Place the toilet paper tube
upright to the left of the
full toilet paper roll

(4) Close the cabinet door

Put the empty toilet paper
tube next to the full toilet
paper roll.

(1) Take the apple on the right
from the sink

(2) Pick up the knife from the
counter

(3) Cut the apple into pieces

(4) Put the apple on the right

of the statue and in front
of the salt

Cut the apple and put it on
the right of the statue.

(1) Pick up the pillow off of
the seat of the blue chair

(2) Put the pillow vertically on
the couch to the left of the
newspaper

Put the pillow on the couch
next to the newspaper.

(1) Pick up the white pencil
on the desk

(2) Place the white pencil on
the desk near the books

(3) Pick up the books from
the bed

(4) Turn on the lamp

Place the white pencil on the
desk next to the books and
then look at the book from

the bed under the lamp light.

Figure 5: Example skill chains (light gray) and new skill summaries (dark grey) learned by BOSS
during skill bootstrapping. LLM-guidance ensures meaningful skill chains and summaries.

vironment is ineffective for solving long-horizon tasks. Since BOSS learns to finetune individual
primitive skills and transition between skills using a closed-loop policy, it performs much better on
complex, long-horizon language-specified tasks in unseen environments.

We display qualitative examples of a length 2 and 3 task in appendix Figure 10, where we can see that
BOSS successfully completes the tasks whereas Saycan suffers from execution failures, getting stuck
while attempting to manipulate objects, and CIC navigates around performing random behaviors
(Figure 10a) or gets stuck navigating around objects (Figure 10b). We show qualitative examples of
learned skills in Figure 5 and perform additional experiments and analysis in Appendix C.1.

Table 2: Success rates, split by task
length, across the 4 robot eval tasks in
an unseen table arrangement.

Evaluation Task Length

Method Length 2 Length 4

ProgPrompt [14] 0.65 +- 0.15 0.00 +- 0.00
BOSS (ours) 0.50 +- 0.30 0.15 +- 0.05

Real Robot. In our real world experiments, we com-
pare BOSS to ProgPrompt [14], a similar LLM plan-
ning method to Saycan that has been extensively evalu-
ated on real-world tabletop robot manipulation environ-
ments similar to ours. We also augment it with prompt
examples similar to ours and our skill proposal mecha-
nism. Here, we evaluate on 4 tasks, 2 of length 2 and 2
of length 4 after performing bootstrapping. Results in Ta-
ble 2 demonstrate that both methods perform similarly on length 2 tasks, but only BOSS achieves
nonzero success rate on more difficult length 4 tasks as it is able to learn to chain together long-
horizon skills in the new environment. See Appendix C.2 for more detailed task information.

4.2.1 Ablation Studies

To better analyze the effect of our core contribution, the usage of LLM guidance during skill boot-
strapping, we compare to the following variants of our approach:

• BOSS-OPT1: BOSS bootstrapping with a weaker 1-billion parameter LLM, OPT-1 [56].

7

• BOSS-Rand: An ablation of our approach BOSS that uses no LLM guidance during skill
bootstrapping and simply selects the next skill at random from the current skill library.

Table 3: ALFRED ablation returns.
Evaluation Task Length

Method Length 2 Length 3 Length 4 Average

BOSS (ours) 0.47 +- 0.12 0.59 +- 0.13 0.81 +- 0.13 0.57 +- 0.06

BOSS-OPT1 0.39 +- 0.08 0.36 +- 0.07 0.56 +- 0.08 0.49 +- 0.07
BOSS-Rand 0.32 +- 0.03 0.29 +- 0.11 0.61 +- 0.16 0.43 +- 0.06

We report results in Table 3. The analysis shows the
importance of accurate LLM guidance during skill boot-
strapping for learning useful skills. Using an LLM with
lower performance (OPT1) results in degraded overall
performance. Yet, bootstrapping without any LLM guidance performs even worse. Interestingly,
the performance gap between BOSS and its variants widens for longer task lengths. Intuitively, the
longer the task, the more possible other, less useful tasks of the same length could be learned by the
agent during bootstrapping. Thus, particularly for long tasks accurate LLM guidance is helpful.

0k 200k 400k
Timesteps

0

100

200

300

400

Sk
ill

Lib
ra

ry
 S

ize

BOSS
BOSS-Rand

Figure 6: Skill li-
brary size during
bootstrapping.

To further analyze this, we compare the sizes of the learned skill libraries
between BOSS bootstrapped with LLaMA-13B guidance vs. random skill
selection (BOSS-Rand) in Figure 6. Perhaps surprisingly, the random skill
chaining ablation learns more skills than BOSS – its skill library grows faster
during bootstrapping. Yet, Table 3 shows that it has lower performance. This
indicates, that while BOSS-Rand learns many skills, it learns less meaning-
ful skills. A qualitative analysis supports this intuition: many of the learned
skills contain repetitions and meaningless skill chains. This underlines the
importance of LLM guidance during skill bootstrapping. Furthermore, the
positive correlation between the powerfulness of the used guidance LLM
(1B→ 13B parameters) and the evaluation task performance suggests that
future, even more powerful LLMs can lead to even better skill bootstrapping.

5 Discussion
We propose BOSS, an approach that learns a diverse set of long-horizon tasks with minimal super-
vision via LLM-guided skill bootstrapping. Starting from an initial library of skills, BOSS acquires
new behaviors by practicing to chain skills while using LLMs to guide skill selection. We demon-
strate in a complex household simulator and real robot manipulation tasks that BOSS can learn more
useful skills during bootstrapping than prior methods.

Limitations. While BOSS learns a large repertoire of skills with minimal supervision, it still has
limitations that prevent it from truly fulfilling the vision of agents autonomously acquiring skills in
new environments. BOSS requires environment resets between bootstrapping episodes, which are
currently performed by a human in our real world experiments. Also, we require success detection
for each of the primitive skills during bootstrapping. Future research can investigate using advances
in reset-free RL [57, 58] to approach the goal of truly autonomous skill learning. Furthermore, BOSS
greedily proposes new skill chains one skill at a time, this greedy skill chaining process may not be
optimal for generating consistent long-horizon behaviors beyond a certain length. In future work,
we plan to explore mechanisms to propose long-horizon tasks that are broken down to individual
skills in conjunction with the greedy skill chaining of BOSS. Finally, BOSS is currently limited to
skills that are combinations of skills in its initial skill library. Extending our work with unsupervised
RL [59, 52] techniques for learning new low-level skills is an exciting direction for future work.

Acknowledgments
We thank Ishika Singh for her assistance with implementing and debugging ProgPrompt. This work
was supported by a USC Viterbi Fellowship, Institute of Information & Communications Technol-
ogy Planning & Evaluation (IITP) grants (No.2019-0-00075, Artificial Intelligence Graduate School
Program, KAIST; No.2022-0-00077, AI Technology Development for Commonsense Extraction,
Reasoning, and Inference from Heterogeneous Data, No.2022-0-00984, Development of Artifi-
cial Intelligence Technology for Personalized Plug-and-Play Explanation and Verification of Ex-
planation), a National Research Foundation of Korea (NRF) grant (NRF-2021H1D3A2A03103683)
funded by the Korean government (MSIT), the KAIST-NAVER hypercreative AI center, and Sam-
sung Electronics Co., Ltd (IO220816-02015-01). Shao-Hua Sun was supported by the Yushan Fel-
low Program by the Taiwan Ministry of Education and National Taiwan University.

8

References
[1] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,

M. Kalakrishnan, V. Vanhoucke, and S. Levine. Scalable deep reinforcement learning for
vision-based robotic manipulation. In Conference on Robot Learning, 2018.

[2] D. Kalashnkov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv,
2021.

[3] A. X. Lee, C. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T. Springenberg, A. Byravan,
A. Abdolmaleki, N. Gileadi, D. Khosid, C. Fantacci, J. E. Chen, A. Raju, R. Jeong, M. Neunert,
A. Laurens, S. Saliceti, F. Casarini, M. Riedmiller, R. Hadsell, and F. Nori. Beyond pick-and-
place: Tackling robotic stacking of diverse shapes. In Conference on Robot Learning, 2021.

[4] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long horizon tasks via imitation and reinforcement learning. In Conference on Robot Learning,
2019.

[5] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim. Demonstration-guided reinforcement learning with
learned skills. In Conference on Robot Learning, 2021.

[6] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets,
2021.

[7] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark
for long-horizon complex manipulation. In Robotics: Science and Systems, 2023.

[8] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. MCP: Learning composable hier-
archical control with multiplicative compositional policies. In Neural Information Processing
Systems, 2019.

[9] K. Pertsch, Y. Lee, and J. J. Lim. Accelerating reinforcement learning with learned skill priors.
In Conference on Robot Learning, 2020.

[10] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discov-
ery for accelerating offline reinforcement learning. In International Conference on Learning
Representations, 2021.

[11] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-
tracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.

[12] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.
In arXiv preprint arXiv:2204.01691, 2022.

[13] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In arXiv
preprint arXiv:2207.05608, 2022.

[14] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. ProgPrompt: Generating situated robot task plans using large language models. In
Neural Information Processing Systems, 2022.

9

[15] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[16] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702.

[17] M. Pickett and A. G. Barto. Policyblocks: An algorithm for creating useful macro-actions in
reinforcement learning. In International Conference on Machine Learning, 2002.

[18] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Association for the
Advancement of Artificial Intelligence, 2017.

[19] T. Nam, S.-H. Sun, K. Pertsch, S. J. Hwang, and J. J. Lim. Skill-based meta-reinforcement
learning. In International Conference on Learning Representations, 2022.

[20] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning, 2019.

[21] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and D. Fox. Iris: Implicit
reinforcement without interaction at scale for learning control from offline robot manipulation
data. In IEEE International Conference on Robotics and Automation, 2020.

[22] S. Schaal. Dynamic movement primitives–a framework for motor control in humans and hu-
manoid robotics. Adaptive Motion of Animals and Machines, 2006.

[23] Y. Lee, S.-H. Sun, S. Somasundaram, E. Hu, and J. J. Lim. Composing complex skills by
learning transition policies with proximity reward induction. In International Conference on
Learning Representations, 2019.

[24] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embed-
ding space for transferable robot skills. In International Conference on Learning Representa-
tions, 2018.

[25] D. Trivedi, J. Zhang, S.-H. Sun, and J. J. Lim. Learning to synthesize programs as interpretable
and generalizable policies. In Neural Information Processing Systems, 2021.

[26] G.-T. Liu, E.-P. Hu, P.-J. Cheng, H.-Y. Lee, and S.-H. Sun. Hierarchical programmatic rein-
forcement learning via learning to compose programs. In International Conference on Machine
Learning, 2023.

[27] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. In Conference
on Robot Learning, 2022.

[28] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning, 2017.

[29] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv, abs/1907.01657, 2019.

[30] S. Park, K. Lee, Y. Lee, and P. Abbeel. Controllability-aware unsupervised skill discovery. In
International Conference on Machine Learning, 2023.

[31] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Variational option discovery algorithms.
arXiv, 2018.

[32] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. In International Conference on Learning Representations, 2019.

[33] D. Warde-Farley, T. V. de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsuper-
vised control through non-parametric discriminative rewards. In International Conference on
Learning Representations, 2019.

10

[34] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. arXiv,
abs/1611.07507, 2016.

[35] J. Zhang, H. Yu, and W. Xu. Hierarchical reinforcement learning by discovering intrinsic
options. In International Conference on Learning Representations, 2021.

[36] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. In International Conference on Machine Learning, 2020.

[37] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models. In Neural Information Processing Systems, 2021.

[38] S.-H. Sun, T.-L. Wu, and J. J. Lim. Program guided agent. In International Conference on
Learning Representations, 2020.

[39] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. In
Robotics: Science and Systems, 2021.

[40] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, 2021.

[41] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. J. Joshi,
R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manju-
nath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1:
Robotics transformer for real-world control at scale, 2022.

[42] J. Zhang, K. Pertsch, J. Zhang, and J. J. Lim. Sprint: Scalable policy pre-training via language
instruction relabeling, 2023.

[43] Z. Liu, J. Zhang, K. Asadi, Y. Liu, D. Zhao, S. Sabach, and R. Fakoor. Tail: Task-specific
adapters for imitation learning with large pretrained models, 2023.

[44] D. Shah, B. Osinski, B. Ichter, and S. Levine. Robotic Navigation with Large Pre-Trained
Models of Language, Vision, and Action. In Conference on Robot Learning, 2022.

[45] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas. Guiding
pretraining in reinforcement learning with large language models. In International Conference
on Machine Learning, 2023.

[46] C. Colas, L. Teodorescu, P.-Y. Oudeyer, X. Yuan, and M.-A. Côté. Augmenting autotelic
agents with large language models. In Conference on Lifelong Learning Agents, 2023.

[47] C. Colas, T. Karch, N. Lair, J.-M. Dussoux, C. Moulin-Frier, F. P. Dominey, and P.-Y. Oudeyer.
Language as a cognitive tool to imagine goals in curiosity driven exploration. In Neural Infor-
mation Processing Systems, 2020.

[48] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
In International Conference on Learning Representations, 2022.

[49] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Empirical Methods in Natural Language Processing, 2019.

[50] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks.
In Computer Vision and Pattern Recognition, 2020.

11

[51] A. Pashevich, C. Schmid, and C. Sun. Episodic Transformer for Vision-and-Language Navi-
gation. In ICCV, 2021.

[52] M. Laskin, H. Liu, X. B. Peng, D. Yarats, A. Rajeswaran, and P. Abbeel. CIC: Contrastive
intrinsic control for unsupervised skill discovery, 2022.

[53] M. Laskin, D. Yarats, H. Liu, K. Lee, A. Zhan, K. Lu, C. Cang, L. Pinto, and P. Abbeel. Urlb:
Unsupervised reinforcement learning benchmark, 2021.

[54] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare. Deep reinforce-
ment learning at the edge of the statistical precipice. In Neural Information Processing Systems,
2021.

[55] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama:
Open and efficient foundation language models, 2023.

[56] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer. Opt: Open pre-trained transformer language models. 2022.

[57] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free
reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors
without human intervention. In IEEE International Conference on Robotics and Automation.
IEEE, 2021.

[58] A. Sharma, A. Gupta, S. Levine, K. Hausman, and C. Finn. Autonomous reinforcement learn-
ing via subgoal curricula. In Neural Information Processing Systems, 2021.

[59] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. In International Conference on Learning Representations, 2020.

[60] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning, 2019.

[61] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[62] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. 2016.

[63] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data. In International Conference on Machine Learning, 2023.

[64] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. In Conference on Robot Learning, 2022.

[65] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[66] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani,
S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros,
M. Pellat, K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai,
H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei.
Scaling instruction-finetuned language models. 2022.

[67] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

12

Appendix

Algorithm 2 BOSS Algorithm

Require: Dataset DL w/ language labels, LLM, Skill Library Z, Time limit T , max chain length
M

1: Pre-train policy π(a|s, z), value function V (s, z) on DL with offline RL. ▷ Section 3.1
2: while not converged do
3: SKILLBOOTSTRAPPING(V, Z, LLM, π, DL , M , T) ▷ Section 3.2
4:
5: procedure SKILLBOOTSTRAPPING(V, Z, LLM, π, DL, M , T)
6: s1 ← Reset environment
7: RolloutData← []
8: z ← sample from discrete distribution with probs

[
V (s, z1), V (s, z2), ..., V (s, z|Z|)

]
.

9: i← 0
10: Success← True
11: while i < M and Success do ▷ If a rollout fails, break the loop.
12: i← i+ 1
13: (Success, τ)← Rollout π(·|s, z) in Environment for at most T steps.
14: Add τ to RolloutData
15: if Success then
16: z ← SAMPLENEXTSKILL(LLM, ROLLOUTDATA , Z)
17: UPDATEBUFFERANDSKILLREPERTOIRE(DL , ROLLOUTDATA , LLM)
18: Train π, V on DL with offline RL.
19:
20: procedure SAMPLENEXTSKILL(LLM, RolloutData, Z)
21: AllSkills← extract all skill annotations from Z.
22: SkillChain← extract executed primitive skills from RolloutData.
23: Prompt← construct prompt from AllSkills, SkillChain. ▷ Prompt in Figure 8.
24: ([ẑ1, ..., ẑN], [p1, ..., pN])← Sample N text generations from LLM(Prompt) with average

token probabilities p1, ..., pN .
25: Find closest match in Z to each of ẑ1, ..., ẑN in embedding space ▷ Embedding model:

all-mpnet-base-v2 from Reimers and Gurevych [49].
26: z ← sample the matches in Z from categorical distribution with parameters p1, ..., pN .
27: return z
28:
29: procedure UPDATEBUFFERANDSKILLREPERTOIRE(DL, RolloutData, Z, LLM) ▷ See

Appendix B.3 for details.
30: τ1, ..., τk ← extract primitive skill trajectories from RolloutData.
31: for τi in τ1, ..., τk do
32: DL ← DL ∪ {τi,zi} ▷ Add trajectory to DL with annotation zi.
33: τ1:k ← concatenate all trajectories together
34: zLLM,1:k ← LLM(τ1:k) assign name by asking LLM summarize annotations of τ1:k. ▷

See Appendix A.2 for prompt.
35: zconcat,1:k ← “{z1}.{z2}...{zk}.’ ▷ Assign another label for the trajectory by

concatenating primitive skill annotations.
36: DL ← DL ∪ {τLLM,1:k, τconcat,1:k} ▷ Add to DL with annotation zLLM,1:k and

zconcat,1:k.
37: Add zLLM,1:k as a new skill to Z.

13

A Dataset and Environment Details

A.1 ALFRED

A.1.1 Dataset Details

We base our dataset and environment on the ALFRED benchmark [50]. ALFRED originally con-
tains over 6000 full trajectories collected from an expert planner following a set of 7 high-level tasks
with randomly sampled objects (e.g., “pick an object and heat it”). Each trajectory has three crowd-
sourced annotations, resulting in around 20k distinct language-annotated trajectories. We separate
these into only the primitive skill trajectories, resulting in about 141k language-annotated trajecto-
ries. Following Zhang et al. [42], we merge navigation skills (e.g., “Walk to the bed”) with the
skill immediately following them as these navigation skills make up about half of the dataset, are
always performed before another skill, and are difficult to design online RL reward functions for that
work across all house floor plans given only the information in the dataset for these skills. After this
processing step, the resulting dataset contains 73k language-annotated primitive skill trajectories.

A.1.2 RL Environment Details

We modified ALFRED similarly to Zhang et al. [42], Pashevich et al. [51] to make it suitable for
policy learning by modifying the action space to be fully discrete, with 12 discrete action choices
and 82 discrete object types.

Furthermore, we rewrote reward functions for all primitive skill types (“CoolObject”, “PickupOb-
ject”, “PutObject”, “HeatObject”, “ToggleObject”, “SliceObject”, “CleanObject”) so that rewards
can be computed independently of a reference expert trajectory. While our rewards depend on the
ground truth primitive skill type, no agents are allowed access to what the underlying true primitive
skill type is. All of our reward function are sparse, with 1 for a transition that completes primitive
skill and 0 for all other transitions.

A.1.3 Evaluation Tasks

We generate evaluation tasks by randomly sampling 10 tasks each for 4 unseen ALFRED floor plans,
resulting in 40 total tasks unseen tasks requiring anywhere from 2-8 primitive skills to complete. The
tasks for each floor plan are sampled randomly from the VALID-UNSEEN ALFRED dataset collected
in these plans with the specific object arrangements, and we use the high-level task language descrip-
tions collected by humans for ALFRED as our task descriptions for language-conditioned zero-shot
evaluation. See Figure 7 for a histogram of task lengths.

2 3 4 5 6 7 8
Length

0
2
4
6
8

10
12
14
16

Co
un

t

Histogram of Task Lengths

Figure 7: Task lengths regarding the number of primitive skills needed to chain together to solve the
task.

14

Examples of common household tasks and their descriptions:
Task Steps: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with
keys. 4. Put the box with keys on the sofa close to the newspaper.
Task: Put the box with keys on the sofa.

Task Steps: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3. Set the
knife down on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the counter. 5. Put
the lettuce slice in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set the lettuce slice on
the counter in front of the toaster.
Task: Put a cooled slice of lettuce on the counter.

Task Steps: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion
of the couch.
Task: Put a book on the couch.

Task Steps: 1. Pick up the fork from the table. 2. Put the fork in the sink and fill the sink with water, then
empty the water from the sink and remove the fork. 3. Put the fork in the drawer.
Task: Put the cleaned fork in a drawer.

Task Steps: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack. 3.
Take the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.
Task: Put the box of tissues on the barred rack.

Task Steps: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass on the
wooden rack.
Task: Put a heated glass on the wooden rack.

Task Steps: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.
Tasks: Look at the box under the lamp light.

Predict the next skill correctly by choosing from the following skills: [SKILL 1 IN LIBRARY], [SKILL
2 IN LIBRARY], ...
Task Steps: 1. [SKILL 1 EXECUTED SO FAR] 2. [SKILL 2 EXECUTED SO FAR] ... N.

Figure 8: Prompt for the LLM for next skill proposal (Section 3.2). Text is generated after listing
out all skills completed so far.

A.2 Language Model Prompts

We use two prompts when using the LLM for two different purposes. The main purpose of the
LLM is to propose a distribution over next skills to chain with currently executed skills during skill
bootstrapping (Section 3.2). Thus, we pass skills in the given skill library Z into the prompt and
ask it to predict the next skill. We also include a fixed set of 7 in-context examples from a random
sample of different tasks from the ALFRED training dataset. The prompt for bootstrapping is shown
in Figure 8.

We also generate summaries (see Section 3.2 and appendix Appendix B.3) for composite skill anno-
tations with the LLM. These summaries are used to label newly chained longer-horizon skills before
adding them back to the skill library. We show the prompt for this in Figure 9.

B Training Implementation details and Hyperparameters

We implement IQL [48] as the base offline RL algorithm to pre-train on primitive skill data for all
methods, baselines, and ablations, due to its strong offline and finetuning performance on a variety
of dense and sparse reward environments.

The IQL policy is trained to maximize the following objective:

eβ(Q(s,a)−V (s)) log π(a|s),
which performs advantage-weighted regression [60] with an inverse temperature term β. Q and V
are trained on (s, a, s′, r, a′) tuples from the dataset rather than sampling a policy for a′ to mitigate

15

Instructions: give a high-level description for the following steps describing common household tasks.

Task Steps: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box with
keys. 4. Put the box with keys on the sofa close to the newspaper.
Summary: Put the box with keys on the sofa.

Task Steps: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter. 3. Set the
knife down on the counter in front of the toaster. 4. Pick up a slice of the lettuce from the counter. 5. Put
the lettuce slice in the refrigerator. take the lettuce slice out of the refrigerator. 6. Set the lettuce slice on
the counter in front of the toaster.
Summary: Put a cooled slice of lettuce on the counter.

Task Steps: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left cushion
of the couch.
Summary: Put a book on the couch.

Task Steps: 1. Pick up the fork from the table. 2. Put the fork in the sink and fill the sink with water, then
empty the water from the sink and remove the fork. 3. Put the fork in the drawer.
Summary: Put the cleaned fork in a drawer.

Task Steps: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred rack. 3.
Take the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.
Summary: Put the box of tissues on the barred rack.

Task Steps: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass on the
wooden rack.
Summary: Put a heated glass on the wooden rack.

Task Steps: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.
Summary: Look at the box under the lamp light.

Task Steps: 1. [SKILL 1] 2. [SKILL 2] 3. [SKILL 3] ...
Summary:

Figure 9: Prompt for the LLM to summarize completed skills into high-level composite annotations,
following Zhang et al. [42].

issues with critic function overestimation common in offline RL. We detail shared training and im-
plementation details below, with method-specific information and hyperparameters in the following
subsections.

B.1 ALFRED Environment

We implement the same observation and action space as Zhang et al. [42]. Details are listed below.

Observation space. The observations given to agents are 300× 300 RGB images. For all methods,
we first preprocess these images by sending them through a frozen ResNet-18 encoder [61] pre-
trained on ImageNet, resulting in a 512× 7× 7 observation.

Action space. The agent chooses from 12 discrete low-level actions. There are 5 navigation ac-
tions: MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown and 7 interaction
actions: Pickup, Put, Open, Close, ToggleOn, ToggleOff, and Slice. For interaction
actions the agent additionally selects one of 82 object types to interact with, as defined by Pashevich
et al. [51]. In total, the action space consists of 5 + 7 ∗ 82 = 579 discrete action choices. For
all methods, due to the large discrete action space, we perform the same action masking as Zhang
et al. [42] to prevent agents from taking actions that are not possible by using ground truth object
properties given by the ALFRED simulator for each object in the scene. For example, we do not
allow the agent to Close objects that aren’t closeable or ToggleOn objects that can’t be turned
on.

16

Policy and critic networks. We use the transformer architecture (and hyperparameters) used by
Episodic Transformers (ET) [51] for our policy and critic networks. We implement all critics (two
Q functions and one V) with a shared backbone and separate output heads. Additionally, we use
LayerNorms [62] in the MLP critic output heads as recommended by Ball et al. [63]. All networks
condition on tokenized representations of input language annotations.

Hyperparameters. Hyperparameters were generally selected from tuning the Oracle baseline to
work as best as possible, then carried over to all other methods. Shared hyperparameters for all
methods (where applicable) for pre-training on primitive skills are listed below. Any unlisted hyper-
parameters or implementation details are carried over from Pashevich et al. [51]:

Param Value

Batch Size 64
Training Epochs 150
Learning Rate 1e-4
Optimizer AdamW
Dropout Rate 0.1
Weight Decay 0.1
Discount γ 0.97
Q Update Polyak Averaging Coefficient 0.005
Policy and Q Update Period 1 per train iter
IQL Advantage Clipping [0, 100]
IQL Advantage Inverse Temperature β 5
IQL Quantile τ 0.8
Maximum Observation Context Length 21

When fine-tuning policies (for Oracle, CIC, and BOSS), we keep hyperparameters the same. We
fine-tune one policy per floor plan (zero-shot evaluating on 10 tasks in each floor plan) in our AL-
FRED task set so that the aggregated results are reported over 4 runs per seed. For methods that use
a skill library (BOSS, Saycan, Saycan+P), all available primitive skills across all evaluation tasks in
each floor plan compose the starting skill library, resulting in anywhere from 15-40 available skills
depending on the floor plan.

Additionally, when finetuning the Oracle baseline along with BOSS and its ablations, we sample old
data from the offline dataset and newly collected data at equal proportions in the batch, following
suggestions from [63]. We do not do this for CIC when finetuning with its unsupervised RL objective
because the language embeddings from the old data are not compatible with the online collected data
labeled with CIC-learned skill embeddings. Fine-tuning hyperparameters follow:

Param Value

Initial Rollouts 50
Training Steps to Env Rollouts Ratio 15
ϵ in ϵ-greedy action sampling 0.05
Discrete action sampling True
Parallel Rollout Samplers 10

B.2 Real Robot Environment

The input observation from the environment includes environment RGB input and robot states.
The RGB input consists of the third-person view RGB images from a Logitech Pro Webcam C920
cropped to 224×224×3, and wrist view images from an Intel RealSense D435. We use a pretrained
R3M [64] model to get the latent representation for each view. The robot states include the robot’s
end-effector position, velocity, and gripper state. The end-effector position and velocity are two
continuous vectors, and the gripper state is a one-hot vector, which presents OPEN, CLOSE, or NOT
MOVE. We concatenate the RGB latent representations and robot states together as environment
states.

17

The policy is language conditioned, and we use a pre-trained sentence encoder to encode the lan-
guage annotation to a 384-dimensional latent vector. The pretrained sentence encoder we use is
all-MiniLM-L12-v2 from the SentenceTransformers package [49].

The total state input dimension is 2048 (third-person R3M) + 2048 (wrist R3M) + 15 (robot state
input) + 384 (language latent representation) = 4495.

Action space. The action space of the robot encompasses the difference in the end effector position
between each time step, along with discrete open and close signals for the gripper. These actions are
transmitted to the robot with 10HZ and interpreted as desired joint poses using PyBullet’s inverse
kinematics module.

In line with [65], we adopt the Action Chunking method to train an autoregressive policy. Our
policy utilizes an LSTM model to predict the next 15 actions, given the initial observation as input,
denoted as π(at:t+15|st). Both our Q and Value networks are recurrent as well, estimating rewards
on a per-timestep basis for each action in the sequence. Similar to the policy, these networks only
have access to the observation preceding the action sequence initiation.

Due to the gripper action space is discrete and imbalanced distributed in the dataset, we reweigh
gripper loss inversely proportionally to the number of examples in each class.

B.3 Additional BOSS Implementation Details

Here we continue discussion of BOSS in detail. In the main text in Section 3.2 we mention that we
add learned skills back to the agent’s skill repertoire and then train on collected experience gathered
from each rollout. Here, we detail exactly how we do that.

Labeling new composite skills. Finally, after we have finished attempting a composite skill chain,
we need a natural language description for it so we can train the language-conditioned policy on this
new composite skill. We ask the LLM to generate high-level task descriptions of the annotations
of the two skills the agent has just attempted to chain together like proposed by Zhang et al. [42]
for offline policy pre-training. Doing so will allow the agent to learn skills at a higher level of
text abstraction, allowing the agent to operate on more natural evaluation task specifications. For
example, humans are more likely to ask an agent to “Make coffee” than to say “Get a coffee pod.
Put the coffee pod in the machine. Fill it up with water...”

We give the LLM a prompt similar to the one for generating next skills. For example, if our agent has
just completed two skills: “Pick up the spoon”, “Put the spoon on the counter”, we ask the LLM
to summarize “1. PICK UP THE SPOON. 2. PUT THE SPOON ON THE COUNTER.”, and the LLM
can generate “put a spoon on the counter.” We denote the generated language annotation for this
combined skill composed of the annotations of z1 and z2 as z′. We then add z′ as a new composite
skill to Z for the agent to possibly sample from again.

Training on new skill data. After the agent has finished a rollout in the environment, it trains on
the experience gathered. There are three types of data that we add to the agent’s replay buffer from
its rollout data:

1. The trajectory of the attempted skill chain which is collected only if the entire first skill
is successfully executed (regardless if it is a primitive skill or a chain of them) since only
then will another skill be used for chaining. The label for this trajectory is produced by the
LLM.

2. The trajectory of the composite skill but with a label generated by concatenating the prim-
itive skill annotations as a sequence of sentences of their language annotations. This tra-
jectory ensures that the agent receives a description for the collected composite trajectory
that specifies the exact primitive skills that make it up, in order. This is useful because the
LLM-generated high-level skill description may not describe certain steps. Those steps are
explicitly spelled out in this new label.

18

3. Trajectories for all lowest-level primitive skills executed during the rollout. These corre-
spond to the original set of skills the policy was equipped with and will help the policy
continue to finetune its ability to execute its original primitive skills.

After the rollout, we add these trajectories to the agent’s replay buffer.

Other details. When performing skill bootstrapping in the ALFRED environment, we set a max
time limit (T in Algorithm 2) for 40 timesteps per primitive skill. For simplicity, we restrict M ,
the max number of skills to chain, to be 2 during skill bootstrapping rollouts. We also restrict the
second skill to be chained to only the set of primitive skills so that the agent can only learn new
skill chains that are one primitive skill longer than the first sampled skill. Note that this does not
restrict the agent from sampling composite skills it has learned during bootstrapping as first skills
upon initialization.

One final implementation detail is with respect to how we map LLM next skill proposals to existing
skills in the skill library Z. We found that pre-trained sentence embedding models generally seem
to put great emphasis on the nouns of skill annotation sentences in ALFRED, instead of the verb.
Therefore, all sentence embeddings models we initially experimented with (up to the 11B parameter
model FLAN-T5-XXL [66]) would have a tendency to map LLM generations such as “Place the
apple in the sink” to skills with different verbs as long as the nouns were the same, such as “Pick
up the apple from the sink”. These skills are clearly very different, so this presented a problem to
us initially. To solve this, we settled on using an NLP library2 to extract the main verb of sentences
and then added that same verb as a prefix to each sentence before embedding with the sentence
embedding model. For example, “Place the apple in the sink” → “PLACE: Place the apple in
the sink.” With this change, the aforementioned issue was addressed in most cases and we could
use much smaller sentence embedding models (all-mpnet-v2 from the SentenceTransformers
package [49]).

Training Time and Hardware Requirements We perform experiments on a server with 2 AMD
EPYC 7763 64-Core Processors, and 8 RTX 3090 GPUs. Pre-training the policies takes around 10
hours with just a single RTX 3090 and 4 CPU threads for parallel dataloading.

Skill bootstrapping experiments require just 1 GPU with sufficient VRAM to run inference with
our LLM, along with 4 available CPU threads for parallel dataloading and environment rollouts.
In practice, a single RTX 3090 is sufficient for our experiments using LLaMA-13B with 8-bit in-
ference [67] on ALFRED, requiring around 3-5 days of training, mainly due to the speed of the
underlying simulator used in ALFRED.

B.4 CIC Implementation

For fairness in our experimental comparison, we implement CIC [52] by using its objective to train
a policy pre-trained on the same dataset as BOSS; thus, the CIC agent is first initialized with a set
of sensible behaviors. Since CIC operates on a fixed latent space, we modified the critic and policy
architectures so that they operate on fixed-length, 768-dimensional embeddings of language inputs
from the same sentence embedding model used for skill bootstrapping [49] instead of on variable
length tokenized language representations.

CIC-specific hyperparameters follow:

2https://github.com/chartbeat-labs/textacy

19

https://github.com/chartbeat-labs/textacy

Param Value

CIC K-means K 12
CIC K-means avg True
CIC Hidden Dim 1024
CIC Latent Skill Dim 768
CIC Temp 0.5
CIC Skill Projection Layer True
Timesteps for each skill rollout before reset 200

B.5 SayCan Implementation

We implement SayCan [12] by combining the prompt from SayCan with ours. We use the same
in-context examples except but convert them to a human-robot conversation. All other details are
the same, including the LLM that we use in this comparison (LLaMa-13b [55]). The Saycan prompt
follows below:

Robot: Hi there, I’m a robot operating in a house. Robot: You can ask me to do various tasks
and I’ll tell you the sequence of actions I would do to accomplish your task.
Human: How would you put the box with keys on the sofa?
Robot: 1. Pick up the keys on the center table. 2. Put the keys in the box. 3. Pick up the box
with keys. 4. Put the box with keys on the sofa close to the newspaper.

Human: How would you put a cooled slice of lettuce on the counter?
Robot: 1. Pick up the knife from in front of the tomato. 2. Cut the lettuce on the counter.
3. Set the knife down on the counter in front of the toaster. 4. Pick up a slice of the lettuce
from the counter. 5. Put the lettuce slice in the refrigerator. take the lettuce slice out of the
refrigerator. 6. Set the lettuce slice on the counter in front of the toaster.

Human: How would you put a book on the couch?
Robot: 1. Pick up the book on the table, in front of the chair. 2. Place the book on the left
cushion of the couch.

Human: How would you put the cleaned fork in a drawer?
Robot: 1. Pick up the fork from the table. 2. Put the fork in the sink and fill the sink with
water, then empty the water from the sink and remove the fork. 3. Put the fork in the drawer.

Human: How would you put the box of tissues on the barred rack?
Robot: 1. Take the box of tissues from the makeup vanity. 2. Put the tissues on the barred
rack. 3. Take the box of tissues from the top of the toilet. 4. Put the tissues on the barred rack.

Human: How would you put a heated glass on the wooden rack?
Robot: 1. Pick up the glass from the sink. 2. Heat the glass in the microwave. 3. Put the glass
on the wooden rack.

Human: How would you look at the box under the lamp light?
Robot: 1. Pick up the box from the far side of the bed. 2. Hold the box and turn on the lamp.

Predict the next skill correctly by choosing from the following skills: [SKILL 1 IN LIBRARY],
[SKILL 2 IN LIBRARY], ...
Human: How would you [HIGH LEVEL TASK DESCRIPTION]?
Robot: 1. [SKILL 1 EXECUTED SO FAR] 2. [SKILL 2 EXECUTED SO FAR] ... N.

20

BOSS

SAYCAN + P

CIC

Task: Put a clean bar of soap on the counter. Completed Subtask

3/3

0/3

0/3

(a) Length 3 Task Example

BOSS

SAYCAN + P

CIC

Task: Pick up the disc and turn on the lamp on the desk. Completed Subtask

2/2

0/2

0/2

(b) Length 2 Task Example

Figure 10: Qualitative visualizations of zero-shot evaluation rollouts. See the plans SayCan+P
generated for these two tasks at the top of Figure 12.

B.6 ProgPrompt Implementation

ProgPrompt [14] converts natural language queries to code and executes the code on a real robot.
After consulting with the authors, we converted the examples in our prompt to one suitable for
ProgPrompt by converting task descriptions into a code representation by converting spaces into
underscores, e.g., “Pick up the milk” into def pick_up_the_milk() . Then, to translate code
commands into commands suitable for our pre-trained policy, we prompt ProgPrompt to output
pick_and_place(object, object) style code commands that we convert into two separate

pick and place natural language commands in the same format as the instructions used for pre-
training the policy. We then execute these instructions on the real robot in sequence.

21

Task: Clean the black bowl and put in the gray plate.

BOSS

Completed
Tasks

4/4

Figure 11: Example of a BOSS rollout after skill bootstrapping on task 4: “Clean the black bowl
and put it in the gray plate.” BOSS is able to complete all 4 tasks in this rollout after performing
skill bootstrapping.

Task: Put a clean bar of soap on the counter. (Execution Fail)

GROUND TRUTH

1. Pick up the bar of soap.
2. Put the bar of soap in the sink, turn

the water on and then off and then
pick up the bar of soap.

3. Put the soap down in between the two
sinks.

SAYCAN+P GENERATED PLAN

1. Pick up the bar of soap.

Task: Pick up the disc and turn on the lamp. (Execution Fail)

GROUND TRUTH

1. Pick up the disc on the desk.
2. Turn on the lamp on the desk.

SAYCAN+P GENERATED PLAN

1. Pick up the disc on the desk.

Task: Examine a bowl by the lamp. (Planning Fail)

GROUND TRUTH

1. Pick up the bowl on the desk.
2. Turn on the lamp.

SAYCAN+P GENERATED PLAN

1. Pick up the bowl on the desk.
2. Pick up the bowl on the desk.

Task: Put cooked apple slice on a counter. (Planning Fail)

GROUND TRUTH

1. Pick up the butter knife that is in front
of the bowl on the counter.

2. Cut the apple that is in the garbage
can into slices.

3. Put the knife in the garbage can.
4. Pick up a slice of apple that is in the

garbage can.
5. Put the apple in the microwave and

turn it on to cook, remove the cooked
apple from the microwave.

6. Put the slice of apple on the counter
to the right of the statue.

SAYCAN+P GENERATED PLAN

1. Pick up a slice of apple that is in the
garbage can.

Figure 12: Example plans from SayCan+P [12] evaluated on EVALINSTRUCT. SayCan+P errors
mainly come from policy execution failures.

22

C Additional Results

C.1 ALFRED Results

SayCan Performance Analysis. Here, we analyze the performance of the SayCan baselines in
great detail to determine how and why they perform poorly. SayCan errors occur for two reasons:
(1) Planning errors in which the LLM fails to output the correct low-level instruction based on the
high level task description, and (2) Policy execution errors in which the policy fails to execute the
task correctly, given the correct instruction.

Qualitative examples of BOSS compared to SayCan+P and CIC are shown in Figure 10, where we
see that SayCan+P is unable to solve either task. Why is this? The first two plans in Figure 12 cor-
respond to the top two tasks in Figure 10. As we can see, SayCan+P generated the correct first step
but the policy failed to execute the skill as SayCan does not fine-tune policies in the environment.
While Figure 12 demonstrates that SayCan+P can make partial progress towards certain tasks, it
relies on zero-shot LLM execution over fixed policies and therefore does not fine-tune the policies
in the environment nor learn to chain them together so that the policy is robust enough to transition
between skills in new settings.

Table 4: Comparison of SayCan and
SayCan+P Methods

Method Failure Rate (%)

Planning Execution

SayCan 57.5 42.5
SayCan+P 4.2 95.8
SayCan+PF 5.0 95.0

We analyze the overall proportions of policy execution
failures and planning failures for the SayCan baselines
in Table 4. We see that SayCan mostly fails at planning
(57.5% of the time) while SayCan+P, using BOSS’ skill
proposal mechanism, mainly fails at execution. Mean-
while, SayCan+PF performs similarly to SayCan+P, indi-
cating that naı̈ve fine-tuning does not greatly improve the
success rate of the final plans.

SayCan+BOSS. Here, we test one more method which combines the advantages of top-down
LLM planning methods like SayCan with BOSS’ ability to enable agents to learn how to chain
together skills directly in the target environment. We evaluate SayCan+BOSS, a baseline which
breaks down high-level task instructions using SayCan and then issues the commands to BOSS
agents after they have performed skill bootstrapping in the target environments. Results in the
below table indicate that this baseline performs much better than BOSSalone, indicating that BOSS’
LLM-guided skill bootstrapping enables it to learn robust policies that can even be combined with
planners to better execute the given plans than naı̈ve fine-tuning with SayCan+PF. Yet if there is no
powerful LLM available at test time, BOSS alone still performs very well.

Evaluation Task Length Average

Method Length 2 Length 3 Length 4 Return Success

No Bootstrap 0.03 +- 0.02 0.05 +- 0.07 0.08 +- 0.09 0.03 +- 0.01 0.00 +- 0.00
CIC [52] 0.02 +- 0.02 0.25 +- 0.08 0.18 +- 0.07 0.11 +- 0.01 0.00 +- 0.00
SayCan [12] 0.06 +- 0.02 0.14 +- 0.00 0.10 +- 0.12 0.06 +- 0.00 0.00 +- 0.00
SayCan + P 0.08 +- 0.04 0.28 +- 0.00 0.20 +- 0.15 0.12 +- 0.01 0.00 +- 0.00
SayCan + PF 0.64 +- 0.06 0.49 +- 0.20 0.59 +- 0.02 0.57 +- 0.05 0.00 +- 0.00
BOSS (ours) 0.47 +- 0.12 0.59 +- 0.13 0.81 +- 0.13 0.57 +- 0.06 0.57 +- 0.14
SayCan+BOSS (ours) 0.84 +- 0.16 0.87 +- 0.18 0.96 +- 0.13 0.84 +- 0.06 1.02 +- 0.12

C.2 Real Robot Results

We evaluate on 4 tasks, detailed below, in the environment setup shown in Figure 11.

1. Clean the black bowl (length 2): (1) Pick up the black bowl, (2) put it in the sink.

2. Put the black bowl to the dish rack (length 2): (1) Pick up the black bowl, (2) put it in the
dish rack.

3. Clean the black bowl and put it in the dish rack (length 4): (1) Pick up the black bowl, (2)
put it in the sink, (3) pick up the black bowl, (4) put it in the dish rack.

23

Table 5: Full returns and success rates for real robot evaluation comparisons.
Task ProgPrompt return ProgPrompt success rate BOSS return BOSS success rate

1 1.6± 0.80 0.8 1.6± 0.8 0.8
2 1.0± 1.00 0.5 0.8± 0.75 0.2
3 0.9± 0.78 0.0 1.7± 1.1 0.1
4 2.0± 1.2 0.0 2.2± 0.98 0.2

4. Clean the black bowl and put it in the gray plate (length 4): (2) pick up the black bowl, (2)
put it in the sink, (3) pick up the black bowl, (4) put it in the plate.

We report full results in Table 5.

24

	Introduction
	Preliminaries and Related Work
	Method
	Pre-training a Language-Conditioned Skill Policy
	Skill Bootstrapping

	Experimental Evaluation
	Experimental Setup
	BOSS Bootstrapping Learns Useful Skills
	Ablation Studies

	Discussion
	Dataset and Environment Details
	ALFRED
	Dataset Details
	RL Environment Details
	Evaluation Tasks

	Language Model Prompts

	Training Implementation details and Hyperparameters
	ALFRED Environment
	Real Robot Environment
	Additional BOSS Implementation Details
	CIC Implementation
	SayCan Implementation
	ProgPrompt Implementation

	Additional Results
	ALFRED Results
	Real Robot Results

