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Abstract
We address the online linear optimization problem with bandit feedback. Our contribution is
twofold. First, we provide an algorithm (based on exponential weights) with a regret of order√
dn logN for any finite action set with N actions, under the assumption that the instantaneous

loss is bounded by 1. This shaves off an extraneous
√
d factor compared to previous works, and

gives a regret bound of order d
√
n log n for any compact set of actions. Without further assump-

tions on the action set, this last bound is minimax optimal up to a logarithmic factor. Interestingly,
our result also shows that the minimax regret for bandit linear optimization with expert advice in d
dimension is the same as for the basic d-armed bandit with expert advice. Our second contribution
is to show how to use the Mirror Descent algorithm to obtain computationally efficient strategies
with minimax optimal regret bounds in specific examples. More precisely we study two canonical
action sets: the hypercube and the Euclidean ball. In the former case, we obtain the first compu-
tationally efficient algorithm with a d

√
n regret, thus improving by a factor

√
d log n over the best

known result for a computationally efficient algorithm. In the latter case, our approach gives the
first algorithm with a

√
dn log n regret, again shaving off an extraneous

√
d compared to previous

works.
Keywords: online linear optimization; multi-armed bandits; linear bandits with expert advice;
minimax regret; exponential weights; mirror descent.

1. Introduction

In this paper we consider the framework of online linear optimization: at each time instance t =
1, . . . , n, the player chooses, possibly in a randomized way, an action from a given compact action
set A ⊂ Rd. The action chosen by the player at time t is denoted by at ∈ A. Simultaneously to
the player, the adversary chooses a loss vector zt ∈ Z ⊂ Rd and the loss incurred by the player is
a>t zt. The goal of the player is to minimize the expected cumulative loss E

∑n
t=1 a

>
t zt where the

expectation is taken with respect to the player’s internal randomization (and possibly the adversary’s
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randomization). In the basic version of this problem, the player observes the adversary’s move zt at
the end of round t. We consider here the bandit version, where the player only observes the incurred
loss a>t zt. As a measure of performance we define the regret of the player as

Rn = E
n∑
t=1

a>t zt −min
a∈A

E
n∑
t=1

a>zt .

In this paper we are interested in the dual setting, where the adversary plays on a dual action set,
i.e., A and Z are such that |a>z| ≤ 1,∀(a, z) ∈ A× Z .

1.1. Contributions and relation to previous works

In the full information case, the online optimization setting (for convex losses) was introduced by
Zinkevich (2003). The specific online linear optimization problem with bandit feedback was first
studied by McMahan and Blum (2004) and Awerbuch and Kleinberg (2004). Our first contribution
to this problem is to complete the research program started by Dani et al. (2008) and Cesa-Bianchi
and Lugosi (2011). In these papers the authors studied the EXP2 (Expanded Exp) algorithm, also
called Geometric Hedge, Expanded Hedge, or ComBand. This strategy applies to a finite set of
actions; it assigns an exponential weight to each action, and then draws an action at random from the
corresponding probability distribution. Using a basic estimation procedure (first used by Auer et al.
(2002) for the basic multi-armed bandit problem), one can estimate the loss vector zt. However, to
control the range of the estimates, one has to mix the probability given by EXP2 with an “exploration
distribution”. Dani et al. (2008) chose this distribution to be uniform over a barycentric spanner
for the action set, while in (Cesa-Bianchi and Lugosi, 2011) the distribution was uniform over all
actions. Using ideas from convex geometry, we propose a new distribution that allows us to derive
a minimax optimal regret bound. More precisely, we show that for any finite action set, EXP2
with the exploration distribution given by John’s Theorem (see Theorem 3) attains a regret of order√
dn logN for any set of N actions. This improves by a factor

√
d over previous works. Moreover

this rate is optimal: there exist action sets (such as the hypercube) where the minimax rate is of
order d

√
n —see (Dani et al., 2008). Surprisingly, this result also shows that EXP2 with John’s

exploration can be used for linear bandits with N experts to obtain a regret of order
√
dn logN ,

which is no worse than the minimax regret for the basic d-armed bandit with N experts problem.
While these results show that, without further assumption on the set of action, the regret of

EXP2 is optimal, they do not say anything about optimality for a specific set of actions. In fact, it
was proven by Audibert et al. (2011) that for some pair (A,Z) the exponential weights is a provably
suboptimal strategy (with a gap of order

√
d). To address this issue, another class of algorithms has

been studied for online optimization: the Mirror Descent style algorithms of Nemirovski and Yudin
(1983) —this class of algorithms was rediscovered in the learning community, see for example
Kivinen and Warmuth (2001). In recent years the number of papers using Mirror Descent to solve
problems in online optimization has been growing very rapidly. In the full information setting
(when one observes zt), we have a very good understanding of how to use Mirror Descent to obtain
optimal regret bounds that adapt to the geometry of the problem —see (Rakhlin, 2009; Hazan,
2011; Bubeck, 2011). In particular, a recent paper suggests that in this basic setting Mirror Descent
is “universal”, see (Srebro et al., 2011). On the other hand, in the limited feedback scenario the
picture is much more scattered. In the particular cases of semi-bandit feedback —see (Audibert
et al., 2011)— and two-points bandit feedback —see (Agarwal et al., 2010), we know how to use
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Mirror Descent to obtain optimal regret bounds. However, in both scenarios the feedback is much
stronger than in the more fundamental bandit problem. In this latter case, there is only one paper that
successfully applies Mirror Descent, namely the seminal work of Abernethy et al. (2008) —see also
the follow-up paper Abernethy and Rakhlin (2009). Unfortunately, for a convex and compact set
A, this approach (which combines Mirror Descent with a self-concordant barrier for the action set)
leads to a regret bound of order d

√
θn log n for any θ > 0 such that A admits a θ-self concordant

barrier. For example, in the case of the hypercube the best we know is θ = O(d), which results in
the suboptimal d3/2

√
n log n regret (compared to d

√
n for EXP2 with John’s ellipsoid). However,

note that in this particular case it is not known if EXP2 can be implemented efficiently, while Mirror
Descent is polynomial time.

Our second main contribution is to propose an efficient algorithm based on Mirror Descent, with
an optimal regret bound for two canonical pairs (A,Z). Namely, the (hypercube, cross-polytope)
pair, which corresponds to an L∞/L1 type of constraints, and the (Euclidean ball, Euclidean ball)
pair, which corresponds to an L2/L2 constraint. In the former case this results in the first computa-
tionally efficient algorithm with a regret of order d

√
n, while in the latter case it is the first efficient

algorithm with a regret of order
√
dn log n. Indeed, the approach of Abernethy et al. (2008) only

gives d
√
n log n for the pair (Euclidean ball, Euclidean ball) since there exists a O(1)-self concor-

dant barrier for the Euclidean ball. Note also that this specific example was studied in Abernethy
and Rakhlin (2009), we discuss their result in Section 5.

1.2. Outline of the paper

The paper is organized as follows. In Section 2 we introduce the two algorithms discussed in the
paper: Expanded Exp (EXP2) and Online Stochastic Mirror Descent (OSMD). In both cases we state
a general regret bound. In Section 3 we detail our exploration strategy for EXP2, and show the cor-
responding regret bound. We also discuss briefly the extension to linear bandits with expert advice.
Then in Section 4 (respectively Section 5) we show how to use OSMD to obtain a computationally
efficient strategy with optimal regret for the hypercube (respectively for the Euclidean ball, up to a
logarithmic factor).

2. Algorithms

We briefly describe here the two algorithmic templates that we shall use in this paper. First, EXP2
is described in Figure 1. The general regret bound for this algorithm is the following. The proof of
this result follows a standard argument, see for example [Chapter 7, Bubeck (2011)].

Theorem 1 Let A be a finite set of N actions. For the EXP2 strategy, provided that η|a>z̃t| ≤
1,∀a ∈ A, one has

Rn ≤ 2γn+
logN

η
+ η E

n∑
t=1

∑
a∈A

pt(a)
(
a>z̃t

)2
.

Figure 2 describes OSMD in the bandit setting. Note that step (c) can be written in several equivalent
ways, such as a Follow The Regularized Leader equation, or a mirror gradient descent step if F is
a Legendre function. When written as a gradient descent step, one usually has to project back on
A (using the Bregman divergence associated to F ). Here the projection is implicit in the evaluation
of ∇F ∗. The following theorem states a general regret bound for OSMD. Recall that the Bregman
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Algorithm: EXP2 with exploration µ.
Parameters: learning rate η; mixing coefficient γ; distribution µ over the action set A.

Let q1 =
(

1
|A| , . . . ,

1
|A|
)
∈ R|A|. For each round t = 1, 2, . . . , n;

(a) Let pt = (1− γ)qt + γµ, and play at ∼ pt.

(b) Estimate the loss vector zt by z̃t = P+
t ata

>
t zt, with Pt = Ea∼pt

[
aa>

]
.

(c) Update the exponential weights, for all a ∈ A,

qt+1(a) =
exp(−ηa>z̃t)qt(a)∑
b∈A exp(−ηb>z̃t)qt(b)

.

Figure 1: EXP2 strategy for bandit feedback.

Algorithm: OSMD.
Parameters: learning rate η > 0; regularization function F : Rd → R ∪ {+∞} with effective
domain A, and such that the Legendre-Fenchel dual F ∗ is differentiable on Rd; perturbation
scheme for step (a) below.

Let a1 ∈ argmina∈A F (a). For each round t = 1, 2, . . . , n;

(a) Play ãt at random from some probability distribution pt over A
(ãt is a randomly perturbated version of at, see Section 4 and Section 5 for examples).

(b) Estimate the loss vector zt by z̃t = P+
t ãtã

>
t zt, with Pt = Ea∼pt

[
aa>

]
.

(c) Let at+1 = ∇F ∗
(
−η
∑t

s=1 z̃s
)
.

Figure 2: Online Stochastic Mirror Descent (OSMD) for bandit feedback.

divergence with respect to F is defined as DF (x, y) = F (x) − F (y) − (x − y)>∇F (y), and the
Legendre-Fenchel dual of F is defined as F ∗(v) = supx∈A x

>v−F (x). In the following, we write
xt1 to denote x1 + · · ·+ xt.

Theorem 2 Let A be a compact set of actions, and F a function with effective domain A, and such
that F ∗ is differentiable on Rd. Then OSMD satisfies (for any norm ‖ · ‖)

Rn ≤
supa∈A F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF ∗
(
−ηz̃t1,−ηz̃t−11

)
+

n∑
t=1

E
∥∥at − E[ãt | at]

∥∥ · ‖zt‖∗ .
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Proof The proof is adapted from Kakade et al. (2010). Using the elementary Young’s inequality
x>v ≤ F ∗(v) + F (x), one obtains ∀a ∈ A

−η
n∑
t=1

a>z̃t ≤ F (a) + F ∗ (−ηz̃n1 )

= F (a) + F ∗(0) +

n∑
t=1

(
F ∗
(
−ηz̃t1

)
− F ∗

(
−ηz̃t−11

))
= F (a) + F ∗(0) +

n∑
t=1

(
∇F ∗

(
−ηz̃t−11

)>
(−ηz̃t) +DF ∗

(
−ηz̃t1,−ηz̃t−11

))
= F (a) + F ∗(0) +

n∑
t=1

(
−ηa>t z̃t +DF ∗

(
−ηz̃t1,−ηz̃t−11

))
since F ∗(0) = −F (a1). This shows that:

n∑
t=1

(at − a)>z̃t ≤
F (a)− F (a1)

η
+

1

η

n∑
t=1

DF ∗
(
−ηz̃t1,−ηz̃t−11

)
.

Taking into account the randomness induced by ãt and z̃t is then an easy exercise, see for example
(Bubeck, 2011, Chapter 7).

This theorem proves to be particularly useful when applied with a Legendre function F —see (Cesa-
Bianchi and Lugosi, 2006, Chapter 11) for the definition of a Legendre function. Indeed, in that case
F ∗ is differentiable if F is differentiable, and moreover the corresponding gradient mappings are
inverse of each other, which gives a simple way to do computations with the Bregman divergence
DF ∗ .

3. EXP2 with John’s exploration

We propose here a new exploration distribution µ for the EXP2 strategy, that allows us to derive
the first

√
dn logN regret bound for online linear optimization with bandit feedback. We use the

following result from convex geometry, see (Ball, 1997) for a proof.

Theorem 3 Let K ⊂ Rd be a convex set. If the ellipsoid E of minimal volume enclosing K is the
unit ball in some norm derived from a scalar product 〈·, ·〉, then there exists M ≤ d(d + 1)/2 + 1
contact points u1, . . . , uM between E and K, and µ ∈ ∆M (the simplex of dimension M − 1), such
that

x = d

M∑
i=1

µi〈x, ui〉ui,∀x ∈ Rd.

To use this theorem, we need to perform a preprocessing of the action set as follows:

1. First, we assume that A is of full rank (that is such that linear combinations of A span Rd).
If it is not the case, then one can rewrite the elements of A in some lower dimensional vector
space and work there.
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2. Find John’s ellipsoid forConv(A) —i.e., the ellipsoid of minimal volume enclosingConv(A):
E = {x ∈ Rd : (x − x0)>H−1(x − x0) ≤ 1}. The first preprocessing step is to translate
everything by x0. In other words, we assume now that A is such that x0 = 0. Furthermore,
we define the inner product 〈x, y〉 = x>Hy.

3. We can now assume that we are playing on A′ = H−1A, and the loss of playing a′ ∈ A′
when the adversary plays z is 〈a′, z〉. Indeed: 〈H−1a, z〉 = a>z. Moreover, note that John’s
ellipsoid for Conv(A′) is the unit ball for the inner product 〈·, ·〉 because 〈H−1x,H−1x〉 =
x>H−1x.

4. Find the contact points u1, . . . , uM and µ ∈ ∆M that satisfy Theorem 3 for Conv(A′). Note
that the contact points are in A′, thus they are valid points to play. We say that µ is John’s
exploration distribution.

In the following we drop the prime on A′. More precisely. we play on a set A such that John’s
ellipsoid for Conv(A) is the unit ball for some inner product 〈·, ·〉, and the loss is given by 〈a, z〉.
Thus, we also need to slightly change the algorithm by replacing the dot products a>z̃t and b>z̃t in
step (c) of Figure 1 by, respectively, 〈a, z̃t〉 and 〈b, z̃t〉. We also need to modify the loss estimate in
step (b) as follows. Recall that the outer product u⊗ u is defined as the linear mapping from Rd to
Rd such that u⊗ u(x) = 〈u, x〉u. Note that one can also view u⊗ u as a d× d matrix, so that the
evaluation of u⊗ u is equivalent to a multiplication by the corresponding matrix. Now let:

Pt =
∑
a∈A

pt(a)a⊗ a.

Note that this matrix is invertible, since A is of full rank and pt(a) > 0, ∀a ∈ A. The estimate for
zt is given by:

z̃t = P−1t (at ⊗ at) zt. (1)

Note that this is a valid estimate since (at ⊗ at) zt = 〈at, zt〉at and P−1t are observed quantities.
Moreover, it is also clearly an unbiased estimate. We can now prove the following result.

Theorem 4 EXP2 with John’s exploration and estimate (1) satisfies, for ηd
γ ≤ 1,

Rn ≤ 2γn+
logN

η
+ ηnd.

In particular with γ = ηd and η =
√

logN
3nd we have that

Rn ≤ 2
√

3nd logN.

Proof With the chosen scalar product, it is easy to see that the condition η|a>z̃t| ≤ 1 in Theorem 1
rewrites as η|〈a, z̃t〉| ≤ 1, while the third term in the regret bound rewrites as E

∑
a∈A pt(a)〈a, z̃t〉2.

Thus it remains to control those two quantities. Let us start with the latter:∑
a∈A

pt(a)〈a, z̃t〉2 =
∑
a∈A

pt(a)〈z̃t, (a⊗ a)z̃t〉

= 〈z̃t, Ptz̃t〉 = 〈at, zt〉2〈P−1t at, PtP
−1
t at〉 ≤ 〈P−1t at, at〉.
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Now we use a spectral decomposition of Pt in an orthonormal basis for 〈·, ·〉 and write Pt =∑d
i=1 λivi ⊗ vi. In particular, we have P−1t =

∑d
i=1

1
λi
vi ⊗ vi and thus:

E〈P−1t at, at〉 =
d∑
i=1

1

λi
E〈(vi ⊗ vi)at, at〉 =

d∑
i=1

1

λi
E〈(at ⊗ at)vi, vi〉 =

d∑
i=1

1

λi
〈Ptvi, vi〉 = d.

This concludes the bound for E
∑

a∈A pt(a)〈a, z̃t〉2. We turn now to 〈a, z̃t〉:

〈a, z̃t〉 = 〈at, zt〉〈a, P−1t at〉 ≤ 〈a, P−1t at〉 ≤
1

min1≤i≤d λi

where the last inequality follows from the fact that 〈a, a〉 ≤ 1 for any a ∈ A, since A is included
in the unit ball. Now to conclude the proof we need to lower bound the smallest eigenvalue of Pt.
Using Theorem 3, one can see that Pt � γ

dId, and thus λi ≥ γ
d concluding the proof.

Using the discretization argument of Dani et al. (2008), EXP2 with John’s exploration can be used
to obtain a regret of order d

√
n log n for any compact set of action A.

3.1. Computational issues

If A is given by a finite set of points, then Grötschel et al. (1993) give a polynomial time algorithm
for computing a constant factor approximation to the John’s ellipsoid (and this approximate basis
will provide the same order of regret). However, if A is specified by the intersection of half spaces,
then Nemirovski (2007) shows that obtaining such a constant factor approximation to this ellipsoid
is NP-hard in general. Here, it is possible to efficiently compute an ellipsoid where the factor of
d in Theorem 3 is replaced by d3/2 —see (Grötschel et al., 1993), which leads to a slightly worse
dependence on d in the regret bound.

In special cases, we conjecture that the John’s ellipsoid may be computed efficiently, as for
certain problems, there are efficient implementations of GeometricHedge that lead to optimal rates
(such as shortest path problems and other settings where dynamic programming solutions exist).

3.2. Application to bandits with experts

Consider the following model of linear bandits with N experts. At each time step t = 1, 2, . . . , n,
each expert k = 1, . . . , N suggests an action at(k) ∈ Rd. The goal here is to compete with the best
expert, that is at each time step the strategy chooses an expert kt ∈ {1, . . . , N} and the regret is
given by:

Rexp
n = E

n∑
t=1

at(kt)
>zt − min

k∈{1,...,N}
E

n∑
t=1

at(k)>zt.

One can use EXP2 with John’s exploration to obtain a regret of order
√
dn logN for this problem.

Indeed, it suffices at every turn to do the preprocessing step on At = {at(1), . . . , at(N)} and to
build the corresponding John’s exploration µt, the straightforward details are omitted.

For example, at each time t each expert i = 1, . . . , N is associated with a hidden loss estimate
zt(i) ∈ Z and an arbitrary “context set” At ⊆ A is observed. Each expert i then suggests the best
action according to the current loss estimate, at(i) = argmina∈At

zt(i)
>a . This can be viewed as

a natural nonstochastic variant of the contextual linear bandit model of Chu et al. (2011). Another
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notable special case is the d-armed bandit problem with expert advice, where we can view the
suggested actions as the corners of the d-dimensional simplex. Here, the EXP4 algorithm of Auer
et al. (2002) achieves a regret of order

√
dn lnN . Interestingly, the regret achievable in the more

general d-dimensional linear optimization setting is no worse than in the seemingly simpler d-armed
bandit with expert advice setting.

4. Computationally efficient strategy for the hypercube

In this section we restrict our attention to the action set A = {x ∈ Rd : ‖x‖∞ ≤ 1}. Using EXP2
with John’s exploration on {−1, 1}d one obtains a regret bound of order d

√
n for this problem, and

as it was shown by Dani et al. (2008) this regret is minimax optimal. However, it is not known
if it is possible to sample from the exponential weights distribution in polynomial time for this
particular set of actions. In this section we propose to turn to OSMD, and we show that with the
appropriate regularizer F and random perturbation ãt (see step (a) in Figure 2), one can obtain a
minimax optimal algorithm with computational complexity linear in d. More precisely we use an
entropic regularizer

F (x) =
1

2

d∑
i=1

(
(1 + xi) log(1 + xi) + (1− xi) log(1− xi)

)
(2)

together with the following perturbation of a point at in the interior of A:

With probability γ, play ãt uniformly at random from the canonical basis (with random
sign). With probability 1− γ, play ãt = ξt where ξt(i) is drawn independently from a
Rademacher with parameter 1+at(i)

2 .

It is easy to check that this perturbation is almost unbiased, indeed one has:

E ãt(i) = (1− γ)

(
1 + at(i)

2
− 1− at(i)

2

)
= (1− γ)at(i),

and thus: ∥∥E[ãt | at]− at
∥∥
∞ ≤ γ. (3)

We can now prove the following result.

Theorem 5 Consider the online linear optimization problem with bandit feedback on A = {x ∈
Rd : ‖x‖∞ ≤ 1}, and with Z = {x ∈ Rd : ‖x‖1 ≤ 1}. Then OSMD on A with regularizer (2)
satisfies, for any η and γ ∈ (0, 1) such that ηdγ ≤

1
2 ,

Rn ≤ γn+
d log 2

η
+ η

n∑
t=1

d∑
i=1

E
[(

1− at(i)2
)
z̃t(i)

2
]
. (4)

In particular, with γ = 2d
√

log 2
3n and η =

√
log 2
3n ,

Rn ≤ 2d
√

3n log 2. (5)

41.8



TOWARDS MINIMAX POLICIES FOR ONLINE LINEAR OPTIMIZATION WITH BANDIT FEEDBACK

Remark that the regularizer (2) used here is in the class of Legendre functions with exchangeable
Hessian. More precisely, following Audibert et al. (2011), (2) can be written (up to a numerical
constant) as

F (x) =

d∑
i=1

∫ xi

−1
tanh−1(s)ds .

This type of regularizer was first studied (implicitely) by Audibert and Bubeck (2009) and Audibert
and Bubeck (2010).
Proof Since F is Legendre on A, F ∗ is differentiable on Rd and the gradient mapping of F ∗ is the
inverse of the gradient mapping of F . Therefore, (∇F ∗)i = tanh because (∇F )i = tanh−1. Then,
thanks to (3) and Theorem 2, the regret can be bounded as:

γn+
supa∈A F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF ∗
(
−ηz̃t1,−ηz̃t−11

)
.

For the first term it is easy to see that F (a)− F (a1) ≤ d log 2. For the term involving the Bregman
divergence, using elementary computations one obtains

DF ∗(u, v) =

d∑
i=1

(
log

cosh(ui)

cosh(vi)
− tanh(vi)(ui − vi)

)
.

To prove (4) we need to show that DF ∗(u, v) ≤
∑d

i=1

(
1− tanh2(vi)

)
(ui − vi)2. In fact, we prove

that this inequality is true as soon as ‖u − v‖∞ ≤ 1
2 . The fact that the property is satisfied for the

pair (u, v) =
(
−ηz̃t1,−ηz̃

t−1
1

)
under consideration is established at the very end of the proof.

Using a basic hyperbolic identity, and the elementary inequalities exp(x) ≤ 1 + x + x2,∀x :
|x| ≤ 1 and log(1 + x) ≤ x, one obtains

log

(
cosh(ui)

cosh(vi)

)
− tanh(vi)(ui − vi)

= log

(
cosh(vi) cosh(ui − vi) + sinh(vi) sinh(ui − vi)

cosh(vi)

)
− tanh(vi)(ui − vi)

= log

(
cosh(ui − vi) + tanh(vi) sinh(ui − vi)

)
− tanh(vi)(ui − vi)

= log

(
1 + tanh(vi)

2
exp(ui − vi) +

1− tanh(vi)

2
exp(−(ui − vi))

)
− log exp

(
tanh(vi)(ui − vi)

)
= log

(
1 + tanh(vi)

2
exp

(
(1− tanh(vi))(ui − vi)

)
+

1− tanh(vi)

2
exp

(
− (1 + tanh(vi))(ui − vi)

))
≤ log

(
1 + (1− tanh2(vi))(ui − vi)2

)
≤ (1− tanh2(vi))(ui − vi)2
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which concludes the proof of (4). Now for the proof of (5) we first compute the matrix Pt:

E ãtã>t =
γ

d
Id + (1− γ)

d∑
i,j=1

E ξt(i)ξt(j) eie>j

=
γ

d
Id + (1− γ)Id + (1− γ)

∑
i6=j

E ξt(i)ξt(j) eie>j

=
γ

d
Id + (1− γ)Id + (1− γ)

∑
i6=j

at(i)at(j) eie
>
j

=
γ

d
Id + (1− γ)ata

>
t + (1− γ)

d∑
i=1

(
1− at(i)2

)
eie
>
i .

To obtain (5) first note that (1−γ)
∑d

i=1 E
[
(1−at(i)2)z̃t(i)2

]
≤ E z̃>t Ptz̃t. Now we use a spectral

decomposition of Pt in an orthonormal basis and write: Pt =
∑d

i=1 λiviv
>
i . In particular we have

P−1t =
∑d

i=1
1
λi
viv
>
i and thus:

E ã>t P−1t ãt =

d∑
i=1

1

λi
E ã>t viv>i ãt =

d∑
i=1

1

λi
v>i Ptvi =

d∑
i=1

1

λi
λiv
>
i vi = d.

To conclude the proof it remains now to show that η||z̃t||∞ ≤ 1
2 . First note that the smallest eigen-

value of Pt is larger than γ/d, and thus:

η|z̃t(i)| = η
∣∣e>i P−1t ãtã

>
t zt
∣∣ ≤ η∣∣e>i P−1t ãt

∣∣ ≤ ηd

γ
≤ 1

2

where the penultimate inequality follows from |e>i ãt| ≤ 1 and the last inequality follows from the
assumption on η and γ.

5. Improved regret for the Euclidean ball

In this section we restrict our attention to the action setA = {x ∈ Rd : ‖x‖ ≤ 1}, where ‖·‖ denotes
the Euclidean norm. Using EXP2 with John’s exploration on a discretization of the Euclidean ball
one obtains a regret bound of order d

√
n log n for this problem. A similar regret bound can be

obtained with a computationally efficient algorithm, using the technique developed by Abernethy
et al. (2008). Here we show that in fact one can attain efficiently a regret of order

√
dn log n using

OSMD with the approriate regularizer F and random perturbation ãt. More precisely here we use
F (x) = − log(1− ‖x‖)− ‖x‖ (the motivation for this particular regularizer comes from the proof,
see below). Moreover we perform the following perturbation of a point at in the interior of A:

Let ξt be a Bernoulli of parameter ‖at‖, let It be drawn uniformly at random in {1, . . . , d},
and let εt be Rademacher with parameter 1

2 . If ξt = 1, then play ãt = at/‖at‖, else
play ãt = εteIt .
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TOWARDS MINIMAX POLICIES FOR ONLINE LINEAR OPTIMIZATION WITH BANDIT FEEDBACK

It is easy to check that this perturbation is unbiased, in the sense that E
[
ãt | at

]
= at. Here we

modify the estimate of step (b) in Figure 2, and instead we use:

z̃t = (1− ξt)
d

1− ‖at‖
(z>t ãt)ãt. (6)

It is easy to check that this estimator satisfies the same key unbiasedness property than the one in
step (b) in Figure 2, that is E

[
z̃t | at

]
= zt.

Note that the problem studied in this section was also specifically considered in Abernethy
and Rakhlin (2009), with an emphasis on high probability bounds. In this paper the authors used
the self-concordant barrier F (x) = − log(1 − ‖x‖2) with a similar perturbation scheme to the
one proposed above. They obtain suboptimal rates, but a more careful analysis (precisely slightly
modifying Section V.B., step (E)) can actually yield the same rate as the one we obtain. The strength
of our approach is that it is in a sense more elementary (e.g., we do not require any results from the
Interior Point Methods literature), but on the other hand the result of Abernethy and Rakhlin (2009)
holds with high probability (though it is not clear if it possible to get the rate

√
dn log n with high

probability).

Theorem 6 Consider the online linear optimization problem with bandit feedback on A = {x ∈
Rd : ‖x‖ ≤ 1}, and with Z = {x ∈ Rd : ‖x‖ ≤ 1}. Then OSMD on A′ = {x ∈ Rd : ‖x‖ ≤ 1− γ}
with the estimate (6), and F (x) = − log(1− ‖x‖)− ‖x‖ satisfies, for any η such that ηd ≤ 1

2 ,

Rn ≤ γn+
log γ−1

η
+ η

n∑
t=1

E
[(

1− ‖at‖
)
‖z̃t‖2

]
. (7)

In particular, with γ = 1√
n

and η =
√

logn
2nd ,

Rn ≤ 3
√
dn log n. (8)

Proof First, it is clear that by playing on A′ instead of A, one incurs an extra γn regret. Second,
note that F is strictly convex (it is the composition of a convex and nondecreasing function with the
Euclidean norm), differentiable, and

∇F (x) =
x

1− ‖x‖
. (9)

In particular F is Legendre on A = {x ∈ Rd : ‖x‖ ≤ 1}, and thus F ∗ is differentiable on Rd. Now
the regret with respect to A′ can be bounded as follows, thanks to Theorem 2,

supa∈A′ F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF ∗

(
∇F (at)− ηz̃t,∇F (at)

)
.

The first term is clearly bounded by 1
η log 1

γ (we use the fact that a1 = 0). For the second term we
need to do a few computations (the first one follows from (9) and the fact that F is Legendre):

∇F ∗(u) =
u

1 + ‖u‖
,

F ∗(u) = − log(1 + ‖u‖) + ‖u‖,

DF ∗(u, v) =
1

1 + ‖v‖

(
‖u‖ − ‖v‖+ ‖u‖ · ‖v‖ − v>u− (1 + ‖v‖) log

(
1 +
‖u‖ − ‖v‖
1 + ‖v‖

))
.
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Let Θ(u, v) such that DF ∗(u, v) = 1
1+‖v‖Θ(u, v). First note that

1

1 + ‖∇F (at)‖
= 1− ‖at‖ . (10)

Thus, in order to prove (7) it remains to show that Θ(u, v) ≤ ‖u−v‖2, for (u, v) =
(
−ηz̃t1,−ηz̃

t−1
1

)
.

In fact we shall prove that this inequality holds true as soon as ‖u‖−‖v‖1+‖v‖ ≥ −
1
2 . This is the case for

the pair (u, v) under consideration, since by the triangle inequality, equations (6) and (10), and the
assumption on η:

‖u‖ − ‖v‖
1 + ‖v‖

≥ − η‖z̃t‖
1 + ‖v‖

≥ −ηd ≥ −1

2
.

Now using that log(1 + x) ≥ x− x2, ∀x ≥ −1
2 , we obtain that for u, v such that ‖u‖−‖v‖1+‖v‖ ≥ −

1
2 ,

Θ(u, v) ≤ (‖u‖ − ‖v‖)2

1 + ‖v‖
+ ‖u‖ · ‖v‖ − v>u

≤ (‖u‖ − ‖v‖)2 + ‖u‖ · ‖v‖ − v>u
= ‖u‖2 + ‖v‖2 − ‖u‖ · ‖v‖ − v>u
= ‖u− v‖2 + 2v>u− ‖u‖ · ‖v‖ − v>u
≤ ‖u− v‖2

which concludes the proof of (7). Now for the proof of (8) it suffices to note that:

E
[(

1− ‖at‖
)
‖z̃t‖2

]
= (1− ‖at‖)

d∑
i=1

1− ‖at‖
d

d2

(1− ‖at‖)2
(z>t ei)

2 = d‖zt‖2 ≤ d

along with straightforward computations.
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