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Abstract: Learning from Demonstration (LfD) is an efficient technique for robots
to acquire new skills through expert observation, significantly mitigating the need
for laborious manual reward function design. This paper introduces a novel frame-
work for model-based LfD in the context of robotic manipulation. Our proposed
pipeline is underpinned by two primary components: self-supervised pose and
shape estimation and contact sequence generation. The former utilizes differen-
tiable rendering to estimate object poses and shapes from demonstration videos,
while the latter iteratively optimizes contact points and forces using differentiable
simulation, consequently effectuating object transformations. Empirical evidence
demonstrates the efficacy of our LfD pipeline in acquiring manipulation actions
from human demonstrations. Complementary to this, ablation studies focusing
on object tracking and contact sequence inference underscore the robustness and
efficiency of our approach in generating long-horizon manipulation actions, even
amidst environmental noise. Validation of our results extends to real-world de-
ployment of the proposed pipeline. Supplementary materials and videos are avail-
able on our webpage: https://sites.google.com/view/diff-lfd.

Keywords: Learning from Visual Demonstration, Model-based Robotic Manipu-
lation, Differentiable Physics-based Simulation and Rendering

1 Introduction
Learning from Demonstration (LfD) empowers robots to acquire policies from expert demonstra-
tions, such as those available on YouTube [1], which can reduce the human effort involved in robotic
skill learning [2, 3]. This paper delves into the development of a model-based LfD pipeline that
employs raw RGB videos as inputs. While model-based learning approaches have been acknowl-
edged for their potential for superior sample-efficiency and generalization compared to model-free
approaches [4–6], model-based LfD remains under-explored. Several major challenges hinder the
wide application of model-based LfD in the physical world.

One challenge is how to automatically and efficiently develop a model that scales to high-
dimensional input such as raw images or videos [7]. To tackle this, we introduce a self-supervised
modeling pipeline that leverages recent advancements in differentiable rendering and signed dis-
tance functions. This pipeline estimates both the geometric shape of the object and its associated 6D
poses, forming an explicit representation. A second challenge lies in enabling robots to effectively
utilize physical models to generate efficient policies. This is particularly critical for robots operating
in real-world contact-rich manipulation tasks where the physical interaction between the robot and
its environment is a key factor [8, 9]. To address this, we develop a hierarchical LfD framework
that integrates low-level modules for contact-point localization and contact-force optimization with
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a high-level module for contact sequence planning. These modules work in concert to plan manip-
ulative actions. To ensure robust and real-time deployment, we further incorporate a neural policy
designed to imitate the outcomes of planning algorithms. This enables the robot to execute complex
tasks with high reliability and efficiency.

We have evaluated our pipeline on two datasets, including the sth-sth dataset [10] containing basic
manipulation actions on various objects and a small recorded video dataset showing a human per-
forming dexterous in-hand manipulation with primitive objects. The results, derived from rigorous
simulation and real-world experiments, bear testament to the effectiveness of our proposed pipeline.

Our key contributions can be summarized as follows: 1) introduce a novel framework for model-
based learning from visual demonstrations, 2) provide a self-supervised approach for pose estimation
and shape reconstruction, utilizing the differentiable rendering, 3) develop a hierarchical policy
that combines the low-level contact-point localization and contact-force optimization based on the
differentiable simulation and high-level contact sequence planning, with neural imitation learning
for efficient and robust real-world execution, 4) conduct comprehensive experimental validation of
our algorithms in both simulated and real-world environments to demonstrate their efficacy and
robustness.

2 Diff-LfD Framework
Overview. Given a demonstrated RGB video consisting of N frames denoted as V = {It}Nt=1,
we prepossess the video to segment and identify the most relevant objects with masks {Mt}Nt=1,
exploiting the SAM [11]. The local frame of the object is randomly defined at the first frame.
Our Diff-LfD calculates the object’s relative pose transformation in the demonstration and jointly
estimates the object’s mesh O and the associated 6D poses {Pt}Nt=1 at each frame. If the robot
is provided with a similar but different object from the object recorded in the video, we align the
pose of the provided manipulated object with the reconstructed object. Next, our pipeline infers the
wrench (a combination of external forces and torques) required to complete the pose transformation
across two consecutive time steps and generates feasible robot actions to accomplish the pose trans-
formation. This planning includes both the low-level contact-point localization and contact-force
optimization and high-level contact sequence planning to chain the whole (long-horizon) manipu-
lation sequences. The manipulation actions are then utilized to train a neural network for robust
real-world execution and generalization. We provide an explanation of the pipeline, wrench, and
object alignment in Appendix.

2.1 Pose and Shape Estimation with Differentiable SDF

This subsection introduces the pipeline for pose estimation and shape reconstruction from raw
videos. We adopt the differentiable SDF (Diff-SDF) [12] to represent the object geometry, which has
a large representation capability to model diverse objects with various topology structures. More-
over, Diff-SDF enables smooth image-based optimization to the images due to its inherent con-
vexity [12]. The explicit surface mesh O can be extracted from the SDF using the marching cube
method [13].

Ideally, given an initialization of an SDF parameterized by ϕ and its associated 6D poses at each
frame {Pt}Nt=1, the differentiable renderer R produces a sequence of images {I(ϕ,Pt)t}Nt=1 =
{R(ϕ,Pt)}Nt=1. Diff-SDF optimizes the SDF parameters to reconstruct the object shape by reducing
the reconstruction loss:

LR =

N∑
t=1

||I(ϕ,Pt)t − It|| (1)

However, this approach encounters difficulties when applied to real-world videos due to the fol-
lowing reasons: unknown camera poses and lack of views for unseen regions. Because the SDF
optimization presumes that camera poses of It are known in advance, which is not valid for real-
world videos where camera poses are not provided. To estimate camera poses {P−1

t }Nt=1, we employ
differentiable rendering to hierarchically produce an explicit surface mesh Ô with texture denoted
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Figure 1: The proposed model-based learning from demonstration (LfD) pipeline can be divided into
two primary components. The top part focuses on object shape reconstruction and pose estimation,
employing differentiable mesh rendering and signed distance function (SDF) (Section 2.1). The
bottom part illustrates the process of contact-aware hierarchical manipulation planning, involving
contact point localization and differentiable wrench optimization (Section 2.2).

as T̂ , and jointly estimate the objects poses {P̂t}Nt=1 over multiple images. Details are provided in
the Appendix.

We denote the optimized mesh, textures, and poses from differentiable rendering as Ô∗, T̂ ∗, {P̂∗
t },

respectively, and their associated rendered images Î∗t = R(Ô∗, T̂ ∗, {P̂∗
t }) as:

Ô∗, T̂ ∗, {P̂∗
t } = argmin

Ô,T̂ ,{P̂t}

N∑
t=1

∥Ît − It∥ where Ît = R(Ô, T̂ , {P̂t}) (2)

The quality of mesh Ô∗ is usually not satisfying. We then optimize the Diff-SDF to get an optimized
SDF ϕ∗ by setting the camera pose to be {P̂−∗

t } to reduce the projection loss:

ϕ∗ = argmin
ϕ

N∑
t=1

∥I(ϕ, P̂∗
t )t − Î∗t ∥ where Î∗t = R(Ô∗, T̂ ∗, {P̂∗

t }) (3)

After the Diff-SDF optimization, the resulting surface mesh Ô∗∗ is then extracted from the SDF ϕ∗.
The Ô∗∗ is then leveraged to optimize the object poses {P̂∗∗

t } as below. The process in Eqn 2-4
iterates until we get a small loss below a given threshold or reach the maximum iteration number.

{P̂∗∗
t }, T̂ ∗∗

t = argmin
{P̂t},T̂

N∑
t=1

∥Ît − It∥ where Ît = R(Ô∗∗, T̂ , {P̂t}) (4)

Although each video contains multiple frames, there are still cases that lack sufficient views, re-
sulting in poorly reconstructed unseen regions of the object. To address the incomplete views, we
adopt a diffusion model [14] to infer the unseen areas. Our model takes the first real image I1 with
a known camera pose and synthesizes images from different viewpoints around the object. We then
combine these synthetic views with others for a complete object-shape reconstruction.

2.2 Contact-Aware Manipulation Policy

Building on the estimated object’s pose and shape, this subsection delves into the process of ma-
nipulating an object between two consecutive poses Pt and Pt+1. If the robot is provided with a
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similar but different object from the object recorded in the video, we align the pose of the provided
manipulated object with the reconstructed object, with details in Appendix.

Our framework employs a hierarchical structure consisting of low-level modules for contact-point
localization and contact-force optimization, as well as high-level contact sequence planning. The
low-level modules serve dual purposes: contact-point localization allows the robot to establish new
contacts while keeping the object stationary, whereas contact-force optimization enables the robot to
manipulate the object toward its target and maintain stable contact. These low-level actions are then
orchestrated by the high-level contact sequence planning module to form a cohesive sequence of
actions. To facilitate efficient and robust real-time deployment, we also incorporate a neural policy
designed to imitate the planned trajectories.

Contact point localization. Contact point localization enables the robot to change contact points
on the object, which encompasses two critical steps: the generation of the transition target and the
execution of the transition. The transition target is calculated analytically with the desired object
transformation wrenchW . WrenchW is located at the objects’ center and represents the necessary
wrench to facilitate the transformation from Pt to Pt+1. It is determined using a Proportional-
Derivative (PD) controller: W = kp ∗ (Pt+1 − Pt) − kdṖt + g, where kp, kd are the proportional
and derivative gains, and g signifies the gravitational and external forces acting upon the object.
Following this, we use an enumeration process to identify all plausible contact combinations that
can generate the desired wrenchW . Initially, all potential contacts are assessed to single out those
capable of producing the desired object wrenchW through contact points {pi} for i ∈ [1..n]. The
number of contact points n is pre-determined based on the manipulation task. Further filtering
processes are implemented to ascertain contacts that meet kinematic and stationary constraints: the
inverse kinematics are solved to verify kinematic feasibility, and only one contact point can move at
a given time while the remaining contact points hold the object immobile. Although multiple contact
points could theoretically move while maintaining the object stationary, we found that planning is
considerably more complex due to the enlarged search space, and the objects are prone to unintended
movement due to execution errors. To execute the transition, we use the Rapidly-exploring Random
Tree (RRT) motion planner to generate a feasible trajectory for the moving contact and the gravity
compensation wrench on the remaining contacts to hold the object. More details of the contact point
localization are provided in Appendix.

Contact wrench optimization. Once the contact points p = {pi} are determined, the robot exerts
contact wrenches Wp = {Wpi} at contact points to manipulate the object toward its target. The
objective and loss functions to optimize the contact wrenches are defined in Eq. 5.

min
Wp
L(Wp) = λP ∥P ′ ⊖ Pt+1∥+ λv

∥∥∥Ṗ ′
∥∥∥+ λW ∥Wp∥ subject to P ′ = F(P,Wp) (5)

where F represents the contact dynamics, P ′ is the 6D object pose after applying the wrench Wp

from the initial object pose P . Pt+1 is the target object pose, ⊖ represents subtraction for 6D poses.
Ṗ ′ represents the object’s velocity and is added to damp the object’s speed, making the manipulation
more stable [15]. λP , λv, λW are hyperparameters standing for loss weights.

We propose using gradient-based methods to optimize the objective function, Eq. 5, with differen-
tiable simulation in Nimble Physics[16] to approximate the forward dynamicsF . We use s = (P, p)
as the concatenated state of the system in the following of this paper. The gradient of the objective
can be computed as ∇ = ∂L

∂Wp from the simulation. However, gradients near the contact are often
nonlinear, sensitive, and discontinuous, posing challenges for vanilla gradient descent optimization
methods. To address this issue, this paper draws inspiration from [17–20] and proposes computing
the gradient expectation at each point with Gaussian noises, as shown in Eq. 6. The contact wrench
is then updated using a step size α along the gradient direction. In this paper, we use the analytical
contact wrench computed during the contact point localization as the initial solution point for the
optimization process.

∇ = Ens,nW∼N

[
∂L(F(s+ ns,Wp + nW),Wp + nW)

∂Wp

]
(6)
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Algorithm 1 Global Planning for Manipulation Sequences
1: Input: s0 = (Pt, pt), target object pose Pt+1

2: Output: R = {s}
3: Q ← {s0},R ← {∅} ▷ Init.
4: while Q is not empty do
5: s← SelectNode(Q)
6: if IsSuccess(s,Pt+1) then
7: ReturnR ▷ Exit if success
8: end if
9: s′ ← OptWrench(s,Pt+1) ▷ Opt. wrench

10: if OptIsSuccess(s, s′) then
11: Q ← Q∪ s′;R ← R∪ s′

12: else
13: S ← ContactLoc(s,Pt+1) ▷ Loc. contacts
14: for s′ ∈ S do
15: Q ← Q∪ s′,R ← R∪ s′

16: end for
17: end if
18: end while
19: ReturnR

High-level planning. Our global
contact sequence planning, as de-
tailed in Algorithm 1, employs hi-
erarchical planning to identify vi-
able manipulation sequences, utiliz-
ing the previously introduced contact
point localization (ContactLoc)
and contact wrench optimization
(OptWrench). While the exertion
of contact wrenches allows the robot
to perform manipulation tasks involv-
ing nearby target poses, switching be-
tween multiple contacts is necessary
when dealing with distant targets due
to kinematic limitations.

Every node s in the planning tree en-
capsulates the object pose P and con-
tact p. The tree begins with a start
node that represents the initial object
pose and robot contact, with the goal
of reaching the target object pose Pt+1. At each iteration, a node s is chosen and expanded us-
ing ContactLoc or OptWrench following A* search [21]. If the object has been successfully
manipulated through the exertion of an optimized contact wrench (OptIsSuccess), the resulting
node s′, containing the manipulated object pose and contact points, is expanded. Conversely, if the
exertion fails, contact localization is performed by identifying a new set of contacts and expanding
them in the tree. This planning algorithm continues until either the target object pose is reached
(IsSuccess) or all nodes within the tree have been explored. The search procedure we propose
focuses on optimizing contact wrenches at first and resorts to locating new contacts only if the ex-
ertion fails. Although this approach narrows down the search space, it may also prune potentially
valid and optimal paths. For instance, transiting contacts before reaching the kinematic limit might
result in a shorter trajectory with fewer contact switches. To address this, we introduce a random
chance for each node to transition contacts, regardless of the wrench optimization outcome. This
design promotes exploration within the planning process, enabling a more comprehensive discovery
of the entire search space.

Sim2Real: closed-loop policy with domain randomization. Despite its efficacy in generating vi-
able manipulation trajectories, the above-described planning algorithm is computationally demand-
ing as it requires online enumeration of contacts and wrench optimization, rendering it unsuitable
for real-time applications. To surmount this challenge, we utilize deep learning to approximate
the manipulation policy. We leverage a fully connected network to learn the robot control com-
mands that were derived from the high-level planning algorithm. This network ingests the object
pose and joint angles as inputs and outputs of robot joint torques. These torques are obtained by
mapping the contact wrenches into joint torques, courtesy of the Jacobian. Our training dataset is
generated by solving the planning problem under conditions of noisy initial and target positions and
perturbed system dynamics. This process results in a set of state-torque training pairs. We further
augment each sample by introducing noise into the states and optimizing the joint torques to adhere
to the planned trajectory. It’s noteworthy that for domain randomization, we optimize the contact
wrench to reach the next state along the trajectory rather than solving the original planning prob-
lem with a distant target. This makes the data augmentation process more efficient. In a bid to
further enhance performance, we fine-tune the network within a Markov Decision Process (MDP)
framework using the REINFORCE algorithm [22]. During the fine-tuning process, the state and
action spaces maintain the same setup as described earlier, while the reward function is defined as
r(s, τ) = −λP ∥s⊖ Pt+1∥−λv ∥ṡ∥−λW ∥τ∥ , where Pt+1 is the target object pose, and ṡ denotes
the object velocity [15]. λP , λv, λτ are hyperparameters.
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Figure 2: Experimental results
from sth-sth (1st & 2nd rows) and in-
hand object manipulation (3rd & 4th
rows).

Pull Right Pull Left Push Right Push Left
Baseline [23] 0.976 0.992 0.994 0.946

Ours 1.000 1.000 1.000 1.000

Figure 3: Baseline comparisons on LfD framework. Each cell rep-
resents the success rate of the manipulation.

RRT CITO PGDM iLQR Ours
Ball 122± 20 7.2◦ 52± 8 16.7◦ 2.14± 0.4 2.4◦ 57± 10 11.2◦ 62± 12 2.6◦

Cube 136± 16 9.0◦ 60± 7 18.5◦ 2.16± 0.3 4.1◦ 70± 19 13.3◦ 78± 16 3.8◦

Capsule 127± 24 8.4◦ 63± 4 15.2◦ 2.18± 0.3 9.3◦ 80± 6 12.2◦ 81± 8 7.7◦

Figure 4: Baseline comparisons on contact-aware manipulation pol-
icy. The first element in each cell is the mean/variance for the com-
putation time (s); the second is the difference between the target and
final object rotation (◦).

3 Experiments

This section offers both quantitative and qualitative assessments of our proposed methodology. Our
experiments are designed to address the following research questions: 1) How does our Diff-LfD
framework compare to baselines that also rely on visual demonstrations? 2) What is the efficacy
of our contact-aware manipulation algorithm in generating long-horizon trajectories? 3) Is our ap-
proach feasible for deployment in real-world scenarios? 4) How accurate is our self-supervised
object reconstruction and tracking? 5) What is the utility of the views synthesized by the diffusion
model? 6) What impact do gradient-based optimization, global planning, and random contact transi-
tion have on performance? 7) How robust are the generated trajectories and the closed-loop policy?
We conducted evaluations in two distinct experimental settings: basic manipulation tasks involving
primitive objects and more complex in-hand object manipulation tasks.

Experimental setups and ablation studies addressing questions 4-7 are elaborated in Appendix.

Baseline comparisons on LfD framework. We compare our model-based approach with the
method introduced in [23]. Petrı́k et al. [23] presents an optimization-based method to estimate
a coarse 3D state representation, using a cylinder for the hand and a cuboid for the manipulated
object(s). Such coarse approximation limits the representation capability and the quality of the state
estimation. We utilize our object reconstruction and tracking to estimate the object trajectory and
use contact planning to find a path. We select videos of 4 classes from the sth-sth dataset [10]: ”Pull
Right” with 164 videos, ”Pull Left” with 130 videos, ”Push Right” with 89 videos, and ”Rush Left”
with 253 videos. We report the results as in Fig. 3. Our approach successfully finished all the classes
and slightly outperformed the method introduced in [23]. One explanation is that these four types of
videos are simple for our proposed pipeline to imitate. Thus, we also apply our method for in-hand
manipulation tasks from raw videos to test the limits of our proposed framework. Fig. 2 shows the
manipulation trajectory in two environments generated by our method.

Baseline comparisons on shape reconstruction and pose estimation. In contrast to other
learning-based approaches for shape reconstruction and pose estimation, such as Neural Radiance
Fields (NeRF), our perception module operates under a distinct task setting. Specifically, our input
consists of a single-object RGB video featuring objects that undergo both rotation and translation.
Most NeRF-based methods, on the other hand, rely on multiple static object poses with known
camera positions. Some NeRF implementations utilize COLMAP [24] to initialize camera poses.
However, this approach is less effective in our setting, where the background remains largely un-
changed, and the frame count is limited. These factors hinder COLMAP’s ability to accurately
estimate object poses, leading to unstable object surface reconstructions from NeRF. Further exper-
imental comparisons with Nope-NeRF [25], which also employs COLMAP for initialization, are
available in the webpage. Our findings indicate that Nope-NeRF fails to converge in more than
half of the test cases (5 out of 9), resulting in empty reconstructions. The remaining cases yielded
incorrect pose estimations and reconstructions when compared to our method.
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Baseline comparisons on the contact-aware manipulation policy. In this study, we evaluate our
contact-aware trajectory planning algorithm against four established baselines within the context
of in-hand object rotation tasks. The baselines are as follows: 1) The Rapidly-Exploring Random
Tree (RRT) planner, as outlined in [17], employs random sampling within a configuration space
defined by both robot joint positions and object poses to identify feasible trajectories. 2) Contact-
Implicit Trajectory Optimization (CITO) [26] first establishes a predefined trajectory for the object,
then identifies optimal contact points along this path before calculating the requisite control inputs
for trajectory tracking. 3) Pre-Grasp Informed Dexterous Manipulation (PGDM) [27] utilizes rein-
forcement learning to train manipulation agents, incorporating pre-computed grasp data to achieve
the desired manipulation trajectory. 4) The Iterative Linear Quadratic Regulator (iLQR) [17] em-
ploys local approximations of the dynamical system to iteratively solve for optimal manipulation
strategies through quadratic planning. For the purposes of this experiment, our algorithm operates
without the closed-loop policy detailed in Sec. 2.2. We apply baselines on three in-hand manipula-
tion tasks associated with the ball, the cube, and the capsule. We adopt two evaluation metrics: the
averaging planning time and the difference between the target rotation and the final object rotation.
Results are reported in Fig. 4.

While both PGDM and iLQR boast the quickest inference times, it’s crucial to highlight that PGDM
requires approximately 5 hours of training for each task, and iLQR suffers from a higher track-
ing error compared to our method. The RRT approach uniformly expands its search tree, thereby
increasing the probability of encountering unstable contacts and consequently requiring the most
time to complete the task. In contrast, our algorithm and CITO focus on a more constrained search
space where stable grasping is feasible, thereby simplifying the search complexity. Furthermore,
our empirical results indicate that the final error rates for all baseline methods were consistently
higher than our algorithm. Specifically, the RRT approach lacks a guarantee for optimal trajectory
sampling, CITO overlooks physical dynamics during the planning phase, and iLQR struggles with
optimization over nonlinear loss contours. These limitations render the baseline methods susceptible
to failure due to dynamic uncertainties and execution errors.

Figure 5: Allegro Hand
performs in-hand object
manipulations.

Real-world experiments. We conducted real-world experiments for in-
hand object manipulation. The experimental setups are illustrated in
Fig. 5. We trained the closed-loop policy as discussed in Sec. 2.2 to
imitate a human rotating a cube and deployed it as the robot controller.
Experimental videos are available in the webpage. This network receives
the current joint angles of the robot, and the current object poses as in-
put and outputs the joint torques. We performed the in-hand manipula-
tion task with the Allegro Hand for different primitive objects and initial
poses. During supervised learning, convergence of the policy is achieved
in approximately 9.3 minutes, while fine-tuning takes an average of 50.1
minutes. The results of the difference between the target and final object
rotation errors are Cylinder (3.8◦), Ball (2.4◦), Lemon (6.3◦), and Avo-
cado (5.9◦), which further underscore the ability of our closed-loop policy
to generalize across similar but distinct geometries.

Additional experiments covering topics such as object reconstruction and tracking, the efficacy of the
diffusion model, gradient-based optimization techniques, random contact transitions, and robustness
analyses are provided in Appendix.

4 Related Work
Learning from visual demonstration. We focus our review on the approaches that utilize visual
data or adopt a model-based approach. For a broader review, we refer readers to [28]. One line of
work in LfD [29–35] learns the cost and reward function from visual demonstrations. To extract
knowledge from images/videos, various works [36–42] adopt representation-learning approaches to
distill low-dimensional latent states and action representations. Developing explicit representation
for LfD has received little attention due to the limited representation capability. Petrı́k et al. [23]
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adopt coarse 3D cylinders and cuboids to present the hand and manipulated objects. To tackle the
representation capability issue, we propose a self-supervised modeling pipeline that estimates the
fine-level geometric shape of the object and its associated 6D pose sequences from raw videos.
Moreover, our approach infers the contact forces underlie these poses, contributing to model-based
learning algorithms.

Differentiable simulation and rendering in robotic manipulation. Recently, great progress has
been made in the field of differentiable physics-based simulation and differentiable rendering [43–
58], which for a broader review, please refer to [59, 60]. These differentiable tools have been applied
in robotic manipulation tasks [20, 61–69]. We use the differentiable physics simulation to optimize
the contact forces for in-hand manipulation tasks and proposed an iterative pose estimation and shape
reconstruction pipeline from raw RGB videos via the differentiable rendering [70] and differentiable
signed distance functions [12].

Model-based manipulation. The use of contact dynamics often leads to non-convex optimization
problems, causing difficulties in finding local optima due to the discontinuity introduced by con-
tact switching [19, 71, 72]. Contact-implicit trajectory optimization (CITO) [73–76] addresses this
issue by planning manipulation actions without a pre-specified contact schedule. Chen et al. [26]
further considers finger gaiting primitive in trajectory planning but assumes reachable states and pre-
defined object trajectories, leading to potential failures due to ignorance of dynamical restrictions
and control errors. Pang et al. [17] uses a convex quasi-dynamics model with a rapidly exploring
random tree (RRT) to directly search feasible manipulation actions at the dynamical level, although
the manipulated object lies on a surface and doesn’t require consideration of gravity. Our work
plans manipulation actions directly at the dynamical level to address system noises and utilizes dif-
ferentiable physics simulations for contact optimization and contact localization for efficient search.

5 Limitation

For the object shape reconstruction and pose estimation, we assume that the RGB videos are seg-
mented, and the majority of the mass is concentrated as its geometry center. Our pipeline currently
works only with rigid bodies, not with articulated rigid bodies or deformable objects. Although we
leverage the diffusion model to mitigate the occlusion and reduce shape reconstruction uncertainty,
the quality varies for real RGB videos when testing our pipeline in the wild. For contact-aware
manipulation, we focus on tasks that require the object to move along a demonstrated trajectory.
Generalizing the algorithm to other tasks with sparse rewards will be left for future work. Our
approach relies on the differentiable physics-based simulation to generate the contact wrench with
domain randomization to reduce the sim2real gap. Complicated physics interaction might fail to
be captured by the differentiable physics simulation. We are interested in adding residual/learning
layers to augment the differentiable physics simulation to align with the real world in future work.

6 Conclusion

This paper investigates the use of model-based learning from demonstrations for robotic manipula-
tion tasks, contributing several significant aspects to the field. First, we introduce a new framework
for learning from human visual demonstrations in a self-supervision manner, which has the potential
to generate robot skills at a large scale. Second, we utilize differentiable rendering to track object
poses in a self-supervised manner. Third, we design a high-level planning framework that employs
differentiable simulations to generate long-horizon contact actions. This includes inferring and tran-
sitioning contact points, optimizing contact forces, and exerting them. The manipulation trajectories
are then approximated by a neural network. Finally, we conduct experiments to evaluate the effec-
tiveness of our approach from multiple angles. Our results demonstrate the robustness and efficiency
of our proposed method to learn from human demonstrations and outperform existing approaches
by a large margin.
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