
Neural Algorithmic Reasoning for Combinatorial Optimisation

Dobrik Georgiev∗
University of Cambridge
dgg30@cam.ac.uk

Danilo Numeroso∗
Università di Pisa

danilo.numeroso@phd.unipi.it

Davide Bacciu
Università di Pisa

davide.bacciu@unipi.it

Pietro Liò
University of Cambridge
pl219@cam.ac.uk

Abstract
Solving NP-hard/complete combinatorial problems with neural networks is
a challenging research area that aims to surpass classical approximate algo-
rithms. The long-term objective is to outperform hand-designed heuristics for
NP-hard/complete problems by learning to generate superior solutions solely
from training data. Current neural-based methods for solving CO problems often
overlook the inherent “algorithmic” nature of the problems. In contrast, heuris-
tics designed for CO problems, e.g. TSP, frequently leverage well-established
algorithms, such as those for finding the minimum spanning tree. In this paper,
we propose leveraging recent advancements in neural algorithmic reasoning to
improve the learning of CO problems. Specifically, we suggest pre-training our
neural model on relevant algorithms before training it on CO instances. Our
results demonstrate that by using this learning setup, we achieve superior perfor-
mance compared to non-algorithmically informed deep learning models.

1 Introduction
Combinatorial problems have immense practical applications and are the backbone of modern
industries. For example, the Travelling Salesman Problem (TSP) has applications as diverse as
logistics Baniasadi et al. [4], route optimisation [53], scheduling to genomics [42] and systems
biology [29]. The problem has been studied by both theoretical computer scientists [3, 31] and the
ML community [30, 35, 50] from different perspectives. The former targets the development of
hand-engineered approximate algorithms, which trade-off optimality for computational complexity,
whereas the latter’s ultimate objective is to learn such algorithms instead of manually designing them,
i.e. Neural Combinatorial Optimisation (NCO). Hence, learning to solve such a problem and pushing
the performance beyond that of hand-crafted heuristics, such as the Christofides’ [8] algorithm, is a
fascinating goal that can have a direct impact on the aforementioned industrial fields.

Existing works attempt to learn solutions for CO problems by either supervised learning [30] or rein-
forcement learning [35], exploiting standard deep learning methods. Although many combinatorial
problems have natural “algorithmic” solutions [6, 8], leveraging algorithmic knowledge has never
been explored in prior work.

For example, the Christofides’ algorithm follows several steps to construct a solution for the TSP.
First, it computes the minimum spanning tree (MST) and subsequently applies a matching algorithm
to it. In light of this observation, we argue that knowledge of algorithms may be useful also when
addressing combinatorial problems through the use of neural networks. Our hypothesis is that a neural
network that possesses knowledge of, say, the minimum spanning tree, might be able to generalise
better when learning to solve the TSP. In this context, recent advancements in Neural Algorithmic

∗Equal contribution – order is alphabetical.
0The source code can be found at https://github.com/danilonumeroso/conar.

D. Georgiev et al., Neural Algorithmic Reasoning for Combinatorial Optimisation. Proceedings of the Second
Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30, 2023.

https://github.com/danilonumeroso/conar


Neural Algorithmic Reasoning for Combinatorial Optimisation

Reasoning (NAR) [45] neural networks have been shown to effectively learn and reproduce the
execution of classical algorithms [45], such as the Prim’s algorithm [39]. Moreover, current “neural
algorithmic reasoners” can learn multiple algorithms at once, showing positive transfer knowledge
across them. This yields to better results compared to learning a single algorithm in isolation.

Motivated by this, in this paper, we explore the applicability of NAR in the context of NCO. So far,
most of the prior work in neural algorithmic reasoning focuses on learning algorithms and solving
problems within the class of complexity of problems solvable in polynomial time, i.e. P. In our
settings, we aim to solve challenging combinatorial problems, e.g., TSP, which are known to be
NP-complete/hard. Hence, we try to transfer algorithmic knowledge from algorithms and problems
that are in P to NP-complete/hard problems. To the best of our knowledge, we are the first to explore
transferring from algorithmic reasoning to NP-complete/hard combinatorial optimisation problems.

In general, the contributions of our work can be summarised as follows: (i) we show that algorithms
are a good inductive bias in the context of NCO and leads to good OOD generalisation w.r.t.
algorithm-agnostic baselines; (ii) we investigate and study how different NAR transfer learning
settings perform when applied on the P→NP scenario. Interestingly, the best setting is pre-train +
finetune – a method that was previously thought inferior in NAR; (iii) we highlight shortcomings of
current neural algorithmic reasoners, opening up new potential areas for research.

2 Related work

Neural Combinatorial Optimisation (NCO) is a long-standing research area that aims to exploit the
predictive power of deep neural networks to help solve CO problems. Pioneering work from Hopfield
and Tank [27] dates back to the 1980s, where the authors designed a specialised loss function to train
a rudimentary neural network to solve instances of TSP. Building from there, practitioners have come
up with increasingly complex models to solve CO problems, starting from Self-Organising Maps
(SOMs) until modern deep learning architectures. The Pointer Networks (Ptr-Nets) [50] represent
the first attempt to solve a CO task, namely the TSP, with a pure deep learning approach. Ptr-Nets
are sequence-to-sequence recurrent models that process a sequence of 2D geometrical points, e.g.
coordinates of TSPs, and “translate” them to a sequence of nodes to be visited, i.e. a tour π. The
original model was trained in a supervised way, even though some different training setups have
been explored by later works, such as actor-critic reinforcement learning [5] and REINFORCE [13].
However, the community quickly realised the benefit of using structure-aware learning models, such
as Graph Neural Networks (GNNs). Many CO problems, in fact, have natural representations as
graphs rather than sequences of points in geometrical spaces (see section 3, TSP paragraph). In
particular, Kool et al. [35] and Joshi et al. [30] developed a similar encoder-decoder to Ptr-Nets
but treat the input as a graph, incorporating Graph Attention Network (GAT) [49] style updates in
their respective architectures. However, the entirety of the proposed approaches in NCO treat the
problem as a “standard” predictive task, without taking into account that algorithms play an important
role in classical computer science heuristics, e.g. Christofides’ algorithm for TSPs. Differently
from all prior works, we incorporate algorithmic reasoning knowledge in our learnt predictor, i.e. a
Message-Passing Neural Network (MPNN), by leveraging neural algorithmic reasoning [45].

As introduced in section 3, Neural Algorithmic Reasoning (NAR) involves developing neural models
and learning setups to facilitate the encoding of algorithms directly in models’ weights. Starting from
some early work [47] that aimed to demonstrate the applicability of GNNs to reproduce classical
algorithm steps, the community has then applied these concepts to a variety of domains. Deac et
al. [12] successfully trained an algorithmic reasoner to planning problems, by reproducing steps
of Bellman optimality equation in a reinforcement learning setting. Xhonneux et al. [51] studied
different ways of transferring algorithmic knowledge between algorithms. In particular, they train
algorithmic reasoners on a set of algorithms and study the effect of: (i) training on all algorithms
simultaneously (multi-task learning); (ii) pre-train on a subset of algorithms and finetune on others;
(iii) freeze some parameters of the pre-trained network and learn the remaining; (iv) utilise multiple
processors, one of which is frozen. In our work, we experimented with transferring algorithmic
knowledge by using and extending these setups. Numeroso et al. [38] train an algorithmic reasoner
to solve MaxFlow/MinCut by exploiting the duality of the two optimisation problems. However,
the combinatorial problem therein is in P. Differently from them, we try to generalise and transfer
algorithmic knowledge from problems that are in P, i.e. shortest path and minimum spanning tree, to
harder problems such as the TSP, which is known to be NP-hard.

2



Neural Algorithmic Reasoning for Combinatorial Optimisation

3 Background
Graph Neural Networks. Graph Neural Networks [2], are a type of deep neural networks designed
to operate within a structured input domain, i.e. graphs, by relying on a local context diffusion
mechanism. Specifically, let G = (V,E) be a graph with V and E being respectively the set of nodes
and edges. Then, GNNs process graphs by propagating information at a node-level, following a
message-passing algorithm as follows:

h(ℓ+1)
v = ϕ(ℓ+1)

(
h(ℓ)
v ,Ψ({ψ(ℓ+1)(h(ℓ)

u ) | u ∈ N (v)})
)

(1)

where ϕ and ψ are parameterised transformations, h(ℓ)
v is the node representation at layer/iteration

ℓ, with h
(0)
v = xv where xv is a vector of initial features. Function Ψ aggregates the information

flowing to node v from its neighbourhood N (v), and is chosen to be a permutation-invariant function,
i.e. a different ordering does not change the final output.

Neural execution of algorithms. Neural Algorithmic Reasoning (NAR) [45] is a developing
research area that seeks to build algorithmically-inspired neural networks. In classical algorithms
such as Bellman-Ford [18, 41] and Prim [39], solutions are typically constructed through a series
of iterations. When executing algorithm A on input x, it produces an output A(x) and defines a
trajectory of intermediate steps At(x). Unlike traditional machine learning tasks that focus solely on
learning an input-output mapping function f : X → A(X), NAR aims to impose constraints on the
hidden dynamics of neural models to replicate algorithmic behaviours. This is commonly achieved
by incorporating supervision on At(x) [47] in addition to any supervision on A(x).

The encode-process-decode architecture [24] is considered the preferred choice when implementing
NAR models [45]. The architecture is a composition of three learnable components net = g ◦ p ◦ f ,
where f and g are encoding and decoding functions (usually as simple as linear transformations), and
p is a suitable neural architecture called processor that mimics the execution rollout of A. Typically,
we choose p to be the only part of the network having non-linearities to ensure the majority of the
architecture’s expressiveness lies within the processor. Furthermore, as shown in Ibarz et al. [28], we
are also able to learn multiple algorithms (both graph and non-graph) at once, by having separate fA
and gA per an algorithm A, and sharing the processor p across all algorithms.

A fundamental objective of NAR is to achieve robust out-of-distribution (OOD) generalisation.
Typically, models are trained and validated on “small” graphs (e.g., up to 20 nodes) and tested on
larger graphs. This is inspired by classical algorithms’ size-invariance, where correctness of the
solution is maintained irrespective of the input size. The rationale behind testing on larger graphs is
to assess whether the reasoner has truly captured the algorithm’s behaviour and can extrapolate well
beyond the training data, and past the easily exploitable shortcuts in it. Evaluating models on OOD
data reveals their ability to generalize and provide accurate solutions in diverse scenarios.

CLRS-30. The CLRS-30 benchmark [48], or CLRS-30, comprises 30 iconic algorithms from the
Introduction to Algorithms textbook [9]. The benchmark covers diverse algorithm types, including
string algorithms, searching, dynamic programming, and graph algorithms. All data instances in
the CLRS-30 benchmark are represented as graphs and are annotated with input, output and hint
features and an associated position. Denote the dimensionality of a feature as F and |V | as N .
Input/output node features have the shape N × F , edge features – N × N × F , graph features –
only F . Hints encapsulate time series data of algorithm states. Like inputs/outputs, they include a
temporal dimension which also indicates the duration of execution. All features fall into 5 types:
scalar, categorical, mask (0/1 value), mask_one (only a single position can be 1), and pointer.
Each feature type has an associated loss to be used when training the neural network [cf. 48].

Travelling Salesman Problem. A TSP instance is a complete undirected weighted graph G =
(V,E,w). A valid solution for a TSP is a tour π = v0v1 . . . v|V |, wherein π0:|V | is a permutation
of the n nodes – the node visiting order before returning to the starting node. Among all correct
solutions, we usually seek the one minimising the total cost of the tour c∗ = minπ

∑|V |−1
i=0 wπiπi+1

.

Vertex K-center. The vertex k-center problem (VKC) [23] is defined as follows: given an undirected
weighted graph G = (V,E,w) and a positive integer k, find a subset C ⊂ V where |C| ≤ k in order
to minimize o = maxv∈V w(v, C). In this context, w(v, C) denotes the distance from vertex v to its

3



Neural Algorithmic Reasoning for Combinatorial Optimisation

nearest center in subset C. In the original formulation, the problem involves a complete graph and a
metric function w. To introduce some diversity compared to TSP, we consider (not necessarily fully)
connected graphs and necessitate the network to compute the shortest distances between nodes.

4 Neural Algorithmic Reasoning for Combinatorial Optimisation
4.1 Selection of relevant algorithms

In our algorithm selection for pre-training, we prioritize specific subtask-solving algorithms within
the target combinatorial optimization problem, like Prim’s algorithm for TSP or Find-Min for VKC.
We also consider algorithms that monitor properties (e.g., shortest path) or belong to related classes
(e.g., greedy algorithms). Exclusion of algorithms is also vital. We omit algorithms that the base
reasoner struggles with (e.g., Floyd-Warshall for VKC, see Table 2) or are resource-intensive (cf.
Appendix A) due to their CLRS-30 representation. The final choice is Bellman-Ford and MST-Prim
for TSP and Bellman-Ford, min finding, activity selection [20] and task scheduling [36] for VKC.
Appendix B provides deeper insights into our algorithm selection process.

4.2 Choice of GNN architecture

The rationale behind selecting our GNN architecture stemmed from the necessity of being able to
learn to perform algorithms, in particular shortest path, MST-Prim and Graham Scan. Consequently,
we intentionally avoided utilizing architectures such as GCN/GAT [34, 49] which are known to
perform poorly in algorithmic reasoning [47] or Pointer Networks [50] which do not incorporate
graph structure information. A further reason to avoid standard graph neural TSP architectures is that
they usually have fixed depth, while algorithmic reasoning architectures are recurrent.

Despite narrowing down our potential architectures, there have been several impactful architectures
in the last few years. Testing each and every possible architecture requires computational resources
outside of our reach. In order to choose an appropriate architecture, we focused on several key
properties the network should possess: accuracy in graph algorithms and particular Bellman-Ford and
MST-Prim, scalability and suitability for TSP. The first requirement has led us to exclude the recently
proposed 2-WL architecture by Mahdavi et al. [37]. Lastly, Pointer Graph Networks [46] are unusable
for our purpose due to the nature of TSP. Persistent Message Passing [44] is also inappropriate as it
targets fundamentally different type of problems.

Based on the above analysis our final choice for a neural algorithmic reasoner is an MPNN architecture
with graph features and a gating mechanism as in Ibarz et al. [28]:

z
(t)
i = u

(t−1)
i ∥h(t−1)

i m
(t)
i = max

1≤j≤n
fm

(
z
(t)
i , z

(t)
j , e

(t)
ij

)
ĥ
(t)
i = fr

(
z
(t)
i ,m

(t)
i

)
g
(t)
i = fg(z

(t)
i ,m

(t)
i ) h

(t)
i = g

(t)
i ⊙ ĥ

(t)
i + (1− g

(t)
i )⊙ ĥ

(t)
i

where u
(t)
i are node input/hint features at timestep t, h(t)

i is the latent state of node i at timestep t
(with h

(0)
i = 0), ∥ denotes concatenation and ⊙ denotes elementwise multiplication. Further, fm

is a message function, and fg and fr are gating-related functions of the model. Function fm is
parametrised as an MLP, while fg and fr are linear projection layers. Inspired by the architecture of
Joshi et al. [30] we also explored having edge hidden states. The state is updated similar to h

(t)
i and

is used in the message computation: fm
(
z
(t)
i , z

(t)
j , e

(t)
ij ,h

(t)
ij

)
.

4.3 Algorithmic knowledge integration

None of the algorithmic reasoning papers we surveyed experimented with NP-hard problems like TSP.
Thus, we decided to test a variety of ways to expose our model to algorithmic knowledge, including
those that have previously shown inferior performance [51]. Denote a base task B, from which we
want to transfer, and a target task T , which we want to infuse with the knowledge of B. We explored
the following integration strategies:

• Pre-train and freeze (PF) – this is the most common setting used when B is an abstract
algorithm and T is a real-world task [11, 38, 45]. It consists of pre-training a model on a

4



Neural Algorithmic Reasoning for Combinatorial Optimisation

concrete task (e.g. MST) and copying the processor parameters into the real-world architecture’s
processor and freezing them so they cannot be changed.

• Pre-train and fine-tune (PFT) – in the approach above the processor weights are frozen. We
hypothesise this may not be suitable for our P to NP-hard transfer, so we provide results using
the same transfer learning technique as above but allowing weights to be optimised.

• 2-processor transfer (2PROC) [51] – this technique is a combination of the aforementioned
two. When transferring from B to T we use 2 processors: one initialised with the pre-trained
parameters and kept frozen and another randomly initialised and fine-tuned.

• Multi-task learning (MTL) – this is a setting where the transfer from B to T is performed
implicitly by training B and T together but sharing the same processor. This technique gave the
best results in Xhonneux et al. [51] and was also used when training with dual algorithms in
Numeroso et al. [38].

5 Evaluation

5.1 Data generation & hyperparameter setup

NAR. For our NAR training set we generated 10000 samples for each algorithm. For pre-training
the NAR model for the TSP task we generated each of our graphs by sampling points in 2D space
(unit square) and setting the edge weights of the graph equal to the Euclidean distance between
nodes. Eventually, graphs are all fully-connected. For VKC, we sample Erdős–Rényi [16] graphs
with p = 0.5, excluding graphs that are disconnected. As it has been shown that varying graph sizes
leads to stronger reasoners [28, 37], the size of each graph was uniformly chosen from [8, 16]. For
generating the ground-truth targets and trajectories, we employed the official code for the CLRS-30
benchmark. Although we picked our reasoner based on the best validation score we also built a test
set in order to evaluate the capability of our reasoners to generalise. Both validation and test sets
comprehend 100 graphs per algorithm, but graph sizes in the validation dataset are fixed at 16, while
graphs in the test dataset are of size fixed at 64.

TSP. To train our CO models, we adopted the representation format of CLRS-30 (cf. section 3).
As input features for TSP we picked node mask features representing the starting node of the tour
and edge scalar features for the distance between nodes. Node coordinates were replaced with
the distance matrix to make our architecture invariant to rotations and translations. We defined our
output features as node pointers, where every node predicts a probability of each other node
being its predecessor in the TSP tour which is optimised using categorical cross entropy. Lacking
a TSP execution trajectory, we used “pseudo-hints” from tracing the optimal tour for experiments.
Regrettably, these pseudo-hint trials yielded poor results and were excluded from our final setup.

For the TSP task we generated larger datasets of graphs of varying size. We generated 100000
training samples of each of the sizes [10, 13, 16, 19, 20] (500000 total). While this seems much larger
than the training data we have in the P case, it is only half the amount of data of Joshi et al. [30] and
is several orders of magnitude less than Kool et al. [35]. Further, graph sizes are much smaller than
in previous works [30, 32, 35] which may sometimes reach or exceed 100 nodes.

For validation we generated 100 graphs of size 20. We further generated [1000, 32, 32, 32, 32, 4] test
graphs of sizes [40, 60, 80, 100, 200, 1000] respectively. Finally, we generated the optimal ground-
truth tours using the Concorde solver [1].

VKC. VKC has a simpler “specification” – input edge scalar features for edge weights and
output node mask features signifying node inclusion in set C.

For training/validation/testing, we kept k = 5 constant and generated graphs of the same sizes (except
1000) and numbers as for TSP. The main distinction from TSP lies in our approach to obtaining the
“ground-truth” solution: We observe that the optimal value must be equivalent to the distance between
two nodes [26]. This insight enables us to conduct binary search and leverage Gurobi [22] for solving
the LP formulation of VKC’s decision variant2.

2Given a cost o, is it possible to achieve a solution with k or fewer vertices that has a lower or equal cost

5



Neural Algorithmic Reasoning for Combinatorial Optimisation

(a) Validation relative error per epoch (b) Final test relative error

Figure 1: Standard transfer learning approaches are not applicable for our purposes: the resulting
models are unable to generalise both in- and out-of-distribution.

Hyperparameter setup. In all our experiments we instantiate our models with latent dimensionality
of 128. We train using batch size of 64 and Adam [33] optimiser with a learning rate of 0.0003, with
no weight decay. We report standard deviations from our experiments for 5 seeds. In transfer learning
experiments, we use different algorithmic reasoners for each seed. We train our algorithmic reasoners
for 100 epochs, TSP models for 20, VKC models for 40.

5.2 Solution Decoding

Neural networks may not always generate valid outputs. For TSP, node pointers can lead to incomplete
tours or those not ending at the starting node. Therefore, for TSP, we employed beam search, following
the approach of Joshi et al. [30], to identify the most likely set of node pointers constituting a valid
tour. Similarly, in VKC, the neural network might not yield a valid solution (e.g., selecting more
than k vertices). To handle this, we post-processed the model’s output by selecting the top k vertices
based on the highest confidence (probability) of node membership in set C.

5.3 TSP

Benchmarks. To benchmark our model, we conducted comparisons against various baselines.
Firstly, we examined the performance of our model with and without transfer learning, using the
same hyperparameters. As additional benchmarks, we compared our model to prior architectures
proposed by Joshi et al. [30], Rampášek et al. [40], retraining them on the same dataset utilized for
our models. For Joshi et al. [30] we used the code provided, setting the gating to true3, and defaulting
all others. The choice of these previous models as benchmarks was motivated by their comparable
number of parameters to our own model. For Rampášek et al. [40] we used the official PyG [17]
implementation provided with the same MPNN processor as ours as the conv parameter in order to
be able to process edge features.

Furthermore, we included results from deterministic approaches for comprehensive evaluation. These
deterministic baselines consisted of a greedy algorithm that always selected the lowest-cost edge
to expand the tour, beam search with a width of 1280, the Christofides heuristic [8] and the LKH
heuristic [25]. Additional benchmarking against constraint programming/mixed integer programming
is given in Appendix E.

Finally, to evaluate the performance of all the tested models we use the relative error w.r.t. the cost of
the optimal tour π∗. Given the optimal tour cost c∗ obtained by the Concorde solver, we compute the
relative error as r = c̃

c∗ − 1 where c̃ is the cost of the tour π̃ predicted by the neural network.

Standard transfer does not work. Classical approaches, e.g. as in XLVIN [12], do not produce
good solutions. Contrasted to the fine-tuned model, which usually tends to achieve the best in-
distribution validation loss around epoch 13-14, having one frozen processor tends to produce only
worse performance with training, as evident in Figure 1. While for some target tasks T it may be
desirable to be as faithful as possible to the base B, our experiments suggest this is not the case here.

3Joshi et al. [30] mention they use gating on p.5 of their paper

6



Neural Algorithmic Reasoning for Combinatorial Optimisation

(a) MPNNPFT initially outperforms MPNN most likely
due to accurate MST predictions (Prim’s curve). How-
ever, as MPNNPFT struggles with larger graphs, the
performance gap narrows ( MPNNPFT

MPNN approaches 1).

(b) Pre-training on algorithmic reasoning converges
faster. Both models use the same architecture and hy-
perparameters.

Figure 2: Comparative analysis: (a) MPNNPFT vs. MPNN performance, and (b) Convergence speed
with algorithmic reasoning pre-training.

Transfer vs no-transfer. Our main results are presented in Table 1. We start by noting that except
on the smallest test sizes, our model outperformed the architecture of Joshi et al., often by a significant
margin. From our results, the latter architecture tends to fit well the training data distribution but
exhibits worse OOD generalisation, as confirmed by results on ≥ 60 nodes.

Our next observation is that in almost all cases, pre-training our model to perform algorithms gives
better performance even when compared to a more sophisticated baseline utilising the GPS graph
transformer convolution [40]. Even though the performance gap diminishes as the test size increases,
Figure 2a suggests that this trend is influenced by the progressive deterioration of algorithmic
reasoning performance as test graph size increases. In particular, one can note that MPNN and
MPNNPFT perform very similarly for graphs with ≥200 nodes. This observation aligns with the
point where MPNNPFT demonstrates its lowest performance on Prim’s algorithm, i.e. ∼ 30%. This
suggests that building neural algorithmic reasoners that can strongly generalise even for much larger
graphs becomes critical to solving CO problems using our approach.

Surprisingly, training two processors, i.e. MPNN2PROC, did not yield performance gain when com-
pared to MPNNPFT, while outperforming the algorithm-agnostic baseline. In the original formulation
from Xhonneux et al. the latent representations of the two processors are summed together. How-
ever, summing the two representations was unstable and led to crashes in our experiments. In our
experiments, we used mean instead. MPNNMTL also exhibited inferior performance compared to
other models. In general, our results suggest that transforming knowledge from P to NP is not
trivial. Specifically, we note that our pre-trained reasoners emit representations from which we
can easily decode steps of Prim and Bellman-Ford. However, transforming this information into
a “good heuristic” for the TSP can not be achieved by trivially linearly projecting it (MPNNPF,
see Figure 1), or by averaging it with a learnt representation for the TSP (MPNN2PROC). Clearly,
learning a representation that has to both encode information for P and NP (MPNNMTL) did not lead
to meaningful representations either, since it performs worse than a simple MPNN. We conclude that
the best way of transforming such information to a good performing heuristic for an NP problem is to
fine-tune the representations (MPNNPFT).

Additionally, we noticed that when compared to a model with an identical architecture but without
algorithmic knowledge, inducing algorithmic knowledge led to faster convergence and exhibited
delayed overfitting compared to its corresponding non-pretrained model, as depicted in Figure 2b.

Lastly, we note that we can outperform simpler non-parametric baselines on nearly all test sizes, i.e.
greedy and beam search and we perform better and comparable to Christofides for 2x and 3x larger
graphs. Unfortunately, all neural models still fall short at larger graphs and we are outperformed by
LKH, which almost always produces optimal solutions. We hypothesise that with stronger algorithmic

7



Neural Algorithmic Reasoning for Combinatorial Optimisation

Table 1: TSP extrapolation relative error across different sizes. All models are trained on the same
data of graphs up to size 20. MPNN denotes our base model without algorithmic knowledge. We
added a subscript if we used edge hidden state or attempted knowledge transfer (cf. subsection 4.3).
Note, that despite being a heuristic, LKH almost always produced optimal solutions.

Test size

Model 40 60 80 100 200 1000

Beam search with width w=128

MPNN 17.7±5% 23.9±3% 25.7±8% 31.9±6% 38.9±7% 39.7±7%
GPS 13.9±1% 26.3±2% 24.1±4% 29.7±5% 35.8±4% 39.9±2%
MPNNPFT 9.1±0.1% 15.5±4% 23.1±3% 28.9±2% 35.4±2% 44.5±9%
MPNNPFT+ueh 15.4±5% 23.5±8% 29.4±7% 35.7±6% 37.9±3% 48.8±14%
MPNN2PROC 12.2±5% 22.1±4% 28.4±6% 34.0±5% 36.6±6% 38.8±3%
MPNNMTL 18.1±6% 26.2±4% 31.2±5% 34.8±4% 37.1±3% 38.5±3%
Joshi et al.
(AR)

6.2±4% 37.1±12% 74.8±13% 102±10% 195±20% 419±20%

Joshi et al.
(nAR)4 20.6±10% 62.5±11% 110±17% 156±24% 273±24% 497±7%

Beam search with width w=1280

MPNN 14.4±4% 21.8±5% 22.4±4% 31.1±6% 33.6±3% 41.2±8%
GPS 11.0±1% 21.0±1% 19.0±3% 23.8±5% 35.3±6% 40.1±2%
MPNNPFT 7.5±1% 13.3±3% 20.1±5% 26.9±3% 33.8±2% 40.5±7%
MPNNPFT+ueh 12.9±5% 20.6±6% 26.0±3% 32.0±5% 37.2±3% 44.3±9%
MPNN2PROC 9.5±6% 18.0±5% 24.1±6% 28.8±5% 36.6±6% 38.5±3%
MPNNMTL 15.5±5% 26.5±6% 30.2±6% 33.4±4% 36.8±5% 42.3±5%
Joshi et al.
(AR)

3.5±3% 33.0±11% 63.8±12% 97.6±12% 193.3±17% 417±4%

Joshi et al.
(nAR)4 14.2±8% 54.7±15% 100.0±15% 141.9±25% 265.5±27% 500.7±23%

Models not using beam search

Joshi et al.
(AR+greedy) 22.1±10% 57.7±13% 94.0±14% 124.0±12% 219.6±22% 469±17%

Joshi et al.
(AR+sampling) 9.5±5% 46.7±9% 93.1±10% 137.0±14% 313.2±15% 1102±1%

Deterministic baselines

Greedy 31.9±12% 32.8±10% 33.3±9% 30.0±6% 32.1±6% 28.8±3%
Beam search
(w=1280)

19.7±8% 23.1±7% 29.4±7% 29.7±5% 33.2±4% 38.9±2%

Christofides 10.1±3% 11.0±2% 11.3±2% 12.1±2% 12.2±1% 12.2±0.1%
LKH 0.0±0.0% 0.0±0.0% 0.0±0.0% 0.0±0.0% 0.0±0.0% 0.01±0.0%

generalisation OOD we could match Christofides algorithm and that future studies could investigate
integrating LKH with NAR (or vice versa).

Does it matter what we put in it? An “alternative hypothesis” that one can make is that the
improvements are due to the network being trained on the same data distribution and the algorithms
themselves do not matter and any algorithm would suffice. We present two counterarguments: First,
results in Appendix C show that selecting unrelated algorithms is subpar to selecting related ones and
may also result in final bad local minima with poorer generalisation. However, when one is uncertain
about what algorithms to pick, a generalist-like pre-training [28] may still be a viable option. Second,
results in Appendix D show that changing the source data distribution does not lead to results worse
than no transfer and may even produce better results at larger test sizes. Those two ablations suggest
it is the algorithmic bias that is useful for learning CO problems.

4To disambiguate non-autoregressive decoding, as in Joshi et al. [30] from neural algorithmic reasoning we
will use nAR and NAR respectively

8



Neural Algorithmic Reasoning for Combinatorial Optimisation

Table 2: VKC relative error. Each letter in the MPNNs’ subscript denotes an algorithm pre-trained
on: Floyd-Warshall, Minumum, Insertion sort, Task scheduling, Bellman-Ford, Activity selection.

Test size

Model 40 60 80 100 200

MPNN 15.88±1.11% 20.85±2.64% 24.78±7.17% 26.48±6.65% 24.63±6.50%
MPNNFMITB 14.73±1.21% 21.97±4.87% 23.91±4.52% 28.50±5.06% 27.04±4.22%
MPNNMTAB 13.58±0.60% 16.20±3.02% 23.10±3.99% 26.40±6.62% 26.43±3.84%

Deterministic baselines

Farthest First 41.04±14.21% 43.89±10.70% 38.31±9.22% 36.32±7.28% 37.91±7.91%
CDS 7.15±5.42% 7.82±4.78% 6.49±3.65% 6.55±3.29% 5.98±2.00%

5.4 VKC

Benchmarks. Given the strong performance of the PFT transfer learning variant and for computa-
tional efficiency, we concentrated on comparing best transfer versus no transfer, foregoing retesting
of other transfer options with VKC. Additionally, we chose two deterministic baselines: the Gon
algorithm, which influenced our algorithm selection, and the critical dominating set (CDS) heuristic
[19]. Despite its poorer approximation ratio, CDS consistently provides good solutions in practice.

Results. Table 2 summarises our results with VKC. When picking algorithms, solely based on
relevance to the task, we obtain results comparable, or worse than versions without pre-training.
Removing the two poor performing algorithms (Floyd-Warshall, mean accuracy of ≈ 23%; Insertion
Sort, ≈ 43%), in favour of an additional greedy (activity selection, ≈ 96%) results in a better model,
substantially outperforming the baseline neural model at 2× and 3× extrapolation and tying for the
other sizes. This further supports our hypothesis that generalising performance on algorithms is
related to the performance on the downstream CO task.

Compared to the deterministic baselines, all neural models outperform the simpler heuristic. Unfortu-
nately, even the best-performing models are not comparable to the CDS heuristic. We believe this is
due to the fact that CDS consists of multiple, interlaced subroutines (binary search, graph pruning,
etc.) and perhaps a future more modular NAR approach would give further performance boost.

6 Limitations and future work
Despite the promising results achieved in our study, there are still areas for improvement in current
algorithmic reasoning networks, including our approach. In particular, the GNN requires O(N)
message passing steps. This constraint makes training on very large graphs impractical (Appendix A).
A future work direction we envision is NARs which require fewer iterations to execute an algorithm.
Our intuition is based on Xu et al. [52] who, in their experiments of learning to find shortest paths,
noted that a GNN may sometimes achieve satisfactory test accuracy with fewer iterations than the
ground truth algorithm. Such a contribution, however, is out of the scope of this paper.

7 Conclusions
In this study, we explored the transfer of knowledge from algorithms in P to the travelling salesman
problem and vertex k-center, both NP-hard combinatorial optimisation problems. Our findings
revealed that standard transfer learning techniques did not yield satisfactory results. However, we
observed that certain approaches, which were previously considered to have inferior performance,
actually exhibited superior generalization capabilities and outperformed models that do not leverage
pre-training on algorithms.

In conclusion, our findings provide strong evidence supporting the hypothesis that incorporating
robust algorithmic knowledge is beneficial for achieving out-of-distribution generalization. By
leveraging the insights from algorithms, we can enhance the performance of reasoning models on
complex problems. These findings open up new avenues for the development of algorithmic reasoners
that can effectively tackle challenging real-world tasks and applications.

9



Neural Algorithmic Reasoning for Combinatorial Optimisation

References
[1] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde tsp solver, 2006. 5
[2] D. Bacciu, F. Errica, A. Micheli, and M. Podda. A gentle introduction to deep learning for

graphs. Neural Networks, 129:203–221, 2020. 3
[3] E. Balas and P. Toth. Branch and bound methods for the traveling salesman problem. 1983. 1
[4] P. Baniasadi, M. Foumani, K. Smith-Miles, and V. Ejov. A transformation technique for the

clustered generalized traveling salesman problem with applications to logistics. European
Journal of Operational Research, 285(2):444–457, 2020. 1

[5] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=Bk9mxlSFx. 2

[6] S. Bhattacharya, M. Henzinger, and D. Nanongkai. Fully dynamic approximate maximum
matching and minimum vertex cover in o (log3 n) worst case update time. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 470–489. SIAM,
2017. 1

[7] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids, groups,
graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. 13

[8] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1976. 1, 6

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd
Edition. MIT Press, 2009. ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/
books/introduction-algorithms. 3

[10] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem.
Journal of the operations research society of America, 2(4):393–410, 1954. 15

[11] A. Deac, P. Veličković, O. Milinković, P.-L. Bacon, J. Tang, and M. Nikolić. Xlvin: executed
latent value iteration nets. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020.
4

[12] A. Deac, P. Velickovic, O. Milinkovic, P. Bacon, J. Tang, and M. Nikolic. Neural algorithmic
reasoners are implicit planners. In NeurIPS, pages 15529–15542, 2021. 2, 6

[13] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau. Learning heuristics
for the tsp by policy gradient. In W.-J. van Hoeve, editor, Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pages 170–181, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-93031-2. 2

[14] M. Dyer and A. Frieze. A simple heuristic for the p-centre problem. Operations Re-
search Letters, 3(6):285–288, 1985. ISSN 0167-6377. doi: https://doi.org/10.1016/
0167-6377(85)90002-1. URL https://www.sciencedirect.com/science/article/
pii/0167637785900021. 13

[15] V. Engelmayer, D. Georgiev, and P. Veličković. Parallel algorithms align with neural execution.
arXiv preprint arXiv:2307.04049, 2023. 15

[16] P. Erdős, A. Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60, 1960. 5

[17] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019. 6

[18] L. R. Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica Ca, 1956. 3
[19] J. Garcia-Diaz, J. J. Sanchez-Hernandez, R. Menchaca-Mendez, and R. Menchaca-Méndez.

When a worse approximation factor gives better performance: a 3-approximation algo-
rithm for the vertex k-center problem. J. Heuristics, 23(5):349–366, 2017. doi: 10.1007/
s10732-017-9345-x. URL https://doi.org/10.1007/s10732-017-9345-x. 9

[20] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–187,
1972. doi: 10.1137/0201013. URL https://doi.org/10.1137/0201013. 4, 13

10

https://openreview.net/forum?id=Bk9mxlSFx
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://www.sciencedirect.com/science/article/pii/0167637785900021
https://www.sciencedirect.com/science/article/pii/0167637785900021
https://doi.org/10.1007/s10732-017-9345-x
https://doi.org/10.1137/0201013


Neural Algorithmic Reasoning for Combinatorial Optimisation

[21] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985. ISSN 0304-3975. doi: https://doi.org/10.1016/
0304-3975(85)90224-5. URL https://www.sciencedirect.com/science/article/
pii/0304397585902245. 13

[22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com. 5

[23] S. L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of
a graph. Operations research, 12(3):450–459, 1964. 3

[24] J. B. Hamrick, K. R. Allen, V. Bapst, T. Zhu, K. R. McKee, J. B. Tenenbaum, and P. W. Battaglia.
Relational inductive bias for physical construction in humans and machines. arXiv preprint
arXiv:1806.01203, 2018. 3

[25] K. Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000. 6

[26] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985. 5

[27] J. J. Hopfield and D. W. Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985. 2

[28] B. Ibarz, V. Kurin, G. Papamakarios, K. Nikiforou, M. Bennani, R. Csordás, A. J. Dudzik,
M. Bosnjak, A. Vitvitskyi, Y. Rubanova, A. Deac, B. Bevilacqua, Y. Ganin, C. Blundell,
and P. Velickovic. A generalist neural algorithmic learner. In B. Rieck and R. Pascanu,
editors, Learning on Graphs Conference, LoG 2022, 9-12 December 2022, Virtual Event,
volume 198 of Proceedings of Machine Learning Research, page 2. PMLR, 2022. URL
https://proceedings.mlr.press/v198/ibarz22a.html. 3, 4, 5, 8

[29] O. Johnson and J. Liu. A traveling salesman approach for predicting protein functions. Source
Code for Biology and Medicine, 1(1):3, 2006. doi: 10.1186/1751-0473-1-3. URL https:
//doi.org/10.1186/1751-0473-1-3. 1

[30] C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent. Learning the travelling salesperson
problem requires rethinking generalization. Constraints, 27(1-2):70–98, 2022. 1, 2, 4, 5, 6, 7, 8

[31] A. R. Karlin, N. Klein, and S. O. Gharan. A (slightly) improved approximation algorithm for
metric tsp, 2022. 1

[32] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 6348–6358, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html. 5

[33] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980. 6

[34] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl. 4

[35] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems!, 2019. 1, 2,
5

[36] E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corporation, 2001.
4, 13

[37] S. Mahdavi, K. Swersky, T. Kipf, M. Hashemi, C. Thrampoulidis, and R. Liao. Towards
better out-of-distribution generalization of neural algorithmic reasoning tasks. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=xkrtvHlp3P. 4, 5

[38] D. Numeroso, D. Bacciu, and P. Veličković. Dual algorithmic reasoning. In ICLR. OpenRe-
view.net, 2023. 2, 4, 5

11

https://www.sciencedirect.com/science/article/pii/0304397585902245
https://www.sciencedirect.com/science/article/pii/0304397585902245
https://www.gurobi.com
https://www.gurobi.com
https://proceedings.mlr.press/v198/ibarz22a.html
https://doi.org/10.1186/1751-0473-1-3
https://doi.org/10.1186/1751-0473-1-3
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=xkrtvHlp3P
https://openreview.net/forum?id=xkrtvHlp3P


Neural Algorithmic Reasoning for Combinatorial Optimisation

[39] R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401, 1957. 2, 3

[40] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general,
powerful, scalable graph transformer. Advances in Neural Information Processing Systems, 35:
14501–14515, 2022. 6, 7

[41] B. Richard. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958. 3
[42] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phylogeny.

Journal of computational biology, 5(3):555–570, 1998. 1
[43] M. W. Savelsbergh. Local search in routing problems with time windows. Annals of Operations

research, 4:285–305, 1985. 14
[44] H. Strathmann, M. Barekatain, C. Blundell, and P. Veličković. Persistent message passing. In

ICLR 2021 Workshop on Geometrical and Topological Representation Learning. 4
[45] P. Velickovic and C. Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021. doi:

10.1016/j.patter.2021.100273. URL https://doi.org/10.1016/j.patter.2021.100273.
2, 3, 4

[46] P. Veličković, L. Buesing, M. Overlan, R. Pascanu, O. Vinyals, and C. Blundell. Pointer graph
networks. Advances in Neural Information Processing Systems, 33:2232–2244, 2020. 4

[47] P. Velickovic, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph
algorithms. In ICLR. OpenReview.net, 2020. 2, 3, 4

[48] P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell,
and C. Blundell. The clrs algorithmic reasoning benchmark. In International Conference on
Machine Learning, pages 22084–22102. PMLR, 2022. 3

[49] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ. 2, 4

[50] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems-Volume 2, pages 2692–2700,
2015. 1, 2, 4

[51] S. Xhonneux, A. Deac, P. Velickovic, and J. Tang. How to transfer algorithmic reasoning
knowledge to learn new algorithms? In NeurIPS, pages 19500–19512, 2021. 2, 4, 5, 7

[52] K. Xu, J. Li, M. Zhang, S. S. Du, K. ichi Kawarabayashi, and S. Jegelka. What can neural
networks reason about? In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rJxbJeHFPS. 9

[53] Y. Xu and C. Che. A brief review of the intelligent algorithm for traveling salesman problem in
uav route planning. In 2019 IEEE 9th international conference on electronics information and
emergency communication (ICEIEC), pages 1–7. IEEE, 2019. 1

12

https://doi.org/10.1016/j.patter.2021.100273
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJxbJeHFPS


Neural Algorithmic Reasoning for Combinatorial Optimisation

A Runtime
Runtimes have been obtained on a A100 40GB GPU.

Table 3: Training and inference time on algorithms. This measures the efficiency of the pre-training
phase. Time is relative to a single batch. Note that inference graphs are 4× the size of training graphs

Training time (s) Inference time (s)
Erdős–Rényi Cliques Erdős–Rényi Cliques

Bellman-Ford 0.057 0.103 0.237 0.291
Dijkstra 0.160 0.184 1.469 3.004
MST-Prim 0.162 0.186 1.499 2.999
MST-Kruskal 1.576 2.073 32.997 44.957
Floyd-Warshall 0.231 OOM (16GB) 9.827 OOM(16GB)

Table 4: Inference time of TSP solutions (in seconds). Time is relative to a single TSP of size n.

Test size

Model 20 40 60 80 100 200 1000

w=128 MPNN 0.043 0.090 0.130 0.179 0.242 0.800 65.557
w=1280 MPNN 0.043 0.089 0.131 0.181 0.225 0.839 67.009

Greedy 0.001 0.002 0.004 0.009 0.019 0.021 0.047
Christofides 0.004 0.012 0.411 0.094 0.101 0.714 57.584

B Algorithm selection rationale
Travelling Salesman Problem. TSP is defined on an undirected full graph, often originating from
2D Euclidean space. We thus considered graph and geometry algorithms in CLRS-30. Many of the
algorithms were excluded as they were either trivial to solve on a full graph (e.g., BFS/articulation
points), or were defined only on directed (acyclic) graphs (e.g., DFS, topological sort). We also
excluded algorithms with long rollouts: e.g., in CLRS-30, MST-Kruskal and Dijkstra’s algorithms
have (much) longer trajectories than MST-Prim and Bellman-Ford, despite having equal or better
theoretical time complexity. Such long-trajectory algorithms are impractical for our application, as
they result in higher training/inference times (Appendix A, Table 3). The resulting list, in the end,
contained 3 relevant algorithms – Bellman-Ford, MST-Prim and Graham’s scan. Unfortunately in our
initial experiments, integrating Graham led to poor performance and it was removed from our final
models. We suspect this was due to the fact that NAR architectures do not incorporate invariance to
Euclidean transformations [7].

Vertex k-center problem. The Vertex k-center problem employs a straightforward 2-approximation
heuristic, commonly known as the Gon algorithm [14, 21]. This heuristic involves randomly selecting
the first station and then greedily choosing the vertex that is farthest from any of the currently chosen
vertices. To learn this heuristic, the model needs to perform shortest path calculations between
nodes and understand concepts like maximum finding (or minimum of negatives) and/or sorting.
Considering the greedy algorithm nature of the Gon algorithm, we decided to pre-train our model on
Bellman-Ford, Minimum finding, and two CLRS-30 greedy problems: activity selection [20] and
task scheduling [36]. The reason to choose Bellman-Ford over Floyd-Warshall (an all-pairs shortest
path algorithm) and Minimum over Insertion sort is that Floyd-Warshall and Insertion sort have much
poorer performance.

C On selecting unrelated algorithms
To evaluate the impact of selecting an appropriate algorithm for training, we conducted the following
additional experiment. We utilized our best TSP algorithm transfer configuration while pre-training
on three different algorithms: Breadth-First Search (which is trivial on fully-connected graphs),

13



Neural Algorithmic Reasoning for Combinatorial Optimisation

Table 5: TSP relative error comparison between no-transfer, transferring unrelated algorithms and
transferring related algorithms. When transferring, the experimental setup matches MPNNPFT, only
algorithms differ

Test size

Model 40 60 80 100 200

Beam search with width w=128

MPNN 17.7±5% 23.9±3% 25.7±8% 31.9±6% 38.9±7%
Unrelated 12.3±2.2% 17.5±3.1% 22.3±3.1% 26.4±2.6% 199.0±373.3%
Related 9.1±0.1% 15.5±4% 23.1±3% 28.9±2% 35.4±2%

Topological Sorting (defined for directed acyclic graphs), and Longest Common Subsequence length
(a string algorithm). Results are presented in Table 5. While transferring unrelated algorithms still
brings improvements and is comparable at sizes 80 and 100, the model starts to “explode” at size 200
and it cannot provide as optimal solutions at sizes 40 and 60.

D Transfer from non-euclidean data distribution
To evaluate to what extent the data distribution matters when pre-training, we reran our PFT experi-
ment, but this time pre-training the algorithms on graphs from the Erdős-Renyi distribution. Results
are given in Table 6.

Table 6: Pre-training on Euclidean data versus pre-training on Erdős-Renyi graphs with p = 0.5.

Test size

Model 40 60 80 100 200 1000

Beam search with width w=128

MPNN 17.7±5% 23.9±3% 25.7±8% 31.9±6% 38.9±7% 39.7±7%
MPNNNON_EUC 10.5±3% 17.3±4% 22.6±3% 25.1±3% 31.0±2% 36.9±2%
MPNNEUC 9.1±0.1% 15.5±4% 23.1±3% 28.9±2% 35.4±2% 44.5±9%

Beam search with width w=1280

MPNN 14.4±4% 21.8±5% 22.4±4% 31.1±6% 33.6±3% 41.2±8%
MPNNNON_EUC 8.5±3% 16.0±3% 20.0±3% 23.0±2% 30.3±2% 37.5±3%
MPNNEUC 7.5±1% 13.3±3% 20.1±5% 26.9±3% 33.8±2% 40.5±7%

E Benchmarking versus CP/MIP
We will start this appendix by noting that CP and MIP solvers would always produce the optimal
solution if provided with sufficient compute time. We therefore will be comparing with such solvers
after setting a time limit for their computation. As such solvers leverage CPU multithreading, all
experiments will be performed on a 16-thread AMD Ryzen 5000 series CPU. Note, that in vanilla
TSP those approaches may also be costly to compute, and CP works better for problems having a lot
of combinatorial constraints, such as TSP with time windows [43].

Our initial experiment with more sophisticated baselines and constraint programming concretely was
using Gecode 5 interfaced through Zython6. Unfortunately solving a single TSP instance of size
40 took nearly 2600 seconds and the dataset consists of 1000 such samples. We therefore did not
continue further experiments and switched to Gurobi, which could solve examples of this size in just
a couple of seconds.

We performed two kinds of experiments with Gurobi. One with a relative time limit (1×, 3×, 5× of
our model inference time) and one with an absolute time limit (always larger than corresponding 5×).

5https://www.gecode.org/
6https://github.com/ArtyomKaltovich/zython

14



Neural Algorithmic Reasoning for Combinatorial Optimisation

Test size
Model 40 60 80 100 200 1000

Relative time limit
Gurobi (1×) 102.0±133% ⊥ ⊥ ⊥ ⊥ ⊥
Gurobi (3×) 15.0±19% 35.0±46% ⊥ ⊥ ⊥ ⊥
Gurobi (5×) 6.3±9% 21.9±15% 25.7±18% ⊥ ⊥ ⊥

Absolute time limit
Gurobi (3s) 1.0±2% 4.1±4% 13.1±11% 26±27% ⊥ ⊥
Gurobi (5s) 0.4±1% 2.6±3% 7.8±7% 15±15% ⊥ ⊥
Gurobi (10s) 0.1±0% 0.6±1 5.8±5% 7±6% ⊥ ⊥
Gurobi (30s) − − − − 18±12% ⊥
Gurobi (60s) − − − − 12±9% ⊥
Gurobi (∞s) − − − − − OOM(30GB)

Table 7: Relative error of the solution Gurobi provided, given the time limit. Relative time limit is
respectively 1×, 3× and 5× the runtime of our model, as taken from Table 4. ⊥ means the solver did
not produce a solution within the time constraint. We decided not to run experiments with − – while
we have not seen it, based on previous experiments and relative improvements we assume Gurobi
would have found the optimal solutions.

Across all variants, the TSP problem was formulated using the Dantzig–Fulkerson–Johnson integer
programming formulation [10] and we used the default Gurobi configuration (by not setting any
environmental variables of PuLP7). Results are presented in Table 7. At 1× and 3× Gurobi produced
worse solutions than our best model and only produced better solutions for the smallest size at 5×.
Solution quality did improve as time was increased, but at the larger sizes, Gurobi needed more than
30s to produce a solution and ran out of memory (OOM) at the largest size, without producing a
solution.

Unfortunately, we still fall short of Concorde, which always found the optimal solution even at the
strictest time constraints, even though it does not always prove the optimality. Note, however, that
Concorde is highly specialised in solving TSP instances. It is our belief that models aligned to parallel
algorithms [15] would help improve runtimes, leading to GNNs eventually outperforming Concorde.

7https://github.com/coin-or/pulp/tree/master

15

https://github.com/coin-or/pulp/tree/master

	1 Introduction
	2 Related work
	3 Background
	4 Neural Algorithmic Reasoning for Combinatorial Optimisation
	4.1 Selection of relevant algorithms
	4.2 Choice of GNN architecture
	4.3 Algorithmic knowledge integration

	5 Evaluation
	5.1 Data generation & hyperparameter setup
	5.2 Solution Decoding
	5.3 TSP
	5.4 VKC

	6 Limitations and future work
	7 Conclusions
	A Runtime
	B Algorithm selection rationale
	C On selecting unrelated algorithms
	D Transfer from non-euclidean data distribution
	E Benchmarking versus CP/MIP

