
Language-Guided Traffic Simulation via
Scene-Level Diffusion

Ziyuan Zhong1, Davis Rempe2,3, Yuxiao Chen2, Boris Ivanovic2,
Yulong Cao2, Danfei Xu2,4, Marco Pavone2,3, Baishakhi Ray1

1Columbia University, 2NVIDIA Research, 3Stanford University, 4Georgia Tech

Abstract: Realistic and controllable traffic simulation is a core capability that
is necessary to accelerate autonomous vehicle (AV) development. However, cur-
rent approaches for controlling learning-based traffic models require significant
domain expertise and are difficult for practitioners to use. To remedy this, we
present CTG++, a scene-level conditional diffusion model that can be guided by
language instructions. Developing this requires tackling two challenges: the need
for a realistic and controllable traffic model backbone, and an effective method
to interface with a traffic model using language. To address these challenges, we
first propose a scene-level diffusion model equipped with a spatio-temporal trans-
former backbone, which generates realistic and controllable traffic. We then har-
ness a large language model (LLM) to convert a user’s query into a loss function,
guiding the diffusion model towards query-compliant generation. Through com-
prehensive evaluation, we demonstrate the effectiveness of our proposed method
in generating realistic, query-compliant traffic simulations.

Keywords: Traffic Simulation, Multi-Agent Diffusion, Large Language Model

1 Introduction

Given the high costs and risks of large-scale real-world autonomous vehicle (AV) testing [1, 2],
AV developers increasingly rely on simulations for developing robust systems [3]. For maximum
efficacy, simulators must offer realistic and controllable traffic behaviors, complemented by a user-
friendly interface. The realism of traffic patterns ensures that development and testing conducted
in simulation environments can be transferred to real-world scenarios. Controllability permits the
generation of relevant traffic scenarios to scrutinize specific AV behaviors. For example, controlling
a vehicle to collide with the AV to check how it reacts in dangerous situations. A user-friendly
interface simplifies how desired behaviors can be specified. However, generating realistic [4, 5] and
controllable [6] traffic poses considerable challenges, and the exploration of user-friendly interfaces
in traffic generation has been limited. This work strives to develop an expressive scene-centric traffic
model that can be controlled through a user-friendly text-based interface. Such an interface has the
potential to connect simulation to previously unusable text-based data, such as governmental and
insurance collision reports. It also facilitates new simulation capabilities, such as reconstructing
real-world collision scenarios [7].

Building a traffic simulation model with a language interface presents two challenges. First, the
traffic model must generate realistic trajectories at both agent and scene levels, and provide con-
trollability over its generated trajectories. Current simulators [8, 9, 10], whether replaying logs
or using heuristic controllers for agent behavior, lack realism and expressiveness. Data-driven ap-
proaches [4, 5] merely reflect training data distribution, lacking control over generated traffic. Re-
cently, CTG [6] applies a diffusion model, which has demonstrated promising results across various
conditional generation tasks [11, 12, 13, 14, 15], to traffic generation. CTG shows that diffusion is
well-suited for controllable traffic simulation through guidance, which allows test-time adaptability
to user controls. However, CTG models agents independently, leading to unrealistic interactions.
7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

For example, two vehicles modeled separately might collide if the leading vehicle slows without the
following vehicle responding. The second challenge is grounding language in a powerful traffic sim-
ulation backbone, since language conveys more abstract patterns (e.g., “traffic jam” or “following”)
while traffic models operate on low-level trajectories. To address similar issues, recent research on
Large Language Models (LLMs) for robotic behaviors [16, 17] designs a suite of high-level func-
tions (e.g., “pick up” and “use item”) that an LLM can employ to control the robot in order to achieve
a user-specified task (e.g., “make an omelette”). Essentially, these high-level functions bridge tex-
tual instructions and robotic behaviors. Unfortunately, this approach cannot be directly used for
realistic traffic simulation. It is infeasible for an LLM to only use a few high-level functions (e.g.,
“go to location”) to generate the entire low-level human-like trajectories.

GPT4
Guide

Context

Generate

Query Generate

a differentiable loss function
in code format

Pre-defined APIs
and Examples

Noise Trajectroy

red vehicle
collides with
blue vehicle

def guidance_loss(trajectories,...):
 ...
 return collision_loss

Input

collision

CTG++
Scene-Level Conditional

Diffusion Model

Figure 1: Overview of CTG++. A user query, predefined APIs,
and examples are passed to GPT4, which generates a differentiable
loss to guide CTG++ for query-compliant trajectories.

In this work, we propose a model
called CTG++ (see Figure 1) to
overcome the aforementioned chal-
lenges. To achieve a realistic and
adaptable traffic model, our approach
harnesses the strengths of diffusion
and significantly enhances its capa-
bility to cater to multi-agent sce-
narios. This is achieved through
a newly proposed scene-level condi-
tional diffusion model, underpinned
by a spatial-temporal transformer ar-
chitecture. This architecture applies
alternating temporal and spatial at-
tention modules, effectively capturing the dynamics of multi-agent interactions over time. To create
a natural language interface with the traffic model, we leverage the proven capacity of LLMs to
generate code from natural language [18]. Instead of a direct translation from text to traffic, we
introduce an intermediate representation: a differentiable loss function, which encodes a user’s in-
tention from the language command. The loss function guides the diffusion model to generate
command-compliant trajectories. With this two-step translation, the LLM and diffusion model effi-
ciently bridge the gap between user intent and traffic simulation.

We evaluate CTG++ on the nuScenes dataset [19], showing its ability to follow user-specified lan-
guage commands and generate realistic trajectories. In summary, our contributions are: (1) a scene-
level conditional diffusion model, leveraging a spatial-temporal transformer backbone, designed for
the generation of realistic and controllable traffic, (2) a language interface adept at generating trajec-
tories that align with user-defined rules in language, and (3) extensive evaluation comparing CTG++
to state-of-the-art baselines, highlighting its superiority in generating high-quality scenarios.

2 Related Work

Traffic simulation. Traffic simulation methods can be divided into rule-based and learning-based.
Rule-based strategies often feature an interface allowing users to specify the vehicles’ routes, where
the motion is governed by analytical models like intelligent driver model [20]. Although they deliver
user-friendly controllability, their behavioral expressiveness is limited, resulting in trajectories far
from human driving patterns. To improve realism, learning-based approaches utilize deep generative
models trained on trajectory datasets, aiming to emulate authentic driving behaviors [21, 22, 23, 4,
5]. However, they trade off user-controllability for increased realism, as users cannot customize the
properties of generated trajectories. In contrast, our scene-level diffusion model and LLM-based
language interface allow the generation of realistic and language command-compliant traffic.

Diffusion models for conditional generation in robotics. As diffusion models have shown strong
performance and test-time adaptability, they have been recently used for various conditional gener-
ation tasks in robotics and traffic. Existing works use trained classifiers [13, 14] or expert-designed

2

loss functions [6, 24, 25] to guide the denoising process to achieve user-desired properties. For ex-
ample, CTG [6], the closest work to ours, uses a manually designed loss function based on Signal
Temporal Logic (STL) to guide denoising. However, both training a classifier and manually crafting
a loss function for each new property require domain expertise. In contrast, our approach allows a
user to easily specify desired properties in natural language, which is then converted into a relevant
loss function by an LLM. Moreover, most works, including CTG, model each agent independently
[26, 13, 14, 6], resulting in unrealistic agent interactions. In contrast, our scene-level diffusion model
consider all agents in a scene jointly, resulting in realistic modelling of interactions.

Large language models for robotics. Recent breakthroughs in LLMs have motivated a series of
works applying LLMs to robotic tasks. One approach is to train a multi-modal LLM that takes
in embodied data in addition to text data [27, 28, 29]. Unfortunately, no such text-traffic data is
available. Other works directly prompt a pre-trained LLM with a high-level function library along
with a user query. This lets the LLM plan a robot’s behaviors via the provided functions to achieve
the goals in the query [16, 17]. This approach does not directly apply to traffic simulation as existing
data-driven approaches cannot be controlled via high-level functions. To tackle this challenge, we
leverage a pre-trained LLM to translate a user query into a differentiable loss function in code format
and use it to guide a scene-level conditional diffusion model for traffic generation.

3 Methodology

After formulating the problem of controllable traffic generation (Section 3.1), we provide the details
of our approach, CTG++. The training stage involves training a scene-level conditional diffusion
model to capture diverse behaviors from real-world driving data (Section 3.2), utilizing a scene-
level spatial-temporal transformer architecture (Section 3.3). During the inference stage, CTG++
generates query-compliant behaviors via the guidance of a user query derived loss (Section 3.4).

3.1 Problem Formulation

Similar to CTG [6], we formulate the traffic simulation as an imitation learning problem. For the
M vehicles in a scene we want to simulate, let their state at a timestep t be st = [s1t ... sMt] where
sit = (xi

t, y
i
t, v

i
t, θ

i
t) (2D location, speed, and yaw) and the action (i.e., control) be at = [a1t ... aMt]

where ait = (v̇t, θ̇t) (acceleration and yaw rate). We denote c = (I, st−Thist∶t) to be decision-relevant
context, which consists of local semantic maps for all the agents I = {I1, ..., IM}, and their current
and Thist previous states st−Thist∶t = {st−Thist

, . . . , st}. To obtain state st+1 at time t+1, we assume
a transition function (e.g., a unicycle dynamics model) f that computes st+1 = f(st, at) given
the previous state st and control at. Our goal is to generate realistic and query-satisfying traffic
behavior for the agents given (1) the decision context c and (2) a function r ∶ R4T × R2T → R
derived from a user query to measure rule satisfaction of the state and action trajectories. A model
should generate future trajectories for the agents st+1∶t+T over the next T timesteps. Ideally, these
trajectories maximize satisfaction r(at∶t+T−1, st+1∶t+T) to avoid violating the given rule.

3.2 Scene-Level Conditional Diffusion for Traffic Modeling

Diffusion models [30, 31, 13, 14] generate new samples through an iterative denoising process by
learning to reverse a diffusion process. As a traffic scene involves multiple traffic participants, a
single-agent diffusion model [13, 14, 6] may generate sub-optimal samples when a scene involves
significant interactions among multiple agents. To tackle this issue, we propose a scene-level diffu-
sion model that jointly models all traffic participants in a scene. Unlike CTG, which models each
agent’s future trajectory independently, our model operates on the past and future trajectories of all
the agents in a scene jointly (see Figure 2) and thus captures the interactions among agents both
spatially and temporally. Starting from Gaussian noise, the diffusion model is applied iteratively to
predict a clean, denoised trajectory of states and actions for all agents in a scene.

3

denoising
step k

M M

Temporal
Attention

M

Noisy Actions States

Repeat L times

M

Map
Agent-Agent Interaction

per timestep t

Guide action
using J

(Test Time
Only) M

Spatial
Attention

Map
AttentionEncoder

M

Dynamic

Figure 2: A denoising step using our scene-level spatial-temporal transformer.

Trajectory Representation. We denote the future trajectory that the model operates on as:

τ ∶= [τs
τa
] , τa ∶=

⎡⎢⎢⎢⎢⎣

τ 1
a
⋮

τM
a

⎤⎥⎥⎥⎥⎦
, τs ∶=

⎡⎢⎢⎢⎢⎣

τ 1
s
⋮

τM
s

⎤⎥⎥⎥⎥⎦
, τ i

a ∶= [ai0 ... aiT−1], τ i
s ∶= [si1 ... siT].

Additionally, we represent the historical trajectory in the context c as τhist. In accordance with [6],
our model predicts solely the action trajectory τa, employing the known dynamics f to deduce the
states τs via a rollout from the initial state s0 (which forms part of the context c). To maintain the
physical feasibility of the state trajectory throughout the denoising process, we consistently denote
τs as a state trajectory resulting from actions: τs = f(s0,τa).

Formulation. Consider τ k
a as the action trajectory at the k-th diffusion step, with k = 0 marking the

original clean trajectory. The forward diffusion process that starts from τ 0
a is defined as:

q(τ 1∶K
a ∣τ 0

a) ∶=
K

∏
k=1

q(τ k
a ∣τ k−1

a) ∶=
K

∏
k=1

N (τ k
a ;
√
1 − βkτ

k−1
a , βkI). (1)

Here, βi for all i = 1, ...,K are a pre-determined variance schedule, controlling the magnitude of
noise added at each diffusion step. As the noise incrementally accumulates, the signal transforms
into an approximately isotropic Gaussian distribution N (0, I). For trajectory generation, our goal
is to reverse this diffusion process through a learned conditional denoising model (Figure 2) that is
iteratively applied starting from sampled noise. The reverse diffusion process, is as follows:

pθ(τ 0∶K
a ∣c) ∶= p(τK

a)
K

∏
k=1

pθ(τ k−1
a ∣τ k,c) ∶= p(τK

a)
K

∏
k=1

N (τ k−1
a ;µθ(τ k, k,c),Σθ(τ k, k,c)), (2)

where p(τK
a) = N (0, I) and θ represents the parameters of the diffusion model. At each step, the

model takes in actions τ k
a and the resulting states τ k

s = f(s0,τ k
a) as input. As per [31, 26], the

variance term of the transition is a fixed schedule such that Σθ(τ k, k,c) = Σk = σ2
kI. The training

in our approach mirrors that in [6], but with a key difference - trajectories are sampled at the scene
level instead of the agent level, as our model simultaneously predicts outcomes for all agents in a
scene. Detailed information is available in Appendix A.1.

3.3 Model Architecture: Scene-Level Spatial-Temporal Transformer

Unlike previous works which use a U-Net [13, 6] or single-agent transformer [26] to model the
denoising process for a single agent, we design an architecture that models multiple agents jointly.
Inspired by recent works on transformer-based motion prediction [32, 33, 34, 35, 36], we propose
a spatial-temporal transformer architecture to model multiple agents jointly. Unlike most previous
work [32, 33], which employs scene-centric coordinates to capture interactions, we adopt agent-
centric coordinates. As a traffic scene configuration is combinatorial, it is easy for a scene to end
up in an out-of-distribution configuration if it is modeled in scene-centric coordinates, since errors
compound over time. In contrast, agent-centric coordinates are invariant to translation and rotation
of the scene, and therefore more robust during closed-loop simulation. However, agent-centric coor-
dinates discard relative information among agents, which is important for interactions. To avoid this,
we introduce a spatial attention module that enables the exchange of relative information between
agents. Inspired by previous work [36], to avoid the combinatoric explosion of attention pairs, we
alternate between temporal attention, spatial attention, and map attention module to fully capture the
interactions among agents and the map. We next introduce the details of our proposed architecture
by showing the data flow of a denoising step (Figure 2; see Figure A1 for more details).

4

Input and Temporal Attention. We first concatenate the ground-truth agent history trajectories
with the predicted future trajectories along the temporal dimension and apply a row-wise feed-
forward network (rFFN) to project each element (each agent per timestep) from the attribute dimen-
sion ds+da to the hidden dimension dh. The denoising step k is injected into the encoded trajectory
using a sinusoidal positional encoding function [37]. We next capture the temporal information
in the encoded trajectory by feeding it into the temporal attention block, a standard transformer
encoder [37] that captures the temporal-wise relation of each agent.

Spatial Attention. The encoded trajectory is then fed into a spatial attention block which is a
customized transformer decoder block with key and value designed to capture the relative geometric
relationships among agents. Similar to [35], we extend a regular attention layer to be aware of the
relative information eijt between two agents i and j at timestep t:

eijt = ϕr ([Ri⊺
0 (∆xij

0,t,∆yij0,t) , cos(∆θij0,t), sin(∆θij0,t), v
j
t cos(∆θij0,t) − v

i
0, v

j
t sin(∆θij0,t), d

i,j
t])

(3)
where ϕr is a feed-forward network, ∆xij

0,t ∶= x
j
t −xi

0,∆yij0,t ∶= y
j
t −yi0, and ∆θij0,t ∶= θ

j
t −θi0 represent

the position and orientation differences from j at timestep t to i at time step 0 (the current timestep),
dijt is the relative distance between i and j at timestep t, and Ri⊺

0 is the rotation matrix associated
with agent i at timestep 0. For future timesteps at the training stage and history timesteps, we use the
ground-truth relative information. For future timesteps at the inference stage, since we do not have
the ground-truth information, we use a constant velocity model (which assumes the agents to keep
their current velocity for the future timesteps as in [38]) to estimate the state of all the agents in the
future and thus their relative information. The pair-wise relative information is then incorporated
into the transformation of the encoded trajectory via keys and values of the decoder layer:

qi
t =WQglobal

hi
t, kij

t =W
Kglobal

[hj
t ,e

ij
t] , vij

t =W
V global

[hj
t ,e

ij
t] (4)

where hi
t and hj

t are the slices of the encoded trajectories corresponding to the agent i and j at
timestep t, and WQglobal

, WKglobal
, WV global

are learnable matrices.

Map Attention and Output. The map attention block is a multi-head attention layer with keys
and values from the encoded agent-centric vectorized map (as in [34], we encode the map via an
attention layer which transforms waypoints associated with each lane into a lane vector) and captures
the interaction between agents and map. The map attention is applied to each agent independently
as the map is agent-centric. The output encoded trajectory is projected back to the input dimension
ds + da and results in the predicted clean action trajectory τ̂ 0

a . At test time, we additionally apply
iterative guidance with a differentiable loss function J (see Section 3.4 and Appendix A.2) on the
predicted action trajectory. Finally, we apply dynamics to get the predicted state trajectory.

3.4 Guided Generation with Language

A language interface for the powerful diffusion model would enable the user to easily control trajec-
tories with minimum domain knowledge. However, the absence of paired text-to-traffic data renders
direct training of such a model infeasible. Hence, we explore using an intermediary representation
to bridge the two. Recent advancements in LLMs facilitate high-quality conversion from natural
language commands into code. Meanwhile, the diffusion model exhibits control over its generation
through guidance from a loss function. Thus, we suggest utilizing a loss function implemented in
code to bridge the two. Since the guidance loss function must operate on trajectories, we provide
helper functions for coordinate transformations and a handful of text-loss function paired exam-
ples alongside the user’s query to the LLM. We then utilize the returned loss function to guide the
diffusion model, as discussed in Section 3.2, for generating query-compliant traffic simulation.

Guidance Formulation. Building upon prior work [13, 6], we apply guidance to sampled trajec-
tories from our diffusion model at each denoising step to satisfy a predefined objective. Guidance
uses the gradient of the loss J to perturb the model’s predicted mean such that each denoising step
(in Equation (2)) becomes: pθ(τ k−1

a ∣ τ k,c) ≈ N (τ k−1
a ;µ+Σk∇µJ (µ),Σk) (see Appendix A.2).

5

Response:
class Collision_Loss:
def forward(self, x):
 pos_pred = x[..., :2]
 pos_pred_world = transform_coord_to_world(pos_pred,
data_batch)
 pos_pred_i_world = select_agent_ind(pos_pred_world, 1)
 pos_pred_j_world = select_agent_ind(pos_pred_world, 2)
 # Compute the distance between the two vehicles
 dist = torch.norm(pos_pred_i_world - pos_pred_j_world,
dim=-1)
 # Compute the collision loss by penalizing the distance
greater than the collision radius
 loss = torch.clip(dist - self.collision_radius, min=0)
 return loss

generate a loss class such
that vehicle 1 should collide

with vehicle 2.

Example1_query: generate a loss class
such that vehicle 1 should always drive with
acceleration below acc_limit.
Example1_response:
Class AccLimitLoss:
def forward(self, x):
 # Select the relevant agent
 x_i = select_agent_ind(x, 1)
 # Select the acceleration
 acc = x_i[..., 4]
 # Estimate the acceleration deviation
 acc_dev = torch.abs(acc) - self.acc_limit
 # Clip the negative values to 0
 loss = torch.clip(acc_dev, min=0)
 return loss

Paired ExamplesHelper Functions

GPT4

Differentiable Loss Function in Python

User Query

The function transforms positions from
agent coordinates into world coordinate.
def transform_coord_to_world(pos_agent):
 ...
 return pos_world

Figure 3: Example of prompting and querying LLM for a loss function promoting two vehicles to collide.

Language Guidance. Rather than training a classifier or reward function [13, 12] or defining an
analytical reward function [6] for J , we use GPT4 [39] to translate the intention in a user language
query into the corresponding guidance function. In particular, we pass a few helper functions used
to manipulate trajectory coordinates, a couple of (query→ loss function code) paired examples, and
the user query into GPT4, and extract an implemented loss function from the returned message.
Figure 4 shows an example of querying for a loss function that causes a vehicle to collide with
another one. The input paired example shows GPT4 how to apply a sequence of differentiable
operations to generate a loss with respect to the predicted trajectory (“x”). We also provide a list
of helper functions for trajectory manipulation (such as coordinate transformations) for GPT4 to
leverage as we have found these can help to avoid minor mistakes on common operations (see
Appendix F.2 for additional helper functions and pair examples). GPT4 returns a loss function that
penalizes trajectories for not having a collision between the specified vehicles, which will guide the
diffusion model to generate trajectories having such a collision. The guided sampling is performed
jointly for all the agents in a scene.

Traffic Simulation. We perform closed-loop traffic simulation of each scene for 10 seconds. In
particular, we apply our model for all the agents in a standard control loop: at each step, the model
generates a guided trajectory and takes the first few actions before re-planning at 2 Hz.

4 Experiments

Following the setup (Section 4.1), we conduct experiments to affirm: CTG++ can effectively pro-
duce realistic and query-compliant traffic behaviors (Section 4.2), and compared with strong base-
lines, CTG++ yields superior trade-offs among stability, rule satisfaction, and realism (Section 4.3).

4.1 Experimental Setup

Dataset. nuScenes [19] is an extensive real-world driving dataset encompassing 5.5 hours of precise
trajectories from two cities, featuring diverse scenarios and heavy traffic. We train all models using
the training split and evaluate them on 100 scenes randomly selected from the validation split. Our
focus is exclusively on simulating moving vehicles, as they are the most control-relevant entities.

Metrics. Following [6, 5], we evaluate stability (i.e., avoiding collisions and off-road driving),
controllability, and realism of generated trajectories. We evaluate stability by reporting the failure
rate (fail), measured as the percentage of agents encountering a collision or road departure in a scene.
We evaluate controllability using rule-specific violation metrics (rule) (see Appendix E.2). To assess
realism, we compare data statistics between generated trajectories and ground truth trajectories from
the dataset by calculating the Wasserstein distance between their normalized histograms of driving
profiles. We measure realism using realism deviation (real), which is the average of the distribution
distance for the longitudinal acceleration magnitude, lateral acceleration magnitude, and jerk. We
introduce a new scene-level realism metric (rel real) which is the average of the distribution distance
for relative (averaged over every pair of vehicles in a scene) longitudinal acceleration magnitude,
relative lateral acceleration magnitude, and relative jerk.

6

(a) CTG++ keep distance (b) CTG keep distance (c) CTG++ collision (d) CTG collision

Figure 4: Generated trajectories for query “vehicle A should always keep within 10-30m from vehicle B” and
“vehicle A should collide with vehicle B”, respectively. The collision and offroad locations are marked in ☆
and △. For both CTG++ and CTG, our language interface generate query compliant trajectories. However,
CTG++ does not sacrifice other aspects like keeping on-road and smoothness while CTG does.

Traffic Model Baselines. The closest related work on rule-compliant traffic generation is CTG [6],
a traffic model based on conditional diffusion. We also consider BITS [5], a bi-level imitation learn-
ing model, and adapt its sampling ranking function to use our loss function. Its variant, BITS+opt,
applies optimization to the output action trajectory for controllability. To ensure a fair comparison,
this optimization employs the same loss function as the one used for guidance in CTG++.

Large Language Model. We use OpenAI’s GPT-4 [39] (accessed through the OpenAI API) for
evaluating the language interface. We do not train the LLM and use only few-shot prompting.

4.2 Case Study of Language Interface

We conduct two case studies on queries for common traffic behaviors demonstrating CTG++ can
effectively generate trajectories satisfying user’s queries. Both queries involve the interaction of two
vehicles. The first query “vehicle A should always keep within 10-30m from vehicle B” (GPT keep
distance) is a common scene in the real world and the generated scene can be used to test vehicle
following. Figure 4a shows the simulation generated by CTG++: vehicle A (in red) follows vehicle
B (in blue) to go straight and slightly turn right with a safe distance as specified. Both vehicles
along with the background vehicles have smooth motion without critical failures during the rollout.
The second query “vehicle A should collide with vehicle B” (GPT collision) makes it possible to
potentially generate scenarios like those from a crash report [7] and test a vehicle’s reaction in
dangerous situations. Figure 4c shows the simulation generated by CTG++: vehicle A collides with
vehicle B while turning right, as desired. The motion of all vehicles is smooth and does not have
collisions other than the one requested. The generated query-compliant trajectories for both cases
show that our proposed language interface in CTG++ enables effective text-to-traffic generation.

4.3 Evaluation of Traffic Model

Table 1: Quantitative results of CTG++ and the baselines under GPT-generated rules and STL rules.
GPT keep distance GPT collision no collision speed limit

fail rule real rel real fail rule real rel real fail rule real rel real fail rule real rel real

BITS 0.183 2.615 0.116 0.362 0.176 0.660 0.107 0.359 0.092 0.065 0.099 0.352 0.111 0.559 0.104 0.352
BITS+opt 0.240 0.000 0.097 0.360 0.277 0.130 0.068 0.362 0.109 0.041 0.070 0.353 0.162 0.120 0.058 0.353
CTG 0.343 0.000 0.077 0.342 0.356 0.000 0.074 0.349 0.142 0.052 0.044 0.346 0.128 0.029 0.075 0.350
CTG++ 0.173 0.000 0.077 0.331 0.264 0.000 0.085 0.331 0.084 0.036 0.040 0.332 0.083 0.028 0.043 0.344

target speed no offroad goal waypoint+target speed stopregion+offroad
fail rule real rel real fail rule real rel real fail rule1 rule2 real rel real fail rule1 rule2 real rel real

BITS 0.111 1.526 0.114 0.355 0.097 0.018 0.099 0.355 0.111 2.261 1.010 0.115 0.358 0.121 0.005 1.690 0.068 0.353
BITS+opt 0.257 0.742 0.072 0.356 0.105 0.005 0.100 0.358 0.254 3.681 0.746 0.079 0.342 0.095 0.020 2.053 0.097 0.354
CTG 0.091 0.281 0.105 0.379 0.172 0.002 0.042 0.346 0.118 2.388 0.387 0.052 0.345 0.128 0.002 0.808 0.040 0.336
CTG++ 0.060 0.274 0.082 0.370 0.097 0.004 0.038 0.328 0.101 2.352 0.396 0.038 0.338 0.081 0.003 0.411 0.076 0.324

We assess the traffic model component of CTG++ under the two GPT-generated rules (as described
in Section 4.2) and six STL rules from [6] (see Appendix E.1 for details of each rule). The quantita-
tive results in Table 1 underscore CTG++’s superiority over baselines with a good balance between
stability, rule satisfaction, and realism. Specifically, CTG++ secures the lowest failure rate and
scene-level realism deviation in 7 out of 8 settings, reflecting its effective scene-level modeling and

7

enhanced interaction dynamics. Furthermore, CTG++ also achieves the lowest rule violation and
agent-level realism deviation for the majority of settings, demonstrating that enhanced interaction
modeling does not compromise agent-level realism or rule adherence.

Table 2: Ablation study of CTG++ features.

fail rule real rel real

CTG++ 0.173 0.000 0.077 0.331
CTG++ no edge 0.227 0.000 0.077 0.341
CTG++ scene 0.886 1.043 0.127 0.392

Qualitatively, CTG++ generates rule-compliant trajec-
tories featuring more realistic motion with fewer in-
stances of collisions or off-road incidents than the base-
lines. We provide examples of CTG-generated trajec-
tories (when using the same language generated loss
functions) for the same scenes as those previously

shown for CTG++ (Figure 4b and Figure 4d). Specifically, in Figure 4b, CTG’s trajectories display
off-road instances (indicated by △) involving two vehicles and a background vehicle. Similarly, in
Figure 4d, for CTG’s trajectories, the collision between vehicles A and B (in☆) occurs off-road, and
the background vehicle has a curvy, unrealistic path. See Appendix C for qualitative comparisons
under STL rules.

(a) CTG++ (b) CTG++ no edge

Figure 5: Darker red means higher attention by the
blue vehicle. Without edge information, CTG++ no
edge results in a collision (in☆).

Ablation Study. We evaluate the efficacy
of our spatial module and the utilization of
agent coordinates. As demonstrated in Ta-
ble 2, CTG++ surpasses CTG++ no edge (i.e.,
CTG++ but having eijt in Equation (3) replaced
by zeros) and CTG++ scene (i.e., CTG++ but
using scene-centric coordinates) under the GPT
Keep Distance rule. The absence of edge in-
formation leads to increased failure rates due to
decreased awareness of interactions. Moreover,
the use of scene-centric coordinates notably in-
flates failure rates and realism deviations, as the
traffic rapidly deviates from the training distri-
bution during the rollout. To visualize the ef-
fectiveness of spatial attention, we display the attention maps for a vehicle of interest (highlighted in
blue) for both CTG++ and CTG++ no edge when guidance is not applied. As depicted in Figure 5,
CTG++ guides the vehicle to pay attention to relevant neighboring agents, while CTG++ no edge
results in arbitrary attention and a consequent collision (marked as☆) with the vehicle ahead.

5 Conclusion

Summary. In this paper, we present, CTG++, a language-guided scene-level conditional diffusion
model for realistic, query-compliant traffic simulation. In particular, we leverage an LLM for trans-
lating a user query into a differentiable loss function and propose a scene-level conditional diffusion
model (with a spatial-temporal transformer architecture) to translate the loss function into realistic,
query compliant trajectories. Extensive evaluation demonstrates the effectiveness of our approach.

Limitations and Future Work. CTG++ currently does not support complex commands involving
many interactions with map (see Appendix F.4). Our framework can be extended by using a multi-
modal LLM that takes in vision data (e.g., bird’s-eye view map) for a finer control of the traffic and
thus supports more complex commands. Second, our framework does not support automatic error
detection and fixing for the GPT4 generated loss function. As the loss function (in code format) can
have wrong semantics, it is necessary to instruct GPT4 to detect and repair it. Our framework can
be potentially extended to provide the simulation running results to GPT4 to iteratively instruct it to
fix the generated loss function. Third, current trajectory generation is relatively slow and take about
1 minute to generate each simulated scenario. Recent work which uses distillation [40] to greatly
speed up the generation process can be leveraged to reduce the time cost. Our work opens up many
possibilities including adapting our architecture to general multi-agent robotic tasks and using our
proposed two-step approach for other tasks with no paired text-behavior data.

8

Acknowledgment

The authors want to thank Sushant Veer and Shuhan Tan for valuable discussions. This work started
when Ziyuan Zhong interned at NVIDIA Research. He is also supported by NSF CCF 1845893 and
IIS 2221943.

References
[1] CARSURANCE. 24 self-driving car statistics & facts, 2022. URL https://carsurance.

net/insights/self-driving-car-statistics/.

[2] N. Kalra and S. M. Paddock. Driving to Safety: How Many Miles of Driving Would It Take
to Demonstrate Autonomous Vehicle Reliability? RAND Corporation, 2016. URL http:

//www.jstor.org/stable/10.7249/j.ctt1btc0xw.

[3] Waymo. Waymo safety report. https://storage.googleapis.com/waymo-
uploads/files/documents/safety/2021-03-waymo-safety-report.pdf, February 2021.

[4] S. Suo, S. Regalado, S. Casas, and R. Urtasun. Trafficsim: Learning to simulate realistic multi-
agent behaviors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10400–10409, June 2021.

[5] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone. Bits: Bi-level imitation for traffic simulation,
2022.

[6] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. Guided
conditional diffusion for controllable traffic simulation, 2022.

[7] NHTSA. Nhtsa crash viewer. https://crashviewer.nhtsa.dot.gov/, 2023. Accessed:
2023-05-03.

[8] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wiessner. Microscopic traffic simulation using sumo. In 2018
21st International Conference on Intelligent Transportation Systems (ITSC), pages 2575–2582,
2018. doi:10.1109/ITSC.2018.8569938.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. volume 78 of Proceedings of Machine Learning Research, pages 1–16, 13–15 Nov
2017. URL http://proceedings.mlr.press/v78/dosovitskiy17a.html.

[10] LG Electronics. SVL Simulator: An Autonomous Vehicle Simulator, A ROS/ROS2 Multi-
robot Simulator for Autonomous Vehicles. https://github.com/lgsvl/simulator, 2021.

[11] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems, 34:8780–8794, 2021.

[12] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto. Diffusion-lm improves
controllable text generation, 2022.

[13] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine Learning, 2022.

[14] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making?, 2022.

[15] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-
thesis with latent diffusion models, 2022.

[16] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language
instructions to feasible plans, 2023.

9

https://carsurance.net/insights/self-driving-car-statistics/
https://carsurance.net/insights/self-driving-car-statistics/
http://www.jstor.org/stable/10.7249/j.ctt1btc0xw
http://www.jstor.org/stable/10.7249/j.ctt1btc0xw
https://crashviewer.nhtsa.dot.gov/
http://dx.doi.org/10.1109/ITSC.2018.8569938
http://proceedings.mlr.press/v78/dosovitskiy17a.html

[17] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor. Chatgpt for robotics: De-
sign principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft,
February 2023. URL https://www.microsoft.com/en-us/research/publication/

chatgpt-for-robotics-design-principles-and-model-abilities/.

[18] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee,
Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks of artificial
general intelligence: Early experiments with gpt-4. March 2023.

[19] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In CVPR, 2020.

[20] E. Brockfeld, R. D. Kühne, A. Skabardonis, and P. Wagner. Toward benchmarking of micro-
scopic traffic flow models. Transportation Research Record, 1852(1):124–129, 2003.

[21] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Multipath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction. In Conference on Robot Learning (CoRL), pages
86–99. PMLR, 2020.

[22] Y. Chen, B. Ivanovic, and M. Pavone. Scept: Scene-consistent, policy-based trajectory pre-
dictions for planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 17103–17112, June 2022.

[23] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Dynamically-feasible
trajectory forecasting with heterogeneous data. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pages
683–700. Springer, 2020.

[24] D. Rempe, Z. Luo, X. B. Peng, Y. Yuan, K. Kitani, K. Kreis, S. Fidler, and O. Litany. Trace
and pace: Controllable pedestrian animation via guided trajectory diffusion, 2023.

[25] C. “. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, and D. Anguelov. Motiondiffuser: Con-
trollable multi-agent motion prediction using diffusion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 9644–9653, June 2023.

[26] T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu. Stochastic trajectory prediction via
motion indeterminacy diffusion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 17113–17122, June 2022.

[27] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. Palm-e: An
embodied multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.

[28] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Ju-
lian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,
I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-
1: Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817,
2022.

[29] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,

10

https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/

M. Yan, and A. Zeng. Do as i can, not as i say: Grounding language in robotic affordances,
2022.

[30] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In F. Bach and D. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

[31] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[32] Y. Yuan, X. Weng, Y. Ou, and K. Kitani. Agentformer: Agent-aware transformers for socio-
temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

[33] J. Ngiam, V. Vasudevan, B. Caine, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley,
C. Liu, A. Venugopal, D. J. Weiss, B. Sapp, Z. Chen, and J. Shlens. Scene transformer:
A unified architecture for predicting future trajectories of multiple agents. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?

id=Wm3EA5OlHsG.

[34] R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide, and
C. Pal. Latent variable sequential set transformers for joint multi-agent motion prediction. In
International Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=Dup_dDqkZC5.

[35] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu. Hivt: Hierarchical vector transformer for multi-
agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8823–8833, June 2022.

[36] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp. Wayformer: Motion
forecasting via simple & efficient attention networks, 2022.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[38] Y. Chen, B. Ivanovic, and M. Pavone. Scept: Scene-consistent, policy-based trajectory pre-
dictions for planning. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 17082–17091, Los Alamitos, CA, USA, jun 2022. IEEE Computer So-
ciety. doi:10.1109/CVPR52688.2022.01659. URL https://doi.ieeecomputersociety.

org/10.1109/CVPR52688.2022.01659.

[39] OpenAI. Gpt-4 technical report, 2023.

[40] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models, 2022.

[41] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[42] OpenAI. Openai - guides - gpt - chat completions api, 2023. URL https://platform.

openai.com/docs/guides/gpt/chat-completions-api.

11

https://openreview.net/forum?id=Wm3EA5OlHsG
https://openreview.net/forum?id=Wm3EA5OlHsG
https://openreview.net/forum?id=Dup_dDqkZC5
https://openreview.net/forum?id=Dup_dDqkZC5
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1109/CVPR52688.2022.01659
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01659
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01659
https://platform.openai.com/docs/guides/gpt/chat-completions-api
https://platform.openai.com/docs/guides/gpt/chat-completions-api

A Algorithm of Training and Sampling in Details

We mostly follow the training and sampling procedures from [6] and show the detailed algorithms
for training and sampling in the following.

A.1 Training

Algorithm 1 Training
1: Require a real-world driving dataset D, conditional diffusion model to train µ0

θ , transition function f , denoising steps K.
2: while not converge do
3: c,τ0

∼D
4: k ∼ {1, ...,K}
5: ϵ ∼N (0,I)

6: Corrupt action trajectory τk
a =
√
ᾱkτ

0
a +
√
1 − ᾱkϵ with ᾱk =∏

k
l=0 1 − βl

7: Get the corresponding state trajectory τk
s = f(s0,τ

k
a)

8: Use model to predict the uncorrupted trajectory τ̂0
a = µ0

θ(τ
k, k,c)

9: Get the predicted state trajectory τ̂0
= [τ̂0

a ; f(s0, τ̂
0
a)]

10: Take gradient step on ∇θ ∣∣τ
0
− τ̂0

∣∣
2

11: end while

Contrary to [6], which samples trajectories at the agent level, we opt for scene-level trajectory sam-
pling, allowing the model to make joint predictions on all scene agents. The process is detailed
in Algorithm 1. During each training iteration, the context c and the ground-truth trajectory τ 0

are sampled from a real-world driving dataset, and the denoising step k is uniformly selected from
{1, . . . ,K}. We derive the noisy input τ k from τ 0 by initially corrupting the action trajectory via
τ k
a =
√
ᾱkτ

0
a +
√
1 − ᾱkϵ, with ϵ ∼ N (0, I) and ᾱk =∏k

l=0 1 − βl. Subsequently, the corresponding
state is computed as τ k

s = f(s0,τ k
a). The diffusion model indirectly parameterizes µθ in eq. (2)

by predicting the uncorrupted trajectory τ̂ 0 = [τ̂ 0
a ; f(s0, τ̂ 0

a)], where τ̂ 0
a = µ0

θ(τ k, k,c) is the net-
work’s direct output (see [12, 13, 41]). We then use a simplified loss function to train the model as
follows:

L(θ) = Eϵ,k,τ0,c [∣∣τ 0 − τ̂ 0∣∣2] . (5)

A cosine variance schedule [13, 41] is utilized in the diffusion process, employing K = 100 diffusion
steps.

A.2 Sampling

We show the guided sampling algorithm in Algorithm 2 which is directly from [6] as the notations
and procedure remain the same. The key difference is that our diffusion model formulation and
backbone models are all at scene-level rather than agent-level as in [6]. The scene-level formulation
helps to improve scene-level realism and decrease failure rates as the agents’ interactions can be
captured by the model inherently.

Algorithm 2 Guided Sampling
1: Require conditional diffusion model µθ , transition function f , guide J , scale α, covariances Σk , diffusion steps K, inner gradient

descent steps W , number of actions to take before re-planning l.
2: while not done do
3: Observe state s0 and context c
4: Initialize trajectory τK

a ∼N (0,I); τK
s = f(s0,τ

K
a); τ

K
= [τK

a ;τK
s]

5: for k =K, . . . ,1 do
6: µ ∶= τ̂ k−1

a = µθ(τ
k, k,c)

7: µ(0) = µ
8: for j = 1, . . . ,W do
9: µ(j) = µ(j−1) +α∇J (µ(j−1))
10: ∆µ = ∣µ(j) −µ(0)∣
11: ∆µ← clip(∆µ,−βk, βk)

12: µ(j) ← µ(0) +∆µ
13: end for
14: τk−1

a ∼N (µ(M),Σk
); τk−1

s = f(s0,τ
k−1
a);

τk−1
= [τk−1

a ;τk−1
s]

15: end for
16: Execute first l actions of trajectory τ0

a

17: end while

12

Following [6, 12], the predicted mean is a weighted sum between the predicted clean action trajec-
tory and the input action trajectory from last denoising step:

τ̂ k−1
a = µθ(τ k, k,c) =

√
ᾱk−1βk

1 − ᾱk
τ̂ 0

a +
√
αk (1 − ᾱk−1)

1 − ᾱk
τ k
a (6)

The process of perturbing the predicted means from the diffusion model using gradients of a spec-
ified objective is summarized in algorithm 2. Following [6], we use an iterative projected gradient
descent with the Adam optimizer and filtration, i.e., we guide several samples from the diffusion
model and choose the one with the best rule satisfaction based on J .

B More Details on Architecture

B.1 Detailed Architecture

We show the detailed data flow of our proposed architecture in Figure A1. Its main difference with
the simplified architecture shown in Figure 2 is that we show position encoding, rFFN, and the
details of the guidance module explicitly.

denoising
step k

M M

Temporal
Attention

Row-wise
Feed

Forward

M

Noisy Actions States

add

repeat L times

Position
Encoding

M

Map

Agent-Agent
Interaction at

each timestep t

Guide action
using J

MM

Spatial
Attention

Map
Attention

Position
Encoding

Position
Encoding

Feed
Forward

Row-wise
Feed

Forward

Mweighted
add

sampled noise w/
variance

add

Test Time Only Guidance Step

dynamic

dynamic

Figure A1: Test time denoising step using scene-level spatial-temporal transformer. ds, da, and dh represent
the dimensions of action, state, and latent for each vehicle per timestep.

B.2 Gated Attention

Following [35], we use a variant of the original scaled dot-product attention block. In particular,
we use a gating function to fuse the environmental features mt

i with the central agent’s features ht
i,

enabling the block to have more control over the feature update. The resulting query, key, and value
vectors of the social attention layer are taken as inputs to the block:

αi
t = softmax(qi⊺

t√
dk
⋅ [{kij

t }j∈Ni
]) ,

mi
t = ∑

j∈Ni

αij
t v

ij
t ,

gi
t = sigmoid (Wgate [hi

t,m
i
t]) ,

ĥi
t = gi

t ⊙Wself hi
t + (1 − gi

t)⊙mi
t,

(7)

whereNi is the set of agent i’s neighbors (all the agents except the agent itself within a certain social
radius), Wgate and Wself are learnable matrices, and denotes element-wise product ⊙.

13

C Qualitative Comparison under STL rules

In this section, we show a few qualitative examples (Figure A2 - Figure A7) comparing CTG++ and
the strongest baseline (in terms of rule satisfaction) under the STL rules. Overall, CTG++ generates
realistic, rule-satisfying trajectories. The baseline method can usually also satisfy the rule. However,
their trajectories usually sacrifice one or more of the following aspects: (1) the trajectories are curvy,
unrealistic, (2) the trajectories involve off-road accidents, and (3) the agent interaction is sub-optimal
leading to collision(s).

(a) CTG++ speed limit (0.037) (b) CTG speed limit (0.041)

Figure A2: Qualitative comparison between CTG++ and CTG under speed limit STL rule (the numbers in
parentheses represent rule violations). CTG++ achieves lower rule violation than CTG. Besides, CTG involves
collision between the blue vehicle and the green vehicle.

(a) CTG++ target speed (0.213) (b) CTG target speed (0.163)

Figure A3: Qualitative comparison between CTG++ and CTG under target speed STL rule (the numbers in
parentheses represent rule violations). Although CTG achieves a bit better target speed rule satisfaction, it
involves a vehicle collides with crossing vehicles and then goes off-road.

14

(a) CTG++ no collision (0) (b) BITS+opt no collision (0)

Figure A4: Qualitative comparison between CTG++ and BITS+opt under no collision STL rule (the numbers
in parentheses represent rule violations). Both methods satisfies the rule perfectly as no collision happens.
However, BITS+opt have highly curvy, unrealistic trajectories as the cost of satisfying the rule.

(a) CTG++ no off-road (0) (b) CTG no off-road (0)

Figure A5: Qualitative comparison between CTG++ and CTG under no off-road STL rule (the numbers
in parentheses represent rule violations). Both methods satisfies the rule perfectly as no off-road happens.
However, CTG lead to multiple collisions among the pink vehicle and vehicles that are stationary.

D Hyperparameters

D.1 Training Hyperparameters

CTG++ is trained on a machine with Intel i9 12900 and NVIDIA GeForce RTX 3090. It takes
approximately 10 hours to train CTG++ for 50K iterations. We use Adam optimizer with a learning
rate of 1e-4.

D.2 Pair Selection Criteria for GPT query based rules

We choose two vehicles A and B in each scene such that they satisfy the following criteria:

15

(a) CTG++ stop sign + no off-road (0, 0) (b) CTG stop sign + no off-road (0.732, 0)

Figure A6: Qualitative comparison between CTG++ and CTG under stop sign and no off-road STL rule (the
numbers in parentheses represent rules violations). Vehicles are supposed to stop within the marked bounding
boxes without going off-road. CTG++ satisfies both rules while CTG only satisfies the no off-road rule. Be-
sides, CTG involves a collision between the grey vehicle and the blue vehicle.

(a) CTG++ goal waypoint + target speed (0.991,
0.296)

(b) CTG goal waypoint + target speed (1.24, 0)

Figure A7: Qualitative comparison between CTG++ and CTG under goal waypoint + target speed STL rule
(the numbers in parentheses represent rules violations). Vehicles are supposed to reach the marked waypoints
with target speed (same speed as in the dataset). CTG++ satisfies both rules better than CTG. Besides, CTG
involves a collision between the two orange vehicles in the end.

• Both have current speed larger than 2m/s.

• At 0s and 2s, the distance between A and B is within the range 10m to 30m.

• At 0s and 2s, the orientation difference between a and b is smaller than 108 degrees (for
GPT collision) and 36 degrees (for GPT keep distance).

The criteria is a coarse-grained filtration for those pairs that are more likely to have keep distance /
collision interactions in the original training dataset. If more than one pair in the scene satisfy the
following criteria, we select the pair with smallest distance. If none of pairs in a scene satisfy the

16

following criteria, we skip the scene. After the filtrations, out of the 100 validation scenes, we have
50 scenes remained for GPT collision and 40 scenes for GPT keep distance.

E Experiment Details

E.1 Quantitative Rules

We assess the traffic model component of CTG++ under both GPT-generated rules and STL rules
from [6]: (1) GPT Keep Distance and (2) GPT Collision, as described in Section 4.2 (refer to
Appendix D.2 for pair selection); (3) No Collision dictates that vehicles must avoid collisions with
each other; (4) Speed Limit ensures vehicles do not exceed a set speed limit threshold (75% quantile
of all moving vehicles in a given scene); (5) Target Speed requires vehicles to maintain a specified
speed (50% of their speed in the ground truth scene) at each time step; (6) No Offroad prohibits
vehicles from leaving the drivable area; (7) Goal Waypoint and Target Speed instructs vehicles to
reach their designated goal while adhering to the specified target speeds; (8) Stop Sign and No
Off-road requires vehicles to halt upon entering a stop sign region and avoid straying off the road.

E.2 Metrics of Rule Violation

We provide the details for the metrics we use for measuring rule violation in this section. For all
the metrics of rule violation, we average the metrics over all validation scenes. Besides, they are
designed such that the smaller the better (i.e., rules are better satisfied).

GPT Keep Distance. the following vehicle’s (in the chosen pair) average L2 distance deviation
from the specified range.

GPT Collision. if a collision happens between the two vehicles in the chosen pair.

No Collision. collision rate of all vehicles in a scene.

Speed Limit. average deviation from the speed limit of all vehicles in a scene.

Target Speed. average deviation from the target speed of all vehicles in a scene.

No Offroad. off-road rate of all vehicles in a scene. We consider a vehicle going off-road if its
center goes off-road.

Goal Waypoint. average vehicle’s smallest l2 distance deviation from the specified corresponding
goal waypoints of all vehicles in a scene.

Stop Sign. average smallest speed within the stop sign region of all vehicles in a scene.

F Details of Language Interface

In this section, we provide more details and limitation of our proposed language interface for traffic
simulation.

F.1 Details of Vehicle Indexing

In practice, instead of using color for vehicles which is used in Figure 1 for better illustration pur-
pose, we use indices according to the context from the driving dataset. The user can tell GPT4 the
vehicles to control via their indices, e.g., ”vehicle 1 should collide with vehicle 2”.

F.2 Details of Prompting

In Figure 4, we provide an example of a pre-defined API function and a query-loss function pair. In
our experiments, we additionally provide the following API functions:

17

transform coord world to agent i. this function transform the predicted position and yaw from
world coordinate to the agent i coordinate.

select agent ind. this function returns the slice of x with index i.

get current lane projection. this function returns the projection of each vehicle predicted trajec-
tory on its current lane in agent-centric coordinate.

get left lane projection. this function is similar to get current lane except it returns the left lane
waypoints. If there is no left lane, the original trajectory will be returned.

get right lane projection. this function is similar to get current lane except it returns the right lane
waypoints. If there is no right lane, the original trajectory will be returned.

In addition to the acceleration loss paired example shown in Figure 4, we provide another query-
loss function pair example. ”Generate a loss class such that, vehicle 1 should always stay on the
left side of vehicle 2.” The corresponding function penalize the cases when vehicle 1 not on the left
size of vehicle 2. This function provides GPT4 a sense of the relationship between direction and the
trajectories.

We additionally specify the dimension of the input trajectory and the input and output of the expected
loss function wrapped in a loss class such that GPT4 know which dimension of the trajectory to
operate on when needed: ”The generated loss class should have a function: forward(x, data batch,
agt mask). x is a tensor representing the current trajectory with shape (B, N, T, 6) where B is the
number of vehicles (consisting of vehicle with index 0 to B-1), N is the number of samples for each
vechile, T is the number of timesteps (each represents 0.1s), and 6 represents the (x, y, vel, yaw,
acc, yawvel) in corresponding agent coordinate of each vehicle. data batch is a dictionary that can
be used as parameter for relevant APIs. The function should return a loss for every sample of every
vehicle with the shape (B, N) or return a loss for every sample with the shape (N).”

F.3 Success Examples with Complete Query and Response

In this section, we provide five generated success example programs and their queries. For all the
examples, in addition to the user query, GPT4 is provided the APIs for the desired loss function
and the helper functions as well as two paired examples: acceleration limit and stay on left. The
examples help to elucidate two key aspects:

• the standard format of a loss class to generate.

• how to manipulate different trajectory dimensions using various helper functions (e.g.,
transform coord agents to world, transform coord world to agent i, etc.) and construct a
differentiable loss on the trajectory.

We first show the complete query (including system messages and user query sent to GPT4 API)
and response for GPT Collision in Appendix F.3.1. Next, in Appendix F.3.2-Appendix F.3.5, for
four other success exmples, we only show the user query and response as they use the same system
messages as GPT Collision in Appendix F.3.1).

F.3.1 Success Example: GPT Collision

The OpenAI GPT4 API allows one to specify multiple system messages (which includes the API of
the loss function to generation, the APIs of the helper functions, and two paired prompted examples),
and one user message (which is essentially the user query) (see [42] for more details). Thus, we list
each system message and the user message in the following. The qualitative example of using this
returned loss function has been shown in Figure 4c.

System Message 1 - Loss Function API and Helper Functions API:

1 "The generated loss class should have a function \
2 forward(x, data_batch , agt_mask). x is a tensor representing the

current trajectory with shape (

18

B, N, T, 6) where B is the
number of vehicles (consisting
of vehicle 0 to B-1), N is the
number of samples for each
vechile , T is the number of
timesteps (each represents 0.1s
), and 6 represents the (x, y,
vel , yaw , acc , yawvel) in
corresponding agent coordinate
of each vehicle. data_batch is
a dictionary that can be used
as parameter for relevant APIs.
The function should return a

loss for every sample of every
vehicle with the shape (B, N)
or return a loss for every
sample with the shape (N). \

3 You can use PyTorch and the following APIs if needed amd you
should not use other unseen
functions: \

4 1. transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch)
. pos_pred is the predicted
position trajectory in agent
coordinate with shape (B, N, T,
2) and 2 correspond to (x, y).
yaw_pred is the predicted yaw

trajectory in agent coordinate
with shape (B, N, T, 1). The
function transform the
predicted position and yaw from
their agent coordinates into

the world coordinate. The
function returns position and
yaw in the world coordinate
with the shape (B, N, T, 2) and
(B, N, T, 1). \

5 2. transform_coord_world_to_agent_i(pos_pred_world , yaw_pred_world
, data_batch , ind_k). pos_pred
is the predicted position
trajectory in world coordinate
with shape (B, N, T, 2) and 2
represents (x, y). yaw_pred is
the predicted yaw trajectory in
world coordinate with shape (B

, N, T, 1). data_batch is the
dictionary mentioned before.
ind_k is the index whose agent
coordinate will be converted to
. The function transform the
predicted position and yaw from
world coordinate to the agent

i coordinate. The function
returns position and yaw in the
agent i coordinate with the

shape (B, N, T, 2) and (B, N, T
, 1). \

6 3. select_agent_ind(x, i). x has shape (B, N, T, k) where k can be
any positive integer and i is

a non -negative integer
representing the selected index
. This function returns the
slice of x with index i with
shape (N, T, k). \

7 4. get_current_lane_projection(pos_pred , yaw_pred , data_batch).
pos_pred and yaw_pred have

19

shape (B, N, T, 2) and (B, N, T
, 1). They are all in agent
coordinate. data_batch is a
dictionary mentioned earlier.
This function returns the
projection of each vehicle
predicted trajectory on its
current lane in agent
coordinate with shape (B, N, T,
3) where 3 represents (x, y,

yaw). \
8 5. get_left_lane_projection(pos_pred , yaw_pred , data_batch). It is

similar to get_current_lane
except it returns the left lane
waypoints. If there is no left
lane , the original trajectory

will be returned. \
9 6. get_right_lane_projection(pos_pred , yaw_pred , data_batch). It

is similar to get_current_lane
except it returns the right
lane waypoints. If there is no
left lane , the original
trajectory will be returned."

System Message 2 - Paired Example 1 Query:

1 "Generate a loss class such that vehicle 1 should always drive with
acceleration below acc_limit."

System Message 2 - Paired Example 1 Response:

1 class AccLimitLoss(GuidanceLoss):
2 ’’’
3 Keep accelerations below a certain limit.
4 ’’’
5 def __init__(self , acc_limit):
6 ’’’
7 - acc_limit : acceleration limit.
8 ’’’
9 super().__init__ ()

10 self.acc_limit = acc_limit
11

12 def forward(self , x, data_batch , agt_mask=None):
13 ’’’
14 - x : the current trajectory (B, N, T, 6) where N is the

number of samples and 6 is
(x, y, vel , yaw , acc ,
yawvel)

15

16 - loss: (B, N)
17 ’’’
18 if agt_mask is not None:
19 x = x[agt_mask]
20 acc = x[..., [4]]
21 acc_dev = torch.abs(acc) - self.acc_limit
22 acc_loss = torch.clip(acc_dev , min=0)
23 loss = torch.mean(acc_loss , dim=[-2, -1])
24

25 return loss

System Message 3 - Paired Example 2 Query:

1 "Generate a loss class such that vehicle 20 should always stay on the
left side of vehicle 13."

20

System Message 3 - Paired Example 2 Response:

1 class StayOnLeftLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should always keep on the left side

of vehicle with index ref_ind.
4 ’’’
5 def __init__(self , target_ind=20 , ref_ind=13 , decay_rate=0.9):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.decay_rate = decay_rate

10

11 def forward(self , x, data_batch , agt_mask=None):
12 B, N, T, _ = x.shape
13 if agt_mask is not None:
14 x = x[agt_mask]
15 # Select positions
16 # (B,N,T,6) -> (B,N,T,2)
17 pos_pred = x[..., :2]
18 # Select yaws
19 # (B,N,T,6) -> (B,N,T,1)
20 yaw_pred = x[..., 3:4]
21 # convert prediction from the respective agent coordinates to

the world coordinate
22 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
23 pos_pred_world , yaw_pred_world =
24 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)
25 # convert prediction from the world coordinate to the agent

self.ref_ind coordinate
26 # (B,N,T,2), (B,N,T,1), dict , int -> (B,N,T,2), (B,N,T,1)
27 pos_pred_in_ref_ind , _ = transform_coord_world_to_agent_i(

pos_pred_world ,
yaw_pred_world , data_batch ,
self.ref_ind)

28

29 # select the relevant agents with index self.target_ind in the
agent self.ref_ind

coordinate
30 # (B, N, T, 2), int -> (N, T, 2)
31 pos_pred_i_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.target_ind)
32 # select the relevant agents with index self.target_ind in the

agent self.ref_ind
coordinate

33 # (B, N, T, 2), int -> (N, T, 2)
34 pos_pred_j_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.ref_ind)
35

36 # Since we only care about the y-axis , we only need to compute
the y-axis (rather than

both x and y axis)
deviation.

37 # (N, T, 2), (N, T, 2) -> (N, T)
38 pos_dev = pos_pred_j_in_ref_ind[...,1] - pos_pred_i_in_ref_ind

[...,1]
39

40 # Clip the position deviation to 0 so that we only penalize
the positive deviation

41 # (N, T) -> (N, T)
42 pos_loss = torch.clip(pos_dev , min=0)
43

44 # penalize early steps more than later steps

21

45 exp_weights = torch.tensor([self.decay_rate ** t for t in
range(T)], device=x.device)

46 exp_weights /= exp_weights.sum()
47 pos_loss = pos_loss * exp_weights[None , :]
48 # Take the mean over time
49 # (N, T) -> (N)
50 pos_loss = pos_loss.mean(-1)
51

52 return pos_loss

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should collide with vehicle
2."

Received Message (from GPT4):

1 class CollisionLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should collide with vehicle with

index ref_ind.
4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2, collision_radius=1.0):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.collision_radius = collision_radius

10

11 def forward(self , x, data_batch , agt_mask=None):
12 B, N, T, _ = x.shape
13 if agt_mask is not None:
14 x = x[agt_mask]
15 # Select positions
16 # (B,N,T,6) -> (B,N,T,2)
17 pos_pred = x[..., :2]
18 # Select yaws
19 # (B,N,T,6) -> (B,N,T,1)
20 yaw_pred = x[..., 3:4]
21 # convert prediction from the respective agent coordinates to

the world coordinate
22 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
23 pos_pred_world , yaw_pred_world =
24 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)
25

26 # select the relevant agents with index self.target_ind in the
world coordinate

27 # (B, N, T, 2), int -> (N, T, 2)
28 pos_pred_i_world = select_agent_ind(pos_pred_world , self.

target_ind)
29 # select the relevant agents with index self.ref_ind in the

world coordinate
30 # (B, N, T, 2), int -> (N, T, 2)
31 pos_pred_j_world = select_agent_ind(pos_pred_world , self.

ref_ind)
32

33 # Compute the distance between the two vehicles
34 # (N, T, 2), (N, T, 2) -> (N, T)
35 dist = torch.norm(pos_pred_i_world - pos_pred_j_world , dim=-1)
36

37 # Compute the collision loss by penalizing the distance
greater than the collision
radius

38 # (N, T) -> (N, T)

22

39 collision_loss = torch.clip(self.collision_radius - dist , min=
0)

40

41 # Take the mean over time
42 # (N, T) -> (N)
43 loss = collision_loss.mean(-1)
44

45 return loss

The resulted loss function from GPT4 showcases its capabilities:

• It adeptly follows the template provided in the examples, producing a syntactically correct
program.

• It comprehends the ”collision” concept from the user query and knows how to integrate
this concept with the input trajectory, as the examples we used for prompting (acceleration
limit and stay on left) are not related to collisions at all. This understanding results in a
loss that encourages trajectory collision between two vehicles, achieved through the helper
functions.

F.3.2 Success Example: GPT KeepDistance

In this success example, the returned program indicates that GPT4 understands the meaning of ”keep
within” and generates a function that promotes vehicle 1 to stay within certain distance of vehicle 2.

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should always keep within
10 -30m from vehicle 2."

Received Message (from GPT4):

1 class KeepDistanceLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should always keep within

min_distance and max_distance
from vehicle with index ref_ind
.

4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2, min_distance=10 ,

max_distance=30):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.min_distance = min_distance

10 self.max_distance = max_distance
11

12 def forward(self , x, data_batch , agt_mask=None):
13 B, N, T, _ = x.shape
14 if agt_mask is not None:
15 x = x[agt_mask]
16 # Select positions
17 # (B,N,T,6) -> (B,N,T,2)
18 pos_pred = x[..., :2]
19 # Select yaws
20 # (B,N,T,6) -> (B,N,T,1)
21 yaw_pred = x[..., 3:4]
22 # convert prediction from the respective agent coordinates to

the world coordinate
23 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
24 pos_pred_world , yaw_pred_world =
25 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)

23

26

27 # select the relevant agents with index self.target_ind in the
world coordinate

28 # (B, N, T, 2), int -> (N, T, 2)
29 pos_pred_i_world = select_agent_ind(pos_pred_world , self.

target_ind)
30 # select the relevant agents with index self.ref_ind in the

world coordinate
31 # (B, N, T, 2), int -> (N, T, 2)
32 pos_pred_j_world = select_agent_ind(pos_pred_world , self.

ref_ind)
33

34 # Compute the distance between the two vehicles
35 # (N, T, 2), (N, T, 2) -> (N, T)
36 distance = torch.norm(pos_pred_i_world - pos_pred_j_world , dim

=-1)
37

38 # Compute the deviation from the desired distance range
39 # (N, T) -> (N, T)
40 distance_dev_min = self.min_distance - distance
41 distance_dev_max = distance - self.max_distance
42

43 # Clip the negative values to 0
44 # (N, T) -> (N, T)
45 distance_loss_min = torch.clip(distance_dev_min , min=0)
46 distance_loss_max = torch.clip(distance_dev_max , min=0)
47

48 # Combine the losses
49 # (N, T) -> (N, T)
50 distance_loss = distance_loss_min + distance_loss_max
51

52 # Take the mean over time
53 # (N, T) -> (N)
54 loss = torch.mean(distance_loss , dim=-1)
55

56 return loss

F.3.3 Success Example: GPT SameDirection

In this success example, the returned program indicates that GPT4 understands the meaning of
”same direction” and generates a function that promotes vehicle 1 and vehicle 2 to move with the
same orientation.

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should move along the same
direction as vehicle 2."

Received Message (from GPT4):

1 class SameDirectionLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should move along the same direction

as vehicle with index ref_ind.
4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9

10 def forward(self , x, data_batch , agt_mask=None):
11 B, N, T, _ = x.shape
12 if agt_mask is not None:
13 x = x[agt_mask]

24

14 # Select yaws
15 # (B,N,T,6) -> (B,N,T,1)
16 yaw_pred = x[..., 3:4]
17 # convert prediction from the respective agent coordinates to

the world coordinate
18 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
19 _, yaw_pred_world = transform_coord_agents_to_world(x[..., :2]

, yaw_pred , data_batch)
20 # select the relevant agents with index self.target_ind
21 # (B, N, T, 1) -> (N, T, 1)
22 yaw_pred_i = select_agent_ind(yaw_pred_world , self.target_ind)
23 # select the relevant agents with index self.ref_ind
24 # (B, N, T, 1) -> (N, T, 1)
25 yaw_pred_j = select_agent_ind(yaw_pred_world , self.ref_ind)
26

27 # Compute the yaw deviation
28 # (N, T, 1), (N, T, 1) -> (N, T)
29 yaw_dev = torch.abs(yaw_pred_i - yaw_pred_j).squeeze(-1)
30

31 # Normalize the yaw deviation to [0, pi]
32 # (N, T) -> (N, T)
33 yaw_dev = torch.fmod(yaw_dev , 2 * math.pi)
34 yaw_dev = torch.min(yaw_dev , 2 * math.pi - yaw_dev)
35

36 # Penalize deviations larger than a small threshold (e.g., 0.1
radian)

37 threshold = 0.1
38 yaw_loss = torch.clip(yaw_dev - threshold , min=0)
39

40 # Take the mean over time
41 # (N, T) -> (N)
42 loss = torch.mean(yaw_loss , dim=-1)
43

44 return loss

F.3.4 Success Example: GPT Collision From Behind

In this success example, the returned program indicates that GPT4 understands the meaning of
”collide” and ”from behind” and can create the respective losses (see collision loss in line 49 and
not behind loss in line 53), respectively. It finally combines the two losses by taking their product
as the final loss (line 57).

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should collide with vehicle
2 from behind."

Received Message (from GPT4):

1 class CollideFromBehindLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should collide with vehicle with

index ref_ind from behind.
4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2, collision_threshold=1.

0):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.collision_threshold = collision_threshold

10

11 def forward(self , x, data_batch , agt_mask=None):
12 B, N, T, _ = x.shape

25

13 if agt_mask is not None:
14 x = x[agt_mask]
15 # Select positions
16 # (B,N,T,6) -> (B,N,T,2)
17 pos_pred = x[..., :2]
18 # Select yaws
19 # (B,N,T,6) -> (B,N,T,1)
20 yaw_pred = x[..., 3:4]
21 # convert prediction from the respective agent coordinates to

the world coordinate
22 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
23 pos_pred_world , yaw_pred_world =
24 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)
25 # convert prediction from the world coordinate to the agent

self.ref_ind coordinate
26 # (B,N,T,2), (B,N,T,1), dict , int -> (B,N,T,2), (B,N,T,1)
27 pos_pred_in_ref_ind , _ = transform_coord_world_to_agent_i(

pos_pred_world ,
yaw_pred_world , data_batch ,
self.ref_ind)

28

29 # select the relevant agents with index self.target_ind in the
agent self.ref_ind

coordinate
30 # (B, N, T, 2), int -> (N, T, 2)
31 pos_pred_i_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.target_ind)
32 # select the relevant agents with index self.target_ind in the

agent self.ref_ind
coordinate

33 # (B, N, T, 2), int -> (N, T, 2)
34 pos_pred_j_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.ref_ind)
35

36 # Compute the distance between the two vehicles along the x-
axis (longitudinal)

37 # (N, T, 2), (N, T, 2) -> (N, T)
38 dist_x = pos_pred_j_in_ref_ind[..., 0] - pos_pred_i_in_ref_ind

[..., 0]
39 # Compute the distance between the two vehicles along the y-

axis (lateral)
40 # (N, T, 2), (N, T, 2) -> (N, T)
41 dist_y = pos_pred_j_in_ref_ind[..., 1] - pos_pred_i_in_ref_ind

[..., 1]
42

43 # Compute the squared distance between the two vehicles
44 # (N, T), (N, T) -> (N, T)
45 dist_squared = dist_x ** 2 + dist_y ** 2
46

47 # Compute the collision loss by checking if the squared
distance is less than the
collision threshold

48 # (N, T) -> (N, T)
49 collision_loss = (dist_squared < self.collision_threshold).

float()
50

51 # Penalize the cases where the target vehicle is not behind
the reference vehicle

52 # (N, T) -> (N, T)
53 not_behind_loss = torch.clip(-dist_x , min=0)
54

55 # Combine the collision loss and not_behind_loss
56 # (N, T), (N, T) -> (N, T)
57 total_loss = collision_loss * not_behind_loss

26

58

59 # Take the mean over time
60 # (N, T) -> (N)
61 loss = torch.mean(total_loss , dim=-1)
62

63 return loss

F.3.5 Success Example: Lane Following

In this success example, the returned program indicates that GPT4 can extropolate the number of
vehicles of a scenario (although in both provided examples only two vehicles are involved, GPT4 can
generalize the loss function involving three vehicles). Besides, GPT4 knows how to use functions
described in helper function APIs but not even used in the provided paired examples. In particular,
it knows to use get current lane projection to get the lane information in order to promote vehicles
lane following behavior when it was asked to let the vehicles to ”follow their current lanes”.

User Message - User Query:

1 "Generate a loss class such that vehicle 1, vehicle 2, and vehicle 3
all follow their current lanes."

Received Message (from GPT4):

1 class LaneFollowingLoss(GuidanceLoss):
2 ’’’
3 Vehicles with indices target_inds should follow their current

lanes.
4 ’’’
5 def __init__(self , target_inds=[1, 2, 3]):
6 super().__init__ ()
7 self.target_inds = target_inds
8

9 def forward(self , x, data_batch , agt_mask=None):
10 B, N, T, _ = x.shape
11 if agt_mask is not None:
12 x = x[agt_mask]
13 # Select positions
14 # (B,N,T,6) -> (B,N,T,2)
15 pos_pred = x[..., :2]
16 # Select yaws
17 # (B,N,T,6) -> (B,N,T,1)
18 yaw_pred = x[..., 3:4]
19

20 # Get the current lane projection in agent coordinate
21 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,3)
22 lane_proj = get_current_lane_projection(pos_pred , yaw_pred ,

data_batch)
23

24 # Compute the deviation from the lane projection
25 # (B,N,T,2), (B,N,T,3) -> (B,N,T,2)
26 pos_dev = pos_pred - lane_proj[..., :2]
27 yaw_dev = yaw_pred - lane_proj[..., 2:3]
28

29 # Compute the squared loss for position and yaw deviation
30 # (B,N,T,2) -> (B,N,T)
31 pos_loss = torch.sum(pos_dev ** 2, dim=-1)
32 # (B,N,T,1) -> (B,N,T)
33 yaw_loss = torch.squeeze(yaw_dev ** 2, dim=-1)
34

35 # Combine position and yaw loss
36 # (B,N,T), (B,N,T) -> (B,N,T)
37 total_loss = pos_loss + yaw_loss
38

27

39 # Select the loss for the target vehicles
40 # (B,N,T), list -> (len(target_inds), N, T)
41 target_losses = [select_agent_ind(total_loss , ind) for ind in

self.target_inds]
42

43 # Stack the losses for target vehicles
44 # list -> (len(target_inds), N, T)
45 target_losses = torch.stack(target_losses , dim=0)
46

47 # Take the mean over time
48 # (len(target_inds), N, T) -> (len(target_inds), N)
49 target_losses = torch.mean(target_losses , dim=-1)
50

51 # Take the mean over target vehicles
52 # (len(target_inds), N) -> (N)
53 loss = torch.mean(target_losses , dim=0)
54

55 return loss

F.4 Failure Cases

The main limitation of the current language interface is on the complex interactions between the
vehicles and the map. As we don’t explicitly pass the map information into the language interface, it
cannot handle commands involving heavy interaction with the map. For example, ”vehicle A and B
move to the rightmost lane one by one and then both turn right at the next intersection”. However, we
believe if one provides more helper functions (especially those interacting with the map) and more
relevant examples to the language interface, LLM can handle such more complicated commands.
Additionally, we observe GPT4 can also fail to understand some concepts properly (e.g., ”cut in”).
As the current work aims to provide early promising results on the feasibility of text-to-traffic, we
leave a deeper exploration for future work.

F.4.1 Failure Example : Move to Rightmost and Right Turn

We provide a failure example below. The system messages remain the same as in Appendix F.3.1.
The generated loss function fails because it fails to consider ”turn right at the next intersection”.
This can be potentially fixed by providing a couple of more helper functions (e.g., a function to get
the next intersection and corresponding lane’s information) and an additional example that interacts
with intersection. In other words, our framework can potentially support such queries via extensions
on helper functions and additional examples. As in the current work, we mainly want to show a
framework of using LLM on language-guided realistic traffic generation, we leave a comprehensive
study covering all kinds of complex queries for traffic generation as future work.

User Message - User Query:

1 "vehicle 1 and 2 move to the rightmost lane one by one and then both
turn right at the next intersection
."

Received Message (from GPT4):

1 class RightTurnLoss(GuidanceLoss):
2 ’’’
3 Vehicle 1 and 2 should move to the rightmost lane one by one and

then both turn right at the
next intersection.

4 ’’’
5 def __init__(self , target_inds=[1, 2], decay_rate=0.9):
6 super().__init__ ()
7 self.target_inds = target_inds
8 self.decay_rate = decay_rate

28

9

10 def forward(self , x, data_batch , agt_mask=None):
11 B, N, T, _ = x.shape
12 if agt_mask is not None:
13 x = x[agt_mask]
14 # Select positions
15 # (B,N,T,6) -> (B,N,T,2)
16 pos_pred = x[..., :2]
17 # Select yaws
18 # (B,N,T,6) -> (B,N,T,1)
19 yaw_pred = x[..., 3:4]
20

21 # Get the right lane projection
22 # (B, N, T, 2), (B, N, T, 1), dict -> (B, N, T, 3)
23 right_lane_proj = get_right_lane_projection(pos_pred , yaw_pred

, data_batch)
24

25 # Compute the deviation between the predicted position and the
right lane projection

26 # (B, N, T, 2), (B, N, T, 3) -> (B, N, T, 2)
27 pos_dev = pos_pred - right_lane_proj[..., :2]
28

29 # Compute the squared distance
30 # (B, N, T, 2) -> (B, N, T)
31 pos_dev_sq = torch.sum(pos_dev ** 2, dim=-1)
32

33 # Penalize early steps more than later steps
34 exp_weights = torch.tensor([self.decay_rate ** t for t in

range(T)], device=x.device)
35 exp_weights /= exp_weights.sum()
36 pos_dev_sq = pos_dev_sq * exp_weights[None , None , :]
37

38 # Take the mean over time
39 # (B, N, T) -> (B, N)
40 pos_loss = pos_dev_sq.mean(-1)
41

42 # Select the loss for target vehicles
43 # (B, N), list -> (len(target_inds), N)
44 target_loss = torch.stack([select_agent_ind(pos_loss , i) for i

in self.target_inds])
45

46 # Take the mean over target vehicles
47 # (len(target_inds), N) -> (N)
48 loss = target_loss.mean(0)
49

50 return loss

F.4.2 Failure Example: Cut In if Behind and On The Left

In this failure example, the returned program indicates that GPT4 fails to understand ”cut in” as it
only promotes vehicle 1 to be ahead of vehicle 2 when it is behind and on the left. However, cut-in
requires vehicle 1 to also move horizontally (i.e., along the y axis).

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should cut in ahead of
vehicle 2 if it is behind vehicle 2
and on its left lane."

Received Message (from GPT4):

1 class CutInLoss(GuidanceLoss):
2 ’’’

29

3 Vehicle with index target_ind should cut in ahead of vehicle with
index ref_ind if it is behind
vehicle ref_ind and on its left
lane.

4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2, decay_rate=0.9):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.decay_rate = decay_rate

10

11 def forward(self , x, data_batch , agt_mask=None):
12 B, N, T, _ = x.shape
13 if agt_mask is not None:
14 x = x[agt_mask]
15 # Select positions
16 # (B,N,T,6) -> (B,N,T,2)
17 pos_pred = x[..., :2]
18 # Select yaws
19 # (B,N,T,6) -> (B,N,T,1)
20 yaw_pred = x[..., 3:4]
21 # convert prediction from the respective agent coordinates to

the world coordinate
22 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
23 pos_pred_world , yaw_pred_world =
24 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)
25 # convert prediction from the world coordinate to the agent

self.ref_ind coordinate
26 # (B,N,T,2), (B,N,T,1), dict , int -> (B,N,T,2), (B,N,T,1)
27 pos_pred_in_ref_ind , _ = transform_coord_world_to_agent_i(

pos_pred_world ,
yaw_pred_world , data_batch ,
self.ref_ind)

28

29 # select the relevant agents with index self.target_ind in the
agent self.ref_ind

coordinate
30 # (B, N, T, 2), int -> (N, T, 2)
31 pos_pred_i_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.target_ind)
32 # select the relevant agents with index self.target_ind in the

agent self.ref_ind
coordinate

33 # (B, N, T, 2), int -> (N, T, 2)
34 pos_pred_j_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.ref_ind)
35

36 # Compute the x-axis and y-axis deviation
37 # (N, T, 2), (N, T, 2) -> (N, T)
38 pos_dev_x = pos_pred_j_in_ref_ind[..., 0] -

pos_pred_i_in_ref_ind[...,
0]

39 pos_dev_y = pos_pred_j_in_ref_ind[..., 1] -
pos_pred_i_in_ref_ind[...,
1]

40

41 # Check if the target vehicle is behind and on the left lane
of the reference vehicle

42 behind_and_left = (pos_dev_x > 0) & (pos_dev_y > 0)
43

44 # Penalize the target vehicle for not cutting in ahead of the
reference vehicle

45 cut_in_loss = torch.where(behind_and_left , pos_dev_x , torch.
zeros_like(pos_dev_x))

30

46

47 # Penalize early steps more than later steps
48 exp_weights = torch.tensor([self.decay_rate ** t for t in

range(T)], device=x.device)
49 exp_weights /= exp_weights.sum()
50 cut_in_loss = cut_in_loss * exp_weights[None , :]
51 # Take the mean over time
52 # (N, T) -> (N)
53 cut_in_loss = cut_in_loss.mean(-1)
54

55 return cut_in_loss

F.5 Qualitative comparison between GPT4 and GPT3.5

We next show two examples where we send the same message but use GPT3.5 rather than GPT4
as the LLM. We keep the queries to be exactly the same as in Appendix F.3.1 and Appendix F.3.2,
respectively. The received messages are shown in the following. Both loss functions are correct
but are more similar to the provided examples by containing code on applying a decay on loss over
time dimension (e.g., see line 45-48 in Received Message (from GPT3.5)). These lines of code are
almost the exactly ones (except the loss name) in a provided example (stay on left) but these code
are not always necessary to be included in the loss functions.

F.5.1 GPT Collision (GPT3.5)

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should collide with vehicle
2."

Received Message (from GPT3.5):

1 class CollisionLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should collide with vehicle with

index ref_ind.
4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2, decay_rate=0.9,

collision_distance=2.0):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.decay_rate = decay_rate

10 self.collision_distance = collision_distance
11

12 def forward(self , x, data_batch , agt_mask=None):
13 B, N, T, _ = x.shape
14 if agt_mask is not None:
15 x = x[agt_mask]
16 # Select positions
17 # (B,N,T,6) -> (B,N,T,2)
18 pos_pred = x[..., :2]
19 # Select yaws
20 # (B,N,T,6) -> (B,N,T,1)
21 yaw_pred = x[..., 3:4]
22 # convert prediction from the respective agent coordinates to

the world coordinate
23 # (B,N,T,2), (B,N,T,1), dict -> (B,N,T,2), (B,N,T,1)
24 pos_pred_world , yaw_pred_world =
25 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)
26 # convert prediction from the world coordinate to the agent

self.ref_ind coordinate

31

27 # (B,N,T,2), (B,N,T,1), dict , int -> (B,N,T,2), (B,N,T,1)
28 pos_pred_in_ref_ind , _ = transform_coord_world_to_agent_i(

pos_pred_world ,
yaw_pred_world , data_batch ,
self.ref_ind)

29

30 # select the relevant agents with index self.target_ind in the
agent self.ref_ind

coordinate
31 # (B, N, T, 2), int -> (N, T, 2)
32 pos_pred_i_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.target_ind)
33 # select the relevant agents with index self.target_ind in the

agent self.ref_ind
coordinate

34 # (B, N, T, 2), int -> (N, T, 2)
35 pos_pred_j_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.ref_ind)
36

37 # Compute the distance between the two agents
38 # (N, T, 2), (N, T, 2) -> (N, T)
39 dist = torch.norm(pos_pred_i_in_ref_ind -

pos_pred_j_in_ref_ind , dim=
-1)

40

41 # Clip the distance to the collision distance
42 # (N, T) -> (N, T)
43 dist_loss = torch.clip(self.collision_distance - dist , min=0)
44

45 # penalize early steps more than later steps
46 exp_weights = torch.tensor([self.decay_rate ** t for t in

range(T)], device=x.device)
47 exp_weights /= exp_weights.sum()
48 dist_loss = dist_loss * exp_weights[None , :]
49 # Take the mean over time
50 # (N, T) -> (N)
51 dist_loss = dist_loss.mean(-1)
52

53 return dist_loss

F.5.2 GPT Keep Distance (GPT3.5)

User Message - User Query:

1 "Generate a loss class such that vehicle 1 should always keep within
10 -30m from vehicle 2."

Received Message (from GPT3.5):

1 class KeepDistanceLoss(GuidanceLoss):
2 ’’’
3 Vehicle with index target_ind should always keep within min_dist

and max_dist from vehicle with
index ref_ind.

4 ’’’
5 def __init__(self , target_ind=1, ref_ind=2, min_dist=10 , max_dist=

30 , decay_rate=0.9):
6 super().__init__ ()
7 self.target_ind = target_ind
8 self.ref_ind = ref_ind
9 self.min_dist = min_dist

10 self.max_dist = max_dist
11 self.decay_rate = decay_rate
12

32

13 def forward(self , x, data_batch , agt_mask=None):
14 B, N, T, _ = x.shape
15 if agt_mask is not None:
16 x = x[agt_mask]
17 # Select positions
18 # (B,N,T,6) -> (B,N,T,2)
19 pos_pred = x[..., :2]
20 # Select yaws
21 # (B,N,T,6) -> (B,N,T,1)
22 yaw_pred = x[..., 3:4]
23 # convert prediction from the respective agent coordinates to

the world coordinate
24 # (B,N,T,2), (B,N,T,1) -> (B,N,T,2), (B,N,T,1)
25 pos_pred_world , yaw_pred_world =
26 transform_coord_agents_to_world(pos_pred , yaw_pred , data_batch

)
27 # convert prediction from the world coordinate to the agent

self.ref_ind coordinate
28 # (B,N,T,2), (B,N,T,1), dict , int -> (B,N,T,2), (B,N,T,1)
29 pos_pred_in_ref_ind , _ = transform_coord_world_to_agent_i(

pos_pred_world ,
yaw_pred_world , data_batch ,
self.ref_ind)

30

31 # select the relevant agents with index self.target_ind in the
agent self.ref_ind

coordinate
32 # (B, N, T, 2), int -> (N, T, 2)
33 pos_pred_i_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.target_ind)
34 # select the relevant agents with index self.target_ind in the

agent self.ref_ind
coordinate

35 # (B, N, T, 2), int -> (N, T, 2)
36 pos_pred_j_in_ref_ind = select_agent_ind(pos_pred_in_ref_ind ,

self.ref_ind)
37

38 # Compute the distance between the two agents
39 # (N, T, 2), (N, T, 2) -> (N, T)
40 dist = torch.norm(pos_pred_j_in_ref_ind -

pos_pred_i_in_ref_ind , dim=
-1)

41

42 # Compute the deviation from the desired distance range
43 # (N, T) -> (N, T)
44 dist_dev = torch.where(dist < self.min_dist , self.min_dist -

dist , torch.where(dist >
self.max_dist , dist - self.
max_dist , torch.zeros_like(
dist)))

45

46 # penalize early steps more than later steps
47 exp_weights = torch.tensor([self.decay_rate ** t for t in

range(T)], device=x.device)
48 exp_weights /= exp_weights.sum()
49 dist_dev = dist_dev * exp_weights[None , :]
50 # Take the mean over time
51 # (N, T) -> (N)
52 dist_loss = dist_dev.mean(-1)
53

54 return dist_loss

33

G Quantitative Evaluation Results with Additional Runs

To substantiate the superior performance of our method, we conduct additional experiments, the
results of which are presented in Table 3. In these experiments, we compare CTG++ against the
strongest baseline, CTG, across three distinct runs with varying random seeds. The settings are the
same as those for Table 1 and we take the average and standard deviation of the three runs. We
highlight the better value only when it is significantly better than the other (i.e., if the values of the
two methods differ by at least the sum of their standard deviations). In all eight settings, CTG++
significantly performs better than CTG in terms of failure rate and scene-level realism. CTG++ also
tends to perform better than CTG in terms of rule satisfaction (winning 4 and tied on 6). In terms
of realism, CTG++ is comparable to CTG (winning 3, losing 2, and tied on 3). Thus, the results
suggest that CTG++ significantly performs better than the strongest baseline CTG++.

Table 3: Quantitative results (mean with standard deviation of three runs) of CTG++ and the strongest baselines
CTG under GPT-generated rules and STL rules. We highlight the winning method that is significantly better
than the other (i.e., if the values of the two methods differ by at least the sum of their standard deviations).

GPT keep distance GPT collision

fail rule real rel real fail rule real rel real
CTG 0.327 ± 0.02 0 ± 0 0.07 ± 0.006 0.343 ± 0.003 0.346 ± 0.018 0 ± 0 0.071 ± 0.004 0.349 ± 0.002
CTG++ 0.171 ± 0.002 0 ± 0 0.071 ± 0.006 0.334 ± 0.003 0.264 ± 0.013 0 ± 0 0.084 ± 0.004 0.336 ± 0.006

no collision speed limit

fail rule real rel real fail rule real rel real
CTG 0.137 ± 0.01 0.048 ± 0.003 0.048 ± 0.005 0.346 ± 0.002 0.129 ± 0.002 0.029 ± 0 0.077 ± 0.002 0.353 ± 0.003
CTG++ 0.085 ± 0.002 0.045 ± 0.001 0.047 ± 0.007 0.326 ± 0.006 0.087 ± 0.004 0.028 ± 0 0.042 ± 0.003 0.34 ± 0.004

target speed no offroad

fail rule real rel real fail rule real rel real
CTG 0.083 ± 0.007 0.281 ± 0.001 0.108 ± 0.003 0.379 ± 0.002 0.167 ± 0.008 0.003 ± 0 0.041 ± 0.002 0.343 ± 0.003
CTG++ 0.062 ± 0.001 0.272 ± 0.002 0.083 ± 0.004 0.371 ± 0.004 0.104 ± 0.008 0.003 ± 0 0.044 ± 0.006 0.323 ± 0.005

goal waypoint+target speed stopregion+offroad

fail rule1 rule2 real rel real fail rule1 rule2 real rel real
CTG 0.135 ± 0.015 2.407 ± 0.016 0.39 ± 0.003 0.052 ± 0.002 0.343 ± 0.002 0.128 ± 0.01 0.003 ± 0.001 0.795 ± 0.017 0.046 ± 0.006 0.336 ± 0.003
CTG++ 0.103 ± 0.002 2.361 ± 0.021 0.394 ± 0.003 0.039 ± 0.001 0.336 ± 0.004 0.08 ± 0.012 0.003 ± 0 0.44 ± 0.051 0.076 ± 0.001 0.323 ± 0.006

34

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Scene-Level Conditional Diffusion for Traffic Modeling
	Model Architecture: Scene-Level Spatial-Temporal Transformer
	Guided Generation with Language

	Experiments
	Experimental Setup
	Case Study of Language Interface
	Evaluation of Traffic Model

	Conclusion
	Algorithm of Training and Sampling in Details
	Training
	Sampling

	More Details on Architecture
	Detailed Architecture
	Gated Attention

	Qualitative Comparison under STL rules
	Hyperparameters
	Training Hyperparameters
	Pair Selection Criteria for GPT query based rules

	Experiment Details
	Quantitative Rules
	Metrics of Rule Violation

	Details of Language Interface
	Details of Vehicle Indexing
	Details of Prompting
	Success Examples with Complete Query and Response
	Success Example: GPT Collision
	Success Example: GPT KeepDistance
	Success Example: GPT SameDirection
	Success Example: GPT Collision From Behind
	Success Example: Lane Following

	Failure Cases
	Failure Example : Move to Rightmost and Right Turn
	Failure Example: Cut In if Behind and On The Left

	Qualitative comparison between GPT4 and GPT3.5
	GPT Collision (GPT3.5)
	GPT Keep Distance (GPT3.5)

	Quantitative Evaluation Results with Additional Runs

