
Robot Parkour Learning

Ziwen Zhuang*13 Zipeng Fu*2 Jianren Wang4 Christopher Atkeson4 Sören Schwertfeger3

Chelsea Finn2 Hang Zhao15

1Shanghai Qi Zhi, 2Stanford, 3ShanghaiTech, 4CMU, 5Tsinghua, *project co-leads
project website: https://robot-parkour.github.io

Figure 1: We present a framework for learning parkour skills on low-cost robots. Our end-to-end vision-based
parkour learning system enable the robot to climb high obstacles, leap over large gaps, crawl beneath low
barriers, squeeze through thin slits and run. Videos are on the project website.

Abstract: Parkour is a grand challenge for legged locomotion that requires robots
to overcome various obstacles rapidly in complex environments. Existing meth-
ods can generate either diverse but blind locomotion skills or vision-based but
specialized skills by using reference animal data or complex rewards. However,
autonomous parkour requires robots to learn generalizable skills that are both
vision-based and diverse to perceive and react to various scenarios. In this work,
we propose a system for learning a single end-to-end vision-based parkour policy
of diverse parkour skills using a simple reward without any reference motion data.
We develop a reinforcement learning method inspired by direct collocation to
generate parkour skills, including climbing over high obstacles, leaping over large
gaps, crawling beneath low barriers, squeezing through thin slits, and running.
We distill these skills into a single vision-based parkour policy and transfer it to
a quadrupedal robot using its egocentric depth camera. We demonstrate that our
system can empower two different low-cost robots to autonomously select and
execute appropriate parkour skills to traverse challenging real-world environments.

Keywords: Agile Locomotion, Visuomotor Control, Sim-to-Real Transfer

1 Introduction

Humans and animals possess amazing athletic intelligence. Parkour is an examplar of athletic
intelligence of many biological beings capable of moving swiftly and overcoming various obstacles
in complex environments by running, climbing, and jumping [1]. Such agile and dynamic movements

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://robot-parkour.github.io
https://robot-parkour.github.io

Figure 2: We illustrate the challenging obstacles that our system can solve, including climbing high obstacles of
0.40m (1.53x robot height), leap over large gaps of 0.60m (1.5x robot length), crawling beneath low barriers of
0.2m (0.76x robot height), squeezing through thin slits of 0.28m by tilting (less than the robot width).

require real-time visual perception and memorization of surrounding environments [2, 3], tight
coupling of perception and action [4, 5], and powerful limbs to negotiate barriers [6]. One of the
grand challenges of robot locomotion is building autonomous parkour systems.

Boston Dynamics Atlas robots [7] have demonstrated stunning parkour skills. However, the massive
engineering efforts needed for modeling the robot and its surrounding environments for predictive
control and the high hardware cost prevent people from reproducing parkour behaviors given a
reasonable budget. Recently, learning-based methods have shown robust performance on walking [8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 12, 21, 22, 23, 24, 25, 26, 27], climbing stairs [20, 28,
29, 30, 31, 32, 33], mimicking animals [34, 35, 36, 37, 38, 39] and legged mobile manipulation [40,
41, 42] by learning a policy in simulation and transferring it to the real world while avoiding much
costly engineering and design needed for robot-specific modeling. Can we leverage learning-based
methods for robot parkour but only using low-cost hardware?

There are several challenges for robot parkour learning. First, learning diverse parkour skills (e.g.
running, climbing, leaping, crawling, squeezing through, and etc) is challenging. Existing reinforce-
ment learning works craft complex reward functions of many terms to elicit desirable behaviors of
legged robots. Often each behavior requires manual tuning of the reward terms and hyper-parameters;
thus these works are not scalable enough for principled generation of a wide range of agile parkour
skills. In contrast, learning by directly imitating animals’ motion capture data can circumvent tedious
reward design and tuning [34, 43], but the lack of egocentric vision data and diverse animal MoCap
skills prevents the robots from learning diverse agile skills and autonomously selecting skills by
perceiving environment conditions. Second, obstacles can be challenging for low-cost robots of
small sizes, as illustrated in Figure 2. Third, beyond the challenge of learning diverse skills, visual
perception is dynamical and laggy during high-speed locomotion. For example, when a robot moves
at 1m/s, a short 0.2 second of signal communication delay will cause a perception discrepancy of
0.2m (7.9 inches). Existing learning-based methods have not demonstrated effective high-speed
agile locomotion. Lastly, parkour drives the electric motors to their maximum capacity, so proactive
measures to mitigate potential damage to the motors must be included in the system.

This paper introduces a robot parkour learning system for low-cost quadrupedal robots that can
perform various parkour skills, such as climbing over high obstacles, leaping over large gaps, crawling
beneath low barriers, squeezing through thin slits, and running. Our reinforcement learning method is
inspired by direct collocation and consists of two simulated training stages: RL pre-training with soft
dynamics constraints and RL fine-tuning with hard dynamics constraints. In the RL pre-training stage,
we allow robots to penetrate obstacles using an automatic curriculum that enforces soft dynamics
constraints. This encourages robots to gradually learn to overcome these obstacles while minimizing
penetrations. In the RL fine-tuning stage, we enforce all dynamics constraints and fine-tune the
behaviors learned in the pre-training stage with realistic dynamics. In both stages, we only use a
simple reward function that motivates robots to move forward while conserving mechanical energy.
After each individual parkour skill is learned, we use DAgger [44, 45] to distill them into a single
vision-based parkour policy that can be deployed to a legged robot using only onboard perception
and computation power.

The main contributions of this paper include:

• an open-source system for robot parkour learning, offering a platform for researchers to train
and deploy policies for agile locomotion;

• a two-stage RL method for overcoming difficult exploration problems, involving a pre-training
stage with soft dynamics constraints and a fine-tuning stage with hard dynamics constraints;

2

Figure 3: Soft dynamics constraints and hard dynamics constraints for each skill. Given soft dynamics constraints,
the obstacles are penetrable.

• extensive experiments in simulation and the real world showing that our parkour policy enables
low-cost quadrupedal robots to autonomously select and execute appropriate parkour skills to
traverse challenging environments in the open world using only onboard computation, onboard
visual sensing and onboard power, including climbing high obstacles of 0.40m (1.53x robot height),
leap over large gaps of 0.60m (1.5x robot length), crawling beneath low barriers of 0.2m (0.76x
robot height), squeezing through thin slits of 0.28m by tilting (less than the robot width), and
running;

• generalization to different robots, where we demonstrate that our system with the same training
pipeline can power two different robots, A1 and Go1.

2 Related Work

Agile Locomotion. Model-based control has achieved much success in agile locomotion, from MIT
Cheetah robots and A1 robots jumping over or onto obstacles of various heights [46, 47, 48], ETH
StarlETH robots jumping vertically [49], CMU Unified Snake robots climbing trees [50], X-RHex
robots self-righting using tails [51], ANYmal ALMA robots opening doors [52], ATRIAS robots
walking over stepping stones [53, 54], Marc Raibert’s One-Legged Hopping Machine [55], and Boston
Dynamics Atlas’ parkour skills [7]. Recently, learning-based methods have also demonstrated various
agile locomotion capabilities, including high-speed running [56, 16, 57, 35], resetting to the standing
pose from random states [11, 38, 15, 58], jumping [59, 60, 61], climbing stairs [20, 10, 28, 29, 30, 32,
33], climbing over obstacles [62], walking on stepping stones [29], back-flipping [63], quadrupedal
standing up on rear legs [43], opening doors [40, 64, 65, 66], moving with damaged parts [67],
catching flying objects [68], balancing using a tail [69], playing football/soccer [70, 71, 72, 73],
weaving through poles [74] and climbing ramps [74]. Most of these skills are blind or rely on state
estimation, and specialized methods are designed for these individual skills. In contrast, we build a
system for learning a single end-to-end vision-based parkour policy for various parkour skills.

Vision-Based Locomotion. Classical modular methods rely on decoupled visual perception and
control pipelines, where the elevation maps [75, 76, 77, 78, 79, 80, 81], traversability maps [82, 83,
84, 85], or state estimators [86, 87, 88, 89, 90, 91, 92, 93, 94, 95] are constructed as intermediate
representations for downstream foothold planning, path planning and control [96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108]. Recently, end-to-end learning-based methods have also
incorporated visual information into locomotion, where visual perception is performed using depth
sensing [29, 61, 31], elevation maps [28, 109, 110, 111, 112], lidar scans [113], RGB images [32],
event cameras [68] or learned neural spaces [30, 33], but none have demonstrated effective high-speed
agile locomotion.

3 Robot Parkour Learning Systems

Our goal is to build an end-to-end parkour system that directly uses raw onboard depth sensing and
proprioception to control every joint of a low-cost robot to perform various agile parkour skills, such
as climbing over high obstacles, leaping over large gaps, crawling beneath low barriers, squeezing
through thin slits, and running. Unlike prior work where different methods and training schemes
are used for different locomotion skills, we aim to generate these five parkour skills automatically
and systemically. To achieve this, we develop a two-stage reinforcement learning method that is

3

inspired by direct collocation to learn these parkour skills under the same framework. In the RL
pre-training stage, we allow robots to penetrate obstacles using an automatic curriculum that enforces
soft dynamics constraints. We encourage robots to gradually learn to overcome these obstacles
while minimizing penetrations and mechanical energy. In the RL fine-tuning stage, we fine-tune the
pre-trained behaviors with realistic dynamics. In both stages, we only use a simple reward function
that motivates robots to move forward while conserving mechanical energy. After each individual
parkour skill is learned, we use DAgger [44, 45] to distill them into a single vision-based parkour
policy that can be deployed. For robust sim-to-real deployment on a low-cost robot, we employ
several pre-processing techniques for the depth images, calibrate onboard visual delays, and enforce
proactive measures for motor safety.

3.1 Parkour Skills Learning via Two-Stage RL

Figure 4: We show collisions points on the robot.
Collision points that penetrate obstacles are in red.

Since depth images are costly to render, and directly
training RL on visual data is not always stable, we
use privileged visual information about the environ-
ments to help RL to generate specialized parkour
skills in simulation. The privileged visual informa-
tion includes the distance from the robot’s current
position to the obstacle in front of the robot, the
height of the obstacle, the width of the obstacle,
and a 4-dimensional one-hot category representing
the four types of obstacles. We formulate each spe-
cialized skill policy as a gated recurrent neural net-
work (GRU [114]). The inputs to a policy other than the recurrent latent state are proprioception
sproprio
t ∈ R29 (row, pitch, base angular velocities, positions and velocities of joints), last action
at−1 ∈ R12, the privileged visual information evis

t , and the privileged physics information ephy
t . We

use a similar approach to prior work [8, 10] to sample physics properties like terrain friction, center
of mass of the robot base, motor strength and etc to enable domain adaptation from simulation to the
real world. The policy outputs the target joint positions at ∈ R12.

We train all the specialized skill policies πclimb, πleap, πcrawl, πtilt, πrun separately on corresponding
terrains shown in Figure 3 using the same reward structure. We use the formulation of minimizing
mechanical energy in [35] to derive a general skill reward rskill suitable for generating all skills with
natural motions, which only consists of three parts, a forward reward rforward, an energy reward renergy
and an alive bonus ralive:

rskill = rforward + renergy + ralive,

where rforward = −α1 ∗ |vx − vtarget
x | − α2 ∗ |vy|2 + α3 ∗ e−|ωyaw|,

renergy = −α4 ∗
∑
j∈joints

|τj q̇j |2 , ralive = 2.

Measured at every time step, vx is the forward base linear velocity, vtarget
x is the target speed, vy is

the lateral base linear velocity, ωyaw is the base angular yaw velocity, τj is the torque at joint j, ωyaw
is the joint velocity at at joint j, and α are hyperparameters. We set the target speed for all skills to
around 1 m/s. We use the second power of motor power at each joint to reduce both the average and
the variance of motor power across all joints. See the supplementary for all hyperparameters.

Skill Obstacle Properties Training Ranges
([leasy, lhard])

Test Ranges
([leasy, lhard])

Climb obstacle height [0.2, 0.45] [0.25, 0.5]
Leap gap length [0.2, 0.8] [0.3, 0.9]
Crawl clearance [0.32, 0.22] [0.3, 0.2]

Tilt path width [0.32, 0.28] [0.3, 0.26]

Table 1: Ranges for obstacle properties for each skill during
training, measured in meters.

RL Pre-training with Soft Dynamics
Constraints. As illustrated in Figure 2, the
difficult learning environments for park-
our skills prevent generic RL algorithms
from effectively finding policies that can
overcome these challenging obstacles. In-
spired by direct collocation with soft con-
straints, we propose to use soft dynamics
constraints to solve these difficult explo-
ration problems. Shown in Figure 3, we set the obstacles to be penetrable so the robot can violate the
physical dynamics in the simulation by directly go through the obstacles without get stuck near the
obstacles as a result of local minima of RL training with the realistic dynamics, i.e. hard dynamics

4

Figure 5: We bridge the visual gap between simulation and real world by applying pre-processing techniques.
We use depth clipping, Gaussian noise and random artifacts in simulation, and depth clipping and hole-filling,
spatial and temporal filters in the real world.

constraints. Similar to the Lagrangian formulation of direct collocation [115], we develop a pene-
tration reward rpenetrate to gradually enforce the dynamics constraints and an automatic curriculum
that adaptively adjusts the difficulty of obstacles. This idea has also been explored in robot manipula-
tion [116, 117]. Shown in Figure 4, to measure the degree of dynamics constraints’ violation, we
sample collision points within the collision bodies of the robot in order to measure the volume and
the depth of penetration. Since the hips and shoulders of the robot contain all the motors, we sample
more collision points around these volumes to enforce stronger dynamics constraints, encouraging
fewer collisions of these vulnerable body parts in the real world. Denote a collision point on the
collision bodies as p, an indicator function of whether p violates the soft dynamics constraints as 1[p],
and the distance of p to the penetrated obstacle surface as d(p). The volume of penetration can be
approximated by the sum of 1[p] over all the collision points, and the average depth of penetration
can be approximated by the sum of d(p). In Figure 4, the collisions points violating the soft dynamics
constraints (1[p] = 1) are in red, and those with 1[p] = 0 are in green. Concretely, the penetration
reward is

rpenetrate = −
∑
p

(α5 ∗ 1[p] + α6 ∗ d(p)) ∗ vx,

where α5 and α6 are two fixed constants. We multiply both the penetration volume and the penetration
depth with the forward base velocity vx to prevent the robot from exploiting the penetration reward
by sprinting through the obstacles to avoid high cumulative penalties over time. In addition, we
implement an automatic curriculum that adaptively adjusts the difficulty of the obstacles after a reset
based on the performance of individual robots simulated in parallel in simulation. We first calculate
the performance of a robot based on its penetration reward averaged over the previous episode before
the reset. If the penetration reward is over a threshold, we increase the difficulty score s of obstacles
that the robot will face by one unit (0.05); if lower, then we decrease it by one unit. Every robot starts
with a difficulty score 0 and the maximum difficulty score is 1. We set the obstacle property for the
robot based on its difficulty score by (1− s) ∗ leasy + s ∗ lhard, where leasy and lhard are the two limits
of the ranges of obstacle properties corresponding to different parkour skills (shown in Table 1). We
pre-train the specialized parkour skills with soft dynamics constraints using PPO [118] with the sum
of the general skill reward and the penetration reward rskill + rpenetrate.

RL Fine-tuning with Hard Dynamics Constraints. After the pre-training stage of RL is near
convergence, we fine-tune every specialized parkour skill policy on the realistic hard dynamics
constraints (shown in Figure 3); hence, no penetrations between the robots and obstacles are possible
at the second stage of RL. We use PPO to fine-tune the specialized skills using only the general
skill reward rskill. We randomly sample obstacle properties from the ranges listed in Table 1 during
fine-tuning. Since the running skill is trained on terrains without obstacles, we directly train the
running skill with hard dynamics constraints and skip the RL pre-training stage with soft dynamics
constraints.

3.2 Learning a Single Parkour Policy by Distillation

The learned specialized parkour skills are five policies that use both the privileged visual information
evis
t , and the privileged physics information ephy

t . However, the ground-truth privilege information
is only available in the simulation but not in the real world. Furthermore, each specialized policy
can only execute one skill and cannot autonomously execute and switch between different parkour
skills based on visual perception of the environments. We propose to use DAgger [44, 45] to distill
a single vision-based parkour policy πparkour using only onboard sensing from the five specialized
skill policies πclimb, πleap, πcrawl, πtilt, πrun. We randomly sample obstacles types and properties from
Table 1 to form a simulation terrain consisting of 40 tracks and 20 obstacles on each track. Since we

5

Success Rate (%) ↑ Average Distance (m) ↑
Climb Leap Crawl Tilt Run Climb Leap Crawl Tilt Run

Blind 0 0 13 0 100 1.53 1.86 2.01 1.62 3.6
MLP 0 1 63 43 100 1.59 1.74 3.27 2.31 3.6
No Distill 0 0 73 0 100 1.57 1.75 2.76 1.86 3.6
RMA [8] - - - 74 - - - - 2.7 -
Ours (parkour policy) 86 80 100 73 100 2.37 3.05 3.6 2.68 3.6

Oracles w/o Soft Dyn 0 0 93 86 100 1.54 1.73 3.58 1.73 3.6
Oracles 95 82 100 100 100 3.60 3.59 3.6 2.78 3.6

Table 2: We test our method against several baselines and ablations in the simulation with a max distance of
3.6m. We measure the success rates and average distances of every skill averaged across 100 trials and 3 random
seeds. Our parkour policy shows the best performance using only sensors that are available in the real world.
We evaluate on the test environments with obstacles proprieties that are more difficult than the ones of training
environments shown in Table 1.

have full knowledge of the type of obstacle related to every state st, we can assign the corresponding
specialized skill policy πspecialized

st to teach the parkour policy how to act at a state. For example, we
assign the climb policy πclimb to supervise the parkour policy given a high obstacle. We parameterize
the policy as a GRU. The inputs except the recurrent latent state are the proprioception sproprio

t , the
previous action at−1 and a latent embedding of the depth image Idepth

t processed by a small CNN.
The distillation objective is

argmin
θparkour

Est,at∼πparkour,sim

[
D
(
πparkour

(
sproprio
t , at−1, I

depth
t

)
, πspecialized
st

(
sproprio
t , at−1, e

vis
t , e

phy
t

))]
,

where θparkour are the network parameters of the parkour policy, sim is the simulator with hard
dynamics constraints, and D is the divergence function which is binary cross entropy loss for policy
networks with tanh as the last layer. Both polices πparkour and πspecialized

st are stateful. More details of
the parkour policy network are in the supplementary.

3.3 Sim-to-Real and Deployment

Although the distillation training in Section 3.2 can bridge the sim-to-real gap in physical dynamics
properties such as terrain friction and mass properties of the robot [8, 10], we still need to address the
sim-to-real gap in visual appearance between the rendered depth image in simulation and the onboard
depth image taken by a depth camera in the real world. Shown in Figure 5, we apply pre-processing
techniques to both the raw rendered depth image and the raw real-world depth image. We apply depth
clipping, pixel-level Gaussian noise, and random artifacts to the raw rendered depth image, and apply
depth clipping, hole filing, spatial smoothing and temporal smoothing to the raw real-world depth
image.

The depth images in both simulation and real-world have a resolution of 48 * 64. Due to the
limited onboard computation power, the refresh rate of onboard depth image is 10Hz. Our parkour
policy operates at 50Hz in both simulation and the real world to enable agile locomotion skills, and
asynchronously fetches the latest latent embedding of the depth image processed by a small CNN.
The output actions of the policy are target joint positions which are converted to torques on the order
of 1000Hz through a PD controller of Kp = 50 and Kd = 1. To ensure safe deployment, we apply a
torque limits of 25Nm by clipping target joint positions: clip(qtarget, (Kd ∗ q̇ − 25)/Kp + q, (Kd ∗
q̇ + 25)/Kp + q).

4 Experimental Results

Robot and Simulation Setup. We use IsaacGym [119] as the simulator to train all the policies. To
train the specialized parkour skills, we construct large simulated environments consisting of 40 tracks
and 20 obstacles on each track. The obstacles in each track have linearly increasing difficulties based
on the obstacle property ranges in Table 1. We use a Unitree A1 and a Unitree Go1 that are equipped
with Nvidia Jetson NX for onboard computation and Intel RealSense D435 for onboard visual sensing.
More details are in the supplementary.

6

Climb

0.2 ~ 0.5m

Leap

0.4 ~ 0.7m

Crawl

0.32 ~ 0.15m

Tilt

0.32 ~ 0.25m

robot height robot length robot height robot width

Figure 6: Real-world indoor quantitative experiments. Our parkour policy can achieve the best performance,
compared with a blind policy and built-in MPC controllers. We control the MPC in A1 special mode by
teleoperating the robot lower down or tilt the body during crawling and tilt respectively.

Baselines and Ablations. We compare our parkour policy with several baselines and ablations.
The baselines include Blind, RND [120], MLP and RMA [8]. The ablations include No Distill,
Oracles w/o Soft Dyn. We also include Oracles, specialized parkour skills conditioned on priviledge
information in simulation, for the completeness of the comparisons.

• Blind: a blind parkour policy baseline distilled from the specialized skills, implemented by setting
depth images Idepth as zeros.

• RND: a RL exploration baseline method for training specialized skills with bonus rewards based
on forward prediction errors. We train it without our RL pre-training on soft dynamics constraints.

• MLP: a MLP parkour policy baseline distilled from the specialized skills. Instead of using a GRU,
it uses only the depth image, proprioception and previous action at the current time step without
any memory to output actions.

• RMA: a domain adaptation baseline that distills a parkour policy on a latent space of environment
extrinsics instead of the action space.

• No Distill: an ablation training a vision-based parkour policy with GRU directly using PPO with
our two-stage RL method but but skipping the distillation stage.

• Oracles w/o Soft Dyn: an ablation training specialized skill policies using privileged information
directly with hard dynamics constraints.

• Oracles (w/ Soft Dyn): our specialized skill policies using privileged information trained with
our two-stage RL approach.

4.1 Simulation Experiments

Vision is crucial for learning parkour. We compare the Blind baseline with our approach. Shown
in Table 2, without depth sensing and relying only on proprioception, the distilled blind policy cannot
complete any climbing, leaping or tilting trials and can only achieve a 13% success rate on crawling.
This is expected, as vision enables sensing of the obstacle properties and prepares the robot for
execute agile skills while approaching the obstacles.

Figure 7: Comparison of specialized ora-
cles trained with soft dynamics constraints
with baselines averaged across every skill and
three trials.

RL pre-training with soft dynamics constraints en-
ables parkour skills’ learning. We compare the RND,
Oracles w/o Soft Dyn and ours (Oracles w/ Soft Dyn),
all trained using privileged information without the dis-
tillation stage. We aim to verify that our method of RL
pre-training with soft dynamics constraints can perform
efficient exploration. In Figure 7, we measure the aver-
age success rates of each method averaged over 100 trials
across all the parkour skills that require exploration includ-
ing climbing, leaping, crawling and tilting. We trained
using three random seeds for each method to measure the
standard deviations. Our method using RL pre-training
with soft dynamics constraints can achieve much faster
learning progress and a better final success rate around 95%. We notice that RND struggles to learn
meaningful behaviors with scenarios that require fine-grained maneveurs such as crawling through
a thin slit, due to its tendency to reach states where future states are difficult to predict. Both RND

7

and Oracles w/o Soft Dyn cannot make any learning progress on climbing and leaping, the two most
difficult parkour skills. More plots showing the success rates for each skill separately are in the
supplementary.

Recurrent networks enable parkour skills requiring memories. We compare the MLP baseline
with ours using a GRU to parameterize the vision-based parkour policy. Shown in Table 2, the
MLP baseline cannot learn the climbing and leaping skills and achieve much lower performance on
crawling and tilting. Both climbing and leaping requires the robot to hold a short-term memory of
the past visual perceptions. For example, during climbing when the robot has its front legs on the
obstacles, it still needs memory about the spatial dimensions of the obstacle captured in past depth
images to control the rear legs to complete the climbing.

Distillation is effective for Sim2Real. We compare the RMA baseline and the No Distill baseline
with ours. Although RMA can achieve similar performance on one skill that it is trained on, i.e. tilting,
RMA fixes the network parameters of the MLP which processes the latent embeddings of the backbone
GRU, and directly copies them from the specialized skill to the distilled policy. Consequently, it
cannot distill multiple specialized skill policies, which have different MLP parameters, into one
parkour policy. No Distill cannot learn climbing, leaping and tilting due to the complexity of training
directly from visual observations without privileged information.

4.2 Real-World Experiments

Emergent Re-trying Behaviors during Climbing. Our parkour policy has emergent re-trying be-
haviors in the real world. When trying to overcoming a high obstacle but failing at the first trial,
the robot will push itself away from the obstacle to ensure adequate run-up space for subsequent
attempts.. Although we do not program such re-trying behaviors, they nicely emerge out of learning
with simple rewards. This behavior is also observed in simulation.

Indoor Quantitative Experiments. Shown in Figure 1, we test our parkour policy in a constructed
parkour terrain consisting of crawling, climbing, and leaping in sequential. We also conduct quantita-
tive indoor experiments in the real world on the A1 robot. In Figure 6, we compare our vision-based
parkour policy, with Blind, MPC (A1 default controller) and MPC (A1 special mode). We show the
success rates of each method in every skill under varying difficulties averaged over 10 trials each.
We change the skill difficulty by modifying the key obstacle properties, such as obstacle heights for
climbing and gap length for leaping. In A1 special mode, we directly teleoperate the robot to change
its state, such as lowering the body during crawling. We observe that our parkour policy can enable
the robot to climb obstacles as high as 0.40m (1.53x robot height) with an 80% success rate, to leap
over gaps as large as of 0.60m (1.5x robot length) with an 80% success rate, to crawl beneath barriers
as low as of 0.2m (0.76x robot height) with an 90% success rate, and to squeeze through thin slits of
0.28m by tilting (less than the robot width). Our method has the best performance across all skills.
Please refer to our project website for indoor experiment videos.

Outdoor Experiments. Shown in Figure 1, we test our robot in the various outdoor environments.
We observe that the robot controlled by our parkour policy can complete a wide range of agile parkour
skills. It can leap over two disconnected stone stools by the river with a 0.6m wide gap. It can
continuously climb several stairs of 0.42m high each. It can crawl beneath a camping cart as well as
handle slippery grass terrain. Please refer to our project website for outdoor experiment videos.

5 Conclusion, Limitations and Future Directions

We present a parkour learning system for low-cost robots. We propose a two-stage reinforcement
learning method for overcoming difficult exploration problems for learning parkour skills. We
also extensively test our system in both simulation and the real world and show that our system
has robust performance for various challenging parkour skills in challenging indoor and outdoor
environments. However, the current system requires the simulation environments to be manually
constructed. As a result, new skills can only be learned when new environments with different
obstacles and appearances are added to the simulation. This reduces how atuomatically new skills
can be learned. In the future, we hope to leverage recent advances in 3D vision and graphics to
construct diverse simulation environments automatically from large-scale real-world data. We will
also investigate how we can train agile locomotion skills directly from RGB that contains semantic
information instead of depth images.

8

https://robot-parkour.github.io
https://robot-parkour.github.io

Acknowledgments

We would like to thank Wenxuan Zhou and her Emergent Extrinsic Dexterity project [116] for
inspiring our training pipeline allowing penetration. We would also like to thank Xiaozhu Lin,
Wenqing Jiang, Fan Nie, Ruihan Yang, Xuxin Chen, Tony Z. Zhao and Unitree Robotics (Yunguo
Cui) for their help in the real-world experiments. Zipeng Fu is supported by Stanford Graduate
Fellowship (Pierre and Christine Lamond Fellowship). This project is supported by Shanghai Qi Zhi
Institute and ONR grant N00014-20-1-2675.

References

[1] Merriam webster: Parkour. URL https://www.merriam-webster.com/dictionary/
parkour.

[2] A. E. Patla. Understanding the roles of vision in the control of human locomotion. Gait &
posture, 1997.

[3] A. A. Mohagheghi, R. Moraes, and A. E. Patla. The effects of distant and on-line visual
information on the control of approach phase and step over an obstacle during locomotion.
Experimental brain research, 2004.

[4] J. M. Loomis, J. A. Da Silva, N. Fujita, and S. S. Fukusima. Visual space perception
and visually directed action. Journal of experimental psychology: Human Perception and
Performance, 1992.

[5] J. S. Matthis and B. R. Fajen. Visual control of foot placement when walking over complex
terrain. Journal of experimental psychology: human perception and performance, 2014.

[6] D. L. Puddle and P. S. Maulder. Ground reaction forces and loading rates associated with
parkour and traditional drop landing techniques. Journal of sports science & medicine, 2013.

[7] Boston dynamics: Atlas. URL https://www.bostondynamics.com/atlas.

[8] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid Motor Adaptation for Legged Robots.
In RSS, 2021.

[9] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke.
Sim-to-real: Learning agile locomotion for quadruped robots. In RSS, 2018.

[10] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion
over challenging terrain. Science Robotics, Oct. 2020.

[11] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter.
Learning agile and dynamic motor skills for legged robots. Science Robotics, 2019.

[12] Z. Xie, X. Da, M. van de Panne, B. Babich, and A. Garg. Dynamics randomization revisited:
A case study for quadrupedal locomotion. In ICRA, 2021.

[13] X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn, and J. Tan. Rapidly
adaptable legged robots via evolutionary meta-learning. In IROS, 2020.

[14] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep
reinforcement learning. arXiv preprint arXiv:1812.11103, 2018.

[15] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In ICRA, 2022.

[16] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via
reinforcement learning. RSS, 2022.

[17] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang. Learning vision-guided quadrupedal
locomotion end-to-end with cross-modal transformers. In ICLR, 2022.

[18] W. Yu, V. C. V. Kumar, G. Turk, and C. K. Liu. Sim-to-real transfer for biped locomotion. In
IROS, 2019.

9

https://www.merriam-webster.com/dictionary/parkour
https://www.merriam-webster.com/dictionary/parkour
https://www.bostondynamics.com/atlas

[19] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement
learning for robust parameterized locomotion control of bipedal robots. In ICRA, 2021.

[20] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst. Blind bipedal stair traversal via
sim-to-real reinforcement learning. arXiv preprint arXiv:2105.08328, 2021.

[21] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan. Learning to walk in the real world with minimal
human effort. arXiv preprint arXiv:2002.08550, 2020.

[22] X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu, B. Babich, and A. Garg.
Learning a contact-adaptive controller for robust, efficient legged locomotion. arXiv preprint
arXiv:2009.10019, 2020.

[23] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak. Coupling vision and propriocep-
tion for navigation of legged robots. In CVPR, 2022.

[24] S. Schmidgall and J. Hays. Synaptic motor adaptation: A three-factor learning rule for adaptive
robotic control in spiking neural networks. arXiv preprint arXiv:2306.01906, 2023.

[25] S. Kareer, N. Yokoyama, D. Batra, S. Ha, and J. Truong. Vinl: Visual navigation and
locomotion over obstacles. ICRA, 2023.

[26] M. Seo, R. Gupta, Y. Zhu, A. Skoutnev, L. Sentis, and Y. Zhu. Learning to walk by steering:
Perceptive quadrupedal locomotion in dynamic environments. ICRA, 2023.

[27] J. Truong, A. Zitkovich, S. Chernova, D. Batra, T. Zhang, J. Tan, and W. Yu. Indoorsim-to-
outdoorreal: Learning to navigate outdoors without any outdoor experience. arXiv preprint
arXiv:2305.01098, 2023.

[28] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust
perceptive locomotion for quadrupedal robots in the wild. Science Robotics, Jan. 2022.

[29] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on Robot Learning (CoRL), 2022.

[30] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control.
CVPR, 2023.

[31] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan, and T. Zhang. Visual-
locomotion: Learning to walk on complex terrains with vision. In 5th Annual Conference on
Robot Learning, 2021.

[32] A. Loquercio, A. Kumar, and J. Malik. Learning visual locomotion with cross-modal supervi-
sion. arXiv preprint arXiv:2211.03785, 2022.

[33] D. Hoeller, N. Rudin, C. Choy, A. Anandkumar, and M. Hutter. Neural scene representation
for locomotion on structured terrain. IEEE Robotics and Automation Letters, 2022.

[34] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. In RSS, 2020.

[35] Z. Fu, A. Kumar, J. Malik, and D. Pathak. Minimizing energy consumption leads to the
emergence of gaits in legged robots. In CoRL, 2021.

[36] T. Li, J. Won, S. Ha, and A. Rai. Model-based motion imitation for agile, diverse and
generalizable quadupedal locomotion. arXiv preprint arXiv:2109.13362, 2021.

[37] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots. Fast and efficient locomotion via learned
gait transitions. In CoRL, 2021.

[38] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li. Multi-expert learning of adaptive legged
locomotion. Science Robotics, 2020.

[39] D. Kang, J. Cheng, M. Zamora, F. Zargarbashi, and S. Coros. Rl+ model-based control:
Using on-demand optimal control to learn versatile legged locomotion. arXiv preprint
arXiv:2305.17842, 2023.

10

[40] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: learning a unified policy for
manipulation and locomotion. In Conference on Robot Learning, 2022.

[41] Y. Ma, F. Farshidian, T. Miki, J. Lee, and M. Hutter. Combining learning-based locomotion
policy with model-based manipulation for legged mobile manipulators. IEEE Robotics and
Automation Letters, 2022.

[42] N. Yokoyama, A. W. Clegg, E. Undersander, S. Ha, D. Batra, and A. Rai. Adaptive skill
coordination for robotic mobile manipulation. arXiv preprint arXiv:2304.00410, 2023.

[43] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan, and S. Levine. Learning and
adapting agile locomotion skills by transferring experience. RSS, 2023.

[44] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011.

[45] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In Conference on
Robot Learning, 2020.

[46] H.-W. Park, P. M. Wensing, S. Kim, et al. Online planning for autonomous running jumps
over obstacles in high-speed quadrupeds. RSS, 2015.

[47] Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and S. Kim. Optimized jumping on the mit
cheetah 3 robot. In 2019 International Conference on Robotics and Automation (ICRA), 2019.

[48] C. Nguyen, L. Bao, and Q. Nguyen. Continuous jumping for legged robots on stepping stones
via trajectory optimization and model predictive control. In 2022 IEEE 61st Conference on
Decision and Control (CDC), pages 93–99. IEEE, 2022.

[49] C. Gehring, S. Coros, M. Hutter, C. D. Bellicoso, H. Heijnen, R. Diethelm, M. Bloesch,
P. Fankhauser, J. Hwangbo, M. Hoepflinger, et al. Practice makes perfect: An optimization-
based approach to controlling agile motions for a quadruped robot. IEEE Robotics & Automa-
tion Magazine, 2016.

[50] C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson, M. Tesch, and H. Choset.
Design and architecture of the unified modular snake robot. In 2012 IEEE international
conference on robotics and automation, 2012.

[51] A. M. Johnson, T. Libby, E. Chang-Siu, M. Tomizuka, R. J. Full, and D. E. Koditschek. Tail
assisted dynamic self righting. In Adaptive mobile robotics. 2012.

[52] C. D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten, M. Bjelonic, and M. Hutter. Alma-
articulated locomotion and manipulation for a torque-controllable robot. In 2019 International
conference on robotics and automation (ICRA), pages 8477–8483. IEEE, 2019.

[53] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle, and K. Sreenath.
Dynamic walking on randomly-varying discrete terrain with one-step preview. In Robotics:
Science and Systems, 2017.

[54] R. Antonova, A. Rai, and C. G. Atkeson. Deep kernels for optimizing locomotion controllers.
In Conference on Robot Learning, 2017.

[55] M. H. Raibert, H. B. Brown Jr, and M. Chepponis. Experiments in balance with a 3d one-legged
hopping machine. The International Journal of Robotics Research, 1984.

[56] Cassie sets a guinness world record. URL https://agilityrobotics.com/news/2022/
cassie-sets-a-guinness-world-record.

[57] G. Ji, J. Mun, H. Kim, and J. Hwangbo. Concurrent training of a control policy and a state
estimator for dynamic and robust legged locomotion. IEEE Robotics and Automation Letters,
2022.

[58] Y. Ma, F. Farshidian, and M. Hutter. Learning arm-assisted fall damage reduction and recovery
for legged mobile manipulators. arXiv preprint arXiv:2303.05486, 2023.

11

https://agilityrobotics.com/news/2022/cassie-sets-a-guinness-world-record
https://agilityrobotics.com/news/2022/cassie-sets-a-guinness-world-record

[59] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Robust and ver-
satile bipedal jumping control through multi-task reinforcement learning. arXiv preprint
arXiv:2302.09450, 2023.

[60] Y. Yang, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots. Continuous versatile jumping using
learned action residuals. L4DC, 2023.

[61] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. Kim, and P. Agrawal. Learning to
jump from pixels. CoRL, 2021.

[62] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter. Advanced skills by learning locomotion
and local navigation end-to-end. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022.

[63] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Martius. Learning agile skills via
adversarial imitation of rough partial demonstrations. In Conference on Robot Learning, 2022.

[64] X. Cheng, A. Kumar, and D. Pathak. Legs as manipulator: Pushing quadrupedal agility beyond
locomotion. ICRA, 2023.

[65] E. Arcari, M. V. Minniti, A. Scampicchio, A. Carron, F. Farshidian, M. Hutter, and M. N.
Zeilinger. Bayesian multi-task learning mpc for robotic mobile manipulation. IEEE Robotics
and Automation Letters, 2023.

[66] H. Ito, K. Yamamoto, H. Mori, and T. Ogata. Efficient multitask learning with an embodied
predictive model for door opening and entry with whole-body control. Science Robotics, 2022.

[67] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to
adapt in dynamic, real-world environments through meta-reinforcement learning. ICLR, 2019.

[68] B. Forrai, T. Miki, D. Gehrig, M. Hutter, and D. Scaramuzza. Event-based agile object catching
with a quadrupedal robot. ICRA, 2023.

[69] H. Huang, A. Loquercio, A. Kumar, N. Thakkar, K. Goldberg, and J. Malik. More than an
arm: Using a manipulator as a tail for enhanced stability in legged locomotion. arXiv preprint
arXiv:2305.01648, 2023.

[70] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, M. Wulfmeier, J. Humplik,
S. Tunyasuvunakool, N. Y. Siegel, R. Hafner, et al. Learning agile soccer skills for a bipedal
robot with deep reinforcement learning. arXiv preprint arXiv:2304.13653, 2023.

[71] Y. Ji, G. B. Margolis, and P. Agrawal. Dribblebot: Dynamic legged manipulation in the wild.
arXiv preprint arXiv:2304.01159, 2023.

[72] X. Huang, Z. Li, Y. Xiang, Y. Ni, Y. Chi, Y. Li, L. Yang, X. B. Peng, and K. Sreenath.
Creating a dynamic quadrupedal robotic goalkeeper with reinforcement learning. arXiv
preprint arXiv:2210.04435, 2022.

[73] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath. Hierarchical
reinforcement learning for precise soccer shooting skills using a quadrupedal robot. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.

[74] K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman, K.-H. Lee, L. Lee, S. Saliceti,
V. Zhuang, et al. Barkour: Benchmarking animal-level agility with quadruped robots. arXiv
preprint arXiv:2305.14654, 2023.

[75] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots
with uncertain localization. IEEE Robotics and Automation Letters, 2018.

[76] I.-S. Kweon, M. Hebert, E. Krotkov, and T. Kanade. Terrain mapping for a roving planetary
explorer. In IEEE International Conference on Robotics and Automation, 1989.

[77] I.-S. Kweon and T. Kanade. High-resolution terrain map from multiple sensor data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1992.

12

[78] A. Kleiner and C. Dornhege. Real-time localization and elevation mapping within urban search
and rescue scenarios. Journal of Field Robotics, 2007.

[79] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. Real-time trajectory
adaptation for quadrupedal locomotion using deep reinforcement learning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[80] D. Belter, P. Łabcki, and P. Skrzypczyński. Estimating terrain elevation maps from sparse
and uncertain multi-sensor data. In 2012 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2012.

[81] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart. Robot-centric elevation
mapping with uncertainty estimates. In Mobile Service Robotics. 2014.

[82] Y. Pan, X. Xu, Y. Wang, X. Ding, and R. Xiong. Gpu accelerated real-time traversability
mapping. In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO),
2019.

[83] B. Yang, L. Wellhausen, T. Miki, M. Liu, and M. Hutter. Real-time optimal navigation
planning using learned motion costs. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021.

[84] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti. Learning ground traversabil-
ity from simulations. IEEE Robotics and Automation letters, 2018.

[85] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and A. Giusti. Path planning
with local motion estimations. IEEE Robotics and Automation Letters, 2020.

[86] S. Yang, Z. Zhang, Z. Fu, and Z. Manchester. Cerberus: Low-drift visual-inertial-leg odometry
for agile locomotion. ICRA, 2023.

[87] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual inertial odometry using a
direct ekf-based approach. In 2015 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 298–304. IEEE, 2015.

[88] D. Wisth, M. Camurri, and M. Fallon. Vilens: Visual, inertial, lidar, and leg odometry for
all-terrain legged robots. IEEE Transactions on Robotics, 2022.

[89] D. Wisth, M. Camurri, S. Das, and M. Fallon. Unified multi-modal landmark tracking for
tightly coupled lidar-visual-inertial odometry. IEEE Robotics and Automation Letters, 6(2):
1004–1011, 2021.

[90] R. Buchanan, M. Camurri, F. Dellaert, and M. Fallon. Learning inertial odometry for dynamic
legged robot state estimation. In Conference on Robot Learning, pages 1575–1584. PMLR,
2022.

[91] S. Yang, H. Kumar, Z. Gu, X. Zhang, M. Travers, and H. Choset. State estimation for legged
robots using contact-centric leg odometry. arXiv preprint arXiv:1911.05176, 2019.

[92] D. Wisth, M. Camurri, and M. Fallon. Robust legged robot state estimation using factor graph
optimization. IEEE Robotics and Automation Letters, 2019.

[93] S. Omari, M. Bloesch, P. Gohl, and R. Siegwart. Dense visual-inertial navigation system for
mobile robots. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 2634–2640. IEEE, 2015.

[94] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct monocular visual odometry.
In 2014 IEEE international conference on robotics and automation (ICRA), 2014.

[95] D. Scaramuzza and F. Fraundorfer. Visual odometry [tutorial]. IEEE robotics & automation
magazine, 2011.

[96] M. DeDonato, V. Dimitrov, R. Du, R. Giovacchini, K. Knoedler, X. Long, F. Polido, M. A.
Gennert, T. Padır, S. Feng, et al. Human-in-the-loop control of a humanoid robot for disaster
response: a report from the darpa robotics challenge trials. Journal of Field Robotics, 2015.

13

[97] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter. Perceptive locomotion in
rough terrain–online foothold optimization. IEEE Robotics and Automation Letters, 2020.

[98] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and S. Kim. Vision aided
dynamic exploration of unstructured terrain with a small-scale quadruped robot. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020.

[99] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart, and M. Hutter. Navigation
planning for legged robots in challenging terrain. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016.

[100] A. Chilian and H. Hirschmüller. Stereo camera based navigation of mobile robots on rough
terrain. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.

[101] C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell, and C. Semini. On-line and on-board
planning and perception for quadrupedal locomotion. In 2015 IEEE International Conference
on Technologies for Practical Robot Applications (TePRA), 2015.

[102] A. Agrawal, S. Chen, A. Rai, and K. Sreenath. Vision-aided dynamic quadrupedal locomotion
on discrete terrain using motion libraries. In 2022 International Conference on Robotics and
Automation (ICRA), 2022.

[103] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng. A control architecture for quadruped locomotion
over rough terrain. In 2008 IEEE International Conference on Robotics and Automation, 2008.

[104] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal. Learning locomotion over rough terrain
using terrain templates. In 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2009.

[105] L. Wellhausen and M. Hutter. Rough terrain navigation for legged robots using reachability
planning and template learning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

[106] C. Mastalli, M. Focchi, I. Havoutis, A. Radulescu, S. Calinon, J. Buchli, D. G. Caldwell, and
C. Semini. Trajectory and foothold optimization using low-dimensional models for rough
terrain locomotion. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), 2017.

[107] O. A. V. Magana, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi, M. Pontil, D. G.
Caldwell, and C. Semini. Fast and continuous foothold adaptation for dynamic locomotion
through cnns. IEEE Robotics and Automation Letters, 2019.

[108] F. L. G. Bermudez, R. C. Julian, D. W. Haldane, P. Abbeel, and R. S. Fearing. Performance
analysis and terrain classification for a legged robot over rough terrain. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 513–519. IEEE, 2012.

[109] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter. Deepgait: Planning and control of
quadrupedal gaits using deep reinforcement learning. IEEE Robotics and Automation Letters,
2020.

[110] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne. Deeploco: Dynamic locomotion skills
using hierarchical deep reinforcement learning. ACM Transactions on Graphics (TOG), 2017.

[111] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, 2022.

[112] D. Jain, A. Iscen, and K. Caluwaerts. From pixels to legs: Hierarchical learning of quadruped
locomotion. arXiv preprint arXiv:2011.11722, 2020.

[113] A. Escontrela, G. Yu, P. Xu, A. Iscen, and J. Tan. Zero-shot terrain generalization for visual
locomotion policies. arXiv preprint arXiv:2011.05513, 2020.

[114] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

14

[115] R. Tedrake. Trajectory optimization. Underactuated Robotics. URL http://
underactuated.mit.edu/trajopt.html.

[116] W. Zhou and D. Held. Learning to grasp the ungraspable with emergent extrinsic dexterity. In
Conference on Robot Learning, 2022.

[117] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipulation.
In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation,
2012.

[118] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[119] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[120] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

15

http://underactuated.mit.edu/trajopt.html
http://underactuated.mit.edu/trajopt.html

A Experiment Videos

We perform thorough real-world analysis of our system. Indoor and outdoor experiment videos can
be found at https://robot-parkour.github.io.

B Details of Training in Simulation

Specialized Skills. A specialize skill policy consists of a GRU followed by a MLP that outputs the
target joint positions. We concatenate all the observations including proprioception, last action,
recurrent latent state of the GRU, privileged visual information and privileged physics information
as a flattened vector. It is passed to a one-layer GRU of 256 hidden sizes, followed by an MLP
of hidden dimensions of [512, 256, 128]. We use ELU as the activation. The final layer outputs a
12-dimensional vector and be fed to tanh activation function. The action ranges from −1 to 1, which
is scaled by a constant action scale: 0.4 for hip joints, and 0.6 for thigh and knee joints.

Rewards, Environments and PPO. We follow the insights from [10, 8, 35] that use fractal noises
to generate terrains, which enforces the foot contact clearance. We use the reward terms for each
specialized policies as listed in Table 3 to 7 in the supplementary. We use these parameters to train
all five specialized policies, in either RL pre-training with soft dynamics constraint or fine-tuning
the with hard dynamics constraints. The key parameters that related to the difficulties of the tasks
are shown in the Table 1 of the main paper. Other parameters of the obstacles are set to constants:
the obstacles for climbing is 0.8m wide and 0.8m long along the +x direction. The obstacles for the
leaping task are gaps of 0.8m wide and 0.8m depth. For crawling, the obstacle is 0.8m wide and
0.3m in the +x direction. For tilting, the length along the +x direction is 0.6m. We use a set of fixed
velocity commands vtarget

x for each specialized skill during training. We list them in Table 8 of the
supplementary. We sample environment randomizations on the robot mass, center of mass of the
robot base, motor strength, terrain friction, depth perception latency, camera position, field of view
and proprioception delay for each robot during training. The detailed environment randomization
parameters are listed in Table 9. The detailed parameters of the PPO algorithm are listed in Table 10
of the supplementary.

Table 3: Reward Scales for Climbing
Purposes Hyperparameter Variables Values
x velocity α1 1.
y velocity α2 1.

angular velocity α3 0.1
energy α4 2e− 6

penetration depth α5 1e− 2
penetration volume α6 1e− 2

Table 4: Reward Scales for Leaping
Purposes Hyperparameter Variables Values
x velocity α1 1.
y velocity α2 1.

angular velocity α3 0.05
energy α4 2e− 6

penetration depth α5 4e− 3
penetration volume α6 4e− 3

16

https://robot-parkour.github.io

Table 5: Reward Scales for Crawling
Purposes Hyperparameter Variables Values
x velocity α1 1.
y velocity α2 1.

angular velocity α3 0.05
energy α4 2e− 5

penetration depth α5 6e− 2
penetration volume α6 6e− 2

Table 6: Reward Scales for Tilting
Purposes Hyperparameter Variables Values
x velocity α1 1.
y velocity α2 1.

angular velocity α3 0.05
energy α4 1e− 5

penetration depth α5 3e− 3
penetration volume α6 3e− 3

Table 7: Reward Scales for Running
Purposes Hyperparameter Variables Values
x velocity α1 1.
y velocity α2 1.

angular velocity α3 0.05
energy α4 1e− 5

penetration depth α5 0.
penetration volume α6 0.

Table 8: Velocity Commands for each Specialized Policy
Skills vtarget

x (m/s)
Running 0.8
Climbing 1.2
Leaping 1.5
Crawling 0.8

Tilting 0.5

Table 9: Environment Randomizations (x± y: Gaussian distribution; [x, y]: uniform distributions)
Parameters Distributions

Added Mass [1.0, 3.0] (kg)
Center of Mass (x) [-0.05, 0.15] (m)
Center of Mass (y) [-0.1, 0.1] (m)
Center of Mass (z) [-0.05, 0.05] (m)
Friction Coefficient [0.5, 1.0]

Motor Strength [0.9, 1.1]
Forward Depth Latency [0.2, 0.26] (s)

Camera Position (x) 0.27± 0.01 (m)
Camera Position (y) 0.0075± 0.0025 (m)
Camera Position (z) 0.033± 0.0005 (m)

Camera Pitch [0.0, 5.0] (deg)
Field of View [85, 88] (deg)

Proprioception Latency [0.0375, 0.0475] (s)

17

Table 10: PPO Hyperparameters
PPO clip range 0.2

GAE λ 0.95
Learning rate 1e-4

Reward discount factor 0.99
Minimum policy std 0.2

Number of environments 4096
Number of environment steps per training batch 24

Learning epochs per training batch 5
Number of mini-batches per training batch 4

Parkour Policy. The parkour policy consists of a CNN encoder, a GRU and a MLP. The visual
embedding from the CNN encoder is concatenated together with the rest of the observation (proprio-
ception, last action and recurrent latent state of the GRU) and fed to the GRU whose output is then
processed the MLP module. The detailed parameters of the network structure are listed in Table 11
of the supplementary. An illustration of the parkour training environment in simulation is shown in
Figure 8.

Table 11: Parkour Policy structure
CNN channels [16, 32, 32]

CNN kernel sizes [5, 4, 3]
CNN pooling layer MaxPool

CNN stride [2, 2, 1]
CNN embedding dims 128

RNN type GRU
RNN layers 1

RNN hidden dims 256
MLP hidden sizes 512, 256, 128

MLP activation ELU

Figure 8: Parkour training environment in simulation during distillation.

18

0.0 1.0

climb (0.45m)

0.0

0.5

1.0

Su
cc

es
s R

at
e

RL fine-tuning starts for Ours

Oracles w/ Soft Dyn (Ours)
Oracles w/o Soft Dyn
RND

(a)

0.0 1.0
leap(0.7m)

0.0

0.5

1.0

Su
cc

es
s R

at
e

RL fine-tuning starts for Ours

Oracles w/ Soft Dyn (Ours)
Oracles w/o Soft Dyn
RND

(b)

0.0 1.0
crawl(0.3m)

0.0

0.5

1.0

Su
cc

es
s R

at
e

RL fine-tuning starts for Ours

Oracles w/ Soft Dyn (Ours)
Oracles w/o Soft Dyn
RND

(c)

0.0 1.0
tilt(0.305m)

0.0

0.5

1.0

Su
cc

es
s R

at
e

RL fine-tuning starts for Ours

Oracles w/ Soft Dyn (Ours)
Oracles w/o Soft Dyn
RND

(d)
Figure 9: Comparison of our method with Oracles w/o Soft Dyn and RND. For our method, the RL finetuning
stage started at the late stages of the training.

We use binary cross-entropy loss for the parkour policy during distillation. The output of both
specialized skills and the parkour policy ranges from −1 to 1.

D(aparkour, aspecialized) =

(
1 + aspecialized

2
log

1 + aparkour

2
+

1− aspecialized

2
log

1− aparkour

2

)
× 2,

where aspecialized is the action from the corresponding specialized skill, aparkour is the action from the
parkour policy.

C Details of Simulation Setup

We use IsaacGym Preview 4 for simulation. We generate a static large terrain map before each
training, during the training of specialized policies. The terrain consists of 800 tracks with a 20 by 40
grid. We set the difficulty of each track in a linear curriculum manner. The tracks in the same row
have the same difficulty but differ in non-essential configurations. The tracks in each column are
connected end to end so that whenever the robot finished the current track, it keeps moving forward
(+x direction) to the more difficult track. We train each specialized policy in soft dynamics using
one 1 Nvidia 3090 computer for 12 hours and tune it in hard dynamics for 6 hours. For distillation,
we use 4 computers, each of which is equipped with 1 Nvidia 3090 GPU, that share the same NFS
file system. We use 3 computers for loading the current training model and collecting the parkour
policy’s trajectory as well as the specialized policy supervision. We use the other one computer to
load the latest trajectories and train the parkour policy.

D Details of Robot Setup

We use the Unitree A1 equipped for our real-world experiments which is equipped with an onboard
Nvidia Jetson NX. The robot has 12 joints. Each joint is equipped with a motor of 33.5Nm instant
maximum torque. It also has a built-in Intel RealSense D435 camera in front of the robot using
inferred and stereo to provide depth images. We use ROS1 on Ubuntu 18.04 which runs on the
onboard Jetson NX. We use a ROS package based on Unitree SDK to send and receive the robot
states as well as the policy command at 100Hz. The ROS package is also equipped with a roll/pitch
limit, estimated torque limit, and emergency stop mechanism using the remote control as the means
of protection for the robot. To run the policy, we use two Python scripts: a CNN script to run the

19

visual encoder asynchronously and a main script to run the rest of the networks. We use the Python
wrapper of librealsense to capture depth images at the resolution of 240 X 424. We apply the holing
filters, spatial filters, and temporal filters from the librealsense utilities. We crop the 60 pixels on the
left and 46 pixels on the right before down-sampling the depth image to 48 X 64 resolution. The
visual embedding is sent to the main script using ROS message at 10Hz. We fix the policy inference
frequency to 50Hz. In each loop, we update the robot proprioception and the visual embedding using
ROS and compute the policy output actions. Then we clip the action by a range computed using
the current joint position and velocity at a maximum torque of 25Nm, and send the position control
command to the ROS package, with Kp = 50.0,Kd = 1.0.

E Detailed Comparison Studies on RL Pre-Training with Soft Dynamics
Constraints

We compare our method with RND and the Oracles w/o Soft Dyn. Our method trained with soft
dynamics constraints is the only method that can complete climbing and leaping skills. As shown
in Figure 9 of the supplementary, except for crawling, RND fails to learn successful maneuvers to
achieve climbing, leaping, and tilting. Although the Oracles w/o Soft Dyn learned to achieve crawl
and tilt skills, but fail to learn to climb and leap, which are the most difficult skills among all the
skills in this paper.

20

	1 Introduction
	2 Related Work
	3 Robot Parkour Learning Systems
	3.1 Parkour Skills Learning via Two-Stage RL
	3.2 Learning a Single Parkour Policy by Distillation
	3.3 Sim-to-Real and Deployment

	4 Experimental Results
	4.1 Simulation Experiments
	4.2 Real-World Experiments

	5 Conclusion, Limitations and Future Directions
	A Experiment Videos
	B Details of Training in Simulation
	C Details of Simulation Setup
	D Details of Robot Setup
	E Detailed Comparison Studies on RL Pre-Training with Soft Dynamics Constraints

