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Abstract
Physical simulations of fluids are crucial for understanding fluid dynamics across
many applications, such as weather prediction and engineering design. While
high-resolution numerical simulations can provide substantial accuracy in analy-
sis, it also results in prohibitive computational costs. Conversely, lower-resolution
simulations are computationally less expensive but compromise the accuracy
and reliability of results. In this work, we propose a cascaded fluid recon-
struction framework to combine large amounts of low-resolution and limited
amounts of paired high-resolution direct simulations for accurate fluid analy-
sis. Our method can improve the accuracy of simulations while preserving the
efficiency of low-resolution simulations. Our framework involves a proposal
network, pre-trained with small amounts of high-resolution labels, to reconstruct
an initial high-resolution flow field. The field is then refined in the frequency
domain to become more physically plausible using our proposed refinement
network, known as ModeFormer, which is implemented as a complex-valued
transformer, with physics-informed unsupervised training. Our experimental
results demonstrate the effectiveness of our approach in enhancing the overall
performance of fluid flow reconstruction. The code will be made publicly avail-
able at https://github.com/divelab/AIRS/tree/main/OpenPDE/CFRF.

1 Introduction
Fluid dynamics has widespread applications in diverse fields of science and engineering, such as
weather prediction, engineering design, and medical applications. It studies the behavior of fluids in
motion, and its principles are used to understand and predict the behavior of fluids under different
conditions. Direct Numerical Simulation (DNS) [1] is an important computational method to solve
the Navier-Stokes equations, which are the fundamental equations governing fluid motions. Although
DNS can resolve all the spatial and temporal scales of fluid motion, it requires fine-grained spatial
and temporal discretization to achieve accurate simulation results for further fluid analysis, resulting
in very high computational costs. The resolution needed rapidly grows when the Reynolds number
increases. To reduce the computational cost, several other numerical methods are developed, such
as Large Eddy Simulation (LES) [2] and Reynolds-Averaged Navier-Stokes (RANS) [3] methods,
to only directly resolve the larger scales. These methods increase the simulation efficiency at the
expense of low-fidelity simulation results.

Recently, machine learning has emerged as a promising approach for advancing scientific endeavors [4,
5], spanning diverse fields such as quantum mechanics [6, 7], biological science [5, 8, 9], material
science [10, 11], and physical simulation [12]. One category of methods, aimed at accelerating
physical simulation or solving partial differential equations with machine learning, involves learning
a neural network surrogate model, also known as a neural solver [12–19]. This neural solver replaces
traditional solvers and enables autoregressive prediction of solutions from one time step to the next.
Another category of methods involves simulating low-resolution solutions using classical solvers
and employing machine learning models to reconstruct high-fidelity fluid fields from the cheaply
obtained low-resolution fields, thereby bridging the gap between computational feasibility and a
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realistic representation of fluid dynamics [20–22]. However, the majority of these methods rely
heavily on a substantial amount of high-resolution labels to facilitate supervised learning [21, 23–25]
and solutions may not be physically consistent. While some studies have explored unsupervised
learning approaches for fluid field reconstruction, they either still require unpaired high-resolution
fields [26] or are limited to handling simple laminar flow scenarios [27].

In this work, we present a systematic and realistic approach for solving fluid simulation problems. We
begin by simulating a large amount of low-resolution solutions and then only a limited set of paired
high-resolution solutions. To reconstruct the high-resolution fluid fields, we propose a cascaded
fluid reconstruction framework consisting of a proposal network and a refinement network. The
proposal network is trained in a supervised manner using the available high-resolution fluid field
labels, enabling it to generate an initial high-resolution solution. Subsequently, the field undergoes
refinement in the frequency domain to become more physically plausible using our refinement
network trained with a physics-informed loss in an unsupervised manner. Our experimental results
demonstrate the effectiveness of our approach in accurately reconstructing high-resolution fluid flow.
Note that, in our context, the terms “resolution” and “fidelity” carry the same meaning and thus are
used interchangeably throughout this paper.

2 Preliminaries
In Section 2.1, we begin by providing a definition of partial differential equations and then outline our
proposed task for high-fidelity fluid flow reconstruction. In Section 2.2, we highlight the distinctions
between high-fidelity fluid flow reconstruction and image super-resolution.

2.1 Problem Setup

Partial Differential Equations. The dynamics of a fluid flow system are governed by partial
differential equations (PDEs). A PDE has the form

∂u

∂t
= F (x,u,

∂u

∂x
,
∂2u

∂x2
, · · · ), (1)

where F is the function of independent variable x = [x1, x2, · · · , xn] ∈ R1×n, the state variable
u(t,x) = [u1, u2, · · · , um] ∈ R1×m, and its partial derivatives with respect to xi up to a certain
order. The objective is to solve the state u(t,x) given the initial condition u(0,x) and the boundary
condition u(t,x ∈ ∂Ω), where Ω denotes the physical domain and ∂Ω denotes the domain boundary.
Classical solvers for solving PDEs typically discretize the domain and approximate the derivatives
using methods such as the finite difference method (FDM), finite volume method (FVM), or finite
element method (FEM). Although solving PDEs with classical solvers like FEM can provide accurate
predictions and error guarantees, it requires discretizing space and time at very fine resolutions,
leading to slow and inefficient computations. On the other hand, low-resolution simulations offer
greater efficiency but often produce less accurate solutions.

High-Fidelity Fluid Flow Reconstruction. To address the accuracy limitations of low-resolution
simulations while retaining their efficiency, we propose a novel semi-supervised learning task that
reconstructs high-resolution (HR) solutions from low-resolution (LR) solutions using a limited amount
of high-resolution labels and a large amount of low-resolution simulation results. Specifically, we
consider a fluid flow governing PDE F and low-resolution and high-resolution domain discretizations
ΩL and ΩH , respectively.

To solve this PDE efficiently, we initially employ a classical solver C to simulate k LR solutions

{u(Ii)
L (t,x)|uL := C(F,ΩL), x ∈ ΩL, t ∈ [0, T ], 0 ≤ i ≤ k}, (2)

where Ii denotes different initial conditions. Subsequently, we generate a limited amount of HR
solutions

{u(Ii)
H (t,x)|uH := C(F,ΩH), x ∈ ΩH , t ∈ [0, T ′ ≤ T ], 0 ≤ i ≤ q < k} (3)

that are paired with a subset of uL. The objective is to reconstruct unlabeled LR solutions {uL/uH}
into HR solutions by using both information from uL and uH . This task is both realistic and
practically useful, as it allows for the preservation of computational efficiency in the initial simulation
while enhancing the accuracy of the final solution through reconstruction.
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Figure 1: Illustration of the Cascaded Fluid Reconstruction Framework (CFRF). The input is
interpolated to match the size of the high-resolution solutions. The CFRF comprises a proposal
network and a refinement network. In the first stage, the proposal network is trained in a supervised
manner, as indicated by the solid arrow branch. The second stage involves training the refinement
network in an unsupervised manner, as represented by the dashed arrow branch. During inference,
the input is sequentially processed by the proposal network and the refinement network to reconstruct
the high-fidelity solution.

2.2 Difference between High-fidelity Fluid Flow Reconstruction and Image Super-resolution

We emphasize that high-fidelity fluid flow reconstruction is distinct from the image super-resolution
task. In image super-resolution, the underlying assumption is that LR and HR images are observations
of the same scene, with LR images typically obtained through the degradation of HR images. This
relationship can be represented as:

Ix = D(Iy;σ), (4)

where Ix are LR images and Iy are HR images. D is the degradation function and σ is the parameters
of the degradation process, usually involving downsampling or the addition of Gaussian noise [28].
Consequently, the image super-resolution task aims to learn the reverse degradation process.

However, in high-fidelity fluid flow reconstruction, LR solutions are not directly derived from HR
solutions. Instead, LR and HR solutions for fluid flows are obtained through numerical solvers
using different domain discretizations. The coarse discretization of the LR simulation introduces
inaccuracies and truncation errors. Moreover, the reconstructed HR solutions must adhere to the
underlying partial differential equation, which imposes additional challenges on this task.

3 Methods
In this section, we begin by introducing our cascaded fluid reconstruction framework in Section 3.1.
Following that, we delve into the motivation and architecture of our proposed refinement network,
known as ModeFormer, in Section 3.2. Next, in Section 3.3, we outline the training strategy and the
employed loss functions during the supervised and unsupervised training stages.

3.1 Cascaded Fluid Reconstruction Framework

In order to make the best use of limited HR labels and a large amount of unlabeled LR solutions, we
propose a cascaded fluid reconstruction framework, which is illustrated in Figure 1. The framework
consists of two stages: a supervised proposal stage and an unsupervised refinement stage. The
objective of the supervised proposal stage is to produce an initial set of HR solutions that are as
accurate and realistic as possible with the guidance of limited HR labels. Subsequently, the unsu-
pervised refinement stage can adjust the initial reconstructions to further improve the reconstruction
performance to make it more physically plausible. The second stage involves using a large amount of
unlabeled LR solutions to train the refinement network. By doing so, the framework can leverage
the vast amount of available data to improve the quality of the reconstructions. In the following, we
will describe these two stages in detail and explain how they work together to achieve high-quality
reconstructions.
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Supervised Proposal Network. Given a limited amount of paired HR-LR solutions, it is natural to
use a proposal network to learn an initial mapping between the two. However, due to the small data
size of paired LR-HR solutions, we need to adopt a lightweight network for this stage. Therefore, we
choose to use SRCNN [29] in this stage, which is specifically designed for image super-resolution
tasks and consists of only three convolutional layers: patch extraction, non-linear mapping, and
reconstruction layers. To implement SRCNN in our framework, we use kernel sizes of 9× 9, 5× 5,
and 5× 5 for these three layers, respectively. Since SRCNN uses the pre-upsampling scheme, we
employ bicubic interpolation to upsample the LR solutions, which then serve as the input to the
network.

Unsupervised Refinement Network. Once the proposal network has produced an initial reconstruc-
tion result, we can further improve the physical consistency of the reconstructed high-resolution field
through the refinement network. These two networks are connected in a cascaded manner, which
means the output of the proposal network is fed into the refinement network to generate the final
result. To train the refinement network, we use a large amount of available unlabeled LR solutions
in an unsupervised manner with physics-informed loss, which will be introduced in Section 3.3. In
order to effectively and efficiently learn the data representation in this stage, we transfer the fluid
flow into the frequency domain and predict the frequency modes using our proposed frequency-based
transformer model, known as ModeFormer. The motivation and design details of the ModeFormer
will be described in Section 3.2.

3.2 ModeFormer

Frequency
Domain

Spatial
Domain

(a) (b) (c)
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Figure 2: Demonstration of the motivation for
learning in the frequency domain. (a) is the bicu-
bic interpolation result and (b) is the HR label.
(c) shows the result by combining low-frequency
modes (area outlined with red square in (a)) from
bicubic interpolation and high-frequency modes
from the label (area outlined with blue ring in (b)).
It turns out that (c) exhibits a similar fluid field to
(b), which validates our motivation of only learn-
ing the high-frequency modes in a small ring area.
dL denotes the number of low-frequency modes to
remain unchanged along x and y directions. dH
denotes the number of high-frequency modes to be
replaced in x and y directions. Apart from the low-
est dc (dc = dL + dH) modes, the rest are filtered
out.

For the refinement network, we propose a
complex-valued transformer model to enhance
the frequency modes of the output produced by
the proposal network. We will first describe the
motivation for learning in the frequency domain
as opposed to the spatial domain. Then, we in-
troduce the network structure of our proposed
ModeFormer.

Motivation for Learning in Frequency Do-
main. In fluid dynamics, the frequency informa-
tion carries specific meanings. Low-frequency
modes in fluid flow capture slowly varying pat-
terns, such as large vortices, effectively repre-
senting the overall behavior of the flow. Con-
versely, high-frequency modes correspond to
rapidly varying patterns, like turbulence or small
eddies, associated with localized and transient
behavior in the flow.

In our experiments, we found two key points.
First, low-frequency modes are relatively eas-
ier to recover, even with a simple bicubic in-
terpolation. This allows the neural network to
focus on recovering the high-frequency parts,
which simplifies the problem and reduces com-
putational complexity. Second, when recovering
high-frequency modes, only a certain group of
high-frequency modes are crucial, and the rest
can be filtered out without a substantial loss of
accuracy. For instance, as shown in Figure 2,
(a) represents the bicubic interpolation of the
low-resolution solution, and (b) represents the ground truth high-resolution solution. In (c), we
retain the low-frequency modes (red square area) from the bicubic interpolation and retain a group of
high-frequency modes (blue ring area) from the ground truth high-resolution solution and combine
them together to form a solution. This approach is able to yield a resulting field that closely resembles
the high-resolution ground truth.
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Figure 3: Architecture of the refinement network, ModeFormer. (a) shows the whole pipeline of the
ModeFormer. (b) shows the detailed network design of the ModeFormer.

In practice, the number of frequency modes to be filtered out can be determined by progressively
eliminating high-frequency modes from the ground truth high-resolution field and comparing the
Euclidean distance between the filtered and original data until a noticeable discrepancy is observed.
Also, we need to determine the number of low-frequency modes to be left unchanged from the bicubic
interpolation. This is achieved by performing a similar process of high-frequency mode removal on
the original data. However, instead of comparing the filtered result with the original ground truth, we
compare it with the bicubic interpolation, which has the corresponding high-frequency parts removed.
The stopping criterion is when the Euclidean distance between the two becomes sufficiently similar.
The remaining frequency modes are the low-frequency ones that we aim to maintain unchanged.

Network Architecture. Let ŨH denote the output of the proposal network. In the ModeFormer,
we begin by transforming ŨH into the frequency domain using the Fast Fourier Transform (FFT)
algorithm. Subsequently, we extract only the central frequency modes such that

Ũf
H = Cropdc(F(ŨH)), (5)

where F denotes the Fourier transform and Ũf
H ∈ Cnx×ny×c serves as the input to the subsequent

blocks. dc denotes the number of frequency modes to retain, as shown in Figure 2.

For the positional encoding, since each mode has x and y coordinates, we calculate it separately along
the x and y directions and then concatenate them to form the final positional encoding. Formally,

PEposx,posy,2i = Cat(sin(posx/10000
2i/dPE), sin(posy/10000

2i/dPE)), (6)

PEposx,posy,2i+1 = Cat(cos(posx/10000
2i/dPE), cos(posy/10000

2i/dPE)), (7)

where Cat(·) is the concatenation and dPE is the size of positional encoding. Then, we employ a
linear layer to project the input Ũf

H and concatenate it with the positional encoding such that

H = Cat(Linear(Ũf
H),PE), (8)

where H ∈ Cnx×ny×d serves as the input to the subsequent multi-head attention module [30]. We
will flatten the first two dimensions of H , so the size of H becomes N × d, where N equals nx × ny .
The multi-head attention module takes a query matrix Q, a key matrix K, and a value matrix V as
input. Formally, the attention mechanism is defined as follows:

Qi = QWQ
i ,Ki = KWK

i , Vi = VWV
i ,ATTi = softmax(

∣∣QiK
T
i

∣∣
√
dk

)Vi, 1 ≤ i ≤ o (9)

MultiHead(Q,K, V ) = Cat(ATT1,ATT2, · · · ,ATTo)W
O, (10)
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where o is the number of attention heads, dk denotes the embedding size of a single query or key
vector, Cat(·) is a concatenation operation, and |·| is the norm of a complex number. WQ

i ∈ Cd×dk ,
WK

i ∈ Cd×dk , WV
i ∈ Cd×dv , and WO

i ∈ Chdv×d are all learnable parameters with complexed
values. Since we are using self-attention, the matrix Q,K, V are the same so we simplify the notation
of the multi-head attention layer as MultiHead(·). The formal single transformer layer can be
expressed as

Ĥ l = CLN(MultiHead(H l) +H l), (11)

H l+1 = CLN(FFN(Ĥ l) + Ĥ l), (12)

where l denotes the l-th attention layer, CLN is the complex layer normalization, and FFN represents
the position-wise feed-forward network. Within the complex layer normalization, we apply separate
layer normalization on both of the real and the imaginary part of the input. Formally,

CLN = LN(ℜ(z)) + jLN(ℑ(z)). (13)

In the position-wise feed-forward network, we use a complex ReLU [31] that has the form

zReLU(z) =

{
z if θz ∈ (0, π/2],

0 otherwise,
(14)

where θz denotes the phase angle of the complex number z. After the final transformer layer, we
use a linear projection layer to process the final embedding HL, followed by adding a residual
connection with the cropped input Ũf

H . Next, we mask the low-frequency modes of the input Ũf
H and

high-frequency modes of the output, and combine them together. Formally,

ĤL = MaskH
dH(Linear(HL) + Ũf

H) +MaskL
dL(Ũf

H), (15)

where MaskL
dL(·) and MaskH

dH(·) represent the operations for masking the low-frequency modes
and high-frequency modes, respectively. dL denotes the number of low-frequency modes to re-
tain from the input, and dH represents the number of high-frequency modes to predict, as shown
in Figure 2.

Finally, we pad the output frequency modes with zero values to match the size of the input. Then, we
use inverse Fourier transform to convert the result back to the spatial domain, such that

ÛH = F−1(Pad(ĤL)). (16)

3.3 Training

We will first introduce loss functions used during training and then describe the training strategy.
There are three loss functions in our method, namely MSE loss, physics-informed loss, and content
loss.

MSE Loss. Mean squared error (MSE) loss is expressed as follows:

LMSE =
1

N

N∑
i=0

(ûi − ui)
2, (17)

where û represents the reconstructions and u denotes the ground truth. N is the number of grid points
in the solution domain. The MSE loss quantifies the pixel-wise similarity between the reconstruction
and the ground truth.

Physics-informed Loss. However, achieving a low MSE does not necessarily guarantee that the
reconstructions adhere to the physical constraints imposed by the governing PDE. To ensure that the
reconstructions satisfy the underlying PDE, we incorporate a physics-informed loss that penalizes
inconsistencies with the fundamental physical laws. The idea of considering physics law in solving
PDEs was originally proposed in PINN [32]. The physics-informed loss is formulated as follows:

R(û) =
∂û

∂t
− F (x, û,

∂û

∂x
,
∂2û

∂x2
, · · · ), (18) LPDE =

1

N

N∑
i=0

(Ri(û))
2, (19)

where R(û) represents the residual of the PDE. The right-hand side of Equation (18) corresponds to
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the PDE being considered. If the predicted solution û fails to satisfy the PDE, the residual will be
non-zero. The physics-informed loss allows us to enforce adherence to the underlying physical laws
during the reconstruction process.

Content Loss. While the physics-informed loss penalizes non-physical solutions, optimizing solely
based on the physics-informed loss can lead to an ill-posed optimization problem. In some cases,
solutions may satisfy the PDE but visually differ significantly from the ground truth. Therefore, we
incorporate a content loss to ensure that the reconstructions maintain perceptual similarity with the
reference solution by the proposal network. The concept of content loss was initially proposed by [33]
for tasks such as style transfer and image super-resolution. It quantifies the semantic difference
between two images by utilizing a pre-trained image classification network, such as the VGG
network [34]. The form of content loss is

Lcontent =
1

ClHlWl
∥ϕl(û)− ϕl(u)∥2 , (20)

where ϕ denotes the pretrained network and l denotes the l-th layer representation of the network ϕ.
The shape of the feature map after the l-th layer is denoted as Cl ×Hl ×Wl.

Training Strategy. For the first stage, we use paired LR-HR solutions to train the proposal network
in a supervised way with MSE loss. Beyond MSE loss, we can also optionally add physics-informed
loss in first-stage training. In Section 5.2, we compare the performance of models trained with
these two variants of the loss function. For the second stage, we train the refinement network in an
unsupervised manner with physics-informed loss and content loss. As described above, the content
loss serves as a regularization term during the optimization of the refinement network. It ensures that
the final reconstruction remains visually consistent with the output of the proposal network while
simultaneously optimizing the physics-informed loss.

4 Related Works

In recent years, deep learning has emerged as a promising approach for accelerating computational
fluid dynamics simulations and addressing the challenge of high-fidelity fluid flow reconstruction.
Several notable advancements have been made in this field. For instance, Pant and Farimani [20]
proposed a hybrid architecture combining MobileNet and UNet to reconstruct high-fidelity DNS
data from filtered data. Yousif et al. [35] designed a multi-scale enhanced super-resolution generative
adversarial network with a physics-based loss to reconstruct high-resolution laminar flows from
spatially limited data. Fukami et al. [23, 24] developed a convolutional neural network leveraging
skip-connection and multiscale convolutions for spatio-temporal fluid field reconstruction. Kim et al.
[26] introduced a CycleGAN-based model to handle unpaired turbulence data for super-resolution
reconstruction. Gao et al. [27] used CNN to reconstruct cardiovascular flow without requiring high-
resolution labeling by considering the conservation law and boundary conditions. Ren et al. [21]
designed a spatiotemporal super-resolution framework via physics-informed learning, employing
convolutional-recurrent neural networks and post-upsampling strategy to refine temporal and spatial
information. Esmaeilzadeh et al. [25] proposed MeshfreeFlowNet for reconstructing under-resolved
solutions of Rayleigh–Benard convection equations, incorporating PDE constraints as an auxiliary
loss. Shu et al. [22] introduced a physics-informed diffusion model to reconstruct fluid flow, relying
solely on high-fidelity data during training. Several works such as Yang et al. [36] have proposed using
attention for image super-resolution tasks, however, to our knowledge, ModeFormer represents the
first application of the transformer architecture [30] to fluid flow reconstruction in the semi-supervised
setting.

5 Experiments

We empirically demonstrate the effectiveness of our method for high-fidelity fluid flow reconstruction.
In Section 5.1, we introduce the dataset, experimental setup, and benchmarking baseline models.
In Section 5.2, we present the reconstruction performance of our method. To further validate the
effectiveness of our proposed ModeFormer and assess the robustness of our framework to the amount
of labeled data, we conduct several ablation studies in Section 5.3.
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Table 1: Summary of the reconstruction performance for the 2D NS equation, where supervised
models are trained with MSE loss and physics-informed loss. The size of labeled data is 1/16 of the
whole training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

MSE 0.2286 0.1835 0.1175 0.0961 1.6193 0.0948 0.0946
Equation Loss 48.9912 1.4797 1.6489 0.9637 53.6201 0.2346 0.0976

Table 2: Summary of the reconstruction performance for the 2D NS equation, where supervised
models are trained only with MSE loss. The size of labeled data is 1/16 of the whole training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

MSE 0.2286 0.1835 0.0977 0.0906 0.0862 0.0768 0.0748
Equation Loss 48.9912 1.4797 2.367 2.2075 5.7242 0.8847 0.2208

5.1 Experimental Setting

Dataset. We evaluate our method on 2D incompressible Navier-Stokes equations [37], 2D shallow
water equations [38], and 2D diffusion-reaction equations [38]. The 2D incompressible Navier-Stokes
equations are a commonly used PDE in the field of computational fluid dynamics and can be used to
model various dynamics systems, such as turbulent dynamics and hydromechanical systems. The 2D
shallow water equations are used for modeling free-surface flow problems. The 2D diffusion-reaction
equation can be used to model biological pattern formation. The detailed equations for these three
PDEs can be found in Appendix C.

Setup. For 2D NS equations, we simulate 20 trajectories of low-resolution solutions on a grid of size
64×64. The initial conditions for each trajectory are randomly initialized. The solutions are recorded
at a time interval of 0.02s. Out of the 20 trajectories, we split the train/valid/test as 80%/10%/10%.
1/16 training trajectories have high-resolution solutions to serve as training labels. These high-
resolution labels are simulated with a resolution of 1024× 1024 and then downsampled to 256× 256.
To ensure consistency, the initial conditions of the low-resolution data are downsampled from their
corresponding high-resolution counterparts. The simulation setting for 2D shallow water equations
and 2D diffusion-reaction equations can be found in Appendix C. We assess the reconstruction
performance using two quantitative metrics: (i) MSE evaluates the pixel-wise similarity between
reconstructed fluid flow and the ground truth high-resolution flows; (ii) Equation Loss measures
the extent to which the reconstructed solutions adhere to the governing physical laws. The equation
loss calculation is identical to the physics-informed loss, as described in Section 3.3. Network
hyperparameters and training details can be found in Appendix A and Appendix D, respectively.

Baselines. We use several numerical and deep learning methods as baselines. For the numerical
methods, we consider the interpolation-based methods, including nearest-neighbor and bicubic
interpolation. For the deep learning methods, we consider Fourier Neural Operator (FNO) [37], Super-
Resolution Convolutional Neural Network (SRCNN) [29], Residual Dense Network (RDN) [39],
and Residual Channel Attention Network (RCAN) [40]. More details about baselines can be found
in Appendix B.

5.2 Results

2D Incompressible Navier-Stokes Equations. As discussed in Section 3.3, the proposal network
can be trained using either the MSE loss alone or a combination of MSE loss and physics-informed
loss. These options are also applicable to other supervised baselines. We conducted experiments
using both training loss choices and summarize the results in Table 1 and Table 2, respectively.
In our cascaded fluid reconstruction framework (CFRF), we employed SRCNN as the proposal
network and ModeFormer as the refinement network. The results demonstrate that for both choices
of supervised training loss, CFRF achieves the best performance in terms of MSE and equation
loss. Moreover, this result shows that with the unsupervised refinement network, the physical
consistency can be further enhanced upon the supervised proposal network. This indicates that
the proposed framework effectively reconstructs high-fidelity fluid flow and highlights its ability
to enforce the underlying physical constraints during the reconstruction process. More results and
visualizations can be found in Appendix F and Appendix I, respectively. Regarding the SRCNN
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Table 3: Comparison of the reconstruction performance of different refinement networks for the 2D
NS equation. SRCNNP denotes SRCNN without refinement, while SRCNNR denotes SRCNNP

followed by a separate SRCNN refinement network. The size of labeled data is 1/16 of the whole
training data. The proposal network is trained with MSE loss.

Method Nearest Bicubic SRCNNP SRCNNR ModeFormerR UNetR

MSE 0.2286 0.1835 0.0768 0.0795 0.0748 0.0762
Equation Loss 48.9912 1.4797 0.8847 0.4279 0.2208 0.8031

Table 4: Results of the reconstruction with different fractions of labeled data to train the proposal
network for the 2D NS equation. 1

8 , 1
16 , 1

32 , 1
64 , and 1

128 denote the fraction of labeled data in the
whole training data. † means the model is trained fully unsupervised without using proposal network.
The proposal network is trained with MSE loss and physics-informed loss.

Method CFRF† CFRF
1
8 CFRF

1
16 CFRF

1
32 CFRF

1
64 CFRF

1
128

MSE 0.1738 0.0904 0.0946 0.0964 0.0954 0.0975
Equation Loss 0.3696 0.1017 0.0976 0.1054 0.1167 0.1198

baseline, incorporating the physics-informed loss results in a lower equation loss but slightly worse
MSE. Since our CFRF employs SRCNN as the proposal network, the performance of CFRF is
similarly influenced. Performance for FNO, RDN, and RCAN is worse than that of SRCNN. This
discrepancy may arise due to the limited size of our labeled dataset. With a small amount of labeled
data, the increased complexity of these models can lead to overfitting and thus result in poorer
performance compared to SRCNN.

2D Shallow Water Equations and 2D Diffusion-Reaction Equations. For the shallow water
equations, we test 2× and 4× reconstruction settings, where the resolution of the HR data is 2× and
4× that of the LR data, both with 1/20 labeled training data. For the 2D diffusion-reaction equations,
we test 8× reconstruction setting, and 1/20 training data have HR labels. We train the proposal
network with only MSE loss for these two equations. The results can be found in Appendix E, which
shows that our method can achieve the best MSE and equation loss. Visualizations can be found
in Appendix I.

5.3 Ablation Studies

In this section, we conduct more experiments on the 2D NS equation to show the effectiveness
of our proposed ModeFormer and the robustness of our framework to the amount of labeled data.
First, we conduct ablation studies on the choices of the refinement network. We compared SRCNN,
ModeFormer, and UNet as the refinement network options. Note that the SRCNN refinement
network shares the same structure as the SRCNN proposal network, with weights initialized from the
trained SRCNN proposal network. The results, shown in Table 3, demonstrate that our ModeFormer
outperforms the other options, achieving the best results after the unsupervised training stage. The
second ablation study focused on the sensitivity of the CFRF to the amount of labeled training data.
As shown in Table 4, using labeled data leads to improved results compared to fully unsupervised
learning. However, even when the amount of labeled data is reduced to only 1/64 or 1/128 of
the whole training data, the MSE and equation loss only slightly deteriorate while still remaining
significantly better than fully unsupervised learning.

6 Conclusions

In this work, we propose a cascaded fluid reconstruction framework to perform high-fidelity fluid
field reconstruction with a large amount of unlabeled low-resolution solutions and a limited amount
of paired high-resolution solutions. We first use a proposal network trained on labeled data to produce
an initial reconstructed high-resolution flow field. Then, the field is refined by a refinement network
which is trained using physics-informed unsupervised learning. The experimental results showcase
that our method can achieve accurate and physically plausible reconstructions while maintaining the
efficiency of low-resolution simulation.
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A Network Details
A.1 Proposal Network

The proposal network employed in our cascaded fluid reconstruction framework (CFRF) is the
Super-Resolution Convolutional Neural Network (SRCNN), as described in Section 3.1. In SRCNN,
we use 9×9, 5×5, and 5×5 kernel size for patch extraction, non-linear mapping, and reconstruction
layers, respectively. The channel numbers for the middle two convolutional layers are 64 and 32,
respectively.

A.2 Refinement Network

The refinement network employed in the CFRF is our proposed ModeFormer. By default, the
input time step size or sliding window size is 7, i.e. the number of input channels is 7. After the
linear projection of Ũf

H , the embedding size becomes 24. Positional encoding size dPE for x and
y coordinates are both 4. The number of attention heads o is 2, and the embedding size dk and d
are 32. Within the position-wise feed-forward network, the hidden size is increased to 64 and then
decreased to 32. The number of lowest frequency modes dL to remain unchanged from the input is
8. The number of high-frequency modes dH to predict is 20. For the shallow water equation, the
sliding window size is 3, dL and dH are 5 and 23, respectively. For the diffusion-reaction equation,
the sliding window size is 4, dL and dH are 8 and 28, respectively. The embedding size dk and d are
64.

B Baseline Methods Details
FNO is a resolution-invariant neural operator for solving partial differential equations. SRCNN is
a lightweight deep learning model for image super-resolution tasks. Note that SRCNN also serves
as the proposal network in our framework, as described in Section 3.1. RDN and RCAN are more
advanced super-resolution networks. RDN uses residual connections and densely connected blocks
to capture and propagate image features across multiple layers effectively. RCAN proposes a residual
in residual (RIR) structure to form a very deep network to learn high-frequency information.

For the SRCNN baseline, the network hyperparameters are the same as the proposal network
in Appendix A.1. For the RDN, the number of residual dense blocks is 4, and the number of layers in
each residual dense block is 3. In each residual dense block, the growth rate is 32. For the FNO, the
number of Fourier layers is 4, and the embedding size is 20. Input time step size or sliding window
size is 3 for training with MSE loss only and 7 for training with MSE plus physics-informed loss. For
the RCAN, we use the default hyperparameters in their official code. The number of residual blocks
is 16 and the number of residual groups is 10. The hidden channel number is 64 and the number of
feature maps reduction is 16.

C Data Details

2D Incompressible Navier-Stokes Equation. The 2D incompressible NS equation is expressed as
follows:

∂tw(x, t) + u(x, t) · ∇w(x, t) =
1

Re
∆w(x, t) + f(x), (21)

∇ · u(x, t) = 0, (22)
w(x, 0) = w0(x), (23)

where w(x, t) ∈ R is the vorticity field and u(x, t) ∈ R2 is the velocity. Re denotes the Reynolds
number that controls the viscosity of the fluid. w0(x) ∈ R is the initial vorticity. The solution
domain we consider is x ∈ [0, 2π]2, t ∈ [0, 10]. f(x) is the forcing term that represents the external
forces exerting on the fluid flow. The forcing term we adopt is f(x1, x2) = 0.1(sin(2π(x1 +
x2)) + cos(2π(x1 + x2))). The initial condition w0(x) is sampled from a Gaussian random field
N ∼ (0, 73/2(−∆ + 49I)−2.5) with periodic boundary conditions. The equation is solved by a
pseudospectral method implemented by Li et al. [37]. As mentioned in Section 5.1, we simulate 20
low-resolution trajectories and use 80% (16) trajectories as training data. In our main experiment, for
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the first training trajectory, we additionally simulate high-resolution solutions to serve as training
labels, corresponding to 1/16 training data. In Section 5.3, we perform an ablation study on the ratio
of labeled training data, where we reduce the ratio to 1/32, 1/64, and 1/128. In these cases, the
amount of labeled data is less than one trajectory. To mimic a realistic scenario, we only run the
high-resolution simulation from the initial time step to generate labeled data. Specifically, ratio 1/32,
1/64, and 1/128 corresponds to time step 0 to 250, 0 to 125, and 0 to 64, respectively.

2D Shallow Water Equation. We generate the shallow water equation (SWE) data using scripts
provided by PDEBench [38]. Shallow water equations are used for modeling free-surface flow
problem and the form is shown below:

∂th+∇ · (hu) = 0, (24)

∂t(hu) +∇ · (huuT ) +
1

2
g∇h2 = 0, (25)

where u = (u, v) denotes the horizontal and vertical direction velocities, h denotes the water depth,
and g denotes the gravitational acceleration. The time t is restricted to [0, 1], and we consider a spatial
domain Ω ∈ [−2.5, 2.5]2 with Neumann boundary conditions. Water height is initialized as a circular
bump in the center of the domain, as shown below:

h(x, 0) =

{
2.0 r <

√
x2
1 + x2

2

1.0 r ≥
√
x2
1 + x2

2

, (26)

where the radius r is randomly sampled from U(0.3, 0.7).
We simulate 100 trajectories and record 100 time steps for each trajectory. We split the train/valid/test
as 80%/10%/10% and 1/20 training data (corresponding to 4 trajectories) have HR labels and are
used for training the proposal network. We test two resolution cases, 64× 64 → 128× 128 (2×) and
64× 64 → 256× 256 (4×).

2D Diffusion-Reaction Equation. We generate the 2D diffusion-reaction equation data using
scripts provided by PDEBench [38]. The 2D diffusion-reaction equation is shown as below. This
equation can be used to model biological pattern formation. In the equation, there are two non-linearly
coupled variables called the activator u and inhibitor v.

∂tu = Du∂xxu+Du∂yyu+Ru, (27)
∂tv = Dv∂xxv +Dv∂yyv +Rv, (28)

Du and Dv are the diffusion coefficient for the activator and inhibitor, respectively. Ru(u, v) and
Rv(u, v) are the activator and inhibitor reaction functions, as shown below.

Ru(u, v) = u− u3 − k − v, (29)
Rv(u, v) = u− v. (30)

Parameters are k = 5 × 10−3, Du = 1 × 10−3, Dv = 5 × 10−3, t ∈ [0, 5], and the domain
Ω ∈ (−1, 1)2 has Neumann boundary conditions. Initial conditions are sampled from Gaussian:
u(0, x, y) ∼ N (0, 1.0).

As with SWE, we simulate 100 trajectories and record 100 time steps for each trajectory1. We split
the train/valid/test as 80%/10%/10% and 1/20 training data (corresponding to 4 trajectories) have HR
labels and are used for training the proposal network. We test resolution 16× 16 → 128× 128 (8×).

D Training Details
To train the proposal network and other supervised baselines, we split the labeled data (e.g., 1/16 of
the whole training data for 2D NS equation) into a training and validation set with an 80%/20% ratio.

1Note that for the 2D diffusion-reaction equation, the LR solutions are obtained by downsampling the HR
solutions. Since the HR initial condition is purely Gaussian noise, so downsampled LR initial condition is
completely different from the original initial condition, which results in non-relevant trajectories if using LR
simulation.
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The best checkpoint is selected based on the lowest MSE obtained on the labeled validation data.
For training the refinement network, all the training trajectories, including the labeled low-resolution
data, are utilized. The best checkpoint is selected based on the lowest physics-informed loss achieved
on the original validation data. During refinement network training, the parameters of the proposal
network remain frozen. The weights assigned to the MSE loss, physics-informed loss, and content
loss are uniformly set to 1. Finally, the performance of all models is evaluated on the hold-out test
data.

We implement our method using PyTorch [41]. We adopt the Adam optimizer [42] with β1 = 0.9,
β2 = 0.999, and weight decay 2e−4. We use the batch size of 16 for both the proposal network
and the refinement network. The proposal network is trained for 200 epochs, while the refinement
network is trained for 100 epochs. All models are trained on a single NVIDIA A6000 GPU.

E Results for 2D Shallow Water Equations and 2D Diffusion-Reaction
Equations

Table 5: Summary of the reconstruction performance for 2D shallow water equations on resolution
64 to 128, where supervised models are trained only with MSE loss. The size of labeled data is 1/20
of the whole training data. The result of RCAN is excluded as the training is not stable.

Method Nearest Bicubic FNO RDN SRCNN CFRF

MSE 15.985e−5 9.479e−5 9.484e−5 21.950e−5 8.896e−5 8.797e−5

Equation Loss 1.7152 0.0715 0.0715 0.5414 0.0768 0.0543

Table 6: Summary of the reconstruction performance for 2D shallow water equation on resolution 64
to 256, where supervised models are trained only with MSE loss. The size of labeled data is 1/20 of
the whole training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

MSE 2.969e−4 2.109e−4 2.110e−4 3.709e−4 7.815e−4 1.933e−4 1.916e−4

Equation Loss 3.3401 0.0583 0.0585 1.1761 23.8961 0.0747 0.0451

Table 7: Summary of the reconstruction performance for 2D diffusion-reaction equation on resolution
16 to 128, where supervised models are trained only with MSE loss. The size of labeled data is 1/20
of the whole training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

MSE 5.6028e−2 4.5758e−2 3.3112e−2 2.0481e−2 2.1836e−2 2.0398e−2 2.0396e−2

Equation Loss 12.5671 2.8352 2.5241 0.5369 0.8093 1.5681 0.2137

F More Results for the 2D NS Equation

We present additional comparison results with baseline models in Table 8 and Table 9, where
supervised models are trained using MSE loss only and MSE loss with physics-informed loss,
respectively. The labeled data size in both cases is reduced to 1/32 of the whole training data.
Furthermore, Table 10 and Table 11 illustrate the results obtained when supervised models are trained
solely with MSE loss, and MSE loss combined with physics-informed loss, respectively, using a
labeled data size of 1/64 of the whole training data. Note that training RCAN is not stable when
using MSE plus physics-informed loss, so we only use MSE loss to train RCAN.
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Table 8: Summary of the reconstruction performance, where supervised models are trained only with
MSE loss. The size of labeled data is 1/32 of the whole training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

MSE 0.2286 0.1835 0.1017 0.0891 0.0864 0.0771 0.0751
Equation Loss 48.9912 1.4797 3.9548 2.6091 8.5349 0.9404 0.1984

Table 9: Summary of the reconstruction performance, where supervised models are trained with
MSE loss and physics-informed loss. The size of labeled data is 1/32 of the whole training data.

Method Nearest Bicubic FNO RDN SRCNN CFRF

MSE 0.2286 0.1835 0.1223 0.1367 0.0965 0.0964
Equation Loss 48.9912 1.4797 2.3207 1.6301 0.2500 0.1054

Table 10: Summary of the reconstruction performance, where supervised models are trained only
with MSE loss. The size of labeled data is 1/64 of the whole training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

MSE 0.2286 0.1835 0.1078 0.0859 0.0892 0.0805 0.0784
Equation Loss 48.9912 1.4797 4.8715 2.6858 10.9180 0.9196 0.2115

Table 11: Summary of the reconstruction performance, where supervised models are trained with
MSE loss and physics-informed loss. The size of labeled data is 1/64 of the whole training data.

Method Nearest Bicubic FNO RDN SRCNN CFRF

MSE 0.2286 0.1835 0.1427 0.2106 0.0955 0.0954
Equation Loss 48.9912 1.4797 4.8581 3.3698 0.3316 0.1167

G Speed Comparison
In this section, we compare simulation speed among our method, several baselines, and direct
high-resolution simulation. Specifically, we simulate 250 trajectories of the 2D incompressible NS
equation using a single NVIDIA A6000 GPU to compare the speed. The result is shown in Table 12.
For HR simulation, we directly simulate 250 high-resolution trajectories. For mixed-resolution
(MR) simulation + reconstruction, we follow the simulation protocol described in Section 5.1, where
we simulate one high-resolution trajectory and the remaining trajectories are all low resolution.
Then these low-resolution solutions are reconstructed to high resolution using our CFRF or baseline
methods. From the result we can see that MR simulation + CFRF is 42× faster than directly
performing high-resolution simulation, improving the simulation time by more than 3.7 hours. While
most remaining deep learning methods are faster than MR simulation + CFRF by several minutes
due to the second unsupervised refinement stage employed by CFRF, we suggest this trade-off to be
worthwhile for the improvement in physical consistency.

Table 12: Speed comparison of generating 250 HR trajectories among using direct HR simulation,
our method, and other baselines. For deep learning methods, we perform mixed-resolution simulation
first and then reconstruct HR solutions from LR solutions.

Method Total time

HR simulation 3.8hrs
MR simulation + CFRF 323s
MR simulation + SRCNN 185s
MR simulation + RDN 122s
MR simulation + FNO 186s
MR simulation + RCAN 413s
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H More Results on Evaluating Visual Quality
To more comprehensively assess the visual quality of the reconstructed solutions, we adopt another
two commonly used metrics in image super-resolution studies, namely the Peak Signal-to-Noise
Ratio (PSNR) and Structured Similarity Indexing Measure (SSIM). These two metrics are better
indicators of perceptual image quality and are more aligned with human visual perception. The
results of these two metrics on three PDEs are shown in Tables 13 to 15. We can see that CFRF
still outperforms baselines on these two metrics in most cases, except for the SSIM metric on the
2D diff-react equation, which demonstrates the effectiveness of our method. However, we must
emphasize that unlike conventional image super resolution tasks, visual quality is not the single
standard for evaluating the reconstruction of high-resolution numerical PDE solutions. Fluid fields
are governed by physical laws described by a PDE, such as conservation of mass as given by the
divergence-free constraint ∇ · u(x, t) = 0 in the Navier-Stokes equations. Metrics such as MSE,
PSNR, and SSIM fail to assess the degree to which the reconstructions adhere to the physical laws
imposed by the governing PDE. Therefore, physical consistency metrics are crucial to a holistic
evaluation of a PDE reconstruction method, for which we employ the equation loss. Our method can
achieve up to 75% improvement in equation loss of reconstructed HR solutions, demonstrating that
the reconstructions produced by CFRF not only have high visual quality, but also maintain physical
consistency.

Table 13: Summary of the reconstruction performance for 2D incompressible NS equation, where
supervised models are trained with MSE loss only. The size of labeled data is 1/16 of the whole
training data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

PSNR 27.6488 28.6030 31.3392 31.6674 31.8853 32.3865 32.5020
SSIM 0.5928 0.6519 0.7667 0.7695 0.7833 0.8031 0.8057

Table 14: Summary of the reconstruction performance for 2D shallow water equation on resolution
on resolution 64 to 128, where supervised models are trained with MSE loss. The size of labeled data
is 1/20 of the whole training data. The result of RCAN is excluded as the training is not stable.

Method Nearest Bicubic FNO RDN SRCNN CFRF

PSNR 40.1929 42.4910 42.4872 40.0712 42.4872 42.9957
SSIM 0.9830 0.9896 0.9896 0.9847 0.9896 0.9900

Table 15: Summary of the reconstruction performance for 2D diffusion-reaction equation, where
supervised models are trained with MSE loss. The size of labeled data is 1/20 of the whole training
data.

Method Nearest Bicubic FNO RDN RCAN SRCNN CFRF

PSNR 29.4793 30.4170 31.8472 34.0815 33.7351 34.0898 34.0937
SSIM 0.4230 0.4633 0.5975 0.7933 0.7744 0.7862 0.7877
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I Reconstruction Visualization
We present visualizations of the reconstruction results obtained from our methods and compare
them with those of baselines and ground truth. We need to emphasize that a good fluid flow
reconstruction not only needs to achieve low MSE but also needs to be physically plausible. Although
these predictions look similar (MSE improvement is marginal), it doesn’t indicate how well the
reconstructions satisfy the underlying equations. So we need to use both MSE and equation loss to
evaluate the performance comprehensively. For example, on the 2D incompressible NS equation, our
method outperforms baselines given the fact that our method achieves at most 75% improvement on
physical consistency (equation loss) of reconstructions and marginally improves on MSE.

Figure 4: Visualization of reconstruction results for the 2D NS equations.

Figure 5: Visualization of reconstruction results for the 2D diffusion-reaction equations.

18



Semi-Supervised Learning for High-Fidelity Fluid Flow Reconstruction Supplementary Material

Figure 6: Visualization of reconstruction results for the 2D shallow water equations with resolution
from 64 to 256.
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