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Abstract
The multi-armed bandit problem is a popular model for studying exploration/exploitation trade-off
in sequential decision problems. Many algorithms are now available for this well-studied problem.
One of the earliest algorithms, given by W. R. Thompson, dates back to 1933. This algorithm,
referred to as Thompson Sampling, is a natural Bayesian algorithm. The basic idea is to choose
an arm to play according to its probability of being the best arm. Thompson Sampling algorithm
has experimentally been shown to be close to optimal. In addition, it is efficient to implement and
exhibits several desirable properties such as small regret for delayed feedback. However, theoretical
understanding of this algorithm was quite limited. In this paper, for the first time, we show that
Thompson Sampling algorithm achieves logarithmic expected regret for the stochastic multi-armed
bandit problem. More precisely, for the stochastic two-armed bandit problem, the expected regret
in time T is O( lnT

∆ + 1
∆3 ). And, for the stochastic N -armed bandit problem, the expected regret in

time T is O(
[
(
∑N

i=2
1

∆2
i
)2
]

lnT ). Our bounds are optimal but for the dependence on ∆i and the
constant factors in big-Oh.
Keywords: multi-armed bandit, Thompson Sampling, Bayesian algorithm, online learning

1. Introduction

Multi-armed bandit problem models the exploration/exploitation trade-off inherent in sequential
decision problems. Many versions and generalizations of the multi-armed bandit problem have
been studied in the literature; in this paper we will consider a basic and well-studied version of
this problem: the stochastic multi-armed bandit problem. Among many algorithms available for the
stochastic bandit problem, some popular ones include Upper Confidence Bound (UCB) family of
algorithms, (e.g., Lai and Robbins (1985); Auer et al. (2002), and more recently Garivier and Cappé
(2011), Maillard et al. (2011), Kaufmann et al. (2012)), which have good theoretical guarantees, and
the algorithm by Gittins (1989), which gives optimal strategy under Bayesian setting with known
priors and geometric time-discounted rewards. In one of the earliest works on stochastic bandit
problems, Thompson (1933) proposed a natural randomized Bayesian algorithm to minimize regret.
The basic idea is to assume a simple prior distribution on the parameters of the reward distribution
of every arm, and at any time step, play an arm according to its posterior probability of being
the best arm. This algorithm is known as Thompson Sampling (TS), and it is a member of the
family of randomized probability matching algorithms. We emphasize that although TS algorithm
is a Bayesian approach, the description of the algorithm and our analysis apply to the prior-free
stochastic multi-armed bandit model where parameters of the reward distribution of every arm are
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fixed, though unknown (see Section 1.1). One could interpret the “assumed” Bayesian priors as
the current knowledge of the algorithm about the arms. Thus, our regret bounds for Thompson
Sampling are directly comparable to the regret bounds for UCB family of algorithms which are a
frequentist approach to the same problem.

Recently, TS has attracted considerable attention. Several studies (e.g., Granmo (2010); Scott
(2010); Chapelle and Li (2011); May and Leslie (2011)) have empirically demonstrated the efficacy
of Thompson Sampling: Scott (2010) provides a detailed discussion of probability matching tech-
niques in many general settings along with favorable empirical comparisons with other techniques.
Chapelle and Li (2011) demonstrate that empirically TS achieves regret comparable to the lower
bound of Lai and Robbins (1985); and in applications like display advertising and news article rec-
ommendation, it is competitive to or better than popular methods such as UCB. In their experiments,
TS is also more robust to delayed or batched feedback (delayed feedback means that the result of
a play of an arm may become available only after some time delay, but we are required to make
immediate decisions for which arm to play next) than the other methods. A possible explanation
may be that TS is a randomized algorithm and so it is unlikely to get trapped in an early bad decision
during the delay. Microsoft’s adPredictor (Graepel et al. (2010)) for CTR prediction of search ads
on Bing uses the idea of Thompson Sampling.

It has been suggested (Chapelle and Li (2011)) that despite being easy to implement and being
competitive to the state of the art methods, the reason TS is not very popular in literature could be
its lack of strong theoretical analysis. Existing theoretical analyses in Granmo (2010); May et al.
(2011) provide weak guarantees, namely, a bound of o(T ) on expected regret in time T . In this
paper, for the first time, we provide a logarithmic bound on expected regret of TS algorithm in time
T that is close to the lower bound of Lai and Robbins (1985). Before stating our results, we describe
the MAB problem and the TS algorithm formally.

1.1. The multi-armed bandit problem

We consider the stochastic multi-armed bandit (MAB) problem: We are given a slot machine with
N arms; at each time step t = 1, 2, 3, . . ., one of theN arms must be chosen to be played. Each arm
i, when played, yields a random real-valued reward according to some fixed (unknown) distribution
with support in [0, 1]. The random reward obtained from playing an arm repeatedly are i.i.d. and
independent of the plays of the other arms. The reward is observed immediately after playing the
arm.

An algorithm for the MAB problem must decide which arm to play at each time step t, based
on the outcomes of the previous t− 1 plays. Let µi denote the (unknown) expected reward for arm
i. A popular goal is to maximize the expected total reward in time T , i.e., E[

∑T
t=1 µi(t)], where

i(t) is the arm played in step t, and the expectation is over the random choices of i(t) made by the
algorithm. It is more convenient to work with the equivalent measure of expected total regret: the
amount we lose because of not playing optimal arm in each step. To formally define regret, let us
introduce some notation. Let µ∗ := maxi µi, and ∆i := µ∗ − µi. Also, let ki(t) denote the number
of times arm i has been played up to step t− 1. Then the expected total regret in time T is given by

E [R(T )] = E
[∑T

t=1(µ∗ − µi(t))
]

=
∑

i ∆i · E [ki(T )] .

Other performance measures include PAC-style guarantees; we do not consider those measures here.
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1.2. Thompson Sampling

For simplicity of discussion, we first provide the details of Thompson Sampling algorithm for the
Bernoulli bandit problem, i.e. when the rewards are either 0 or 1, and for arm i the probability of
success (reward =1) is µi. This description of Thompson Sampling follows closely that of Chapelle
and Li (2011). Next, we propose a simple new extension of this algorithm to general reward dis-
tributions with support [0, 1], which will allow us to seamlessly extend our analysis for Bernoulli
bandits to general stochastic bandit problem.

The algorithm for Bernoulli bandits maintains Bayesian priors on the Bernoulli means µi’s.
Beta distribution turns out to be a very convenient choice of priors for Bernoulli rewards. Let us
briefly recall that beta distributions form a family of continuous probability distributions on the
interval (0, 1). The pdf of Beta(α, β), the beta distribution with parameters α > 0, β > 0, is
given by f(x;α, β) = Γ(α+β)

Γ(α)Γ(β)x
α−1(1 − x)β−1. The mean of Beta(α, β) is α/(α + β); and as is

apparent from the pdf, higher the α, β, tighter is the concentration of Beta(α, β) around the mean.
Beta distribution is useful for Bernoulli rewards because if the prior is a Beta(α, β) distribution, then
after observing a Bernoulli trial, the posterior distribution is simply Beta(α+1, β) or Beta(α, β+1),
depending on whether the trial resulted in a success or failure, respectively.

The Thompson Sampling algorithm initially assumes arm i to have prior Beta(1, 1) on µi, which
is natural because Beta(1, 1) is the uniform distribution on (0, 1). At time t, having observed Si(t)
successes (reward = 1) and Fi(t) failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of arm i, the
algorithm updates the distribution on µi as Beta(Si(t) + 1, Fi(t) + 1). The algorithm then samples
from these posterior distributions of the µi’s, and plays an arm according to the probability of its
mean being the largest. We summarize the Thompson Sampling algorithm below.

Algorithm 1 Thompson Sampling for Bernoulli bandits
For each arm i = 1, . . . , N set Si = 0, Fi = 0.
foreach t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample θi(t) from the Beta(Si + 1, Fi + 1) distribution.
Play arm i(t) := arg maxi θi(t) and observe reward rt.
If r = 1, then Si(t) = Si(t) + 1, else Fi(t) = Fi(t) + 1.

end

We adapt the Bernoulli Thompson sampling algorithm to the general stochastic bandits case,
i.e. when the rewards for arm i are generated from an arbitrary unknown distribution with support
[0, 1] and mean µi, in a way that allows us to reuse our analysis of the Bernoulli case. To our
knowledge, this adaptation is new. We modify TS so that after observing the reward r̃t ∈ [0, 1] at
time t, it performs a Bernoulli trial with success probability r̃t. Let random variable rt denote the
outcome of this Bernoulli trial, and let {Si(t), Fi(t)} denote the number of successes and failures
in the Bernoulli trials until time t. The remaining algorithm is the same as for Bernoulli bandits.
Algorithm 2 gives the precise description of this algorithm.

We observe that the probability of observing a success (i.e., rt = 1) in the Bernoulli trial after
playing an arm i in the new generalized algorithm is equal to the mean reward µi. Let fi denote the
(unknown) pdf of reward distribution for arm i. Then, on playing arm i,

Pr(rt = 1) =
∫ 1

0 r̃fi(r̃)dr̃ = µi.
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Algorithm 2 Thompson Sampling for general stochastic bandits
For each arm i = 1, . . . , N set Si(1) = 0, Fi(1) = 0.
foreach t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample θi(t) from the Beta(Si + 1, Fi + 1) distribution.
Play arm i(t) := arg maxi θi(t) and observe reward r̃t.
Perform a Bernoulli trial with success probability r̃t and observe output rt.
If rt = 1, then Si(t) = Si(t) + 1, else Fi(t) = Fi(t) + 1.

end

Thus, the probability of observing rt = 1 is same and Si(t), Fi(t) evolve exactly in the same way as
in the case of Bernoulli bandits with mean µi. Therefore, the analysis of TS for Bernoulli setting is
applicable to this modified TS for the general setting. This allows us to replace, for the purpose of
analysis, the problem with general stochastic bandits with Bernoulli bandits with the same means.
We remark that instead of using rt, we could consider more direct and natural updates of type
Beta(αi, βi) to Beta(αi + r̃t, βi + 1 − r̃t). However, we do not know how to analyze this because
of our essential use of Fact 1, which requires αi, βi to be integral.

1.3. Our results

In this article, we bound the finite time expected regret of Thompson Sampling. From now on we
will assume that the first arm is the unique optimal arm, i.e., µ∗ = µ1 > arg maxi6=1 µi. Assuming
that the first arm is an optimal arm is a matter of convenience for stating the results and for the
analysis. The assumption of unique optimal arm is also without loss of generality, since adding
more arms with µi = µ∗ can only decrease the expected regret; details of this argument are provided
in Appendix A.

Theorem 1 For the two-armed stochastic bandit problem (N = 2), Thompson Sampling algorithm
has expected regret

E[R(T )] = O

(
lnT

∆
+

1

∆3

)
in time T , where ∆ = µ1 − µ2.

Theorem 2 For the N -armed stochastic bandit problem, Thompson Sampling algorithm has ex-
pected regret

E[R(T )] ≤ O

( N∑
a=2

1

∆2
a

)2

lnT


in time T , where ∆i = µ1 − µi.

Remark 3 For the N -armed bandit problem, we can obtain an alternate bound of

E[R(T )] ≤ O

(
∆max

∆3
min

(
N∑
a=2

1

∆2
a

)
lnT

)
by slight modification to the proof. The above bound has a better dependence onN than in Theorem
2, but worse dependence on ∆is. Here ∆min = mini6=1 ∆i,∆max = maxi6=1 ∆i.
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In interest of readability, we used big-Oh notation 1 to state our results. The exact constants are
provided in the proofs of the above theorems. Let us contrast our bounds with the previous work.
Lai and Robbins (1985) proved the following lower bound on regret of any bandit algorithm:

E[R(T )] ≥

[
N∑
i=2

∆i

D(µi||µ)
+ o(1)

]
lnT,

where D denotes the KL divergence. They also gave algorithms asymptotically achieving this
guarantee, though unfortunately their algorithms are not efficient. Auer et al. (2002) gave the UCB1
algorithm, which is efficient and achieves the following bound:

E[R(T )] ≤

[
8

N∑
i=2

1

∆i

]
lnT + (1 + π2/3)

(
N∑
i=2

∆i

)
.

For many settings of the parameters, the bound of Auer et al. is not far from the lower bound of
Lai and Robbins. Our bounds are optimal in terms of dependence on T , but inferior in terms of
the constant factors and dependence on ∆. We note that for the two-armed case our bound closely
matches the bound of Auer et al. (2002). For theN -armed setting, the exponent of ∆’s in our bound
is basically 4 compared to the exponent 1 for UCB1.

More recently, Kaufmann et al. (2012) gave Bayes-UCB algorithm which achieves the lower
bound of Lai and Robbins (1985) for Bernoulli rewards. Bayes-UCB is a UCB like algorithm, where
the upper confidence bounds are based on the quantiles of Beta posterior distributions. Interestingly,
these upper confidence bounds turn out to be similar to those used by algorithms in Garivier and
Cappé (2011) and Maillard et al. (2011). Bayes-UCB can be seen as an hybrid of TS and UCB.
However, the general structure of the arguments used in Kaufmann et al. (2012) is similar to Auer
et al. (2002); for the analysis of Thompson Sampling we need to deal with additional difficulties, as
discussed in the next section.

2. Proof Techniques

In this section, we give an informal description of the techniques involved in our analysis. We hope
that this will aid in reading the proofs, though this section is not essential for the sequel. We assume
that all arms are Bernoulli arms, and that the first arm is the unique optimal arm. As explained in
the previous sections, these assumptions are without loss of generality.

Main technical difficulties. Thompson Sampling is a randomized algorithm which achieves ex-
ploration by choosing to play the arm with best sampled mean, among those generated from beta
distributions around the respective empirical means. The beta distribution becomes more and more
concentrated around the empirical mean as the number of plays of an arm increases. This random-
ized setting is unlike the algorithms in UCB family, which achieve exploration by adding a deter-
ministic, non-negative bias inversely proportional to the number of plays, to the observed empirical
means. Analysis of TS poses difficulties that seem to require new ideas.

For example, following general line of reasoning is used to analyze regret of UCB like algo-
rithms in two-arms setting (for example, in Auer et al. (2002)): once the second arm has been

1. For any two functions f(n), g(n), f(n) = O(g(n)) if there exist two constants n0 and c such that for all n ≥ n0,
f(n) ≤ cg(n).
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played sufficient number of times, its empirical mean is tightly concentrated around its actual mean.
If the first arm has been played sufficiently large number of times by then, it will have an empirical
mean close to its actual mean and larger than that of the second arm. Otherwise, if it has been played
small number of times, its non-negative bias term will be large. Consequently, once the second arm
has been played sufficient number of times, it will be played with very small probability (inverse
polynomial of time) regardless of the number of times the first arm has been played so far.

However, for Thompson Sampling, if the number of previous plays of the first arm is small, then
the probability of playing the second arm could be as large as a constant even if it has already been
played large number of times. For instance, if the first arm has not been played at all, then θ1(t) is
a uniform random variable, and thus θ1(t) < θ2(t) with probability θ2(t) ≈ µ2. As a result, in our
analysis we need to carefully consider the distribution of the number of previous plays of the first
arm, in order to bound the probability of playing the second arm.

The observation just mentioned also points to a challenge in extending the analysis of TS for
two-armed bandit to the generalN -armed bandit setting. One might consider analyzing the regret in
the N -armed case by considering only two arms at a time—the first arm and one of the suboptimal
arms. We could use the observation that the probability of playing a suboptimal arm is bounded by
the probability of it exceeding the first arm. However, this probability also depends on the number
of previous plays of the two arms, which in turn depend on the plays of the other arms. Again,
Auer et al. (2002), in their analysis of UCB algorithm, overcome this difficulty by bounding this
probability for all possible numbers of previous plays of the first arm, and large enough plays of
the suboptimal arm. For Thompson Sampling, due to the observation made earlier, the (distribution
of the) number of previous plays of the first arm needs to be carefully accounted for, which in turn
requires considering all the arms at the same time, thereby leading to a more involved analysis.

Proof outline for two arms setting. Let us first consider the special case of two arms which is
simpler than the general N arms case. Firstly, we note that it is sufficient to bound the regret in-
curred during the time steps after the second arm has been played L = 24(lnT )/∆2 times. The
expected regret before this event is bounded by 24(lnT )/∆ because only the plays of the second
arm produce an expected regret of ∆; regret is 0 when the first arm is played. Next, we observe
that after the second arm has been played L times, the following happens with high probability:
the empirical average reward of the second arm from each play is very close to its actual expected
reward µ2, and its beta distribution is tightly concentrated around µ2. This means that, thereafter,
the first arm would be played at time t if θ1(t) turns out to be greater than (roughly) µ2. This obser-
vation allows us to model the number of steps between two consecutive plays of the first arm as a
geometric random variable with parameter close to Pr[θ1(t) > µ2]. To be more precise, given that
there have been j plays of the first arm with s(j) successes and f(j) = j − s(j) failures, we want
to estimate the expected number of steps before the first arm is played again (not including the steps
in which the first arm is played). This is modeled by a geometric random variable X(j, s(j), µ2)
with parameter Pr[θ1 > µ2], where θ1 has distribution Beta(s(j) + 1, j − s(j) + 1), and thus
E [X(j, s(j), µ2) s(j)] = 1/Pr[θ1 > µ2] − 1. To bound the overall expected number of steps be-
tween the jth and (j+ 1)th play of the first arm, we need to take into account the distribution of the
number of successes s(j). For large j, we use Chernoff–Hoeffding bounds to say that s(j)/j ≈ µ1

with high probability, and moreover θ1 is concentrated around its mean, and thus we get a good esti-
mate of E [E [X(j, s(j), µ2) s(j)]]. However, for small j we do not have such concentration, and it
requires a delicate computation to get a bound on E [E [X(j, s(j), µ2) s(j)]]. The resulting bound
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on the expected number of steps between consecutive plays of the first arm bounds the expected
number of plays of the second arm, to yield a good bound on the regret for the two-arms setting.

Proof outline for N arms setting. At any step t, we divide the set of suboptimal arms into two
subsets: saturated and unsaturated. The set C(t) of saturated arms at time t consists of arms a
that have already been played a sufficient number (La = 24(lnT )/∆2

a) of times, so that with high
probability, θa(t) is tightly concentrated around µa. As earlier, we try to estimate the number of
steps between two consecutive plays of the first arm. After jth play, the (j + 1)th play of first arm
will occur at the earliest time t such that θ1(t) > θi(t),∀i 6= 1. The number of steps before θ1(t)
is greater than θa(t) of all saturated arms a ∈ C(t) can be closely approximated using a geometric
random variable with parameter close to Pr(θ1 ≥ maxa∈C(t) µa), as before. However, even if θ1(t)
is greater than the θa(t) of all saturated arms a ∈ C(t), it may not get played due to play of an
unsaturated arm u with a greater θu(t). Call this event an “interruption” by unsaturated arms. We
show that if there have been j plays of first arm with s(j) successes, the expected number of steps
until the (j + 1)th play can be upper bounded by the product of the expected value of a geometric
random variable similar to X(j, s(j),maxa µa) defined earlier, and the number of interruptions by
the unsaturated arms. Now, the total number of interruptions by unsaturated arms is bounded by∑N

u=2 Lu (since an arm u becomes saturated after Lu plays). The actual number of interruptions is
hard to analyze due to the high variability in the parameters of the unsaturated arms. We derive our
bound assuming the worst case allocation of these

∑
u Lu interruptions. This step in the analysis is

the main source of the high exponent of ∆ in our regret bound for the N -armed case compared to
the two-armed case.

3. Regret bound for the two-armed bandit problem

In this section, we present a proof of Theorem 1, our result for the two-armed bandit problem.
Recall our assumption that all arms have Bernoulli distribution on rewards, and that the first arm is
the unique optimal arm.

Let random variable j0 denote the number of plays of the first arm until L = 24(lnT )/∆2

plays of the second arm. Let random variable tj denote the time step at which the jth play of the
first arm happens (we define t0 = 0). Also, let random variable Yj = tj+1 − tj − 1 measure the
number of time steps between the jth and (j + 1)th plays of the first arm (not counting the steps in
which the jth and (j+1)th plays happened), and let s(j) denote the number of successes in the first
j plays of the first arm. Then the expected number of plays of the second arm in time T is bounded
by E[k2(T )] ≤ L+ E

[∑T−1
j=j0

Yj

]
.

To understand the expectation of Yj , it will be useful to define another random variableX(j, s, y)
as follows. We perform the following experiment until it succeeds: check if a Beta(s+ 1, j− s+ 1)
distributed random variable exceeds a threshold y. For each experiment, we generate the beta-
distributed r.v. independently of the previous ones. Now define X(j, s, y) to be the number of trials
before the experiment succeeds. Thus, X(j, s, y) takes non-negative integer values, and is a geo-
metric random variable with parameter (success probability) 1−F betas+1,j−s+1(y). Here F betaα,β denotes
the cdf of the beta distribution with parameters α, β. Also, let FBn,p denote the cdf of the binomial
distribution with parameters (n, p).

We will relate Y and X shortly. The following lemma provides a handle on the expectation of
X .
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Lemma 4 For all non-negative integers j, s ≤ j, and for all y ∈ [0, 1],
E [X(j, s, y)] = 1

FB
j+1,y(s)

− 1,

where FBn,p denotes the cdf of the binomial distribution with parameters (n, p).

Proof By the well-known formula for the expectation of a geometric random variable and the
definition of X we have, E [X(j, s, y)] = 1

1−F beta
s+1,j−s+1(y)

− 1 (The additive −1 is there because

we do not count the final step where the Beta r.v. is greater than y.) The lemma then follows from
Fact 1 in Appendix B.

Recall that Yj was defined as the number of steps before θ1(t) > θ2(t) happens for the first time after
the jth play of the first arm. Now, consider the number of steps before θ1(t) > µ2 + ∆

2 happens
for the first time after the jth play of the first arm. Given s(j), this has the same distribution as
X(j, s(j), µ2 + ∆

2 ). However, Yj can be larger than this number if (and only if) at some time step t
between tj and tj+1, θ2(t) > µ2 + ∆

2 . In that case we use the fact that Yj is always bounded by T .
Thus, for any j ≥ j0, we can bound E[Yj ] as,

E[Yj ] ≤ E[min{X(j, s(j), µ2 + ∆
2 ), T}] + E[

∑tj+1−1

t=tj+1 T · I(θ2(t) > µ2 + ∆
2 )].

Here notation I(E) is the indicator for eventE, i.e., its value is 1 if eventE happens and 0 otherwise.
In the first term of RHS, the expectation is over distribution of s(j) as well as over the distribution
of the geometric variableX(j, s(j), µ2 + ∆

2 ). Since we are interested only in j ≥ j0, we will instead
use the similarly obtained bound on E[Yj · I(j ≥ j0)],

E[Yj · I(j ≥ j0)] ≤ E[min{X(j, s(j), µ2 + ∆
2 ), T}] + E[

∑tj+1−1

t=tj+1 T · I(θ2(t) > µ2 + ∆
2 ) · I(j ≥ j0)].

This gives,

E[
∑T−1

j=j0
Yj ] ≤

∑T−1
j=0 E[min{X(j, s(j), µ2 + ∆

2 ), T}] + T ·
∑T−1

j=0 E[
∑tj+1−1

t=tj+1 I(θ2(t) > µ2 + ∆
2 , j ≥ j0)]

≤
∑T−1

j=0 E[min{X(j, s(j), µ2 + ∆
2 ), T}] + T ·

∑T
t=1 Pr(θ2(t) > µ2 + ∆

2 , k2(t) ≥ L).

The last inequality holds because for any t ∈ [tj + 1, tj+1 − 1], j ≥ j0, by definition k2(t) ≥ L.
We denote the event {θ2(t) ≤ µ2 + ∆

2 or k2(t) < L} by E2(t). In words, this is the event that if
sufficient number of plays of second arm have happened until time t, then θ2(t) is not much larger
than µ2; intuitively, we expect this event to be a high probability event as we will show. E2(t) is the
event {θ2(t) > µ2 + ∆

2 and k2(t) ≥ L} used in the above equation. Next, we bound Pr(E2(t)) and
E[min{X(j, s(j), µ2 + ∆

2 ), T}].
Lemma 5 ∀t, Pr(E2(t)) ≥ 1− 2

T 2 .

Proof Refer to Appendix C.1.

Lemma 6 Consider any positive y < µ1, and let ∆′ = µ1 − y. Also, let R = µ1(1−y)
y(1−µ1) > 1, and let

D denote the KL-divergence between µ1 and y, i.e. D = y ln y
µ1

+ (1− y) ln 1−y
1−µ1

.

E [E [min{ X(j, s(j), y), T} s(j)]] ≤


1 +

2

1− y
+
µ1

∆′
e−Dj j < y

D lnR,

1 +
Ry

1− y
e−Dj +

µ1

∆′
e−Dj y

D lnR ≤ j < 4 lnT
∆′2 ,

16

T
j ≥ 4 lnT

∆′2 ,
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where the outer expectation is taken over s(j) distributed as Binomial(j, µ1).

Proof The complete proof of this lemma is included in Appendix C.2; here we provide some high
level ideas.

Using Lemma 4, the expected value of X(j, s(j), y) for any given s(j),

E [X(j, s(j), y) s(j)] = 1
FB
j+1,y(s(j))

− 1.

For large j, i.e., j ≥ 4(lnT )/∆′2, we use Chernoff–Hoeffding bounds to argue that with probability
at least (1 − 8

T 2 ), s(j) will be greater than µ1j − ∆′j/2. And, for s(j) ≥ µ1j − ∆′j/2 = yj +
∆′j/2, we can show that the probability FBj+1,y(s(j)) will be at least 1− 8

T 2 , again using Chernoff–
Hoeffding bounds. These observations allow us to derive that E [E [min{X(j, s(j), y), T}]] ≤ 16

T ,
for j ≥ 4(lnT )/∆′2.

For small j, the argument is more delicate. In this case, s(j) could be small with a significant
probability. More precisely, s(j) could take a value s smaller than yj with binomial probability
fBj,µ1

(s). For such s, we use the lower bound FBj+1,y(s) ≥ (1 − y)FBj,y(s) + yFBj,y(s − 1) ≥
(1 − y)FBj,y(s) ≥ (1 − y)fBj,y(s), and then bound the ratio fBj,µ1

(s)/fBj,y(s) in terms of ∆′, R and
KL-divergence D. For s(j) = s ≥ dyje, we use the observation that since dyje is greater than or
equal to the median of Binomial(j, y) (see Jogdeo and Samuels (1968)), we have FBj,y(s) ≥ 1/2 .
After some algebraic manipulations, we get the result of the lemma.

Using Lemma 5, and Lemma 6 for y = µ2 + ∆/2, and ∆′ = ∆/2, we can bound the expected
number of plays of the second arm as:

E[k2(T )] = L+ E
[∑T−1

j=j0
Yj

]
≤ L+

∑T−1
j=0 E

[
E
[
min{X(j, s(j), µ2 + ∆

2 ), T} s(j)
] ]

+
∑T

t=1 T · Pr(E2(t))

≤ L+ 4 lnT
∆′2 +

∑4(lnT )/∆′2−1
j=0

µ1

∆′ e
−Dj +

( y
D lnR

)
2

1−y +
∑4(lnT )/∆′2−1

j= y
D

lnR
Rye−Dj

1−y + 16
T · T + 2

≤ 40 lnT
∆2 + 48

∆4 + 18,
(1)

where the last inequality is obtained after some algebraic manipulations; details are provided in
Appendix C.3.

This gives a regret bound of

E[R(T )] = E [∆ · k2(T )] ≤
(

40 lnT

∆
+

48

∆3
+ 18∆

)
.

4. Regret bound for the N -armed bandit problem

In this section, we prove Theorem 2, our result for the N -armed bandit problem. Again, we assume
that all arms have Bernoulli distribution on rewards, and that the first arm is the unique optimal arm.

At every time step t, we divide the set of suboptimal arms into saturated and unsaturated arms.
We say that an arm i 6= 1 is in the saturated set C(t) at time t, if it has been played at least
Li := 24 lnT

∆2
i

times before time t. We bound the regret due to playing unsaturated and saturated
suboptimal arms separately. The former is easily bounded as we will see; most of the work is
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Figure 1: Interval Ij

in bounding the latter. For this, we bound the number of plays of saturated arms between two
consecutive plays of the first arm.

In the following, by an interval of time we mean a set of contiguous time steps. Let r.v. Ij
denote the interval between (and excluding) the jth and (j+ 1)th plays of the first arm. We say that
event M(t) holds at time t, if θ1(t) exceeds µi + ∆i

2 of all the saturated arms, i.e.,

M(t) : θ1(t) > max
i∈C(t)

µi +
∆i

2
. (2)

For t such that C(t) is empty, we define M(t) to hold trivially.
Let r.v. γj denote the number of occurrences of event M(t) in interval Ij :

γj = |{t ∈ Ij : M(t) = 1}|. (3)

Events M(t) divide Ij into sub-intervals in a natural way: For ` = 2 to γj , let r.v. Ij(`) denote the
sub-interval of Ij between the (`−1)th and `th occurrences of event M(t) in Ij (excluding the time
steps in which the event M(t) occurs). We also define Ij(1) and Ij(γj + 1): If γj > 0 then Ij(1)
denotes the sub-interval in Ij before the first occurrence of eventM(t) in Ij ; and Ij(γj +1) denotes
the sub-interval in Ij after the last occurrence of event M(t) in Ij . For γj = 0 we have Ij(1) = Ij .

Figure 1 shows an example of interval Ij along with sub-intervals Ij(`); in this figure γj = 4.
Let us define event E(t) as

E(t) : {θi(t) ∈ [µi −∆i/2, µi + ∆i/2],∀i ∈ C(t)}.

In words, E(t) denotes the event that all saturated arms have θi(t) tightly concentrated around their
means. Intuitively, from the definition of saturated arms, E(t) should hold with high probability;
we prove this in the lemma below.

Lemma 7 For all t, Pr(E(t)) ≥ 1− 4(N−1)
T 2 .

Also, for all t, j, and s ≤ j, Pr(E(t) | s(j) = s) ≥ 1− 4(N−1)
T 2 .

39.10



ANALYSIS OF THOMPSON SAMPLING

Proof Refer to Appendix C.4.

The stronger bound given by the second statement of lemma above will be useful later in the proof.
Observe that since a saturated arm i can be played at a step t only if θi(t) is greater than θ1(t),

the saturated arm i can be played at a time step t where M(t) holds only if θi(t) > µi + ∆i/2 .
Thus, unless the high probability event E(t) is violated, M(t) denotes a play of an unsaturated arm
at time t, and γj essentially denotes the number of plays of unsaturated arms in interval Ij . And,
the number of plays of saturated arms in interval Ij is at most∑γj+1

`=1 |Ij(`)|+
∑

t∈Ij I(E(t)).

We are interested in bounding regret due to playing saturated arms, which depends not only on
the number of plays, but also on which saturated arm is played at each time step. Let V `,a

j denote
the number of steps in Ij(`), for which a is the best saturated arm, i.e.

V `,a
j = |{t ∈ Ij(`) : µa = maxi∈C(t) µi}|, (4)

(resolve the ties for best saturated arm using an arbitrary, but fixed, ordering on arms). In Figure
1, we illustrate this notation by showing steps {V 4,a

j } for interval Ij(4). In the example shown, we
assume that µ1 > µ2 > · · · > µ6, and that the suboptimal arms got added to the saturated set C(t)
in order 5, 3, 4, 2, 6, so that initially 5 is the best saturated arm, then 3 is the best saturated arm, and
finally 2 is the best saturated arm.

Recall that M(t) holds trivially for all t such that C(t) is empty. Therefore, there is at least one
saturated arm at all t ∈ Ij(`), and hence V `,a

j , a = 2, . . . , N are well defined and cover the interval
Ij(`),

|Ij(`)| =
∑N

a=2 V
`,a
j .

Next, we will show that the regret due to playing any saturated arm at a time step t in one of
the V `,a

j steps is at most 3∆a + I(E(t)). The idea is that if all saturated arms have their θi(t)
tightly concentrated around their means µi, then either the arm with the highest mean (i.e., the best
saturated arm a) or an arm with mean very close to µa will be chosen to be played during these V `,a

j

steps. That is, if a saturated arm i is played at a time t among one of the V `,a
j steps, then, either

E(t) is violated, i.e. θi′(t) for some saturated arm i′ is not close to its mean, or

µi + ∆i/2 ≥ θi(t) ≥ θa(t) ≥ µa −∆a/2,

which implies that

∆i = µ1 − µi ≤ µ1 − µa + ∆a
2 + ∆i

2 ⇒ ∆i ≤ 3∆a. (5)

Therefore, regret due to play of a saturated arm at a time t in one of the V `,a
j steps is at most

3∆a + I(E(t)). With slight abuse of notation let us use t ∈ V `,a
j to indicate that t is one of the V `,a

j

steps in Ij(`). Then, the expected regret due to playing saturated arms in interval Ij is bounded as

E [Rs(Ij)] ≤ E
[∑γj+1

`=1

∑N
a=2

∑
t∈V `,a

j
(3∆a + I(E(t)))

]
+
∑

t∈Ij I(E(t)).

= E
[∑γj+1

`=1

∑N
a=2 3∆aV

`,a
j

]
+ 2E

[∑
t∈Ij I(E(t))

]
. (6)

The second term in above will be bounded using Lemma 7. For bounding the first term, we establish
the following lemma.
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Lemma 8 For all j,

E
[∑γj+1

`=1

∑
a V

`,a
j ∆a

]
≤ E

[
E [(γj + 1) s(j)]

∑N
a=2 ∆aE

[
min{X(j, s(j), µa + ∆a

2 ), T} s(j)
]]

(7)
Proof The key observation used in proving this lemma is that given a fixed value of s(j) = s,
the random variable V `,a

j is stochastically dominated by random variable X(j, s, µa + ∆a
2 ) (defined

earlier as a geometric variable denoting the number of trials before an independent sample from
Beta(s+ 1, j− s+ 1) distribution exceeds µa + ∆a

2 ). A technical difficulty in deriving the inequal-
ity above is that the random variables γj and V `,a

j are not independent in general (both depend on
the values taken by {θi(t)} over the interval). This issue is handled through careful conditioning of
the random variables on history. The details of the proof are provided in Appendix C.5.

Next we illustrate the main ideas of the remaining proof by proving a weaker bound of
(∑

i
log T
∆2

i

)2

on the expected regret. The proof of the bound (log T )
(∑

i
1

∆2
i

)2
of Theorem 2 requires a slightly

more careful analysis of this part, the complete details are given in Appendix D.
Consider the regret due to playing saturated arms until

∑N
i=2 Li plays of the first arm. After

these many plays, the first arm will be concentrated enough so that the probability of playing any
saturated arm (and hence the regret) will be very small. Now, using Lemma 8, the regret contributed
by the first term in (6) can be loosely bounded by

3E
[∑∑

i Li

j=0 E [(γj + 1) s(j)]
∑

a ∆aE [min{X(j, s(j), ya), T} s(j)]
]

≤ 3E
[(∑∑

i Li

j=0 E [(γj + 1) s(j)]
)(∑∑

i Li

j=0

∑
a ∆aE [min{X(j, s(j), ya), T} s(j)]

)]
.

Recall that γj is (approximately) the total number of plays of unsaturated arms in interval Ij . There-
fore, the first term in the product above is bounded by the total number of plays of unsaturated arms,
i.e. O(

∑N
i=2 Li). For the second term, using Lemma 6, we observe that E [E [min{X(j, s(j), ya), T} s(j)]]

is bounded by O( 1
∆a

) . Therefore, the second term is bounded by O(
∑N

i=2 Li) as well. This gives

a bound of O((
∑

i Li)
2) = O(

(∑
i

log T
∆2

i

)2
) on the above, and thus on the contribution of the first

term of (6) towards the regret. The total contribution of the second term in Equation (6) can be
bounded by a constant using Lemma 7.

Since an unsaturated arm u becomes saturated afterLu plays, regret due to unsaturated arms is at
most

∑N
u=2 Lu∆u = 24(lnT )

(∑N
u=2

1
∆u

)
. Summing the regret due to saturated and unsaturated

arms, we obtain the weaker bound ofO((
∑

i
log T
∆2

i
)2) on regret. For details of the proof of the tighter

bound of Theorem 2, see appendix D.

Conclusion. In this paper, we showed theoretical guarantees for Thompson Sampling close to
other state of the art methods, like UCB. Our result is a first step in theoretical understanding of
TS. With further work, we hope that our techniques in this paper will be useful in providing several
extensions, including a tighter analysis of the regret bound to close the gap between our upper bound
and the lower bound of Lai and Robbins (1985), analysis of TS for delayed and batched feedbacks,
contextual bandits, prior mismatch and posterior reshaping discussed in Chapelle and Li (2011).
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A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochastic bandits and beyond. In
Conference on Learning Theory (COLT), 2011.

J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley Interscience Series in Systems and
Optimization. John Wiley and Son, 1989.

T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale bayesian click-through rate
prediction for sponsored search advertising in microsoft’s bing search engine. In ICML, pages
13–20, 2010.

O.-C. Granmo. Solving two-armed bernoulli bandit problems using a bayesian learning automaton.
International Journal of Intelligent Computing and Cybernetics (IJICC), 3(2):207–234, 2010.

K. Jogdeo and S. M. Samuels. Monotone Convergence of Binomial Probabilities and A General-
ization of Ramanujan’s equation. The Annals of Mathematical Statistics, (4):1191–1195, 1968.
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Appendix A. Multiple optimal arms
Consider the N -armed bandit problem with µ∗ = maxi µi. We will show that adding another arm
with expected reward µ∗ can only decrease the expected regret of TS algorithm. Suppose that we
added arm N + 1 with expected reward µ∗. Consider the expected regret for the new bandit in
time T , conditioned on the exact time steps among 1, . . . , T , on which arm N + 1 is played by the
algorithm. Since the arm N + 1 has expected reward µ∗, there is no regret in these time steps. Now
observe that in the remaining time steps, the algorithm behaves exactly as it would for the original
bandit with N arms. Therefore, given that the (N + 1)th arm is played x times, the expected regret
in time T for the new bandit will be same as the expected regret in time T − x for the original
bandit. Let RN (T ) and RN+1(T ) denote the expected regret in time T for the original and new
bandit, respectively. Then,

E
[
RN+1(T )

]
= E

[
E
[
RN+1(T ) kN+1(T )

]]
= E

[
E
[
RN (T − kN+1(T )) kN+1(T )

]]
≤ E

[
E
[
RN (T ) kN+1(T )

]]
= E

[
RN (T )

]
.

This argument shows that the expected regret of Thompson Sampling for the N -armed bandit
problem with r optimal arms is bounded by the expected regret of Thompson Sampling for the
(N − r + 1)-armed bandit problem obtained on removing (any) r − 1 of the optimal arms.

Appendix B. Facts used in the analysis

Fact 1
F betaα,β (y) = 1− FBα+β−1,y(α− 1),

for all positive integers α, β.

Proof This fact is well-known (it’s mentioned on Wikipedia) but we are not aware of a specific
reference. Since the proof is easy and short we will present a proof here. The Wikipedia page also
mentions that it can be proved using integration by parts. Here we provide a direct combinatorial
proof which may be new.

One well-known way to generate a r.v. with cdf F betaα,β for integer α and β is the following:
generate uniform in [0, 1] r.v.s X1, X2, . . . , Xα+β−1 independently. Let the values of these r.v. in
sorted increasing order be denoted X↑1 , X

↑
2 , . . . , X

↑
α+β−1. Then X↑α has cdf F betaα,β . Thus F betaα,β (y)

is the probability that X↑α ≤ y.
We now reinterpret this probability using the binomial distribution: The event X↑α ≤ y happens

iff for at least α of the X1, . . . , Xα+β−1 we have Xi ≤ y. For each Xi we have Pr[Xi ≤ y] = y;
thus the probability that for at most α− 1 of the Xi’s we have Xi ≤ y is FBα+β−1,y(α− 1). And so
the probability that for at least α of the Xi’s we have Xi ≤ y is 1− FBα+β−1,y(α− 1).

The median of an integer-valued random variable X is an integer m such that Pr(X ≤ m) ≥
1/2 and Pr(X ≥ m) ≥ 1/2. The following fact says that the median of the binomial distribution is
close to its mean.

Fact 2 (Jogdeo and Samuels (1968)) Median of the binomial distribution Binomial(n, p) is either
bnpc or dnpe.
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Fact 3 ((Chernoff–Hoeffding bounds)) Let X1, ..., Xn be random variables with common range
[0, 1] and such that E [Xt X1, ..., Xt−1] = µ. Let Sn = X1 + . . .+Xn. Then for all a ≥ 0,

Pr(Sn ≥ nµ+ a) ≤ e−2a2/n,

Pr(Sn ≤ nµ− a) ≤ e−2a2/n.

Lemma 9 For all n, p ∈ [0, 1], δ ≥ 0,

FBn,p(np− nδ) ≤ e−2nδ2
, 1− FBn,p(np+ nδ) ≤ e−2nδ2

, (8)

1− FBn+1,p(np+ nδ) ≤ e4δ

e2nδ2 . (9)

Proof The first result is a simple application of Chernoff–Hoeffding bounds from Fact 3. For the
second result, we observe that,

FBn+1,p(np+ nδ) = (1− p)FBn,p(np+ nδ) + pFBn,p(np+ nδ − 1) ≥ FBn,p(np+ nδ − 1).

By Chernoff–Hoeffding bounds,

1− FBn,p(np+ δn− 1) ≤ e−2(δn−1)2/n = e−2(n2δ2+1−2δn)/n ≤ e−2nδ2+4δ =
e4δ

e2nδ2 .

Appendix C. Proofs of Lemmas

C.1. Proof of Lemma 5

Proof In this lemma, we lower bound the probability of E2(t) by 1− 2
T 2 . Recall that event E2(t)

holds if the following is true:

{θ2(t) ≤ µ2 +
∆

2
} or {k2(t) < L}.

Also define A(t) as the event

A(t) :
S2(t)

k2(t)
≤ µ2 +

∆

4
,

where S2(t), k2(t) denote the number of successes and number of plays respectively of the second
arm until time t− 1. We will upper bound the probability of Pr(E2(t)) = 1− Pr(E2(t)) as:

Pr(E2(t)) = Pr(θ2(t) ≥ µ2 +
∆

2
, k2(t) ≥ L)

≤ Pr(A(t), k2(t) ≥ L) + Pr(θ2(t) ≥ µ2 +
∆

2
, k2(t) ≥ L,A(t)). (10)
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For clarity of exposition, let us define another random variable Z2,M , as the average number of
successes over the first M plays of the second arm. More precisely, let random variable Z2,m

denote the output of the mth play of the second arm. Then,

Z2,M =
1

M

M∑
m=1

Z2,m.

Note that by definition, Z2,k2(t) = S2(t)
k2(t) . Also, Z2,M is the average of M iid Bernoulli variables,

each with mean µ2.
Now, for all t,

Pr(A(t), k2(t) ≥ L) =
∑T

`=L Pr(Z2,k2(t) ≥ µ2 + ∆
4 , k2(t) = `)

=
∑T

`=L Pr(Z2,` ≥ µ2 + ∆
4 , k2(t) = `)

≤
∑T

`=L Pr(Z2,` ≥ µ2 + ∆
4 )

≤
∑T

`=L e
−2`∆2/16

≤ 1
T 2 .

The second last inequality is by applying Chernoff bounds, since Z2,` is simply the average of ` iid
Bernoulli variables each with mean µ2.

We will derive the bound on second probability term in (10) in a similar manner. It will be useful to
defineW (`, z) as a random variable distributed as Beta(`z+1, `−`z+1). Note that if at time t, the
number of plays of second arm is k2(t) = `, then θ2(t) is distributed as Beta(`Z2,`+1, `−`Z2,`+1),
i.e. same as W (`, Z2,`).

Pr(θ2(t) > µ2 +
∆

2
, A(t), k2(t) ≥ L) =

T∑
`=L

Pr(θ2(t) > µ2 +
∆

2
, A(t), k2(t) = `)

≤
T∑
`=L

Pr(θ2(t) >
S2(t)

k2(t)
− ∆

4
+

∆

2
, k2(t) = `)

=

T∑
`=L

Pr(W (`, Z2,`) > Z2,` +
∆

4
, k2(t) = `)

≤
T∑
`=L

Pr(W (`, Z2,`) > Z2,` +
∆

4
)

(using Fact 1) =

T∑
`=L

E
[
FB
`+1,Z2,`+

∆
4

(`Z2,`)
]

≤
T∑
`=L

E
[
FB
`,Z2,`+

∆
4

(`Z2,`)
]

≤
T∑
`=L

exp{−2∆2`2/16

`
}

≤ Te−2L∆2/16 =
1

T 2
.
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The third-last inequality follows from the observation that

FBn+1,p(r) = (1− p)FBn,p(r) + pFBn,p(r − 1) ≤ (1− p)FBn,p(r) + pFBn,p(r) = FBn,p(r).

And, the second-last inequality follows from Chernoff–Hoeffding bounds (refer to Fact 3 and
Lemma 9).

C.2. Proof of Lemma 6

Proof Using Lemma 4, the expected value of X(j, s(j), y) for any given s(j),

E [X(j, s(j), y) s(j)] =
1

FBj+1,y(s(j))
− 1.

Case of large j: First, we consider the case of large j, i.e. when j ≥ 4(lnT )/∆′2. Then, by
simple application of Chernoff–Hoeffding bounds (refer to Fact 3 and Lemma 9), we can derive
that for any s ≥ (y + ∆′

2 )j,

FBj+1,y(s) ≥ FBj+1,y(yj +
∆′j

2
) ≥ 1− e4∆′/2

e2j∆′2/4
≥ 1− e2∆′

T 2
≥ 1− 8

T 2
,

giving that for s ≥ y(j + ∆′

2 ), E [X(j + 1, s, y)] ≤ 1
(1− 8

T2 )
− 1.

Again using Chernoff–Hoeffding bounds, the probability that s(j) takes values smaller than
(y + ∆′

2 )j can be bounded as,

FBj,µ1
(yj +

∆′j

2
) = FBj,µ1

(µ1j −
∆′j

2
) ≤ e−2j∆′2

4 ≤ 1

T 2
<

8

T 2
.

For these values of s(j), we will use the upper bound of T . Thus,

E [min{E [X(j, s(j), y) s(j)] , T}] ≤ (1− 8/T 2) ·
(

1

(1− 8/T 2)
− 1

)
+

8

T 2
· T ≤ 16

T
.

Case of small j: For small j, the argument is more delicate. We use,

E [E [X(j, s(j), y) s(j)]] = E

[
1

FBj+1,y(s(j))
− 1

]
=

j∑
s=0

fBj,µ1
(s)

FBj+1,y(s)
− 1, (11)

where fBj,µ1
denotes pdf of the Binomial(j, µ1) distribution. We use the observation that for s ≥

dy(j + 1)e, FBj+1,y(s) ≥ 1/2. This is because the median of a Binomial(n, p) distribution is either
bnpc or dnpe (see Jogdeo and Samuels (1968)). Therefore,

j∑
s=dy(j+1)e

fBj,µ1
(s)

FBj+1,y(s)
≤ 2. (12)
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For small s, i.e., s ≤ byjc, we use FBj+1,y(s) = (1 − y)FBj,y(s) + yFj,y(s − 1) ≥ (1 − y)FBj,y(s)

and FBj,y(s) ≥ fBj,y(s), to get

byjc∑
s=0

fBj,µ1
(s)

FBj+1,y(s)
≤

byjc∑
s=0

1

(1− y)

fBj,µ1
(s)

fBj,y(s)

=

byjc∑
s=0

1

(1− y)

µs1(1− µ1)j−s

ys(1− y)j−s

=

byjc∑
s=0

1

(1− y)
Rs

(1− µ1)j

(1− y)j

=
1

(1− y)

(
Rbyjc+1 − 1

R− 1

)
(1− µ1)j

(1− y)j

≤ 1

(1− y)

R

R− 1

µyj1 (1− µ1)(j−yj)

yyj(1− y)j−yj

=
µ1

µ1 − y
e−Dj =

µ1

∆′
e−Dj . (13)

If byjc < dyje < dy(j + 1)e, then we need to additionally consider s = dyje. Note, however,
that in this case dyje ≤ yj + y. For s = dyje,

fBj,µ1
(s)

FBj+1,y(s)
≤ 1

(1− y)FBj,y(s)

≤ 2

1− y
. (14)

Alternatively, we can use the following bound for s = dyje,

fBj,µ1
(s)

FBj+1,y(s)
≤ 1

(1− y)

fBj,µ1
(s)

FBj,y(s)

≤ 1

(1− y)

fBj,µ1
(s)

fBj,y(s)

≤ 1

(1− y)
Rs
(

1− µ1

1− y

)j
≤ 1

(1− y)
Ryj+y

(
1− µ1

1− y

)j
(because s = dyje ≤ yj + y)

≤ Ry

(1− y)
e−Dj . (15)

Next, we substitute the bounds from (12)-(15) in Equation (11) to get the result in the lemma.
In this substitution, for s = dyje, we use the bound in Equation (14) when j < y

D lnR, and the
bound in Equation (15) when j ≥ y

D lnR.
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C.3. Details of Equation (1)

Using Lemma 6 for y = µ2 + ∆/2, and ∆′ = ∆/2, we can bound the expected number of plays of
the second arm as:

E [k2(T )] = L+ E

T−1∑
j=j0

Yj


≤ L+

T−1∑
j=0

E
[
min{E

[
X(j, s(j), µ2 +

∆

2
) s(j)

]
, T}

]
+
∑
t

Pr(E2(t)) · T

≤ L+
4 lnT

∆′2
+

4(lnT )/∆′2−1∑
j=0

µ1

∆′
e−Dj +

( y
D

lnR
) 2

1− y
+

4(lnT )/∆′2−1∑
j= y

D
lnR

Rye−Dj

1− y
+

16

T
· T + 2

= L+
4 lnT

∆′2
+

4(lnT )/∆′2−1∑
j=0

µ1

∆′
e−Dj +

y

D
lnR · 2

(1− y)
+

4 lnT/∆′2− y
D

lnR−1∑
j=0

1

1− y
e−Dj + 18

≤ L+
4 lnT

∆′2
+
y

D
lnR · 2

∆′
+

T−1∑
j=0

(µ1 + 1)

∆′
e−Dj + 18

(∗)
≤ L+

4 lnT

∆′2
+
D + 1

∆′D
· 2

∆′
+

2

∆′
2

(min{D, 1})
+ 18

(∗∗)
≤ L+

4 lnT

∆′2
+

2

∆′2
+

1

∆′4
+

4

∆′3
+ 18

= L+
16 lnT

∆2
+

8

∆2
+

16

∆4
+

32

∆3
+ 18

≤ 40 lnT

∆2
+

48

∆4
+ 18.

The step marked (∗) is obtained using following derivations.

y lnR = y ln
µ1(1− y)

y(1− µ1)
= y ln

µ1

y
+y ln

(1− y)

(1− µ1)
≤ µ1+

y

1− y
(D−y ln

y

µ1
) ≤ 1+

y

1− y
(D+µ1) ≤ D + 1

∆′
.

And, since D ≥ 0 (Gibbs’ inequality),∑
j≥0

e−Dj =
1

1− e−D
≤ max{ 2

D
,

e

e− 1
} ≤ 2

min{D, 1}
.

And, (∗∗) uses Pinsker’s inequality to obtain D ≥ 2∆′2.

C.4. Proof of Lemma 7

Proof The proof of this lemma follows on the similar lines as the proof of Lemma 5 in Appendix
C.1 for the two arms case. We will prove the second statement, the first statement will follow as a
corollary.
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To prove the second statement of this lemma, we are required to lower bound the probability of
Pr(E(t)|s(j) = s) for all t, j, s ≤ j, by 1 − 4(N−1)

T 2 , where s(j) denotes the number of successes
in first j plays of the first arm. Recall that event E(t) holds if the following is true:

{∀i ∈ C(t), θi(t) ∈ [µi −
∆i

2
, µi +

∆i

2
]}

Let us define E+
i (t) as the event {θi(t) ≤ µi + ∆i

2 or i /∈ C(t)}, and E−i (t) as the event {θi(t) ≥
µi − ∆i

2 or i /∈ C(t)}. Then, we can bound Pr(E(t)|s(j)) as

Pr(E(t)|s(j)) ≤
N∑
i=2

Pr(E+
i (t)|s(j)) + Pr(E−i (t)|s(j)).

Now, observe that

Pr(E+
i (t)|s(j)) = Pr(θi(t) > µi +

∆i

2
, ki(t) ≥ Li|s(j)),

where ki(t) is the number of plays of arm i until time t− 1.
As in the case of two arms, define Ai(t) as the event

Ai(t) :
Si(t)

ki(t)
≤ µi +

∆

4
,

where Si(t), ki(t) denote the number of successes and number of plays respectively of the ith arm
until time t− 1.

We will upper bound the probability of Pr(E+
i (t)|s(j)) for all t, j, i 6= 1, using,

Pr(E+
i (t)|s(j)) = Pr(θi(t) > µi +

∆i

2
, ki(t) ≥ Li|s(j))

≤ Pr(Ai(t), ki(t) ≥ Li|s(j)) + Pr(θi(t) > µi +
∆i

2
, ki(t) ≥ Li, Ai(t)|s(j))

(16)

For clarity of exposition, similar to the two arms case, for every i = 1, . . . , N we define vari-
ables {Zi,m}, and Zi,M . Zi,m denote the output of the mth play of the ith arm. And,

Zi,M =
1

M

M∑
m=1

Zi,m

Note that for all i,m, Zi,m is Bernoulli variable with mean µi, and all Zi,m, i = 1, . . . , N,m =
1, . . . , T are independent of each other.

Now, instead of bounding the first term Pr(Ai(t), ki(t) ≥ Li|s(j)), we prove a bound on
Pr(A(t), k2(t) ≥ L|Z1,1, . . . , Z1,j). Note that the latter bound is stronger, since s(j) is simply∑j

m=1 Z1,m.
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Now, for all t, i 6= 1,

Pr(Ai(t), ki(t) ≥ Li|Z1,1, . . . , Z1,j) =
∑T

`=L Pr(Zi,ki(t) > µi + ∆i
4 , ki(t) = `|Z1,1, . . . , Z1,j)

=
∑T

`=L Pr(Zi,` > µi + ∆i
4 , ki(t) = `|Z1,1, . . . , Z1,j)

≤
∑T

`=L Pr(Zi,` > µi + ∆i
4 |Z1,1, . . . , Z1,j)

=
∑T

`=L Pr(Zi,` > µi + ∆i
4 )

≤
∑T

`=L e
−2`∆2

i /16

≤ 1
T 2

The third last equality holds because for all i, i′,m,m′, Zi,m and Zi′,m′ are independent of each
other, which means Zi,` is independent of Z1,m for all m = 1, . . . , j. The second last inequality is
by applying Chernoff bounds, since Zi,` is simply the average of ` iid Bernoulli variables each with
mean µ2.

We will derive the bound on second probability term in (16) in a similar manner. As before, it
will be useful to define W (`, z) as a random variable distributed as Beta(`z + 1, `− `z + 1). Note
that if at time t, the number of plays of arm i is ki(t) = `, then θi(t) is distributed as Beta(`Zi,` +
1, `− `Zi,` + 1), i.e. same as W (`, Zi,`). Now, for the second probability term in (16),

Pr(θi(t) > µi +
∆

2
, Ai(t), ki(t) ≥ Li|Z1,1, . . . , Z1,j)

=
T∑

`=Li

Pr(θi(t) > µi +
∆i

2
, Ai(t), ki(t) = `|Z1,1, . . . , Z1,j)

≤
T∑

`=Li

Pr(θi(t) >
Si(t)

ki(t)
− ∆i

4
+

∆i

2
, ki(t) = `|Z1,1, . . . , Z1,j)

=
T∑

`=Li

Pr(W (`, Zi,`) > Zi,` +
∆i

4
, ki(t) = `|Z1,1, . . . , Z1,j)

≤
T∑

`=Li

Pr(W (`, Zi,`) > Zi,` +
∆i

4
|Z1,1, . . . , Z1,j)

=

T∑
`=Li

Pr(W (`, Zi,`) > Zi,` +
∆i

4
)

(using Fact 1) =

T∑
`=Li

E
[
FB
`+1,Zi,`+

∆i
4

(`Zi,`)

]

≤
T∑

`=Li

E
[
FB
`,Zi,`+

∆i
4

(`Zi,`)

]

≤
T∑

`=Li

exp{−2∆2
i `

2/16

`
}
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≤ Te−2Li∆
2
i /16 =

1

T 2
.

Here, we used the observation that for all i, i′,m,m′, Zi,m and Zi′,m′ are independent of each other,
which means Zi,` and W (`, Zi,`) are independent of Z1,m for all m = 1, . . . , j. The third-last
inequality follows from the observation that

FBn+1,p(r) = (1− p)FBn,p(r) + pFBn,p(r − 1) ≤ (1− p)FBn,p(r) + pFBn,p(r) = FBn,p(r).

And, the second-last inequality follows from Chernoff–Hoeffding bounds (refer to Fact 3 and
Lemma 9). Substituting above in Equation (16), we get

Pr(E+
i (t)|s(j)) ≤ 2

T 2

Similarly, we can obtain

Pr(E−i (t)|s(j)) ≤ 2

T 2

Summing over i = 2, . . . , N , we get

Pr(E(t)|s(j)) ≤ 4(N − 1)

T 2

which implies the second statement of the lemma. The first statement is a simple corollary of this.

C.5. Proof of Lemma 8

Proof
E
[∑γj+1

`=1 V `,a
j s(j)

]
= E

[∑T
`=1 V

`,a
j · I(γj ≥ `− 1) s(j)

]
Let F`−1 denote the history until before the beginning of interval Ij(`) (i.e. the values of θi(t) and
the outcomes of playing the arms until the time step before the first time step of Ij(`)). Note that
the value of random variable I(γj ≥ `− 1) is completely determined by F`−1. Therefore,

E
[∑γj+1

`=1 V `,a
j s(j)

]
= E

[∑T
`=1 E

[
V `,a
j · I(γj ≥ `− 1) s(j),F`−1

]
s(j)

]
= E

[∑T
`=1 E

[
V `,a
j s(j),F`−1

]
· I(γj ≥ `− 1) s(j)

]
.

Recall that V `,a
j is the number of contiguous steps t for which a is the best arm in saturated set

C(t) and iid variables θ1(t) have value smaller than µa + ∆a
2 . Observe that given s(j) = s and

F`−1, V `,a
j is the length of an interval which ends when the value of an iid Beta(s + 1, j − s + 1)

distributed variable exceeds µa+ ∆a
2 (i.e.,M(t) happens), or if an arm other than a becomes the best

saturated arm, or if we reach time T . Therefore, given s(j),F`−1, V `,a
j is stochastically dominated
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by min{X(j, s(j), µa+ ∆a
2 ), T}, where recall thatX(j, s(j), y) was defined as the number of trials

until an independent sample from Beta(s+ 1, j − s+ 1) distribution exceeds y. That is, for all a,

E
[
V `,a
j s(j),F`−1

]
≤ E

[
min{X(j, s(j), µa + ∆a

2 ), T} s(j),F`−1

]
= E

[
min{X(j, s(j), µa + ∆a

2 ), T} s(j)
]
.

Substituting, we get,

E
[∑γj+1

`=1 V `,a
j s(j)

]
≤ E

[∑T
`=1 E

[
min{X(j, s(j), µa + ∆a

2 ), T} s(j)
]
· I(γj ≥ `− 1) s(j)

]
= E

[
min{X(j, s(j), µa + ∆a

2 ), T} s(j)
]
· E
[∑T

`=1 I(γj ≥ `− 1) s(j)
]

= E
[
min{X(j, s(j), µa + ∆a

2 ), T} s(j)
]
· E [γj + 1 s(j)].

This immediately implies,

E
[∑N

a=2 ∆aE
[∑γj+1

`=1 V `,a
j s(j)

]]
≤ E

[∑N
a=2 ∆aE

[
min{X(j, s(j), µa + ∆a

2 ), T} s(j)
]
· E [γj + 1 s(j)]

]

Appendix D. Proof of Theorem 2: details

We continue the proof from the main body of the paper.
By (6), regret due to playing saturated arms is bounded by∑T−1

j=0 E [Rs(Ij)] ≤
∑T−1

j=0 E
[∑γj+1

`=1

∑N
a=2 3∆aV

`,a
j

]
+ 2E

[∑
t∈Ij I(E(t))

]
. (17)

Using Lemma 8, the regret contributed by the first term in (17) is bounded by

3
∑T−1

j=0 E [E [γj s(j)]
∑

a ∆aE [min{X(j, s(j), ya), T} s(j)]] +
∑T−1

j=0 E [E [min{X(j, s(j), ya), T} s(j)]] .

Recall that γj denotes the number of occurrences of event M(t) in interval Ij , i.e. the number
of times in interval Ij , θ1(t) was greater than µi + ∆i

2 of all saturated arms i ∈ C(t), and yet the
first arm was not played. The only reasons the first arm would not be played at a time t despite of
θ1(t) > maxi∈C(t) µi + ∆i

2 are that either E(t) was violated, i.e. some saturated arm whose θi(t)
was not close to its mean was played instead; or some unsaturated arm u with highest θu(t) was
played. Therefore, the random variables γj satisfy

γj ≤
∑

t∈Ij I(an unsaturated arm is played at time t) +
∑

t∈Ij I(E(t)).

Using Lemma 7, and the fact that an unsaturated arm u can be played at most Lu times before it
becomes saturated, we obtain that∑T−1

j=0 E[γj |s(j)] ≤ E[
∑T

t=1 I(an unsaturated arm is played at time t)|s(j)] +
∑T−1

j=0 E[
∑

t∈Ij I(E(t))|s(j)]

≤
∑

u Lu +
∑T−1

j=0

∑T
t=1 Pr(E(t)|s(j))

≤
∑

u Lu + 4(N − 1). (18)
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Note that
∑T−1

j=0 E[γj |s(j)] is a r.v. (because of random s(j)), and the above bound applies for
all instantiations of this r.v.

Let ya = µa + ∆a
2 . Then,

E
[∑T−1

j=0 E [γj s(j)]
∑

a ∆aE [X(j, s(j), ya) s(j)]
]

≤ E
[(∑T−1

j=0 E [γj s(j)]
)

(maxj
∑

a ∆aE [X(j, s(j), ya) s(j)])
]

≤ (
∑

u Lu + 4(N − 1))
∑

a ∆aE [maxj E [X(j, s(j), ya) s(j)]]

≤ (
∑

u Lu + 4(N − 1))
∑

a ∆aE
[

∆a
Fj∗a+1,ya

(s(j∗a)) · I(s(j∗a) ≤ byaj∗ac) + ∆a
Fj∗a+1,ya

(s(j∗a)) · I(s(j∗a) ≥ dyaj∗ae)
]
,

(19)

where

j∗a = arg max
j∈{0,...,T−1}

E [X(j, s(j), ya) s(j)] = arg max
j∈{0,...,T−1}

1

Fj+1,ya(s(j))
.

Note that j∗a is a random variable, which is completely determined by the instantiation of random
sequence s(1), s(2), . . ..

For the first term in Equation (19),

E
[

1

Fj∗a+1,ya(s(j∗a))
· I(s(j∗a) ≤ byaj∗ac)

]
≤

∑
j

E
[

1

Fj+1,ya(s(j))
· I(s(j) ≤ byajc)

]

=
∑
j

byajc∑
s=0

fj,µ1(s)

Fj+1,ya(s)
≤
∑
j

µ1

∆′a
e−Daj ≤ 16

∆3
a

,(20)

where ∆′a = µ1 − ya = ∆a/2, Da is the KL-divergence between Bernoulli distributions with
parameters µ1 and ya. The penultimate inequality follows using (13) in the proof of Lemma 6 in
Appendix C.2, with ∆′ = ∆′a, andD = Da. The last inequality uses the geometric series sum (note
that Da ≥ 0 by Gibbs’ inequality).∑

j e
−Daj ≤ 1

1−e−Da
≤ max{ 2

Da
, e
e−1} ≤

2
min{Da,1} ≤

2
∆′a

2 = 8
∆2

a
.

And, for the second term, using the fact that Fj+1,y(s) ≥ (1 − y)Fj,y(s), and that for s ≥ dyje,
Fj,y(s) ≥ 1/2 (Fact 2),

E
[

1

Fj∗a+1,ya(s(j∗a))
· I(s(j∗a) ≥ dyaj∗ae)

]
≤ 2

1− ya
≤ 4

∆a
. (21)

Substituting the bound from Equation (20) and (21) in Equation (19),∑T−1
j=0 E [E [γj |s(j)]

∑
a 3∆aE [X(j, s(j), ya)|s(j)]] ≤ (

∑
u Lu + 4(N − 1))

∑
a(

48
∆2

a
+ 12).

(22)
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Also, using Lemma 6 while substituting y with ya = µa + ∆a
2 and ∆′ with µ1 − ya = ∆a

2 ,

T−1∑
j=0

N∑
a=2

(3∆a)E
[
E
[
min{X(j, s(j), µa +

∆a

2
), T} s(j)

]]

≤
∑
a

(3∆a)

16(lnT )

∆a2 −1∑
j=0

(
1 +

2

1− ya

)
+

T∑
j≥ 16(lnT )

∆a2

(3∆a)
16

T

≤
∑
a

48 lnT

∆a
+

192

∆2
a

+ 48∆a. (23)

Substituting bounds from (22) and (23) in the first term of Equation (17),

T−1∑
j=0

E

γj+1∑
`=1

∑
a

V `,a
j 3∆a


≤ (

∑
u

Lu + 4(N − 1))
∑
a

(
48

∆2
a

+ 12) +
∑
a

(
48 lnT

∆a
+

192

∆2
a

+ 48∆a)

≤ 1152(lnT )(
∑
i

1

∆2
i

)2 + 288(lnT )
∑
i

1

∆2
i

+ 48(lnT )
∑
a

1

∆a
+ 192N

∑
a

1

∆2
a

+ 96(N − 1).

Now, using the result that Pr(E(t)) ≤ 4(N − 1)/T 2 (by Lemma 7) with Equation (17), we can
bound the total regret due to playing saturated arms as

E[Rs(T )] =
∑
j

E[Rs(Ij)]

=
∑
j

E

γj+1∑
`=1

∑
a

V `,a
j 3∆a

+ 2T ·
∑
t

Pr(E(t))

≤ 1152(lnT )(
∑
i

1

∆2
i

)2 + 288(lnT )
∑
i

1

∆2
i

+48(lnT )
∑
a

1

∆a
+ 192N

∑
a

1

∆2
a

+ 96(N − 1) + 8(N − 1).

Since an unsaturated arm u becomes saturated after Lu plays, regret due to unsaturated arms is at
most

E[Ru(T )] ≤
N∑
u=2

Lu∆u = 24(lnT )

(
N∑
u=2

1

∆u

)
.

Summing the regret due to saturated and unsaturated arms, we obtain the result of Theorem 2.
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The proof for the alternate bound in Remark 3 will essentially follow the same lines except that
instead of dividing the interval Ij(`) into subdivisions V `,a

j , we will simply bound the regret due to
saturated arms by number of plays times ∆max. That is, we will use the bound,

E[R(Ij)] ≤ E[

γj+1∑
`=1

|Ij(`)| ·∆max]

To bound E[
∑γj+1

`=1 |Ij(`)|], we follow the proof for bounding E[
∑γj+1

`=1 V `,ā
j ] for ā = arg maxi6=1 µi,

i.e., replacing µa with µā = maxi6=1 µ1, and ∆a with ∆min. In a manner similar to Lemma 8, we
can obtain

E[

γj+1∑
`=1

|Ij(`)|] ≤ E[(γj + 1) min{X(j, s(j), µM +
∆min

2
), T}] + E[

∑
t∈Ij

T · I(E(t))]

And, consequently, using Equation (19), and Equation (20)–(23), and Lemma 7, we can obtain

∑
j

E[

γj+1∑
`=1

|Ij(`)|] ≤ O((
∑
u

Lu)
1

∆3
min

) = O(
1

∆3
min

(
N∑
a=2

1

∆2
a

)
lnT ),

giving a regret bound of O(∆max

∆3
min

(∑N
a=2

1
∆2

a

)
lnT ).
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