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Abstract
Despite being the go-to choice for link prediction on knowledge graphs, research
on interpretability of knowledge graph embeddings (KGE) has been relatively
unexplored. We present KGEx, a novel post-hoc method that explains individual
link predictions by drawing inspiration from surrogate models research. Given a
target triple to predict, KGEx trains surrogate KGE models that we use to identify
important training triples. To gauge the impact of a training triple, we sample
random portions of the target triple neighborhood and we train multiple surrogate
KGE models on each of them. To ensure faithfulness, each surrogate is trained
by distilling knowledge from the original KGE model. We then assess how well
surrogates predict the target triple being explained, the intuition being that those
leading to faithful predictions have been trained on “impactful” neighborhood
samples. Under this assumption, we then harvest triples that appear frequently
across impactful neighborhoods. We conduct extensive experiments on two
publicly available datasets, to demonstrate that KGEx is capable of providing
explanations faithful to the black-box model.

1 Introduction

Knowledge graphs are knowledge bases whose facts are labeled, directed edges between entities.
Research led to broad-scope graphs like DBpedia [2], WordNet, and YAGO [22]. Countless domain-
specific knowledge graphs have also been published on the web, from bioinformatics to retail [10].

Knowledge graph embeddings (KGE) are a family of graph representation learning methods that
learn vector representations of nodes and edges of a knowledge graph. They are widely used in graph
completion, knowledge discovery, entity resolution, and link-based clustering [20].

Despite achieving excellent trade-off between predictive power and scalability, these neural archi-
tectures suffer from poor human interpretability, to the detriment of user trust, troubleshooting, and
compliance.

Previous work in knowledge graph representation learning aims at designing natively interpretable
KGE models or generating post-hoc explanations for existing knowledge graph embedding models.
Nevertheless, the field is still in its infancy and recently proposed explanation methods do not scale
beyond toy datasets or do not provide thorough empirical evidence of being faithful to the KGE
model being explained.

In this work, we propose KGEx, a post-hoc, local explanation sub-system for KGE models (Figure 1).
KGEx works with any existing KGE model proposed in literature: given a target triple predicted
with a KGE model, we return an explanation in the form of a ranked list of relevant triples from the
training set. We use a combination of subgraph sampling and knowledge distillation that we refine
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Figure 1: Overview of the proposed framework. Given a pre-trained KGE model and a target triple,
KGEx outputs an explanation for the prediction in the format of a list of ranked triples.

with Monte Carlo sampling. Our experiments show that KGEx provides faithful explanations that
can be used beyond toy knowledge graphs.

2 Related Work

Knowledge Graph Embeddings. Knowledge graph embedding models (KGE) are neural architec-
tures designed to predict missing links between entities. TransE [5] is the forerunner of distance-based
KGE models, and inspired a number of models commonly referred to as TransX. The symmetric
bilinear-diagonal model DistMult [26] paved the way for its asymmetric evolutions in the complex
space, ComplEx [25] and RotatE [23]. Some models such as RESCAL [19], TuckER [3], and
SimplE [13] rely on different tensor decomposition techniques. Models such as ConvE [7] or Con-
vKB [18] leverage convolutional layers. Attention is used by [17]. The recent NodePiece uses an
anchor-based approach to map entities and relations to a fixed-sized, memory-efficient vocabulary [8].
Recent surveys provide a good coverage of the landscape [4].

Explanations for KGEs. Recent studies address the problem of making KGE architectures more
interpretable. MINERVA [6], NeuralLP [27], CTPs [15] integrate rule-based systems to deliver
natively interpretable link prediction methods. Although promising, these works do not scale beyond
toy datasets. Other works consist instead of post-hoc approaches (they operate on black-box, pre-
trained KGE models) and are local methods, i.e. they explain the prediction of a single instance
(i.e. a single missing link between two entities). Gradient Rollback [14] returns a ranked list of
influential triples for a target prediction. Such list is computed by storing gradient updates during
training, to the detriment of memory footprint and training time overhead. OXKBC creates post-hoc
explanations by leveraging entity and path similarities [16]. Earlier work identifies training triples
that, when removed, decrease the predicted probability score. ExplainE is grounded on counterfactual
explanations and operates on toy knowledge graphs and low-dimensional embeddings [12]. [29]
instead randomly perturbs the neighborhood of the target triple, but its design rationale is geared
towards adversarial attacks rather than explainability. We consider methods explaining Graph Neural
Networks (GNNs), such as [11, 28], to be outside the scope of our work as GNNs and KGEs are
different families of architectures, designed to learn on different tasks and data structures. For
example, GNNExplainer [28] is not designed for multi-relational graphs, and identifies influential
portions of a GNN computation graph and node features - components absent in a KGE architecture.
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3 Preliminaries
Knowledge Graph. A knowledge graph G = {(s, p, o)} ⊆ E×R×E is a set of triples t = (s, p, o)
each including a subject s ∈ E , a predicate p ∈ R, and an object o ∈ E . E andR are the sets of all
entities and relation types of G.

Knowledge Graph Embedding Models. KGE encode both entities E and relations R into low-
dimensional, continuous vectors ∈ Rk (i.e, the embeddings). Embeddings are learned by training
a neural architecture over a training knowledge graph G: an input layer feeds training triples, and
a scoring layer f(t) assigns plausibility scores to each triple. f(t) is designed to assign high
scores to positive triples and low scores to negative corruptions. Corruptions are synthetic negative
triples generated by a corruption generation layer: we define a corruption of t as t− = (s, p, o′) or
t− = (s′, p, o) where s′, o′ are respectively subject or object corruptions, i.e. other entities randomly
selected from E [5]. Finally, a loss layer LKGE optimizes the embeddings by learning optimal
embeddings, such that at inference time the scoring function f(t) assigns high scores to triples likely
to be correct and low scores to triples unlikely to be true.

Link Prediction. The task of predicting unseen triples in knowledge graphs is formalized in literature
as a learning to rank problem, where the objective is learning a scoring function f(t = (s, p, o)) :
E × R × E → R that given an input triple t = (s, p, o) assigns a score f(t) ∈ R proportional to
the likelihood that the fact t is true. Such predictions are ranked against predictions from synthetic
corruptions, to gauge how well the model tells positives from negatives.

Knowledge Distillation (KD). This method has been introduced to alleviate computational costs
and allow knowledge to be transferred from large, complex models (teacher) to smaller, compact
ones (student) [9]. Let X be the input data distribution, with xi ∼ X distinct samples drawn from
that distribution. For brevity, we denote teacher and student representations as gT,i = gT (xi) and
gS,i = gS(xi), respectively. Conventional KD can take up the the form of Eq. 1:

LKD =
∑
xi∼X

l(gT,i,gS,i), (1)

where l is a loss function such as the Kullback-Leibler divergence, which tries to match the represen-
tations of teacher and student for an individual sample xi.

Relational KD’s (RKD) [21] purpose is to transfer the relationship between individual samples from
the teacher to the student, as described in Eq. 2:

LRKD =
∑

(xi,...,xn)∼X

lδ(φ(gT,i, ...,gT,n), φ(gS,i, ...,gS,n)), (2)

where φ is a relational potential function and lδ is the Huber loss, which is defined in Eq. 3:

lδ(a, b) =

{
1
2 (a− b)

2 for | a− b |≤ 1,

| a− b | − 1
2 , otherwise.

(3)

A particular case of relational potential function is the angle-wise relational potential φA, which can
be applied on a triple of samples and is defined as in Eq. 4:

φA(gT,i,gT,j ,gT,k) = 〈dij ,djk〉, (4)

where dij =
gT,i−gT,j

‖gT,i−gT,j‖2 , djk =
gT,j−gT,k

‖gT,j−gT,k‖2 and 〈·,·〉 is the dot product.

4 Methods
Given a pre-trained black-box KGE model and the prediction for an unseen target triple, we generate
an explanation for such prediction in the form of a list of training triples ranked by their ‘influence’
on the prediction. Such explanation is generated by KGEx, our proposed explanation subsystem,
which consists of three components. The first step samples a subgraphH from the original knowledge
graph G in order to limit the search space for possible explanations (section 4.1). To increase the
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faithfulness of the surrogate model, in the second step we utilize KD to train a new KGE model on
the subgraph, while the black-box KGE model we are explaining plays the role of the teacher (section
4.2). Finally, we repeat the second step through a Monte Carlo (MC) process. This is done to rank
the triples in the subgraph according to their contribution to the prediction (section 4.3).

4.1 Subgraph sampling

Algorithm 1 Subgraph sampling w/ Predicate Neighborhood

1: Input: target triple (s∗, p∗, o∗), number of predicate neighbors n
2: Output: SubgraphH
3: H ← ∅
4: NG(s∗) = {(s, p, o) ∈ G|s = s∗ ∨ o = s∗}
5: NG(o∗) = {(s, p, o) ∈ G|s = o∗ ∨ o = o∗}
6: NG(s∗, o∗) = NG(s

∗) ∪NG(o∗) . 1-hop neighborhood of s∗, o∗
7: H = H ∪NG(s∗, o∗)
8: PG(p∗) = {(s, p, o) ∈ G|p = p∗} . Triples involving p∗
9: for i← 0 to n− 1 do

10: Sample a triple (ŝ, p∗, ô) ∼ PG(p∗)
11: Get the 1-hop neighborhood NG(ŝ, ô)
12: H = H ∪NG(ŝ, ô)

Our motivation stems from the explainable AI subfield of surrogate models [1]. Concretely, the idea
behind surrogate models is to convert a “black-box” model gT into a more interpretable “white-model”
gS . The main challenge when trying to design a surrogate model for a KGE model is that KGEs are
transductive models and therefore have no inference capabilities, i.e. given a triple t that contains an
- unseen during training - entity, there is no function gT , so that we can infer an output y = gT (t).
Given this limitation we cannot replace gT with an interpretable gS , directly. However, we can find a
subgraph that will allow us to train such a surrogate model.

We formulate this task as finding the smallest subgraphH ⊂ G, which if used to train a KGE model
gS will give a latent space representation to the target triple that is as close as possible to the one
assigned by the black-box KGE model gT , which was trained on the whole knowledge graph G.
While searching forH, we are facing a trade-off related to the subgraph size: a larger size promotes
fidelity (i.e. faithfulness to the original model), while a smaller size reduces cognitive load and
therefore favors interpretability.

The search for the subgraphH of particular target triple t∗ = (s∗, p∗, o∗) can be broken down to two
parts. The first part involves retaining the 1-hop neighborhood NG(s∗, o∗) of the subject s∗ and the
object o∗ of t∗. Using the case depicted in Fig. 1, NG(Guy Ritchie, Film Director) would include all
triples involving either Guy Ritchie or Film Director. These are the triples that are in the vicinity of
the entities of the target triple and therefore will likely play an important role in the representation
that the KGE will learn for these entities. As such, the fact that (Guy Ritchie, director, Sherlock
Holmes) is important in explaining (Guy Ritchie, profession, Film Director). If we were to retain only
this 1-hop neighborhood, we would not be able to incorporate information on any long-range (in
terms of hops in the graph) information that might be pivotal for the latent representation of the target
triple. Additionally, the 1-hop neighborhood of the subject and the object does not take explicitly into
account the predicate p∗ of t∗, which could lead to not learning a meaningful representation for p∗.
In the running example, the fact (Madonna, profession, Film Producer) might seem irrelevant at first
sight and would not be part of NG(Guy Ritchie, Film Director). However, combined with the fact that
(Guy Ritchie, married, Madonna) could again lead to the target triple being predicted as positive. In
the second part, to alleviate the issues above, we propose two alternatives:

• Random Walk (RW) Sampling Apart from the 1-hop neighborhood, we also add a naive
random walk of predefined size measured in numbers of steps, which starts from the target triple
(see Algorithm 2 in Appendix A).

• Predicate Neighborhood (PN) Sampling To ensure that the predicate p∗ of t∗ is part of the
subgraph we randomly sample from G a predefined number n of triples t∗ = (ŝ, p∗, ô), which
have the same predicate p∗, and include these along with their own 1-hop neighborhoods
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Figure 2: A KGE model architecture incorporating the adapted Relational Knowledge Distillation
(RKD-KGE).

NG(ŝ, ô) in the subgraph (Algorithm 1). In our example, that would entail sampling triples that
involved the predicate profession.

4.2 Knowledge Distillation

After sampling the subgraph, we train a KGE model gS on that. We need to ensure that this model
is a faithful surrogate to the black-box model whose predictions we are trying to explain, through
some sort of constraint. For this reason, we propose the use of KD as a way to allow the original
model to drive the learning process of the surrogate model. Thus, in KD terms, the black-box model
plays the role of the teacher, while the surrogate model that of the student, with functions gT and
gS , respectively. The relational aspect of RKD makes it a natural fit for KGEs. Nevertheless, it is
important to note that RKD is applied on individual samples. In mini-batch training, for instance, it
will be applied on every possible combination of the samples that constitute the mini-batch. In KGEs,
however, the relational aspect between the embeddings is inherent. Given that the training samples
are in the form of triples (s, p, o) ∈ G, the KGE loss is already affecting their embeddings (s,p,o)
in a relational manner. To accommodate the training of the KGE we adapt the RKD loss, so that it is
applied only among the entities and the relation of a particular triple at a time, instead of randomly
selected samples. We term this adaptation LRKD−KGE and it takes the following form (Eq. 5):

LRKD−KGE =
∑

(s,p,o)∈G

lδ(φA(sT ,pT ,oT ), φA(sS ,pS ,oS))

+ lδ(φA(pT ,oT , sT ), φA(pS ,oS , sS))

+ lδ(φA(oT , sT ,pT ), φA(oS , sS ,pS)) (5)

The overall loss of the architecture can then be defined as in Eq. 6, with the RKD-KGE part acting as
a regularization on the exact embeddings that the KGE part is affecting:

L = LKGE + λLRKD−KGE (6)

It is important to remind here that the teacher model is pre-trained and its weights are not updated.
Instead the teacher representations are only utilized to aid the training of the student. An overview of
the student’s training procedure can be found in Fig. 2.

4.3 Monte Carlo process

The explanation produced by KGEx is a list of the triples included in the subgraph, ranked by their
contribution to the prediction of the target triple. To generate this list, for each target triple that
we want to explain and given a pre-trained KGE model (teacher), we train multiple KGE models
(students) with the loss defined in Eq. 6. Each of the students is trained on a subsetHmc ⊂ H and
assigns a rank to the target triple. The contribution of each triple t = (s, p, o) ∼ H is analogous to
the average rank that was assigned to the target triple on the runs that t was part ofHmc.
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Table 1: Specifications of the datasets used in experiments

FB15K-237 WN18RR

Training 272,115 86,835
Validation 17,535 3,034
T1: Test - Rank 1 100 100
Trand: Test - Random Rank 100 100
Entities 14,541 40,943
Relations 237 11

5 Experiments
We assess the faithfulness of the explanations returned by KGEx. Experiments show that KGEx
surrogates are faithful to the original black-box models being explained.

Datasets. We experiment with the two standard link prediction benchmark datasets, WN18RR [7] (a
subset of Wordnet) and FB15K-237 [24] (a subset of Freebase). We operate with reduced test sets that
include 100 triples. This guarantees reasonable execution times of our experiments, most of which
require to retrain a model multiple times as part of the Monte Carlo step, for each triple that we want
to explain. We work with two separate test sets: first, to control for the black-box model predictive
power, we define T1, which includes 100 test triples that have been ranked at first place by all the
black-box models used in our experiments (see ‘Evaluation Protocol’ below). In some experiments
we also use another test set, Trand, which includes 100 randomly-selected triples, regardless of the
assigned rank by the black-box model. Table 1 shows the statistics of all the datasets used.

Evaluation protocol. We measure the faithfulness of explanations generated by KGEx in terms of
predictive power discrepancy between black box predictions and predictions generated with KGEx
surrogates. We adopt the standard evaluation protocol described by [5]. We predict whether each
triple t = (s, p, o) ∈ T is true, where T is either T1 or Trand. We cast the problem as a learning-to-
rank task: for each t = (s, p, o) ∈ T , we generate synthetic negatives t− ∈ Nt by corrupting one
side of the triple at a time (i.e. either the subject or the object). In the standard evaluation protocol,
synthetic negatives Nt are generated from all entities in E . In our experiments, to guarantee a fair
comparison between the black-box and the surrogate model, we limit to synthetic negatives created
from entities included in the corresponding sampled subgraphH. We predict a score for each t and
all its negatives t− ∈ Nt. We then rank the only positive t against all the negatives Nt. We report
mean rank (MR), mean reciprocal rank (MRR), and Hits at n (where n = 1, 10) by filtering out
spurious ground truth positives from the list of generated corruptions (i.e. “filtered” metrics).

Implementation Details and Baselines. The KGEx explanation subsystem and the black-box KGE
models are implemented using TensorFlow 2.5.2 and Python 3.82. KGE hyperparameter ranges and
best combinations are reported in Appendix B. Regarding the KGEx specific hyperparameters, we
use Predicate Neighborhood (PN) sampling with 5 neighbors for FB15K-237 and 3 neighbors for
WN18RR (see section 5.2), KD coefficient λ = 3 (see section 5.3). Student models have embedding
dimensionality k = 50, synthetic negatives ratio η = 2 and are trained using the Adam optimizer
and a multiclass-NLL baseline loss with learning rate=0.1 for 200 epochs. Depending on the size of
the subgraph, an explanation might require from 50 to 200 MC runs. A computational complexity
analysis can be found in Appendix C. All experiments were run under Ubuntu 16.04 on an Intel Xeon
E5-2630, 32 GB, equipped with a Titan XP 12GB.

5.1 Faithfulness: KGE Architectures

The first experiment tests how faithful the KGEx surrogates are to the pre-trained black-box models
in terms of predictive performance. We conduct this experiment by leveraging both the T1 test set
(which is produced from the ranks of each black-box that we are explaining) and the Trand test set.

The results for T1 are shown on Table 2. Naturally, all black-box models have perfect metrics, by
definition. By inspecting the performance of the surrogate models, we can see that they retain a
respectable level in MRR of around 0.5 (depending on the black-box) for FB15K-237. It is quite
interesting to note that the TransE surrogate is the one which manages to achieve the minimum drop

2https://github.com/Accenture/AmpliGraph
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Table 2: Faithfulness on T1 (triples that were ranked 1 by the black-box): comparison between KGE
architectures. Worst possible rank is 2712 for FB15K-237 and 370 for WN18RR. Filtered metrics.
Best results in bold.

FB15K-237 - Rank 1 (T1) WN18RR - Rank 1 (T1)
Hits@ Hits@

MR MRR 1 10 MR MRR 1 10

TransE 1 1.0 1.0 1.0 1 1.0 1.0 1.0
DistMult 1 1.0 1.0 1.0 1 1.0 1.0 1.0
ComplEx 1 1.0 1.0 1.0 1 1.0 1.0 1.0

KGEx
TransE 59 .55 .44 .75 41 .24 .12 .52
DistMult 72 .54 .46 .69 5 .99 .98 .98
ComplEx 130 .50 .42 .65 8 .87 .84 .92

Table 3: Faithfulness on Trand (randomly selected triples regardless of the black-box’s assigned
rank): comparison between KGE architectures. Worst possible rank is 2712 for FB15K-237 and 370
for WN18RR. Filtered metrics. Best results in bold.

FB15K-237 - Random Rank (Trand) WN18RR - Random Rank (Trand)
Hits@ Hits@

MR MRR 1 10 MR MRR 1 10

TransE 34 .36 .24 .61 6 .36 .10 .85
DistMult 36 .37 .24 .64 21 .55 .47 .70
ComplEx 27 .41 .30 .62 24 .61 .49 .78

KGEx
TransE 118 .17 .10 .27 39 .19 .00 .55
DistMult 284 .13 .06 .25 20 .43 .38 .57
ComplEx 282 .12 .05 .26 36 .39 .33 .47

in performance from its black-box, across all reported metrics. Turning to WN18RR, we can see
even stronger results from the surrogates, and especially from DistMult and ComplEx. DistMult in
particular replicates its black-box’s almost perfect performance.

The same experiment is conducted on Trand test set and the results are reported on Table 3. TransE
again gets the best results for FB15K-237 with 53% drop in MRR from its black-box, but given
the added difficulty of the task, DistMult and ComplEx still manage to get a comparable Hits@10.
For WN18RR, similar to T1, DistMult and ComplEx retain quite high scores across all the metrics.
While TransE is a bit lower compared to the other architectures, we can see that compared to its own
black-box, it actually manages to stay on a very competitive level in terms of MRR and Hits@10.
We have to mention here that the MRR of the TransE black-box in this case is 35-40% lower than
DistMult or ComplEx, which is confirmed by similar numbers reported in recent literature. The
reason for that is most likely related to the small amount of relations in WN18RR, which might not
be properly captured by TransE’s architecture. As a result, this affects the TransE surrogate both in
T1 and Trand and therefore is not an issue of the KGEx component but rather the black-box’s.

5.2 Impact of Subgraph Sampling

We evaluate predicate neighborhood (PN) and random walk (RW) sampling (Table 4). Both methods
contain the 1-hop neighborhood of the subject and the object of the target triple. For PN sampling,
we conduct experiments with 3, 5 and 10 predicate neighbors for both datasets. For RW sampling,
we use 10, 50 and 100 steps for FB15K-237 and 100, 200 and 500 steps for WN18RR.

Across both datasets PN sampling yields much better results than RW sampling. An interesting
finding, is that regardless of method increasing the subgraph size either with more neighbors for PN
sampling or with more steps in RW sampling, performance is actually decreasing. This shows that
we do not need a very large subgraph to calculate effective embeddings for the target triple, and that
including facts likely to be not relevant in the subgraph hurts performance.
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Table 4: Subgraph Sampling approaches. KGE architecture used is ComplEx. Filtered metrics. Best
results in bold.

FB15K-237 - Rank 1 (T1)
Subgraph Sampling Subgraph Hits@

Avg size MR MRR 1 10

3 Predicate Neighbors 750 113 .40 .32 .53
5 Predicate Neighbors 1783 130 .50 .42 .65
10 Predicate Neighbors 2742 171 .47 .38 .66

10 Random Walk Steps 521 99 .23 .09 .43
50 Random Walk Steps 555 124 .21 .11 .36
100 Random Walk Steps 606 150 .20 .10 .37

WN18RR - Rank 1 (T1)
Subgraph Sampling Subgraph Hits@

Avg size MR MRR 1 10

3 Predicate Neighbors 61 8 .87 .84 .92
5 Predicate Neighbors 74 6 .84 .81 .90
10 Predicate Neighbors 132 8 .81 .77 .89

100 Random Walk Steps 86 6 .68 .57 .87
200 Random Walk Steps 153 8 .63 .49 .84
500 Random Walk Steps 351 23 .55 .41 .79

Table 5: Impact of Knowledge Distillation on KGEx: comparison between KGE architectures.
Filtered metrics. Best results in bold.

FB15K-237 - Rank 1 (T1) WN18RR - Rank 1 (T1)
Knowledge Hits@ Hits@
Distillation MR MRR 1 10 MR MRR 1 10

TransE
No

37 .54 .46 .69 27 .38 .27 .60
Distmult 157 .40 .31 .55 7 .98 .98 .98
ComplEx 189 .37 .28 .55 8 .81 .76 .90

TransE
Yes

59 .55 .44 .75 41 .24 .12 .52
DistMult 72 .54 .46 .69 5 .99 .98 .98
ComplEx 130 .50 .42 .65 8 .87 .84 .92

5.3 Knowledge Distillation Effect

We assess the effect of knowledge distillation on the KGEx pipeline. As defined in Eq. 6, the KD
component acts as regularization during the student’s training. Its contribution is regulated by the KD
coefficient λ and, as we see in Fig. 3, performance across models remains fairly stable across different
λ. We chose λ = 3 across experiments, as it gives marginally better results across all models.

Finally, we look at the enhancement in performance that KD offers in Table 5. It is evident that when
KD is used, it improves results across all backbone models, compared to standalone students (i.e.
models trained on the subgraph without KD). In detail, ComplEx and DistMult outperform their
standalone counterparts across all metrics for both datasets with increase in MRR in the 6-13 %
region. The outlier in our observations comes from TransE on WN18RR, which is the only case where
the standalone model outperforms the KD-based one (MRR=0.38 against MRR=0.24 on T1). This is
not a limitation of KGEx though, but rather something that highlights it is indeed working as intended.
Given the characteristics of WN18RR (small number of relations), it looks like a smaller subgraph
actually favors KGEs, as the standalone model, even though of smaller capacity, outperforms the
model trained on the full KG. However, the KD student remains bounded by the knowledge that was
distilled by its teacher and therefore remains faithful to the teacher, which is what is desirable. On the
other hand, the standalone model leverages to a great extent the favorable topology of the subgraph,
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Figure 3: Impact of Knowledge Distillation loss coefficient λ on model performance for FB15K-237.

Table 6: Example explanations for FB15K-237 by KGEx. Each target triple is noted in bold. All
triples are predicted as factually correct with a prediction score of 0.99. The top three explanation
triples below each target triple are listed in order of importance. The black-box model is ComplEx
with embedding dimentionality k = 350. The student models’ embedding dimentionality is k = 50.
The subgraph sampling approach is random walk with 10 steps. The number of Monte Carlo runs is
100 and in each run the subgraph of each target triple is partitioned in 10 subsets.

Walk of fame inductee Meryl Streep Ryanair headquarters Dublin
1 Meryl Streep award Tony award 1 Ryanair currency Euro
2 Julianne Moore film Far from heaven 2 Ryanair phone service Ireland
3 84th Academy awards winner Meryl Streep 3 Dublin transportation Air travel

Jaundice symptom of Hepatitis Priyanka Chopra ethnicity Punjabis
1 Jaundice symptom of Pancreatic cancer 1 Punjabis location Pakistan
2 Abdominal pain symptom of Hepatitis 2 Priyanka Chopra lived Jharkhand
3 Jaundice symptom of Malaria 3 Juhi Chawla ethnicity Punjabis

but because there is no connection to the teacher through the loss function, it fails completely to
capture any of the teacher’s representation abilities, which is what we would expect.

5.4 Example Explanations

We also provide some example explanations in Table 6. These were generated by KGEx using a
ComplEx black-box model for target triples from FB15K-237. Explanations for DistMult and TransE
can be found in Appendix D. Something that can be observed is KGEx’s ability to include triples in
the explanation that are beyond the 1-hop neighborhood of the subject and the object of the target
triple. Such an example is the explanation triple (Julianne Moore, film, Far from heaven), which
explains the target triple (Walk of fame, inductee, Meryl Streep) because Meryl Streep and Julianne
Moore have collaborated in movies. When explaining the target triple (Priyanka Chopra, ethnicity,
Punjabis), we see that the explanation contains relevant information and not facts about the subject’s
professional life as in the previous example. Finally, in other cases, when the context can be really
specific, such as the symptoms example, we see that all the explanation triples are sourced based on
the predicate. Even in that case though, although jaundice can be a symptom of various diseases, the
ones chosen in the explanation (i.e. pancreatic cancer and malaria) are both correlated with hepatitis.

6 Conclusion
KGEx generates post-hoc, local explanations in the form of a ranked list of triples. We show that the
interplay of graph sampling and knowledge distillation reduces the explanation search space while
guaranteeing faithfulness to the black-box KGE model being explained. Deploying a Monte Carlo
process to rank the explanation triples based on their influence on the prediction prioritizes important
and relevant facts. A limitation of KGEx is, being a post-hoc method, it does not explain the internals
of a KGE model, nor it guarantees a fully transparent-by-design predictive pipeline. However, it is a
first step in the direction of designing more interpretable and trustworthy GraphML methods.

Moving forward, we will leverage the modular nature of the framework and propose replacement
modules, such as a search-based approach instead of the MC process, to reduce computational burden.
Future work will also focus on user studies to gauge the perceived quality of KGEx explanations, by
measuring how much they assist human experts on the receiving side of KGE predictions.
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KGEx: Explaining Knowledge Graph Embeddings via Subgraph Sampling
and Knowledge Distillation: Supplementary material

A Subgraph sampling with random walk

Algorithm 2 Subgraph sampling w/ Random Walk

1: Input: target triple (s∗, p∗, o∗), number of random walk steps n
2: Output: SubgraphH
3: H ← ∅
4: NG(s∗) = {(s, p, o) ∈ G|s = s∗ ∨ o = s∗}
5: NG(o∗) = {(s, p, o) ∈ G|s = o∗ ∨ o = o∗}
6: NG(s∗, o∗) = NG(s

∗) ∪NG(o∗) . 1-hop neighborhood of s∗, o∗
7: H = H ∪NG(s∗, o∗)
8: (so, po, oo) = (s∗, p∗, o∗) . Initialize random walk origin
9: for i← 0 to n− 1 do

10: Sample a triple (ŝ, p̂, ô) ∼ NG(so, oo)
11: H = H ∪ {(ŝ, p̂, ô)})
12: (so, po, oo) = (ŝ, p̂, ô) . Update origin

B Hyperparameter search
We experiment with three popular KGE architectures: TransE, DistMult, ComplEx. For each
of them we replicated SOTA results by carrying out extensive grid search, over the following
ranges of hyperparameter values: embedding dimensionality k = [200 − 500], with a step of 50;
baseline losses={negative log-likelihood, multiclass-NLL, self-adversarial}; synthetic negatives
ratio η = {20, 30, 40, 50}; learning rate= {1e−4, 5e−5, 1e−5}; epochs= [500 − 2000], step of
500; L2 regularizer, with weight γ = {1e−3, 1e−4, 1e−5}. The best loss for all models was the
multiclass-NLL and the best regularization weight γ = 1e−4. The best combinations for the rest of
the hyperparameters are shown on Table 7

Table 7: Best hyperparameter combinations for baseline black-box models.

FB15K-237 WN18RR
k η lr epochs k η lr epochs

TransE 400 30 1e-4 1000 350 30 1e-4 2000
Distmult 300 50 5e-5 1000 350 30 1e-4 2000
ComplEx 350 30 5e-5 1000 200 20 5e-5 2000

C Computational complexity
The subgraph sampling step has a complexity O(|G| + n), where |G| is the number of triples in
the entire graph G (worst case we have to examine all triples in the graph for the initial 1-hop
neighborhood calculation), and n is a hyper-parameter (number of random walk steps or triples from
the predicate neighborhood - each loop step being constant in time).

The knowledge distillation step requires training a student KGE model for each subgraph sampled
by the step above. The computational complexity cost to train a KGE model with our LRKD−KGE
loss is O(E|H|ηk), where E are the number of epochs, |H| is the number of triples in the training
graphH, η is the number of synthetic negatives per positive, k is the embedding dimensionality (the
KGE scoring function computation requires element-wise operations on the embeddings). This step
also requires evaluating the rank of the target triple against a number of synthetic negatives (i.e. the
KGE learning-to-rank evaluation protocol). This has a complexity of O(kηeval) , where ηeval is the
number of synthetic negatives used during the learning-to-rank evaluation (which is at most as large
as the number of entities in the sampled subgraph).
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Overall, considering the Monte Carlo process that KGEx involves, we have a complexity of O(|G|+
n+mE|H|ηk) as the dominant term, where m is the number of Monte Carlo iterations. KGEx is
therefore linear with the number of triples in the knowledge graph |G|.
It is worth noting that the sampled training sets for the students are always orders of magnitude
smaller than the entire graph G and adopting appropriate values for η and E is important to guarantee
appropriate response times.

The effect of k on computational complexity is addressed by training on GPU architectures, ideal for
element-wise operations between vectors.

D Example Explanations for DistMult and TransE
The DistMult explanations are similar to the ones of ComplEx with explanations incorporating triples
beyond the 1-hop neighborhood as in the case of the target triple (Jaundice, symptom of, Hepatitis).
The explanations for TransE show some interesting findings as well, since in two of the examples
((Ryanair, headquarters, Dublin) and (Priyanka Chopra, ethnicity, Punjabis)) the black-box model
actually predicted the target triples as factually incorrect. If we take a closer look at the explanations
generated for (Priyanka Chopra, ethnicity, Punjabis) we can see that the TransE black-box model in
this case is focusing on the subject’s professional life and therefore an incorrect prediction seems
reasonable.

Table 8: Example explanations for FB15K-237 by KGEx. Each target triple is noted in bold. All
triples are predicted as factually correct with a prediction score of 0.99. The top three explanation
triples below each target triple are listed in order of importance. The black-box model is DistMult
with embedding dimentionality k = 300. The student models’ embedding dimentionality is k = 50.
The subgraph sampling approach is random walk with 10 steps. The number of Monte Carlo runs is
100 and in each run the subgraph of each target triple is partitioned in 10 subsets.

Walk of fame inductee Meryl Streep Ryanair headquarters Dublin
1 Meryl Streep film Kramer gegen Kramer 1 Dublin country Ireland
2 Meryl Streep award Kramer gegen Kramer 2 Ireland contains Dublin
3 Meryl Streep nominated BAFTA 3 Ryanair phone service Ireland

Jaundice symptom of Hepatitis Priyanka Chopra ethnicity Punjabis
1 Jaundice symptom of Pancreatic cancer 1 Hrithik Roshan ethnicity Punjabis
2 Anorexia symptom of Hepatitis 2 Priyanka Chopra lived Uttar Pradesh
3 Anorexia symptom of Pancreatic cancer 3 Priyanka Chopra lived Cedar Rapids

Table 9: Example explanations for FB15K-237 by KGEx. Each target triple is noted in bold. The
triples (Walk of fame, inductee, Meryl Streep) and (Jaundice, symptom of, Hepatitis) are predicted as
factually correct with a prediction score of 0.99, while the triples (Ryanair, headquarters, Dublin)
and (Priyanka Chopra, ethnicity, Punjabis) as factually incorrect with prediction scores 0.18 and
0.20 respectively. The top three explanation triples below each target triple are listed in order of
importance. The black-box model is TransE with embedding dimentionality k = 400. The student
models’ embedding dimentionality is k = 50. The subgraph sampling approach is random walk with
10 steps. The number of Monte Carlo runs is 100 and in each run the subgraph of each target triple is
partitioned in 10 subsets.

Walk of fame inductee Meryl Streep Ryanair headquarters Dublin
1 Meryl Streep nominated Angels in America 1 Ryanair phone service Earth
2 Meryl Streep award Tony award 2 Ryanair phone service UK
3 Meryl Streep film Doubt 3 Dublin country Ireland

Jaundice symptom of Hepatitis Priyanka Chopra ethnicity Punjabis
1 Jaundice symptom of Cirrhosis 1 Priyanka Chopra profession Singer
2 Anorexia symptom of Bladder cancer 2 Punjabis location Pakistan
3 Anorexia symptom of Hepatitis 3 Filmfare award award Priyanka Chopra
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