
Mitigating Over-Smoothing and Over-Squashing using
Augmentations of Forman-Ricci Curvature

Lukas Fesser
Harvard University

lukas_fesser@fas.harvard.edu

Melanie Weber
Harvard University

mweber@seas.harvard.edu

Abstract
While Graph Neural Networks (GNNs) have been successfully leveraged for
learning on graph-structured data across domains, several potential pitfalls have
been described recently. Those include the inability to accurately leverage
information encoded in long-range connections (over-squashing), as well as diffi-
culties distinguishing the learned representations of nearby nodes with growing
network depth (over-smoothing). An effective way to characterize both effects is
discrete curvature: Long-range connections that underlie over-squashing effects
have low curvature, whereas edges that contribute to over-smoothing have high
curvature. This observation has given rise to rewiring techniques, which add or
remove edges to mitigate over-smoothing and over-squashing. Several rewiring
approaches utilizing graph characteristics, such as curvature or the spectrum
of the graph Laplacian, have been proposed. However, existing methods, espe-
cially those based on curvature, often require expensive subroutines and careful
hyperparameter tuning, which limits their applicability to large-scale graphs.
Here we propose a rewiring technique based on Augmented Forman-Ricci cur-
vature (AFRC), a scalable curvature notation, which can be computed in linear
time. We prove that AFRC effectively characterizes over-smoothing and over-
squashing effects in message-passing GNNs. We complement our theoretical
results with experiments, which demonstrate that the proposed approach achieves
state-of-the-art performance while significantly reducing the computational cost
in comparison with other methods. Utilizing fundamental properties of discrete
curvature, we propose effective heuristics for hyperparameters in curvature-based
rewiring, which avoids expensive hyperparameter searches, further improving
the scalability of the proposed approach.

1 Introduction
Graph-structured data is ubiquitous in data science and machine learning applications across domains.
Message-passing Graph Neural Networks (GNNs) have emerged as a powerful architecture for
Deep Learning on graph-structured data, leading to many recent success stories in a wide range
of disciplines, including biochemistry [11], drug discovery [40], recommender systems [37] and
particle physics [29]. However, recent literature has uncovered limitations in the representation
power of GNNs [38], many of which stem from or are amplified by the inability of message-passing
graph neural networks to accurately leverage information encoded in long-range connections (over-
squashing [1]), as well as difficulties distinguishing the learned representations of nearby nodes
with growing network depth (over-smoothing [18]). As a result, there has been a surge of interest
in characterizing over-squashing and over-smoothing mathematically and in developing tools for
mitigating both effects.

Among the two, over-squashing has received the widest attention, driven by the importance of
leveraging information encoded in long-range connections in both node- and graph-level tasks.
Over-smoothing has been observed to impact, in particular, the performance of GNNs on node-level

Lukas Fesser, Mitigating Over-Smoothing and Over-Squashing using Augmentations of Forman-Ricci Curvature.
Proceedings of the Second Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November
27–30, 2023.

Approach O-Smo O-Squ Complexity Hyperparams
SDRF [32] O(m d2max) grid-search
RLEF [2] O

(
n2

√
log(n) dmax

)
grid-search

FoSR [16] O(n2) grid-search
BORF [22] O(m d3max) grid-search
GTR [3] O

(
m poly log n+ n2poly log n

)
grid-search

AFR-3 (this paper) O(m dmax) heuristic
Table 1: Comparison of state-of-the art rewiring approaches for mitigating over-squashing (O-Squ)
and over-smoothing (O-Smo) regarding complexity and choice of hyperparameters (n denoting the
number of vertices, m the number of edges, dmax the maximal node degree).

tasks. Characterizations of over-squashing and over-smoothing frequently utilize tools from Discrete
Geometry, such as the spectrum of the Graph Laplacian [2, 3, 16] or discrete Ricci curvature [22, 32].
Discrete curvature has been linked previously to graph topology and "information flow" in graphs,
which has given rise to several applications in network analysis and machine learning [9, 23, 30,
31, 35]. Classical Ricci curvature characterizes local volume growth rates on manifolds (geodesic
dispersion); analogous notions in discrete spaces were introduced by Ollivier [24], Forman [10] and
Maas and Erbar [8], among others.

Previous work on characterizing over-squashing and over-smoothing with discrete Ricci curvature
has utilized Ollivier’s notion [22] (short ORC), as well as a variation of Forman’s notion [32]
(FRC). Utilizing ORC is a natural approach, thanks to fundamental relations to the spectrum of the
Graph Laplacian and other fundamental graph characteristics [15], which are known to characterize
information flow on graphs. However, computing ORC requires solving an optimal transport problem
for each edge in the graph, making a characterization of over-squashing and over-smoothing effects
via ORC prohibitively expensive on large-scale graphs. In contrast, FRC can be computed efficiently
even on massive graphs due to its simple combinatorial form. Recent work on augmentations of
Forman’s curvature, which incorporate higher-order structural information (e.g., cycles) into the
curvature computation, has demonstrated their efficiency in graph-based learning, coming close to
the accuracy reached by ORC-based methods at a fraction of the computational cost [9, 31]. In
this work, we will demonstrate that augmented Forman curvature (AFRC) allows for an efficient
characterization of over-squashing and over-smoothing. We relate both effects to AFRC theoretically,
utilizing novel bounds on AFRC.

Besides characterizing over-squashing and over-smoothing, much recent interest has been dedicated
to mitigating both effects in GNNs. Graph rewiring, which adds and removes edges to improve the
information flow through the network, has emerged as a promising tool for improving the quality of
the learned node embeddings and their utility in downstream tasks. Building on characterizations of
over-squashing (and, to some extend, over-smoothing) discussed above, several rewiring techniques
have been proposed [2, 3, 16, 22, 32]. Rewiring is integrated into GNN training as a preprocessing
step, which alters the graph topology before learning node embeddings. It has been shown to
improve accuracy on node- and graph-level tasks, specifically in graphs with long-range connections.
Here, we argue that effective rewiring should only add a small computational overhead to merit its
integration into GNN training protocols. Hence, the computational complexity of the corresponding
preprocessing step, in tandem with the potential need for and cost of hyperparameter searches,
is an important consideration. We introduce a graph rewiring technique based on augmentations
of Forman’s curvature (AFR-k), which can be computed in linear time and which comes with an
efficiently computable heuristic for automating hyperparameter choices, avoiding the need for costly
hyperparameter searches. Through computational experiments, we demonstrate that AFR-k has
comparable or superior performance compared to state-of-the-art approaches, while being more
computationally efficient.

Related Work. A growing body of literature considers the representational power of GNNs [20,
38] and related structural effects [1, 4, 6, 18, 25, 28]. This includes in particular challenges in
leveraging information encoded in long-range connections (over-squashing [1]), as well as difficulties
distinguishing representations of nearby nodes with growing network depth (over-smoothing [18]).
Rewiring has emerged as a popular tool for mitigating over-squashing and over-smoothing. Methods
based on the spectrum of the graph Laplacian [16], effective resistance [3], expander graphs [2, 5] and

2

discrete curvature [22, 32] have been proposed (see Tab. 1). A connection between over-squashing
and discrete curvature was first established in [32]. To the best of our knowledge, augmented Forman
curvature has not been considered as a means for studying and mitigating over-squashing and over-
smoothing in previous literature. Notably, the balanced Forman curvature studied in [32] is distinct
from the notion considered in this paper. Forman’s curvature, as well as discrete curvature more
generally, has previously been used in graph-based machine learning, including for unsupervised
node clustering (community detection) [9, 23, 30, 31], graph coarsening [36] and in representation
learning [19, 34].

Contributions. Our main contributions are as follows:

• We prove that augmentations of Forman’s Ricci curvature (AFRC) allow for an effective
characterization of over-smoothing and over-squashing effects in message-passing GNNs.

• We propose an AFRC-based graph rewiring approach (AFR-k, Alg. 1), which is both scalable
and performs competitively compared to state-of-the-art rewiring approaches on node- and
graph-level tasks. Importantly, AFR-3 can be computed in linear time, allowing for application
of the approach to large-scale graphs.

• We introduce a novel heuristic for choosing how many edges to add (or remove) in curvature-
based rewiring techniques grounded in community detection. This heuristic allows for an
effective implementation of our proposed approach, avoiding costly hyperparameter searches.
Notably, the heuristic applies also to existing curvature-based rewiring approaches and hence
may be of independent interest.

2 Background and Notation
2.1 Message-Passing Graph Neural Networks

Many popular architectures for Graph Machine Learning utilize the Message-Passing paradigm [12,
14]. Message-passing Graph Neural Networks (short GNNs) iteratively compute node representations
as a function of the representations of their neighbors with node attributes in the input graph
determining the node representation at initialization. We can view each iteration as a GNN layer; the
number of iterations performed to compute the final representation can be thought of as the depth of
the GNN. Formally, if we let Xk

u denote the features of node u at layer k, then a general formulation
for a message-passing Graph Neural Network is

Xk+1
u = ϕk

 ⊕
p∈Ñu

ψk

(
Xk

p

)
Here, ϕk denotes an update function,

⊕
an aggregation function, and ψk a message function.

Ñu = Nu∪{u} is the extended neighborhood of u. Widely used examples of this general formulation
include GCN [17], GIN [38] and GAT [33].

2.2 Discrete Ricci Curvature on Graphs

Figure 1: Augmented Forman-Ricci
Curvature.

Ricci curvature is a classical tool in Differential Geometry,
which establishes a connection between the geometry of
the manifold and local volume growth. Discrete notions
of curvature have been proposed via curvature analogies,
i.e., notions that maintain classical relationships with other
geometric characteristics. Forman [10] introduced a no-
tion of curvature on CW complexes, which allows for a
discretization of a crucial relationship between Ricci cur-
vature and Laplacians, the Bochner-Weizenböck equation.
Here, we utilize an edge-level version of Forman’s curva-
ture, which also allows for evaluating curvature contribu-
tions of higher-order structures. Specifically, we consider
notions that evaluate higher-order information encoded in

3

cycles of order ≤ k (denoted as AFk), focusing on the cases k = 3 and k = 4:

AF3(u, v) = 4− deg(u)− deg(v) + 3△(u, v) (1)
AF4(u, v) = 4− deg(u)− deg(v) + 3△(u, v) + 2□(u, v) , (2)

where △(u, v) and □(u, v) denote the number of triangles and quadrangles containing the edge (u, v)
(see Fig. 1 for an example). The derivation of those notions follows directly from [10] and can be
found, e.g., in [31].

2.3 Over-squashing and Over-smoothing

Oversquashing. It has been observed that bottlenecks in the information flow between distant
nodes form as the number of layers in a GNN increases [1]. The resulting information loss can
significantly decrease the effectiveness of message-passing and reduce the utility of the learned node
representations in node- and graph-level tasks. This effect is particularly pronounced in long-range
connections between distant nodes, such as edges that connect distinct clusters in the graph. Such
edges are characterized by low (negative) Ricci curvature in the sense of Ollivier (ORC), giving rise
to the curvature-based analysis of over-squashing [22, 32]. We will show below, that this holds also
for AFRC.

Oversmoothing. At the same time, increasing the number of layers can introduce “shortcuts”
between communities, induced by the representations of dissimilar nodes (e.g., nodes belonging to
different clusters) becoming indistinguishable under the information flow induced by message-passing.
First described by [18], this effect is known to impact node-level tasks, such as node clustering. It
has been previously shown that oversmoothing arises in positively curved regions of the graph in the
sense of Ollivier [22]. We will show below, that this holds also for AFRC.

Rewiring. Graph rewiring describes tools that alter the graph topology by adding or removing edges
to improve the information flow in the network. A taxonomy of state-of-the art rewiring techniques
and the AFRC-based approach proposed in this paper with respect to the complexity of the resulting
preprocessing step and the choice of hyperparameters can be found in Table 1.

3 Characterizing Over-smoothing and Over-squashing with AF4

Before we can relate the augmented Forman-Ricci curvature of an edge to over-smoothing and
over-squashing in GNNs, we require upper and lower bounds on AF3(u, v) and AF4(u, v). Unlike
the Ollivier-Ricci curvature, the augmentations of the Forman-Ricci curvature considered in this
paper are not generally bounded independently of the underlying graph. We can prove the following
for any (undirected and unweighted) graph G = (V,E):

Theorem 3.1. For (u, v) ∈ E, let m = deg(u) ≥ deg(v) = n. Then for AF3 and AF4, we have

4−m− n ≤ AF3(u, v) ≤ n+ 1

4−m− n ≤ AF4(u, v) ≤ 2mn− 3n+ 3
(3)

Note that these edge-specific bounds can easily be extended to graph-level bounds by noting that
n ≤ m ≤ |V | − 1. All other results in this section can be extended to graph-level bounds in a similar
fashion. The proof for this result can be found in appendix A.1.1. Our theoretical results and their
derivations are largely inspired by [22], although we require several adjustments such as the bounds
above, since we are using the AFRC, not the ORC.

From the definition in the last section, it is clear that AF4(u, v) characterizes how well connected
the neighborhoods of u and v are. If many of the nodes in Nu are connected to v or nodes in Nv,
or vice-versa, then AF4 will be close to its upper bound. Conversely, if Ñu and Ñv have only
minimal connections, then AF4(u, v) will be close to its lower bound. In the second case, the
existing connections will act as bottlenecks and will hinder the message-passing mechanism.

3.1 AF4 and Over-smoothing

Going back to the definition of the message-passing paradigm in the previous section, we note that
at the k-th layer of a GNN, every node p sends the same message ψk

(
Xk

p

)
to each node u in its

4

neighborhood. The GNN then aggregates these messages to update the features of node u. If AF3 or
AF4 is very positive, then the neighborhoods of u and v are largely identical, so they receive nearly
the same messages, and the difference between their features decreases. The following result makes
this intuition for why over-smoothing happens more rigorous. For the proof, see appendix A.1.2.

Theorem 3.2. Consider an updating rule as defined in section 2.1 and suppose that AF4(u, v) > 0.
For some k, assume the update function ϕk is L-Lipschitz, |Xk

p| ≤ C is bounded for all p ∈
N (u) ∪ N (v), and the message passing function is bounded, i.e. |ψk(x)| ≤ M |x|,∀x. Let

⊕
be

the sum operation. Then there exists a constant H > 0, depending on L,M , and C, such that∣∣Xk+1
u −Xk+1

v

∣∣ ≤ H(2mn− 3n+ 3−AF4(u, v)) (4)

where m = deg(u) ≥ deg(v) = n > 1.

We can prove analogous results for AF3(u, v) when
⊕

is the mean or the sum operation (A.2.2).
Note that Theorem 3.2 applies to most GNN architectures, with the exception of GAT, since GAT
uses a learnable weighted mean operation for aggregation. Similar to previous results on the ORC,
Theorem 3.2 shows that edges whose augmented Forman-Ricci curvature is close to their upper
bound force local node features to become similar. If AF4(e) ≈ 2mn− 3n+ 3 for most edges e,
then we can expect the node features to quickly converge to each other even if the GNN is relatively
shallow. For regular graphs, we can extend our analysis and show that the difference between the
features of neighboring nodes u and v decays exponentially fast. If in addition, we assume that the
diameter of the graph is bounded, then this is true for any pair of nodes u, v.

Propositon 3.3. Consider an updating rule as before. Assume the graph is regular. Suppose there
exists a constant δ, such that for all edges (u, v) ∈ E, AF4(u, v) ≥ δ > 0. For all k, assume the
update functions ϕk are L-Lipschitz,

⊕
is the mean operation, |X0

p| ≤ C is bounded for all p ∈ V ,
and the message passing functions are bounded linear operators, i.e. |ψk(x)| ≤M |x|,∀x. Then the
following inequality holds for k ≥ 1 and any neighboring vertices u ∼ v∣∣Xk

u −Xk
v

∣∣ ≤ 1

3
C

(
3LM(2mn− 3n+ 3− δ)

n+ 1

)k

(5)

If in addition, the diameter of G is bounded, i.e. d = maxu∈V maxv∈V d(u, v) ≤ D, then for any
u, v ∈ V , not necessarily connected, we have∣∣Xk

u −Xk
v

∣∣ ≤ 1

3
DC

(
3LM(2mn− 3n+ 3− δ)

n+ 1

)k

(6)

For the proof, see appendix A.1.3. The above result gives us the aforementioned exponential decay in
differences between node features, since for appropriately chosen C1, C2 > 0, we have∑

(u,v)∈E

∣∣Xk
u −Xk

v

∣∣ ≤ C1e
−C2k (7)

Even if most real-word graphs possess negatively curved edges, we still expect an abundance of edges
whose AFRC is close to its upper bound to lead to over-smoothing in GNNs.

3.2 AF4 and Over-squashing

In this subsection, we relate AF4 to the occurrence of bottlenecks in a graph, which in turn cause
the over-squashing phenomenon. Message-passing between neighborhoods requires connections of
the form (p, q) for p ∈ Ñu \ {v} and q ∈ Ñv \ {u}. As the next result shows, the number of these
connections can be upper-bounded using AF4. The proof for this can be found in appendix A.1.4.

Proposition 3.4. Let (u, v) ∈ E and let S ⊂ E be the set of all (p, q) with p ∈ Ñu \ {v} and
q ∈ Ñv \ {u}. Then

|S| ≤ AF4(u, v) + deg(u) + deg(v)− 4

2
(8)

An immediate consequence of this result is that if AF4 is close to its lower bound 4−deg(u)−deg(v),
then the number of connections between Ñu and Ñv has to be small. Hence these edges will induce
bottlenecks in G, which in turns causes over-squashing.

5

4 AF3- and AF4-based Rewiring
4.1 AFR-3 and AFR-4

Following our theoretical results in the last section, an AF3- or AF4-based rewiring algorithm
should remove edges whose curvature is close to the upper bound to avoid over-smoothing, and add
additional edges to the neighborhoods of those edges whose curvature is particularly close to the lower
bound to mitigate over-squashing. In line with this intuition, we propose AFR-k, a novel algorithm
for graph rewiring that, like the ORC-based BORF, can address over-smoothing and over-squashing
simultaneously, while being significantly cheaper to run.

Algorithm 1 AFR-3

Require: A graph G(V,E), heuristic (Bool), # edges to add h, # edges to remove l
for e ∈ E do

compute AF3(e)
end for
Sort e ∈ E by AF3(e)
if heuristic == True then

- Compute lower threshold ∆L. For each (u, v) ∈ E with AF3(u, v) < ∆L,
choose w ∈ Nu \ Nv uniformly at random, add (w, v) to E.
- Compute upper threshold ∆U and remove all edges (u, v) with AF3(u, v) > ∆U

else
- Find h edges with lowest AF3 values, for each of these edges,
choose w ∈ Nu \ Nv uniformly at random, add (w, v) to E.
- Find k edges with highest AF3 values and remove them from E.

end if
return a rewired graph G′ = (V,E′) with new edge set E′.

Assume that we want to add h edges to E to reduce over-squashing, and remove l edges from E to
mitigate over-smoothing. Then for AFR-3 without heuristics for edge addition or removal, we first
compute AF3(e) for all e ∈ E. Then, we sort the the edges by curvature from lowest to highest.
For each of the h edges with lowest curvature values, we choose w ∈ Nu \ Nv uniformly at random
if deg(u) ≥ deg(v) and add (w, v) to E. If no such w exists, we continue on to the next edge.
Finally, we remove the l edges with the highest curvature values from E. We return the rewired
graph G′ = (V,E′), where E′ is the rewired edge set. AFR-4 follows by analogy, only that we use
AF4 instead of AF3. While AF3 is cheaper to run than AF4, both are more economical than their
ORC-based cousin BORF, which is due to the next result.

Theorem 4.1. Computing the ORC scales as O
(
|E| d3max

)
, while computing AF3 scales as

O (|E| dmax), and computing AF4 scales as O
(
|E| d2max

)
.

Here, dmax is the highest degree of a node in G. For the proof, see appendix A.1.5. Note that we could
run AFR-3 (AFR-4) as a batch-based algorithm like BORF. For N batches, we would recompute
AF3 (AF4) N times, and for each batch we would identify the k edges with highest AF3 (AF4)
values and the h edges with lowest AF3 (AF4) values and proceed with them as before. In practice,
we find that this rarely improves performance. Results on this are presented in appendix A.7.4.

4.2 Heuristics for adding and removing Edges

A natural question to ask upon seeing the AFR algorithm is how many edges one should add or
remove for a given graph G. For previous methods such as BORF, answering this question involved
costly hyperparameter tuning. In this subsection, we use results from community detection in network
science to motivate heuristics to automatically determine h and k.

Curvature Thresholds. Suppose we are given a graph G = (V,E) and a partition of the network
into communities. As previously mentioned, edges within communities tend to have positive Ollivier-
Ricci curvature, while edges between communities tend to have negative curvature values. Theoretical
evidence for this observation for graphs with community structure has been given in [13, 23, 31].

[30] use this observation to propose a community detection algorithm: remove the most negatively
curved edge e from G, recompute the ORC for all edges sharing a node with e and repeat these two

6

steps until all negatively curved edges have been removed. The connected components in the resulting
graph G′ are the communities. For AF3 or AF4, a natural threshold to distinguish between inter-
and intra-community edges is missing, so [9] propose to use a Gaussian mixture model with two
modes. They fit two normal distributions N1(µ1, σ1) and N2(µ2, σ2) with µ1 > µ2 to the curvature
distribution and then determine the curvature threshold

∆L =
σ2

σ1 + σ2
µ1 +

σ1
σ1 + σ2

µ2 (9)

Using this as the threshold between inter- and intra-community edges, their AF3-based sequential
community detection algorithm achieves competitive performance while being significantly cheaper
to run than the ORC-based original. Based on this, we propose the following heuristic to determine
the number h of edges to add for AFR.

Heuristic for edge addition. Instead of choosing the number h of edges to add by hand, we calculate
the curvature threshold ∆L as above. We then add a new edge for each edge e with AF3(e) < ∆L

(AF4(e) < ∆L) using the same procedure as before.

Heuristic for edge removal. To identify particularly positively curved edges which might lead to
over-smoothing, we compute the upper curvature threshold ∆U as

∆U = µ1 + σ1 (10)

We remove all edges e with AF3(e) > ∆U (AF4(e) > ∆U), i.e. all edges whose curvature is more
than one standard deviation above the mean of the normal distribution with higher curvature values.

5 Experiments

Figure 2: Upper and lower thresholds for the
Wisconsin dataset (AF3).

In this section, we experimentally demonstrate the
effectiveness and computational efficiency of our pro-
posed AFR rewiring algorithm and of our heuristics
for edge addition and removal. We first compare
AFR against other rewiring alternatives on a variety
of tasks, including node and graph classification, as
well as long-range tasks. Details on the rewiring
strategies we compare against can be found in ap-
pendix A.4. We also show that our heuristics allow
AFR to achieve competitive performance on all tasks
without costly hyperparameter tuning. Our code will
be made publicly available upon publication.

Experimental details. Our experiments are designed
as follows: for a given rewiring strategy, we first
apply it as a preprocessing step to all graphs in the
datasets considered. We then train a GNN on a part
of the rewired graphs and evaluate its performance
on a withheld set of test graphs. We use a train/val/test split of 50/25/25. As GNN architectures, we
consider GCN and GIN. Settings and optimization hyper-parameters are held constant across tasks
and baseline models for all rewiring methods, so we can rule out hyper-parameter tuning as a source
of performance gain. When not using our heuristics, we obtain the settings for the individual rewiring
option via hyperparameter tuning. The only hyperparameter choice which we do not optimize using
grid search is τ in SDRF, which we set to ∞, in line with [22]. For all rewiring methods and
hyperparameter choices, we record the test set accuracy of the settings with the highest validation
accuracy. As there is a certain stochasticity involved, especially when training GNNs, we accumulate
experimental results across 100 random trials. We report the mean test accuracy, along with the 95%
confidence interval. Details on all data sets can be found in appendix A.9.

5.1 Results using hyperparameter search

Tables 2 and 3 present the results of our experiments for node and graph classification with hyperpa-
rameter tuning. The exact hyperparameter settings for each dataset can be found in appendix A.3,
where we also present additional results using GIN as an architecture (A.7.1). For the experiments

7

with GCNs presented here, AFR-3 and AFR-4 outperform all other rewiring strategies and the
no-rewiring baseline on all node classification datasets and on four of our five graph classification
datasets. We expect AFR-3, AFR-4, and BORF to attain generally higher accuracies than FoSR and
SDRF, because unlike FoSR and SDRF, they can address over-smoothing by removing edges.

GCN
DATA SET AFR-3 AFR-4 BORF SDRF FOSR NONE
CORA 87.5± 0.5 88.1± 0.5 87.9± 0.7 86.4± 2.1 86.9± 2.0 86.6± 0.8
CITESEER 74.4± 1.0 73.3± 0.6 73.4± 0.6 72.6± 2.2 73.5± 2.0 71.7± 0.7
TEXAS 49.7± 0.5 51.4± 0.5 48.9± 0.5 43.6± 1.2 46.9± 1.2 44.1± 0.5
CORNELL 49.7± 3.4 48.9± 3.3 48.1± 2.9 43.1± 1.2 43.9± 1.1 46.8± 3.0
WISCON. 47.3± 2.4 52.2± 2.4 46.5± 2.6 47.1± 1.0 48.5± 1.0 44.6± 2.9
CHAMEL. 62.3± 0.9 62.5± 0.9 61.4± 0.9 59.5± 0.4 59.3± 1.9 59.1± 1.4
COCO 10.1± 1.1 9.8± 1.1 10.1± 1.2 8.5± 1.0 9.3± 1.4 7.8± 0.4
PASCAL 14.3± 1.5 14.4± 1.4 14.1± 1.1 11.7± 0.9 13.8± 1.3 10.4± 0.6

Table 2: Classification accuracies of GCN with AFR-3, AFR-4, BORF, SDRF, FoSR, or no rewiring
strategy using best hyperparameters. Highest accuracies on any given dataset are highlighted in bold.
We report F1 scores for the LGRB COCO and PASCAL datasets.

Comparing AFR-3 and AFR-4. In section 3, we used AF4 for our theoretical results due to it
allowing us to better analyze over-smoothing. However, for many real-world datasets, AF3 and
AF4 are highly correlated [9]. We find that this also holds true for the datasets considered here
(see appendix A.9), which might explain why AFR-3, AFR-4, and BORF all achieve comparable
accuracies, with AFR-3 and AFR-4 often performing marginally better. This also suggests that char-
acterizing over-smoothing and over-squashing using AF3 or AF4 is sufficient. The computationally
more expensive ORC is not needed. In practice, one would always use AFR-3 due to competitive
performance and excellent scalability.

GCN
DATA SET AFR-3 AFR-4 BORF SDRF FOSR NONE
MUTAG 69.7± 2.1 68.7± 1.9 68.2± 2.4 65.1± 2.2 70.0± 2.2 62.7± 2.1
ENZYMES 25.9± 1.2 26.3± 1.2 26.0± 1.2 24.3± 1.2 24.9± 1.1 25.4± 1.3
IMDB 50.4± 0.9 49.8± 1.1 48.6± 0.9 48.6± 0.9 48.3± 0.9 48.1± 1.0
PROTEINS 62.7± 0.8 61.2± 0.9 61.5± 0.7 59.5± 0.8 59.3± 0.9 59.6± 0.9
PEPTIDES 44.7± 2.8 44.4± 2.8 43.9± 2.6 41.8± 1.5 44.3± 2.2 40.5± 2.1

Table 3: Classification accuracies of GCN with AFR-3, AFR-4, BORF, SDRF, FoSR, or no rewiring
strategy using best hyperparameters. Highest accuracies on any given dataset are highlighted in bold.

5.2 Results using heuristics for edge addition and removal

Using the same datasets as before, we now test our heuristics for replacing hyperparameter tuning.
We study the effects of using the thresholds proposed in section 4 on AFR-3, AFR-4, and BORF.
Tables 4 and 5 present the accuracies attained by GCN and GIN architectures using our heuristics for
finding upper and lower thresholds. Comparing these to the results in Tables 2 and 3, we see that our
heuristics outperform hyperparameter tuning on four out of six node classification datasets, and are
competitive on the other two. Similarly on the graph classification tasks, where our heuristics achieve
superior performance on four out of five tasks.

For BORF, we use zero as the lower threshold to identify bottleneck edges. We conduct additional
experiments in appendix A.7.7 which show that the lower thresholds which we get from fitting two
normal distributions to the ORC distributions are in fact very close to zero on all datasets considered
here. Further ablations that study the effects of our two heuristics individually can also be found in
appendices A.7.2 and A.7.3.

Long-range tasks. We also evaluated AFR-3 and AFR-4 on the Peptides-func graph classification
dataset and on the PascalVOC-SP and COCO-SP node classification datasets, which are part of
the long-range tasks introduced by [7]. As Table 3 shows, AFR-3 and AFR-4 outperform all other
rewiring methods on the graph classification task and significantly improve on the no-rewiring
baseline. Our heuristics are also clearly still applicable, as they result in comparable performance

8

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
CORA 87.8± 0.7 87.9± 0.9 87.6± 0.7 77.9± 1.2 78.0± 1.1 78.4± 1.1
CITESEER 74.6± 0.7 74.7± 0.7 74.2± 0.8 65.1± 0.7 64.7± 0.6 64.6± 0.6
TEXAS 52.4± 3.3 48.4± 3.2 50.5± 2.8 68.7± 3.1 63.8± 3.8 62.3± 2.0
CORNELL 50.5± 4.3 46.2± 2.6 44.6± 1.9 51.9± 4.2 47.3± 2.3 48.4± 2.5
WISCON. 52.4± 2.6 49.0± 2.0 48.2± 3.0 58.4± 2.9 58.7± 2.3 53.5± 2.6
CHAMEL. 62.2± 1.2 62.1± 1.2 61.1± 1.4 67.1± 2.1 65.9± 2.2 66.3± 2.2
COCO 10.3± 1.3 9.6± 1.2 10.5± 1.2 13.1± 2.1 13.5± 2.2 13.6± 2.2
PASCAL 14.2± 1.5 14.3± 1.5 14.8± 1.1 16.0± 1.7 15.8± 1.7 16.4± 1.8

Table 4: Node classification accuracies of GCN and GIN with AFR-3, AFR-4, and BORF using our
heuristics to avoid hyperparameter tuning.

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
MUTAG 71.4± 2.2 69.9± 2.6 68.5± 1.9 70.9± 2.7 73.4± 2.4 75.4± 2.8
ENZYMES 26.1± 1.0 25.5± 1.0 23.3± 1.2 37.6± 1.2 32.1± 1.4 31.9± 1.2
IMDB 50.1± 0.9 49.0± 0.9 49.4± 1.0 68.9± 1.1 67.8± 1.2 67.7± 1.5
PROTEINS 62.2± 0.8 61.2± 0.9 61.0± 0.9 73.0± 1.5 72.7± 1.3 72.3± 1.2
PEPTIDES 44.8± 2.8 43.6± 2.5 44.3± 2.8 49.2± 1.5 50.7± 1.6 50.1± 1.6

Table 5: Graph classification accuracies of GCN and GIN with AFR-3, AFR-4, and BORF using our
heuristics to avoid hyperparameter tuning.

(Table 5). Our experiments with long-range node classification yield similar results, as can be seen in
Tables 2 and 4. Additional experiments with the LRGB datasets using GIN can be found in A.7.1.

6 Discussion
In this paper we have introduced formal characterizations of over-squashing and over-smoothing
effects using augementations of Forman’s Ricci curvature, a simple and scalable notion of discrete
curvature. Based on this characterization, we proposed a scalable graph rewiring approach, which
exhibits performance comparable or superior to state-of-the-art rewiring approaches on node- and
graph-level tasks. We further introduce an effective heuristic for hyperparameter choices in curvature-
based graph rewiring, which removes the need to perform expensive hyperparameter searches.

There are several avenues for further investigation. We believe that the complexity of rewiring
approaches merits careful consideration and should be evaluated in the context of expected perfor-
mance gains in applications. This includes in particular the choice of hyperparameters, which for
many state-of-the-art rewiring approaches requires expensive grid searches. While we propose an
effective heuristic for curvature-based approaches (both existing and proposed herein), we believe
that a broader study on transparent hyperparameter choices across rewiring approaches is merited.
While performance gains in node- and graph-level tasks resulting from rewiring have been established
empirically, a mathematical analysis is still largely lacking and an important direction for future work.
Our proposed hyperparameter heuristic is linked to the topology and global geometric properties of
the input graph. We believe that similar connections could be established for rewiring approaches
that do not rely on curvature. Building on this, a systematic investigation of the suitability of differ-
ent rewiring and corresponding hyperparameter choices dependent on graph topology would be a
valuable direction for further study. Similarly, differences between the effectiveness of rewiring in
homophilous vs. heterophilous graphs strike us as an important direction for future work.

7 Limitations
The present paper does not explicitly consider the impact of graph topology on the efficiency of AFR-
k. Specifically, our proposed heuristic implicitly assumes that the graph has community structure,
which is true in many, but not all, applications. Our experiments are restricted to one node- and
graph-level task each. While this is in line with experiments presented in related works, a wider range
of tasks would give a more complete picture.

9

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i80OPhOCVH2. 1, 2, 4

[2] Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar.
Oversquashing in gnns through the lens of information contraction and graph expansion. In
2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1–8. IEEE, 2022. 2

[3] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In International Conference on Machine
Learning, pages 2528–2547. PMLR, 2023. 2

[4] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020. 2

[5] Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In Proceed-
ings of the First Learning on Graphs Conference, 2022. 2

[6] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M. Bronstein. On over-squashing in message passing neural networks: The impact of
width, depth, and topology. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 7865–7885. PMLR, 23–29 Jul 2023. 2

[7] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=in7XC5RcjEn. 8, 27

[8] M. Erbar and J. Maas. Ricci curvature of finite markov chains via convexity of the entropy.
Archive for Rational Mechanics and Analysis, 206:997–1038, 2012. 2

[9] Lukas Fesser, Sergio Serrano de Haro Iváñez, Karel Devriendt, Melanie Weber, and Renaud
Lambiotte. Augmentations of forman’s ricci curvature and their applications in community
detection. arXiv preprint arXiv:2306.06474, 2023. 2, 3, 7, 8

[10] Robin Forman. Bochner’s Method for Cell Complexes and Combinatorial Ricci Curvature.
volume 29, pages 323–374, 2003. 2, 3, 4, 16

[11] Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel
Berenberg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis,
et al. Structure-based protein function prediction using graph convolutional networks. Nature
communications, 12(1):3168, 2021. 1

[12] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE international joint conference on neural networks,
volume 2, pages 729–734, 2005. 3

[13] Adam Gosztolai and Alexis Arnaudon. Unfolding the multiscale structure of networks with
dynamical Ollivier-Ricci curvature. Nature Communications, 12(1), December 2021. 6

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NIPS, pages 1024–1034, 2017. 3

[15] J. Jost and S. Liu. Ollivier’s Ricci curvature, local clustering and curvature-dimension inequali-
ties on graphs. Discrete & Computational Geometry, 51(2):300–322, 2014. 2

[16] Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring
for addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022. 2

[17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017. 3

[18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018. 1, 2, 4

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=in7XC5RcjEn

[19] Shane Lubold, Arun G. Chandrasekhar, and Tyler H. McCormick. Identifying the latent space
geometry of network models through analysis of curvature, May 2022. arXiv:2012.10559 [cs,
math, stat]. 3

[20] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019. 2

[21] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663. 27

[22] Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In
International Conference on Machine Learning, pages 25956–25979. PMLR, 2023. 2, 3, 4, 7,
19, 20

[23] Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with
ricci flow. Scientific reports, 9(1):1–12, 2019. 2, 3, 6

[24] Y. Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009. 2, 16

[25] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020. 2

[26] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. CoRR, abs/2002.05287, 2020. URL https://
arxiv.org/abs/2002.05287. 27

[27] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
CoRR, abs/1909.13021, 2019. URL http://arxiv.org/abs/1909.13021. 27

[28] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022. 2

[29] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020. 1

[30] Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-ricci curvature-based method to
community detection in complex networks. Scientific reports, 9(1):1–12, 2019. 2, 3, 6

[31] Yu Tian, Zachary Lubberts, and Melanie Weber. Curvature-based clustering on graphs. arXiv
preprint arXiv:2307.10155, 2023. 2, 3, 4, 6

[32] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference on Learning Representations, 2022. 2, 3, 4

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018. 3

[34] Melanie Weber. Neighborhood growth determines geometric priors for relational representation
learning. In International Conference on Artificial Intelligence and Statistics, volume 108,
pages 266–276, 2020. 3

[35] Melanie Weber, Emil Saucan, and Jürgen Jost. Characterizing complex networks with forman-
ricci curvature and associated geometric flows. Journal of Complex Networks, 5(4):527–550,
2017. 2

[36] Melanie Weber, Johannes Stelzer, Emil Saucan, Alexander Naitsat, Gabriele Lohmann, and
Jürgen Jost. Curvature-based methods for brain network analysis. arXiv:1707.00180, 2017. 3

[37] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022. 1

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 1, 2, 3

11

https://arxiv.org/abs/2007.08663
https://arxiv.org/abs/2002.05287
https://arxiv.org/abs/2002.05287
http://arxiv.org/abs/1909.13021

[39] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. CoRR, abs/1603.08861, 2016. URL http://arxiv.org/abs/1603.
08861. 27

[40] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018. 1

12

http://arxiv.org/abs/1603.08861
http://arxiv.org/abs/1603.08861

A Appendix

Contents
A.1 Proofs of theoretical results in the main text . 14

A.1.1 Theorem 3.1 . 14

A.1.2 Theorem 3.2 . 14

A.1.3 Proposition 3.3 . 15

A.1.4 Proposition 3.4 . 16

A.1.5 Theorem 4.1 . 16

A.2 Additional theoretical results . 16

A.2.1 Lemma 1 . 16

A.2.2 Extension of Theorem 3.2 . 17

A.2.3 Extension of Proposition 3.3 . 18

A.2.4 Theorem 4.5 in Nguyen et al. (2023) . 19

A.3 Best hyperparameter settings . 20

A.4 Other rewiring algorithms . 20

A.5 Rewiring Times . 20

A.6 Architecture choices . 20

A.7 Additional experimental results . 21

A.7.1 Node and graph classification using GIN 21

A.7.2 Ablations on heuristic for adding edges 21

A.7.3 Ablations on heuristic for removing edges 22

A.7.4 Multiple rewiring iterations . 22

A.7.5 Effects of GNN depth . 23

A.7.6 HeterophilousGraphDataset . 24

A.7.7 Gaussian mixtures for the ORC . 24

A.8 Additional figures . 25

A.8.1 Curvature Distributions . 25

A.8.2 Dirichlet Energy . 26

A.8.3 Example Graphs . 26

A.9 Statistics for datasets . 27

A.9.1 General statistics for node classification datasets 27

A.9.2 Curvature distributions for node classification datasets 27

A.9.3 General statistics for graph classification datasets 27

A.9.4 Curvature distributions for graph classification datasets 27

A.10 Hardware specifications and libraries . 28

13

A.1 Proofs of theoretical results in the main text

A.1.1 Theorem 3.1

Proof: Let G = (V,E) be an unweighted, undirected graph, let (u, v) ∈ E and let t and q denote
the number of triangles and quadrangles, respectively, containing the edge (u, v). The lower bound
in both cases (AF3 and AF4) follows straight from the definition and the fact that t and q are
non-negative by definition. The lower bounds are attained when there are no triangles (resp. no
triangles and quadrangles) containing (u, v) in E.

For the upper bound on AF3, note that t ≤ n − 1 (and n ≥ 1 by assumption). Also note that the
only way to increase AF3(u, v) is to add triangles, which increases AF3(u, v) by one (as we also
increase the degrees of u and v by one each). Hence

AF3(u, v) = 4−m− n+ 3t ≤ 4−m− n+ 3(n− 1)

= 2n−m+ 1 ≤ n+ 1
(11)

The upper bound is attained when t = n− 1 and n = m. The upper bound on AF3(u, v) follows
from the observation that q ≤ (m− 1)(n− 1), so

AF4(u, v) = 4−m− n+ 3t+ 2q ≤ 4−m− n+ 3(n− 1) + 2(m− 1)(n− 1)

= 2n−m+ 1 + 2mn− 2n− 2m+ 2 = 2mn− 3m+ 3

≤ 2mn− 3n+ 3

(12)

Note that the bound is attained when t = n+ 1, q = (m− 1)(n− 1), and m = n.

□

A.1.2 Theorem 3.2

Proof: ϕk is L-Lipschitz, so

∣∣Xk+1
u −Xk+1

v

∣∣ =
∣∣∣∣∣∣ϕk

 ⊕
p∈Ñu

ψk

(
Xk

p

)− ϕk

⊕
q∈Ñv

ψk

(
Xk

q

)∣∣∣∣∣∣
≤ L

∣∣∣∣∣∣
 ⊕

p∈Ñu

ψk

(
Xk

p

)−

⊕
q∈Ñv

ψk

(
Xk

q

)∣∣∣∣∣∣
= L

∣∣∣∣∣∣
∑
p∈Ñu

ψk

(
Xk

p

)
−

∑
q∈Ñv

ψk

(
Xk

q

)∣∣∣∣∣∣
= L

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψk

(
Xk

p

)
−

∑
q∈Ñv\Ñu

ψk

(
Xk

q

)∣∣∣∣∣∣ ≤ L
∑

p∈Ñu∆Ñv

∣∣ψk

(
Xk

p

)∣∣

(13)

By Lemma 1 and using that t ≤ m− 1 and q ≤ (m− 1)(n− 1), we have after some algebra∣∣∣Ñu∆Ñv

∣∣∣ ≤ n+m− 2t− 2 ≤ 3m− 3t− 3

≤ (2mn− 2n− 2m+ 2) + 3m− 3− 3t− 2q

= 2mn− 3n+ 3− (4−m− n+ 3t+ 2q)

= 2mn− 3n+ 3−AF4(u, v)

(14)

Finally, using the above and the assumptions that ψk is bounded and that |Xk
p| ≤ C for all p ∈

N (u) ∪N (v),

L
∑

p∈Ñu∆Ñv

∣∣ψk

(
Xk

p

)∣∣ ≤ LCM (2mn− 3n+ 3−AF4(u, v)) (15)

14

This proves the statement with H := LCM .

□

A.1.3 Proposition 3.3

Proof: Since AF4(u, v) ∈ N for all (u, v) ∈ E, we may assume that δ ∈ N. We proceed by
induction. For all edges u ∼ v, Lemma 1 tells us that∣∣∣Ñu∆Ñv

∣∣∣ ≤ deg(u) + deg(v)− 2t− 2 ≤ 3m− 3t− 3

≤ 2mn− 3n+ 3−AF4(u, v) ≤ 2mn− 3n+ 3− δ
(16)

The base case k = 1 follows, since

∣∣X1
u −X1

v

∣∣ =
∣∣∣∣∣∣ϕ1

 1

n+ 1

∑
p∈Ñu

ψ (Xp)

− ϕ1

 1

n+ 1

∑
q∈Ñv

ψ (Xq)

∣∣∣∣∣∣
≤ L

∣∣∣∣∣∣ 1

n+ 1

∑
p∈Ñu

ψ (Xp)−
1

n+ 1

∑
q∈Ñv

ψ (Xq)

∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψ (Xp)−
∑

q∈Ñv\Ñu

ψ (Xq)

∣∣∣∣∣∣
≤ L

n+ 1

∑
p∈Ñu∆Ñv

|ψ (Xp)|

≤
(
2mn− 3n+ 3− δ

n+ 1

)
LCM

(17)

Suppose now that the statement is true for k and consider the case k + 1. We have for all u ∼ v:

∣∣Xk
u −Xk

v

∣∣ ≤ L

n+ 1

∣∣∣∣∣∣
∑
p∈Ñu

ψk

(
Xk

p

)
−

∑
q∈Ñv

ψk

(
Xk

q

)∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψK

(
Xk

p

)
−

∑
q∈Ñv\Ñu

ψk

(
Xk

q

)∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣ψk

 ∑
p∈Ñu\Ñv

Xk
p −

∑
q∈Ñv\Ñu

Xk
q

∣∣∣∣∣∣
≤ LM

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

Xk
p −

∑
q∈Ñv\Ñu

Xk
q

∣∣∣∣∣∣

(18)

For each p ∈ Ñu \ Ñv, match it with one and only one q ∈ Ñv \ Ñu. For any node pair, they are
connected by a node path p ∼ u ∼ v ∼ q, where the difference in norm of features at layer k of each

1-hop connection is at most 1
3C

(
3LM
n+1 (2mn− 3n+ 3− δ)

)k

. Hence, we have

∣∣Xk
p −Xk

q

∣∣ ≤ C

(
3LM(2mn− 3n+ 3− δ)

n+ 1

)k

(19)

15

Substitute this back into the above and note that there are at most 2mn− 3n+ 3− δ pairs to get∣∣Xk+1
u −Xk+1

v

∣∣ ≤ LM

n+ 1

∑
(p,q)

∣∣Xk
p −Xk

q

∣∣
≤ LM

n+ 1
(2mn− 3n+ 3− δ)C

(
3LM(2mn− 3n+ 3− δ)

n+ 1

)k

=
1

3
C

(
3LM(2mn− 3n+ 3− δ)

n+ 1

)k+1

(20)

This proves that the desired inequality holds for all k ≥ 1 and u ∼ v.

□

A.1.4 Proposition 3.4

Proof: Denote the number of triangles containing (u, v) by △(u, v) =: t and the number of quadran-
gles by □(u, v) =: q. Then |S| = t+ q. By definition,

AF4(u, v) = 4− deg(u)− deg(v) + 3t+ 2q = 4− deg(u)− deg(v) + t+ 2|S|. (21)

Rewriting this, we get

|S| = AF4(u, v) + deg(u) + deg(v)− 4− t

2
, (22)

but t ≥ 0, so the inequality follows.

□

A.1.5 Theorem 4.1

Proof: The complexity of computing discrete curbature in the sense of Ollivier and Forman follows
directly from the definitions [10, 24]; we will briefly recall it below for completeness. Computing
ORC involves the computation of the W1-distance between measures defined on the neighborhoods
of the nodes adjacent to the edge, which can be done in O(d3max) (via the Hungarian algorithm),
where dmax is the maximal node degree. For computing AF3, we note that the costliest operation
involved is counting the number of triangles containing a given edge (u, v) ∈ E. We can do this
by determining the neighborhoods Nu and Nv of u and v, respectively, which scales linearly in
max {du, dv} ≤ dmax, before taking the intersection of the two neighborhoods, again in linear time.
Doing this for every edges shows that computing AF3 indeed scales as O (|E| dmax). For AF4, note
that counting the 4-cycles containing (u, v) is the costliest operation involved. For a given edge, this
scales quadratically in max {du, dv} ≤ dmax: for each w1 ∈ Nu and for each w2 ∈ Nv \ Nu, we
check whether (w1, w2) ∈ E.

□

A.2 Additional theoretical results

A.2.1 Lemma 1

Lemma 1: Let Ñu = Nu ∪ {u}, i.e. Ñu contains the neighborhood of the vertex u and u itself. Let
G = (V,E) be a graph and suppose that (u, v) ∈ E. Then∣∣∣Ñu∆Ñv

∣∣∣ ≤ deg(u) + deg(v)− 2t− 2 (23)

Proof: Note that
∣∣∣Ñu∆Ñv

∣∣∣ = ∣∣∣(Ñu \ Ñv

)
∪
(
Ñv \ Ñu

)∣∣∣, and that for
∣∣∣Ñu \ Ñv

∣∣∣, we have∣∣∣Ñu \ Ñv

∣∣∣ = |Nu \Nv|−1 = |Nu \Nu ∩Nv|−1 = |Nu|−|Nu ∩Nv|−1 = deg(u)−t−1 (24)

The result follows by symmetry in u and v and because

16

∣∣∣(Ñu \ Ñv

)
∪
(
Ñv \ Ñu

)∣∣∣ ≤ ∣∣∣(Ñu \ Ñv

)∣∣∣+ ∣∣∣(Ñv \ Ñu

)∣∣∣ (25)

□

A.2.2 Extension of Theorem 3.2

Theorem (Extension of Theorem 3.2): Consider an updating rule as defined above and suppose that
AF3(u, v) > 0. For some k, assume the update function ϕk is L-Lipschitz, |Xk

p| ≤ C is bounded for
all p ∈ N (u) ∪N (v), and the message passing function is bounded, i.e. |ψk(x)| ≤M |x|,∀x. Let⊕

be the mean operation. Then there exists a constant H > 0, depending on L,M , and C, such that∣∣Xk+1
u −Xk+1

v

∣∣ ≤ (n+ 1−AF3(u, v))h(AF3(u, v)) (26)

where m = deg(u) ≥ deg(v) = n > 1. Furthermore, we have

lim
AF3(u,v)→n+1

(n+ 1−AF3(u, v))h(AF3(u, v)) = 0 (27)

Proof: We have

∣∣Xk+1
u −Xk+1

v

∣∣ ≤ L

∣∣∣∣∣∣
 ⊕

p∈Ñu

ψk

(
Xk

p

)−

⊕
q∈Ñv

ψk

(
Xk

q

)∣∣∣∣∣∣
= L

∣∣∣∣∣∣
∑
p∈Ñu

1

n+ 1
ψk

(
Xk

p

)
−

∑
q∈Ñv

1

m+ 1
ψk

(
Xk

q

)∣∣∣∣∣∣
≤ L

∑
p∈(Ñu∩Ñv)

(
1

m+ 1
− 1

n+ 1

) ∣∣ψk

(
Xk

p

)∣∣
+ L

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

1

n+ 1
ψk

(
Xk

p

)
−

∑
q∈Ñv\Ñu

1

m+ 1
ψk

(
Xk

q

)∣∣∣∣∣∣

(28)

Note that AF3(u, v) ≤ min {m+ 1, n+ 1}, so

1

m+ 1
− 1

n+ 1
≤ 1

AF3(u, v)
− 1

n+ 1
=
n+ 1−AF3(u, v)

(n+ 1)AF3(u, v)
(29)

Hence the above equation now implies

∣∣Xk+1
u −Xk+1

v

∣∣ ≤ L
∑

p∈(Ñu∩Ñv)

n+ 1−AF3(u, v)

(n+ 1)AF3(u, v)

∣∣ψk

(
Xk

p

)∣∣+ L
∑

p∈Ñu∆Ñv

1

AF3(u, v)

∣∣ψk

(
Xk

p

)∣∣
≤ LCM(n+ 1)

n+ 1−AF3(u, v)

(n+ 1)AF3(u, v)
+ LCM (n+ 1−AF3(u, v))

1

AF3(u, v)

= 2LCM
n+ 1−AF3(u, v)

AF3(u, v)
(30)

This proves the statement with h(AF3(u, v)) :=
2LCM

AF3(u,v)
.

□

17

A.2.3 Extension of Proposition 3.3

Theorem (Extension of Proposition 3.3): Consider an updating rule as defined above. Assume the
graph is regular. Suppose there exists a constant δ, such that for all edges (u, v) ∈ E, AF3(u, v) ≥
δ > 0. For all k, assume the update functions ϕk are L-Lipschitz,

⊕
is the mean operation,

|X0
p| ≤ C is bounded for all p ∈ V , and the message passing functions are bounded linear operators,

i.e. |ψk(x)| ≤M |x|,∀x. Then the following inequality holds for k ≥ 1 and any neighboring vertices
u ∼ v ∣∣Xk

u −Xk
v

∣∣ ≤ 1

3
C

(
3LM(n+ 1− δ)

n+ 1

)k

(31)

Proof: Since AF3(u, v) ∈ N for all (u, v) ∈ E, we may assume that δ ∈ N. We proceed by
induction. For all edges u ∼ v, Lemma 1 tells us that∣∣∣Ñu∆Ñv

∣∣∣ ≤ deg(u) + deg(v)− 2t− 2

≤ n+ 1−AF3(u, v) ≤ n+ 1− δ
(32)

The base case k = 1 follows, since

∣∣X1
u −X1

v

∣∣ ≤ L

∣∣∣∣∣∣ 1

n+ 1

∑
p∈Ñu

ψ (Xp)−
1

n+ 1

∑
q∈Ñv

ψ (Xq)

∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψ (Xp)−
∑

q∈Ñv\Ñu

ψ (Xq)

∣∣∣∣∣∣
≤ L

n+ 1

∑
p∈Ñu∆Ñv

|ψ (Xp)|

≤ (n+ 1− δ)

n+ 1
LCM

(33)

Suppose now that the statement is true for k and consider the case k + 1. We have for all u ∼ v:

∣∣Xk
u −Xk

v

∣∣ ≤ L

n+ 1

∣∣∣∣∣∣
∑
p∈Ñu

ψk

(
Xk

p

)
−

∑
q∈Ñv

ψk

(
Xk

q

)∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψK

(
Xk

p

)
−

∑
q∈Ñv\Ñu

ψk

(
Xk

q

)∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣ψk

 ∑
p∈Ñu\Ñv

Xk
p −

∑
q∈Ñv\Ñu

Xk
q

∣∣∣∣∣∣
≤ LM

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

Xk
p −

∑
q∈Ñv\Ñu

Xk
q

∣∣∣∣∣∣

(34)

For each p ∈ Ñu \ Ñv, match it with one and only one q ∈ Ñv \ Ñu. For any node pair, they are
connected by a node path p ∼ u ∼ v ∼ q, where the difference in norm of features at layer k of each

1-hop connection is at most 1
3C

(
3LM(n+1−δ)

n+1

)k

. Hence, we have

∣∣Xk
p −Xk

q

∣∣ ≤ C

(
3LM(n+ 1− δ)

n+ 1

)k

(35)

18

Substitute this back into the above and note that there are at most n+ 1− δ pairs to get∣∣Xk+1
u −Xk+1

v

∣∣ ≤ LM

n+ 1

∑
(p,q)

∣∣Xk
p −Xk

q

∣∣
≤ LM

n+ 1
(n+ 1− δ(u, v))C (3LM(n+ 1− δ))

k

=
1

3
C

(
3LM(n+ 1− δ)

n+ 1

)k+1

(36)

This proves that the desired inequality holds for all k ≥ 1 and u ∼ v.

□

A.2.4 Theorem 4.5 in Nguyen et al. (2023)

The following result from (Nguyen et al. 2023) also applies when using augmentations of the
Forman-Ricci curvature. It shows that edges with AF4 close to the lower bound result in a decaying
importance of distant nodes in GNNs without non-linearities.

Theorem 4.5. Consider the same updating rule as before, let ψk and ϕk be linear operators for all k,
and let

⊕
be the sum operation. Let u and v be neighboring vertices with neighborhoods as in the

previous theorem and let S be defined similarly. Then for all p ∈ Ñu \ {v} and q ∈ Ñv \ {u}, we
have [

δXk+2
u

δXk
q

]
= α

∑
w∈V

[
δXk+2

u

δXk
w

]
;

[
δXk+2

v

δXk
p

]
= β

∑
w∈V

[
δXk+2

v

δXk
w

]
(37)

where
[
y
x

]
denotes the Jacobian of y w.r.t. x, and α and β satisfy

α ≤ |S|+ 2∑
w∈Ñv

(deg(w) + 1)
; β ≤ |S|+ 2∑

w∈Ñu
(deg(w) + 1)

(38)

For the proof, see [22].

19

A.3 Best hyperparameter settings

Our hyperparameter choices are largely based on the hyperparameters reported for BORF in [22]. We
used their values as starting values for a grid search, but found the changes in accuracy to be minimal
across datasets. We similarly experimented with different hyperparameter choices for AFR-3, AFR-4,
and BORF, but again found the resulting differences in accuracy to be marginal. We therefore decided
to use the hyperparameters reported here for AFR-3, AFR-4, and BORF.

GCN GIN
DATA SET n h l n h l
CORA 3 20 10 3 20 30
CITESEER 3 20 10 3 10 20
TEXAS 3 30 10 3 20 10
CORNELL 2 20 30 3 10 20
WISCONSIN 2 30 20 2 50 30
CHAMELEON 3 20 20 3 30 30
MUTAG 1 20 3 1 3 1
ENZYMES 1 3 2 3 3 1
IMDB 1 3 0 1 4 2
PROTEINS 3 4 1 2 4 3

Table 6: Best hyperparameter settings for the datasets and architectures considered in this paper.
Here, n is the number of iterations, h is the number of edges added, and l is the number of edges
removed.

A.4 Other rewiring algorithms

We compare AFR against three recently introduced rewiring algorithms for GNNs, two of which are
based on discrete curvature. SDRF and FoSR were designed with to deal with over-squashing in
GNNs, while BORF can address both over-squashing and over-smoothing. BORF is based on the
Ollivier-Ricci curvature, while SDRF uses a lower bound for the ORC, called the Balanced Forman
curvature (BFR). SDRF iteratively identifies the edge with the lowest BFC, computes the increase in
BFC for every possible edge that could be added to the graph, and then adds the edge that increases
the original edge’s BFR the most. FoSR, on the other hand, is based on the spectral gap, which
characterizes the connectivity of a graph. At each step, it approximately identifies the edge that, if
added, would maximally increase the spectral gap, and adds that edge to the graph. For SDRF and
FoSR, we use the hyperparameters reported in [22].

BORF, as mentioned before, uses the ORC to identify edges responsible for over-smoothing and
over-squashing. The algorithm itself is nearly identical to the AFR algorithm without heuristics.

A.5 Rewiring Times

DATA SET AFR-3 AFR-4 BORF
CHAMELEON 0.3624 4.7628 81.6509
AMAZON RATINGS 0.0127 0.0487 0.1437
MINESWEEPER 0.0098 0.0363 0.1415
TOLOKERS 7.0826 95.2717 Timeout

Table 7: Time (in seconds) required for rewiring using AFR-3, AFR-4, and BORF. On the Tolokers
dataset, BORF does not terminate within 60 minutes.

A.6 Architecture choices

Node classification. We use a 3-layer GNN with hidden dimension 128, dropout probability 0.5, and
ReLU activation. We use this architecture for all node classification datasets considered.

Graph classification. We use a 4-layer GNN with hidden dimension 64, dropout probability 0.5, and
ReLU activation. We use this architecture for all graph classification datasets considered.

20

A.7 Additional experimental results

A.7.1 Node and graph classification using GIN

GIN
DATA SET AFR-3 AFR-4 BORF SDRF FOSR NONE
CORA 79.2± 0.7 78.3± 0.6 78.4± 0.4 74.8± 0.3 75.7± 0.9 76.3± 0.6
CITESEER 64.3± 0.9 64.8± 0.7 63.1± 0.7 60.6± 0.8 61.6± 0.7 59.9± 0.6
TEXAS 62.8± 1.8 62.1± 1.6 63.1± 1.6 50.2± 3.4 47.2± 3.6 53.8± 3.0
CORNELL 49.3± 1.1 48.8± 1.2 48.9± 1.2 40.4± 2.0 36.1± 2.4 36.4± 2.3
WISCON. 54.1± 1.3 53.9± 1.2 54.4± 1.3 48.6± 1.8 48.8± 2.4 48.5± 2.1
CHAMEL. 66.4± 1.0 65.9± 0.9 65.5± 0.7 58.7± 2.3 57.1± 2.2 58.8± 2.3
COCO 12.9± 1.8 13.1± 1.9 13.2± 1.8 9.3± 1.6 10.2± 1.5 8.8± 1.5
PASCAL 16.2± 2.0 15.9± 1.9 16.3± 2.1 12.2± 1.4 14.4± 1.7 12.3± 1.1

Table 8: Classification accuracies of GIN with AFR-3, AFR-4, BORF, SDRF, FoSR, or no rewiring
strategy using best hyperparameters. Highest accuracies on any given dataset are highlighted in bold.

GIN
DATA SET AFR-3 AFR-4 BORF SDRF FOSR NONE
MUTAG 68.8± 3.2 69.3± 2.9 72.1± 3.1 68.1± 1.1 67.2± 2.9 67.5± 2.7
ENZYMES 34.6± 1.4 33.1± 1.2 33.2± 17. 31.5± 1.3 24.9± 1.4 29.7± 1.1
IMDB 68.8± 1.4 69.3± 1.5 68.7± 1.2 66.6± 1.4 67.3± 1.2 67.1± 1.3
PROTEINS 71.9± 0.9 72.7± 0.7 71.2± 0.9 72.1± 0.8 71.8± 0.7 69.4± 1.1
PEPTIDES 49.4± 1.6 50.2± 1.7 49.9± 1.6 46.4± 1.5 48.7± 1.9 46.0± 2.3

Table 9: Classification accuracies of GIN with AFR-3, AFR-4, BORF, SDRF, FoSR, or no rewiring
strategy using best hyperparameters. Highest accuracies on any given dataset are highlighted in bold.

A.7.2 Ablations on heuristic for adding edges

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
CORA 87.4± 0.7 87.1± 0.6 86.2± 0.7 77.9± 1.3 78.1± 1.2 77.0± 1.0
CITESEER 73.2± 0.7 73.0± 0.8 73.1± 0.6 64.2± 1.0 63.9± 1.7 63.0± 1.7
TEXAS 51.9± 4.2 50.0± 3.1 51.9± 4.0 62.6± 1.8 62.3± 1.8 62.2± 1.8
CORNELL 47.8± 4.4 47.3± 4.3 47.8± 3.9 49.1± 1.3 49.0± 1.2 48.5± 1.3
WISCON. 53.5± 2.2 51.9± 4.2 50.9± 2.5 52.6± 1.1 53.2± 1.9 53.3± 1.3
CHAMEL. 60.4± 1.1 60.2± 1.0 57.1± 1.4 65.3± 0.8 65.1± 0.9 64.9± 0.7
COCO 9.8± 1.1 9.9± 1.2 10.2± 1.1 13.0± 1.9 13.3± 2.1 13.2± 2.1
PASCAL 14.4± 1.4 14.1± 1.2 13.7± 1.1 15.8± 1.6 16.1± 1.5 15.9± 1.5

Table 10: Classification accuracies of GCN and GIN with AFR-3, AFR-4, and BORF. Here, we only
use our heuristic for adding edges and use best hyperparameters to remove edges.

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
MUTAG 70.8± 2.0 67.6± 2.3 66.7± 1.9 73.1± 2.9 72.3± 2.7 74.7± 2.4
ENZYMES 24.3± 1.2 24.5± 1.2 23.9± 1.1 36.3± 1.1 37.2± 1.5 32.3± 1.3
IMDB 49.2± 0.8 49.1± 1.0 49.1± 1.0 69.4± 0.9 68.1± 0.9 68.1± 1.0
PROTEINS 59.7± 1.0 59.4± 0.9 59.5± 1.0 74.3± 0.9 72.6± 1.0 70.7± 1.1
PEPTIDES 45.1± 2.7 43.8± 2.6 44.8± 2.6 49.8± 1.4 50.0± 1.4 49.1± 1.6

Table 11: Classification accuracies of GCN and GIN with AFR-3, AFR-4, and BORF. Here, we only
use our heuristic for adding edges and use best hyperparameters to remove edges.

21

A.7.3 Ablations on heuristic for removing edges

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
CORA 87.7± 0.5 88.0± 0.5 87.8± 0.5 78.6± 1.3 78.2± 0.9 78.5± 1.6
CITESEER 73.8± 1.1 74.3± 0.7 73.7± 1.0 63.5± 1.1 62.7± 0.9 64.2± 0.6
TEXAS 50.5± 3.3 48.4± 4.3 52.2± 4.5 63.2± 2.3 65.1± 2.3 58.4± 3.0
CORNELL 48.4± 3.4 45.7± 3.1 48.9± 3.3 48.1± 3.9 51.9± 3.8 48.9± 4.1
WISCON. 50.2± 3.2 50.6± 3.4 50.6± 3.1 54.3± 1.9 56.9± 2.8 55.9± 2.9
CHAMEL. 62.5± 1.1 61.7± 1.0 61.2± 1.0 67.1± 1.4 65.8± 1.4 66.0± 1.6
COCO 10.4± 1.2 10.2± 1.1 10.6± 1.4 13.5± 2.3 13.1± 2.2 13.4± 2.3
PASCAL 14.0± 1.5 14.2± 1.4 14.7± 1.2 16.7± 1.8 16.1± 1.6 16.2± 1.5

Table 12: Classification accuracies of GCN and GIN with AFR-3, AFR-4, and BORF. Here, we only
use our heuristic for removing edges and use best hyperparameters to add edges.

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
MUTAG 71.3± 2.1 72.9± 2.2 70.7± 2.3 66.6± 2.8 68.5± 2.6 68.2± 2.7
ENZYMES 25.2± 1.1 25.8± 1.2 25.0± 1.2 33.2± 1.3 34.4± 1.3 33.9± 1.4
IMDB 48.7± 1.0 49.2± 1.0 49.2± 0.9 69.0± 1.3 69.5± 1.4 68.3± 1.6
PROTEINS 60.1± 0.9 59.1± 0.9 59.0± 0.9 72.3± 1.2 70.8± 1.3 71.1± 1.3
PEPTIDES 44.5± 2.6 44.0± 2.5 44.7± 2.6 50.3± 1.6 49.7± 1.5 49.9± 1.6

Table 13: Classification accuracies of GCN and GIN with AFR-3, AFR-4, and BORF. Here, we only
use our heuristic for removing edges and use best hyperparameters to add edges.

A.7.4 Multiple rewiring iterations

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
MUTAG 67.6± 1.9 67.0± 2.0 67.5± 1.9 72.7± 3.6 73.9± 2.8 76.6± 2.7
ENZYMES 27.6± 1.2 26.1± 1.3 32.5± 1.3 36.7± 1.5 37.6± 1.2 36.3± 1.3
IMDB 48.5± 0.9 49.0± 0.9 48.7± 0.9 50.2± 1.0 49.7± 0.8 49.5± 0.9
PROTEINS 59.4± 0.8 59.1± 0.9 59.9± 0.8 71.7± 1.3 70.2± 1.2 70.9± 1.4
PEPTIDES 43.6± 2.5 44.2± 2.4 44.4± 2.4 49.6± 1.5 50.2± 1.3 50.5± 1.3

Table 14: Comparison using our heuristics for edge addition and removal with two iterations.

GCN GIN
DATA SET AFR-3 AFR-4 BORF AFR-3 AFR-4 BORF
MUTAG 67.1± 1.7 67.4± 1.8 71.5± 2.3 72.3± 3.4 73.8± 3.0 74.6± 2.3
ENZYMES 22.8± 1.1 22.0± 1.3 21.3± 1.1 31.1± 1.2 30.8± 1.2 30.2± 1.1
IMDB 48.0± 0.8 47.7± 0.9 48.6± 1.0 48.7± 1.3 49.1± 1.2 49.0± 1.0
PROTEINS 58.3± 0.6 59.0± 0.9 59.6± 0.8 70.1± 1.1 69.8± 1.0 69.2± 1.2
PEPTIDES 43.7± 2.4 43.8± 2.6 44.9± 2.7 50.6± 1.6 50.4± 1.6 49.7± 1.4

Table 15: Comparison using our heuristics with a variable number of iterations. We continue until no
edges with a curvature below the threshold ∆L (0 in the case of the ORC) or above the threshold ∆U

are left.

22

A.7.5 Effects of GNN depth

GCN
DATA SET AFR-3 AFR-4 BORF DROPEDGE NONE
CORA 88.63± 0.67 87.90± 0.82 88.89± 0.67 86.15± 0.79 84.43± 0.61
CITESEER 78.72± 0.48 78.11± 0.56 78.59± 0.51 78.19± 0.62 75.62± 0.48

Table 16: Classification accuracies of GCN with 4 layers. Highest accuracies highlighted in bold.

GCN
DATA SET AFR-3 AFR-4 BORF DROPEDGE NONE
CORA 83.98± 0.51 84.13± 0.62 84.21± 0.55 84.36± 0.72 77.91± 0.43
CITESEER 77.73± 0.92 76.44± 1.18 77.58± 1.06 76.27± 1.24 73.85± 0.87

Table 17: Classification accuracies of GCN with 8 layers. Highest accuracies highlighted in bold.

GCN
DATA SET AFR-3 AFR-4 BORF DROPEDGE NONE
CORA 83.87± 0.50 84.22± 0.58 84.86± 0.43 81.59± 0.63 81.54± 0.63
CITESEER 72.71± 0.52 72.64± 0.66 72.14± 0.54 71.49± 0.70 67.36± 0.49

Table 18: Classification accuracies of GCN with 16 layers. Highest accuracies highlighted in bold.

GCN
DATA SET AFR-3 AFR-4 BORF DROPEDGE NONE
CORA 75.79± 1.30 75.13± 1.44 76.47± 2.04 74.62± 1.17 71.31± 0.84
CITESEER 65.60± 0.67 66.05± 0.73 65.84± 0.64 62.93± 1.20 59.82± 0.78

Table 19: Classification accuracies of GCN with 32 layers. Highest accuracies highlighted in bold.

HEURISTIC
DATA SET # LAYERS AFR-3 AFR-4 BORF NONE

4 71.4± 2.2 69.9± 2.6 68.5± 1.9 62.7± 2.1
MUTAG 6 68.1± 2.1 67.3± 2.3 67.4± 2.0 61.2± 1.6

8 64.7± 1.6 65.4± 1.4 65.1± 1.4 58.6± 2.2
10 63.8± 1.5 63.1± 1.5 63.7± 1.6 57.5± 1.4
4 26.1± 1.0 25.5± 1.0 23.3± 1.2 25.4± 1.3

ENZYMES 6 25.5± 1.2 24.8± 1.1 25.1± 1.1 24.6± 1.3
8 23.1± 1.1 22.8± 0.9 23.0± 1.1 22.2± 1.4
10 21.3± 1.1 20.8± 1.2 20.9± 1.2 20.4± 0.8
4 50.1± 0.9 49.0± 0.9 49.4± 1.0 48.1± 1.0

IMDB 6 49.0± 1.2 49.2± 1.2 49.8± 1.3 47.6± 1.1
8 46.4± 1.2 46.1± 1.0 46.0± 1.2 44.9± 1.4
10 41.7± 1.2 42.5± 1.4 42.1± 1.1 39.8± 1.2
4 62.2± 0.8 61.2± 0.9 61.0± 0.9 59.6± 0.9

PROTEINS 6 60.8± 1.3 60.0± 1.0 60.2± 1.0 59.3± 0.8
8 58.8± 1.1 58.1± 0.7 58.9± 0.9 57.0± 1.1
10 56.4± 0.8 55.7± 1.1 56.3± 0.9 54.5± 1.2
4 44.8± 2.8 43.6± 2.5 44.3± 2.8 40.5± 2.1

PEPTIDES 6 47.2± 2.6 46.1± 2.5 47.4± 2.6 44.0± 2.3
8 49.5± 2.5 49.3± 2.7 49.8± 2.5 46.6± 2.4
10 50.3± 2.6 50.5± 2.6 50.6± 2.2 48.7± 2.5

Table 20: Graph classification accuracy using heuristics for edge addition and removal with increasing
GNN depth.

23

A.7.6 HeterophilousGraphDataset

GCN
DATA SET AFR-3 AFR-4 BORF SDRF FOSR NONE
AMAZON RATINGS 46.91 ± 0.40 47.14 ± 0.38 47.59 ± 0.39 46.35 ± 0.48 46.41 ± 0.18 46.58 ± 0.36
MINESWEEPER 81.55 ± 0.39 81.37 ± 0.36 81.42 ± 0.32 80.94 ± 0.39 80.63 ± 0.24 80.45 ± 0.35
TOLOKERS 79.26 ± 0.61 79.22 ± 0.68 TIMEOUT TIMEOUT 78.79 ± 0.33 79.13 ± 0.54

Table 21: Classification accuracies of GCN with AFR-3, AFR-4, BORF, SDRF, FoSR, or no rewiring
strategy using our heuristics. Highest accuracies on any given dataset are highlighted in bold.

GIN
DATA SET AFR-3 AFR-4 BORF SDRF FOSR NONE
AMAZON RATINGS 48.02 ± 0.29 48.16 ± 0.34 48.70 ± 0.26 47.81 ± 0.45 47.36 ± 0.46 47.66 ± 0.36
MINESWEEPER 79.12 ± 0.31 78.48 ± 0.32 79.81 ± 0.29 78.69 ± 1.65 79.08 ± 0.54 78.19 ± 0.36
TOLOKERS 79.34 ± 0.23 79.51 ± 0.39 TIMEOUT TIMEOUT 78.81 ± 0.39 78.60 ± 0.19

Table 22: Classification accuracies of GIN with AFR-3, AFR-4, BORF, SDRF, FoSR, or no rewiring
strategy using our heuristics. Highest accuracies on any given dataset are highlighted in bold.

A.7.7 Gaussian mixtures for the ORC

ENZYMES IMDB MUTAG PROTEINS PEPTIDES
∆L(ORC) 0.001± 0.17 0.032± 0.011 −0.371± 0.127 0.053± 0.223 −0.36± 0.009

Table 23: Lower thresholds found for the graph classification datasets’ ORC distributions using a
Gaussian mixture model as described in section 4.

24

A.8 Additional figures

A.8.1 Curvature Distributions

Figure 3: ORC distributions of edges in the Cora and Citeseer networks with no preprocessing (left),
dropedge with p = 0.5 (center), and AFR-3 using our heuristics (right).

Figure 4: AFRC distributions of edges in the Cora and Citeseer networks with no preprocessing
(left), dropedge with p = 0.5 (center), and AFR-3 using our heuristics (right).

25

A.8.2 Dirichlet Energy

Figure 5: (Normalized) Dirichlet energy per layer for a GCN trained on the original Cora/ Citeseer
graphs (left), graphs preprocessed using dropedge with p = 0.5 (center), and preprocessed using
AFR-3 with our heuristics (right).

A.8.3 Example Graphs

Figure 6: Example networks from the mutag, enzymes, imdb, and proteins datasets, which we use
for graph classification. The second row shows the same example networks with their edges colored
according to their AF3 values.

26

A.9 Statistics for datasets

A.9.1 General statistics for node classification datasets

CORN. TEX. WISCON. CORA CITE. CHAM. COCO PAS.
Graphs 1 1 1 1 1 1 123286 11355
#NODES 140 135 184 2485 2120 832 260-500 395-500
#EDGES 219 251 362 5069 3679 12355 1404-2924 2198-2890
FEATURES 1703 1703 1703 1433 3703 2323 14* 14*
#CLASSES 5 5 5 7 6 5 81 21
DIRECTED TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE

Table 24: Statistics of node classification datasets. *See [7] for details on LRGB datasets.

A.9.2 Curvature distributions for node classification datasets

AF3 AF4

DATASET MIN. MAX. MEAN STD MIN. MAX. MEAN STD CORR.
CORA -176 7 -15.039 31.102 -174 193 -6.534 30.826 0.876
CITESEER -108 10 -7.519 15.998 -100 429 4.769 29.392 0.156
TEXAS -106 3 -38.189 45.789 -103 97 -30.589 46.817 0.941
CORNELL -96 6 -32.371 41.795 -93 48 -27.614 43.432 0.941
WISCONSIN -127 4 -35.045 50.012 -122 62 -24.075 51.652 0.967
COCO −8.1 3 −1.962 1.424 −1.7 26.6 7.853 2.674 0.407
PASCAL −8.1 2.9 −1.984 1.452 −1.3 24 7.759 2.502 0.419

Table 25: Curvature statistics of node classification datasets.

A.9.3 General statistics for graph classification datasets

ENZYMES IMDB MUTAG PROTEINS PEPTIDES
#GRAPHS 600 1000 188 1113 15535
#NODES 2-126 12-136 10-28 4-620 8-444
#EDGES 2-298 52-2498 20-66 10-2098 10-928
AVG #NODES 32.63 19.77 17.93 39.06 150.94
AVG #EDGES 124.27 193.062 39.58 145.63 307.30
#CLASSES 6 2 2 2 10
DIRECTED FALSE FALSE FALSE FALSE FALSE

Table 26: Statistics of graph classification datasets.

A.9.4 Curvature distributions for graph classification datasets

AF3 AF4

DATASET MIN. MAX. MEAN STD MIN. MAX. MEAN STD CORR.
MUTAG -2.005 0.063 -0.881 0.773 -2.005 0.063 -0.881 0.773 1
ENZYMES -5.152 4.570 -0.273 2.230 -3.182 20.258 6.448 4.923 0.687
IMDB -4.239 4.546 0.257 2.069 -2.173 19.395 6.673 4.553 0.720
PROTEINS -4.777 8.039 2.917 3.562 66.097 191.539 120.982 25.424 0.661
PEPTIDES -1.999 0.994 -0.671 0.773 -.1996 0.995 -0.671 0.773 0.999

Table 27: Curvature statistics of graph classification datasets.

Datasets. For node classification, we conduct our experiments on the publicly available CORA,
CITESEER [39], TEXAS, CORNELL, WISCONSIN [26] and CHAMELEON [27] datasets. For
graph classification, we use the ENZYMES, IMDB, MUTAG and PROTEINS datasets from the
TUDataset collection [21]. As a long-range task, we consider the PEPTIDES-FUNC dataset from the
LRGB collection [7].

27

A.10 Hardware specifications and libraries

All experiments in this paper were implemented in Python using PyTorch, Numpy PyTorch Geometric,
and Python Optimal Transport. Figures in the main text were created using inkscape.

We conducted our experiments on a local server with the specifications laid out in the following table.

COMPONENTS SPECIFICATIONS
ARCHITECTURE X86_64
OS UBUNTU 20.04.5 LTS x86_64
CPU AMD EPYC 7742 64-CORE
GPU NVIDIA A100 TENSOR CORE
RAM 40GB

Table 28

28

	1 Introduction
	2 Background and Notation
	2.1 Message-Passing Graph Neural Networks
	2.2 Discrete Ricci Curvature on Graphs
	2.3 Over-squashing and Over-smoothing

	3 Characterizing Over-smoothing and Over-squashing with AF4
	3.1 AF4 and Over-smoothing
	3.2 AF4 and Over-squashing

	4 AF3- and AF4-based Rewiring
	4.1 AFR-3 and AFR-4
	4.2 Heuristics for adding and removing Edges

	5 Experiments
	5.1 Results using hyperparameter search
	5.2 Results using heuristics for edge addition and removal

	6 Discussion
	7 Limitations
	A Appendix
	A.1 Proofs of theoretical results in the main text
	A.1.1 Theorem 3.1
	A.1.2 Theorem 3.2
	A.1.3 Proposition 3.3
	A.1.4 Proposition 3.4
	A.1.5 Theorem 4.1

	A.2 Additional theoretical results
	A.2.1 Lemma 1
	A.2.2 Extension of Theorem 3.2
	A.2.3 Extension of Proposition 3.3
	A.2.4 Theorem 4.5 in Nguyen et al. (2023)

	A.3 Best hyperparameter settings
	A.4 Other rewiring algorithms
	A.5 Rewiring Times
	A.6 Architecture choices
	A.7 Additional experimental results
	A.7.1 Node and graph classification using GIN
	A.7.2 Ablations on heuristic for adding edges
	A.7.3 Ablations on heuristic for removing edges
	A.7.4 Multiple rewiring iterations
	A.7.5 Effects of GNN depth
	A.7.6 HeterophilousGraphDataset
	A.7.7 Gaussian mixtures for the ORC

	A.8 Additional figures
	A.8.1 Curvature Distributions
	A.8.2 Dirichlet Energy
	A.8.3 Example Graphs

	A.9 Statistics for datasets
	A.9.1 General statistics for node classification datasets
	A.9.2 Curvature distributions for node classification datasets
	A.9.3 General statistics for graph classification datasets
	A.9.4 Curvature distributions for graph classification datasets

	A.10 Hardware specifications and libraries

