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Abstract
Graph anomaly detection plays a vital role for identifying abnormal instances
in complex networks. Despite advancements of methodology based on deep
learning in recent years, existing benchmarking approaches exhibit limitations
that hinder a comprehensive comparison. In this paper, we revisit datasets and
approaches for unsupervised node-level graph anomaly detection tasks from
three aspects. Firstly, we introduce outlier injection methods that create more
diverse and graph-based anomalies in graph datasets. Secondly, we compare
methods employing message passing against those without, uncovering the
unexpected decline in performance associated with message passing. Thirdly,
we explore the use of hyperbolic neural networks, specifying crucial architecture
and loss design that contribute to enhanced performance. Through rigorous
experiments and evaluations, our study sheds light on general strategies for
improving node-level graph anomaly detection methods.

1 Introduction
Node-level anomaly detection on graphs refers to the process of identifying nodes exhibiting
behaviors or characteristics deviating from normal. It finds applications in various domains, such
as uncovering spammer groups in online reviews [1], detecting network intrusions or failures [2],
and identifying camouflaged fraudsters [3]. Although traditional anomaly detection algorithms may
extend to the graph domain, they may not perform well, given the complexity of graph data. To
address this challenge, in recent years, many graph anomaly detection (GAD) algorithms based on
deep learning techniques have been developed [4].

Many applications require node-level GAD to be performed in an unsupervised manner, where
there are no known normal instances available for training. Another challenge lies in the scarcity
of benchmarking datasets with labeled anomalies. As a result, previous studies [5–8] have evaluated
their algorithms on datasets containing artificially injected outlier nodes. More recently, Liu et al. [9]
have provided systematic benchmarking for these algorithms using the same idea for outlier injection.
Although the datasets can distinguish the performance of the baseline methods, the outlier injection
methods are lopsided to certain regimes. This has limited the extent to which various outlier detection
algorithms can be thoroughly tested and compared. In this work, we address unsupervised node-level
GAD by proposing different outlier injection methods. Interestingly, we observe a decline of accuracy
in the performance of the baseline methods. We thus revisit this problem by proposing novel archi-
tectures. Our proposal stems from using the hyperbolic space due to their large capacity which may
be used to better separate normal nodes and outliers. Our contributions are summarized as follows.

• We introduce new outlier injection methods for GAD datasets. The generated anomalies are more
comprehensive and rely more on graph information.

• We analyze and evaluate the necessity of message passing used in neural networks for GAD. Our
comparison of methods reveals an unexpected disadvantage when using message passing.

• We introduce novel neural network architectures that use the hyperbolic space and other essential
modules that result in improved performance in various datasets exposed under various outliers.
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2 Related Works
Graph anomaly detection Among algorithms for GAD, a common strategy is reconstruction-based,
which involves training an autoencoder to reconstruct either the graph attributes or the graph adjacency
matrix, and using the reconstruction error as an anomaly score. The underlying principle is that the
bottleneck in autoencoders limits their expressivity, forcing the model to only learn representations
from normal patterns but not outliers. One classical example is the multilayer perceptron autoencoder
(MLPAE) [10], which reconstructs node attributes according to the mean squared error (MSE). The
MSE also serves as the anomaly score. Some reconstruction-based models incorporate structural
information, taking both node attributes and graph adjacency matrices as input. Such models include
[6, 11–13]. For instance, GCNAE [11] differs from MLPAE in its use of graph convolutional
network (GCN) [14], or more specifically, the message passing scheme, enabling nodes to aggregate
information from their neighbors. Moreover, certain models focus on reconstructing both attributes
and adjacency matrices [5, 8, 15, 16]. While these approaches leverage additional information for
reconstruction, they might not always yield improved performance. This is because the presence of
outliers can corrupt the information used for reconstruction, potentially leading to suboptimal results.

Aside from reconstruction, there are also models that take on a generative approach, such as generative
adversarial attributed nework (GAAN) [7]. GAAN trains a generator to produce fake graph nodes,
an encoder to map nodes into a latent space, and a discriminator to differentiate real and fake nodes.
The underlying rationale is that outlier nodes might be grouped among the fake nodes. Traditional
anomaly detection algorithms [17–19] can also be used in graph datasets. Liu et al. [9] performed
a comprehensive comparison of these methods. However, their outlier injection methods following
previous works [5–8] are not sufficiently comprehensive. Despite the lack of other previous works
on outlier injection, Waniek et al. [20] designed an adversarial attack method. Their method does
not rely on the targeted neural networks and can thus be regarded as an outlier rejection approach.

Hyperbolic neural networks In recent years, hyperbolic neural networks have emerged in the
field of machine learning. Thanks to their inherent capacity, hyperbolic spaces can represent data
relationships with minimal distortion. Methods that establish hierarchical representations through
embeddings in hyperbolic space [21, 22] demonstrate the advantages of hyperbolic geometry in
representing complex data structures compared to Euclidean geometry. Following this, Ganea et al.
[23] introduced the hyperbolic neural network (HNN), utilizing the Poincaré Ball model of hyperbolic
space. Shimizu et al. [24] later extended the model to HNN++. Additionally, Nickel and Kiela [25]
developed hyperbolic networks working with the Lorentz model. While earlier methods often engage
operations in the tangent space, a more recent alternative [26] performs operation directly in the
hyperbolic space. Furthermore, building on the success of GCN in graph data representation, many
recent works [27–31] designed hyperbolic graph neural networks that accommodate the message
passing operation in the hyperbolic space. A key element in hyperbolic networks is the utilization of
hyperbolic distances, which play a crucial role as decision criteria in various models [22, 25, 32, 33].

Neural network models often require the computation of mean or centroid of a set of points. In the
hyperbolic space, a widely used method is the Frechét mean [34]. However, existing methods for
Frechét mean mainly rely on iterative approaches [35, 36]. Using the squared Lorentzian distance
defined in [37], Law et al. [38] introduced the closed-form expression for finding the centroid in
Lorentz model, which could be viewed as Frechét mean in pseudo-hyperbolic space. Another choice
for mean is the Einstein midpoint [39], but it may cause numerical instability because it involves
mapping to and from the Klein model. Additionally, Sala et al. [40] proposed a different mean,
pseudo-Euclidean mean, in the hyperboloid model, which could be mapped to the Poincaré ball model.

3 Outlier Injection Methods
3.1 Previous Outlier Injection Methods and Their Problems

We first review commonly used contextual and structural outlier injection methods that are adopted
in [5–8] and benchmarked in [9].

Notation We denote an attributed and labeled graph as a quadruple G = (V,E ,X,y). Here, V =
{1,2,...,nV} is the vertex set with size |V|=nV . E ⊆{(i,j) : i,j ∈V} is the edge set with |E|=nE .
X=[x1,x2,...,xnV ]

⊤∈RnV×nx is the node attribute matrix, where xi∈Rnx represents the attributes
of the i-th node. y= [y1,y2,...,ynV ]

⊤ is the label vector, where yi represents the class of node i.
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Table 1: Statistics of datasets without outlier injection.
Squirrel Chameleon Actor Cora Citeseer Amazon PubMed Flickr ogbn-arxiv

nV 5,201 2,277 7,600 2,708 3,312 13,752 19,717 89,250 169,343
nE 198,493 31,421 26,752 5,278 4,660 245,861 44,327 449,878 1,157,799
nx 2,089 2,325 932 1,433 3,703 767 500 500 128

nE/((n
2
V+nV)/2) 0.0147 0.0121 0.0009 0.0014 0.0008 0.0026 0.0002 0.0001 0.0001

Degree 76.3 27.6 7.0 3.9 2.8 35.8 4.5 10.1 13.7
Hyperbolicity δ [41, 42] 1.5 2.0 1.5 3.0 4.5 1.5 2.5 1.5 2

Also, E derives the adjacency matrix A=[a1,a2,...,anV ]
⊤∈RnV×nV , where Aij=1 if (i,j)∈E and

Aij =0 if otherwise. We denote the node attribute matrix and the adjacency matrix after injecting
outliers as X̃=[x̃1,x̃2,...,x̃nV ]

⊤ and Ã=[ã1,ã2,...,ãnV ]
⊤, respectively. We also consider a node to

be linked to itself, setting Ãii=1 for all node i.

Contextual outlier injection First, each row of X is normalized according to the l1 norm: x′
i =

xi/∥xi∥1. We denote the normalized matrix as X′. Then, o nodes from V are sampled as candidates
for contextual outliers. We denote this candidate set of nodes as Vc. For each node i in Vc, q nodes
are sampled from the reference set Vr =V \Vc without replacement, from which we pick the one
which is the farthest in l2 norm, i.e., j=argmaxk∥x′

i−x′
k∥. Finally, we replace xi with xj .

Structural outlier injection The structural outlier injection involves the creation of t groups of
anomalous nodes, each with size s. Specifically, we sample o = t × s nodes from V without
replacement to be candidates for the structural outliers. These o nodes are then randomly partitioned
into t non-overlapping groups, each with size s. For each group, we first add edges to make the s
nodes fully connected. Subsequently, we drop each edge with probability p.

Although the above methods have long served as important benchmarks, we have observed that the
outliers generated by these approaches could be distinguished simply by examining the norms of
{x̃i}nV

i=1 and {ãi}nV
i=1. In fact, the farthest vector as an outlier tends to have a large l2 norm. Likewise,

when node i becomes a structural outlier, it will have a large number of neighbors, leading to a
large ∥ãi∥1. Table 1 shows statistics of commonly used datasets. We observe that nE/((n2V+nV)/2)
has small numerical values for all datasets, which implies the sparsity of the underlying graphs and
overall small values of ∥ãi∥1. Therefore, large ∥ãi∥1 easily stands out.

To test whether the norm information alone distinguishes normal nodes and outliers, we consider
the following score function: scorenorm(i) =α∥x̃i∥+(1−α)∥ãi∥1, where α is a hyperparameter
balancing contextual and structural information. We consider the commonly used graph datasets
listed in Table 1 (reviewed in Appendix C.1), and the following settings considered in [9]: (1) cntxt.:
injecting o contextual outliers; (2) strct.: injecting o structural outliers; (3) cntxt.+strct.: injecting o/2
contextual outliers and o/2 structural outliers. For each dataset, o is taken to be approximately 5%
of nV . The specific values of o and other outlier injection parameters are reported in Appendix C.2.

We report the Area Under the Receiver Operating Characteristic Curve (ROC-AUC) results in
detecting contextual outlier nodes with α=1 and structural outlier nodes with α=0 using scorenorm
in Table 2. For completeness, we report the ROC-AUC and corresponding Average Precision (AP)
results for all three settings with α=1 and α=0 respectively in Appendix C.3. The high scores
observed in these results indicate that contextual and structural outliers could be detected by using
only the corresponding l2 norms with high accuracy.

Table 2: Outlier node detection results using the score function scorenorm(i)=α∥x̃i∥+(1−α)∥ãi∥1.
For contextual outlier detection, α= 1; and for structural outlier detection, α= 0. The complete
list of results are presented in the Appendix C.3. Mean and standard deviation of ROC-AUC (%)
taken over 3 trials are reported.

scorenorm(i) Outlier Squirrel Chameleon Actor Cora Citeseer Amazon PubMed Flickr ogbn-arxiv
∥x̃i∥ cntxt. 97.3±0.0 94.5±0.0 91.7±0.1 90.0±0.9 89.7±0.7 98.5±0.0 90.6±0.2 94.4±0.2 95.2±0.0
∥ãi∥1 strct. 82.7±0.6 86.9±0.5 96.3±0.1 95.8±0.2 96.4±0.0 91.0±0.1 87.9±0.2 94.8±0.0 96.7±0.0

To examine whether the benchmarking results reported in previous works benefit from the above
phenomenon, we conduct an experiment comparing two settings. In addition to the original setting,
we introduce a new setting where l2 normalization is applied, ensuring that each attribute has a
unit norm. Specifically, we normalized each row of X by its l2 norm: x′

i =xi/∥xi∥. In this new
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Figure 1: Comparison of model’s mean ROC-AUC (%) in detecting contextual outliers injected
in Cora, Squirrel, and Amazon datasets with and without l2 normalization.

setting, it becomes impossible to detect outliers based on the ∥xi∥ criterion. Figure 1 compares the
ROC-AUC scores of various GAD models under the original setting (unpatterned bars) and the l2
normalization setting (patterned bars). We observe that, for all models that achieve a considerable
performance (ROC-AUC score much larger than 50%) under the original setting, l2 normalization
leads to a decline in the ROC-AUC score. In all methods but MLPAE and GCNAE, the decline is
very significant, indicating that the effectiveness of these methods is significantly affected by the
difference in norms of node attributes.

3.2 Proposed Outlier Injection Methods

To eliminate the effect discussed in Section 3.1, we propose the following outlier injection methods
where outliers are created based on graph information rather than attributes themselves.

“Path” outlier injection As an alternative for contextual outliers, we propose the “path” outlier.
For each node i in candidate set Vc, we replace the attributes of node i with that of node j farthest
(according to the shortest-path distance dG) from node i amongst a reference set consisting of q nodes.
That is, j = argmaxkdG(i,k). To ensure a path could be found between arbitrary nodes, we first
convert the graph to undirected, and remove all isolated nodes from the candidate and reference sets.

DICE-n outlier injection To ensure that outlier nodes have similar node degrees with normal nodes,
we adapt the “disconnect internally, connect externally” (DICE) approach from [20] to generate
structurally perturbed outlier nodes. Originally, DICE is designed as an adversarial and is targeted
at the entire graph, disconnecting edges between nodes of the same class and connecting edges
between nodes of different classes. To accommodate this method to node-level anomaly detection,
our approach differs in restricting the perturbations to the candidate nodes and we call it DICE-n to
emphasize the difference. Specifically, we sample o nodes from V to form the candidate set Vc. For
each node i∈Vc, let Vr1 ={k;(i,k)∈E ,yi=yk} be the reference set containing the nodes that are
neighbors of i and are within the same class yi as i. Let r be the percentage of edges to permute for
each candidate node. We sample ⌈|Vr1 |×r⌉ nodes from Vr1 to form a subset, and for each node j in
this subset, we remove the edge (i,j) from E . If the graph G is undirected, we also disconnect (j,i).
To avoid changing the number of neighbors of i, denoting Vr2 ={k;(i,k) /∈E ,yi ̸=yk}, we sample a
subset of size ⌈|Vr1 |×r⌉ from Vr2 . For each node j in this subset, we add (i,j) (and also (j,i) if G
is undirected) to E . In implementation, due to sparsity of adjacency matrix, we chose to disconnect
edges randomly disregarding their classes.

To verify that our outlier injection methods do not suffer from the problems introduced in Section
3.1, we consider the same experiments of outlier detection using only scorenorm. Similar to the
contextual and structural outliers, We consider the following mixture: (1) “path”: injecting o “path”
outliers; (2) DICE: injecting o DICE-n outliers; (3) “path”+DICE: injecting o/2 “path” outliers
and o/2 DICE-n outliers. The results are reported in Appendix C.3, where we observe that all the
ROC-AUC scores are around 50%, indicating that it is impossible to perform outlier detection solely
based on norm information for our proposed outliers.
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4 Strategies for Outlier Detection
For many GAD methods and many datasets, the outlier injection methods proposed in Section 3.2
lead to a noticeable decline in overall performance when compared to the previous contextual and
structural outliers. Before presenting their numerical results in Section 5, we first delve into strategies
that can effectively enhance the performance of outlier detection in this section.

4.1 No Message Passing

In tasks such as node classification, the success of GCN can be attributed to message passing, where
information propagates through the graph to boost the performance [14]. Indeed, graph neural
networks with message passing have proved more effective than MLP in those tasks. However, in
outlier detection, the diffusion across the graph does not solely involve information, but can also
include potential outliers. Moreover, implementing message passing may severely constrain the
expressiveness of the neural network. Specifically, it is well known that GCN may lose discriminative
power where node representations converge to a common average [43–45], called the oversmoothing
phenomenon. Although limiting model expressivity can be helpful for anomaly detection, such as
in the case of the bottleneck in autoencoders, the extremely low representation power caused by
oversmoothing is still harmful.

To see this clearly, we analyze the performance of contextual outlier detection. Although it is in
general difficult to perform analysis for GCN-based GAD models, we can consider the following
two artificial models: a linear MLPAE whose latent dimension is one, and a GCNAE that produces
a single average feature due to oversmoothing. The MLPAE has more distinguishable reconstruction
errors than the GCNAE in the scenario described in the following lemma.
Lemma 4.1. Suppose a graph G contains nV nodes, among which nnormal nodes are normal
(nnormal>nV/2), each with the same unit-norm feature xnormal; and the remaining nV−nnormal nodes
are outliers, each with the same unit-norm feature xoutlier such that ⟨xnormal,xoutlier⟩=0. Then,

1. the optimal MLPAE has zero reconstruction error for normal nodes and unit reconstruction error
for anomalous nodes;

2. the optimal GCNAE has reconstruction error
√
2 (1−nnormal/nV) for normal nodes and√

2nnormal/nV reconstruction error for anomalous nodes.

We present the proof of Lemma 4.1 in Appendix B.1. As to experimental results for methods with and
without message passing, Figure 1 has already demonstrated the striking similarity in performance
between MLPAE and GCNAE. Moreover, the negative impact of message passing on performance
is further evidenced across other scenarios, as will be illustrated in Section 5. It is important to note
that when using a GAD model without message passing, we are not omitting the edge information
because we still use it in reconstructing the graph adjacency matrices.

4.2 Hyperbolic Neural Networks

Disregarding edge information in feature extraction limits the spread of outliers, yet it might also ne-
glect the relation among features. To address this, we advocate for employing the hyperbolic space as
the underlying domain, aiming to preserve geometry of the attributes. Additionally, hyperbolic spaces
are known to have large capacity and thus may split normal nodes and outliers with large margins.

Our model comprises two encoding layers, one structural decoding layer, and two contextual decoding
layers. Each layer involves feature transformation and centralization. Here, no normalization is taken
beyond centralization since dividing by standard deviation easily causes numerical instability.

There are two hyperbolic coordinate systems (“models”) we consider: the Lorentz model Ln and
Poincaré ball model Bn, where n is the dimension. Preliminaries on hyperbolic geometry are
reviewed in Appendices A.2. For completeness, in Appendix A.3, we also include the construction of
our model in the Euclidean space, whose architecture and loss differ from baseline Euclidean models.

4.2.1 Feature Transformation and Centralization

Notation We denote an input graph feature in the Euclidean space as xE,0 (omitting the subscript i for
the node). In the hyperbolic space H, the features are exponentially mapped to xH,0=expHo (xE,0),
where o denotes the origin in H.
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Lorentz We employ fully hyperbolic linear layers [26] for the Lorentz model, mapping the input
xL∈Ln to fL(xL)∈Lm. The function fL(·) is given by

fL(x
L)=

[√
∥h(xL)∥2−1/κ

h(xL)

]
, h(xL)=

λσ(v⊤xL+b′)

∥Wτ(xL)+b∥
(Wτ(xL)+b), (1)

where v∈Rn+1 and W∈Rm×(n+1) are trainable weights, b′∈R and b∈Rm are trainable biases,
σ(x) = (1+e−x)−1 is the sigmoid function, τ is the activation function which we took to be the
identity function, and λ>0 is the trainable parameter that scales range. Next, we apply centralization
under the Lorentz model by utilizing parallel transportation. More specifically,

gL(x
L)=expLo (PT

L
µ→o(log

L
µ(x

L))), µ=

nbatch∑
i=1

vixi/(
√
−κ
∣∣∥nbatch∑

i=1

vixi∥L
∣∣). (2)

where µ is the hyperbolic centroid [38] with vi taken to be 1 for all i, and nbatch represents the
number of samples in the batch.

Poincaré For the feature transformation under the Poincaré Ball model, we adopt the Möbius
matrix-vector multiplication (reviewed in Appendix A.2.2) from HNN [23] and bias addition with a
Euclidean bias defined in [27]. Specifically, the input xB∈Bn is mapped to fB(·)∈Bm given by

y=proj(W⊗(xB)), z=proj(expBy(PT
B
o→y(b))), fB(z)=proj(expBo (ReLU(logBo (z)))). (3)

Here, W∈Rm×(n+1) is the trainable weight, b∈Rm is the trainable bias, and activation ReLU(x)=
max(0,x) is implemented on the tangent space at the origin. The function proj(·) is used to constrain
the embeddings within the Poincaré Ball [22], where proj(x)= (x/∥x∥−ϵ) with ϵ being a small
constant if ∥x∥> 1, and proj(x)=x if otherwise. Unlike (2), the centroid in the Poincaré model
has no closed-form expression. Therefore, we implement centralization through translation on the
tangent space. The function gB(·) is defined as

gB(x
B)=expBo (log

B
o (x

B)−µ), µ=

nbatch∑
i=1

logBo (x
B)/nbatch. (4)

Although the Lorentz and Poincaré models are isometric to each other, their implementations are not
equivalent. Besides training schemes and different implementation of centralization, the exponential
map used in HNN has a subtle assumption of Euclidean metric that is twice as large as the regular
Euclidean metric. Consequently, dL is smaller than dB, as formulated in the following lemma.
Lemma 4.2. Let xE and yE be distinct unit-norm features in the same Euclidean space so that
xE ̸= yE and

∥∥xE
∥∥= ∥∥yE

∥∥= 1. Let xB = expBo (x
E) and yB = expBo (y

E) be their exponential
maps into the Poincaré model; and xL = expLo (x

E) and yL = expLo (y
E) their exponential maps

into the Lorentz model, respectively. Then∥∥xE−yE
∥∥≤dL(xL,yL)<dB(x

B,yB), (5)
where the first equality holds if and only if xE=−yE .

We present the proof of Lemma 4.2 in Appendix B.2. From the lemma, we see that the hyperbolic
distance in the Poincaré model tends to be larger. Therefore, we hypothesize that normal nodes
and outliers can have more distinguishable reconstruction distances. We thus recommend using the
Poincaré model and will provide experimental analysis in Section 5.

4.2.2 Losses and Training

We present losses used in our models that are different than previous GAD works. Denote our
reconstructed node features as X̂=[x̂1,x̂2,...,x̂nV ]

⊤. For structural reconstruction of the adjacency
matrix, we utilize the Fermi-Dirac decoder [46], which has previously been applied in link prediction
tasks using hyperbolic models [22, 27]. Let H = [h1,h2, ... ,hnV ]

⊤ represent the output of the
structural decoding layer. The Fermi-Dirac decoder computes the probability of an edge being
connected, given the distance d(hi,hj) between two node embeddings hi, hj , via

p((i,j)∈E|hi,hj)=Z−1e−(d(hi,hj)
2−r)/t, p((i,j) /∈E|hi,hj)=Z−1. (6)

where the normalization factor Z=1+e−(d(hi,hj)
2−r)/t. We note d(·,·) is taken to be the distance

corresponding to the model. In all our experiments, we simply took r=0 and t=1. The derivation of
these equations is reviewed in Appendix A.5. We use these probabilities to obtain the reconstructed
adjacency matrix Â, where each entry Âij=p((i,j)∈E|hi,hj).

The network is trained by minimizing the loss function ℓ= αℓc+(1−α)ℓs, where ℓc represents
the contextual reconstruction error, ℓs denotes the structural reconstruction error, and α∈ [0,1] is

6



Three Revisits to Node-Level Graph Anomaly Detection

a hyperparameter that balances the influence of these two losses. In both hyperbolic models, the

contextual error is defined as ℓHc =
nV∑
i=1

ℓHc (i)/nV =
nV∑
i=1

d(xH,0
i , x̂H

i )/nV , where d stands for the

respective hyperbolic distance.

For the structural error, we employ the cross entropy loss. However, since Ã is sparse, the dataset
is unbalanced in the two classes. To ensure a balanced treatment of both 0 and 1 entries of Ã, we

introduce an additional normalization. Specifically, ℓs=
nV∑
i=1

ℓs(i)/nV , with

ℓs(i)=−

nV∑
j=1

1(i,j)∈E logp((i,j)∈E|hi,hj)

nV∑
j=1

1(i,j)∈E

−

nV∑
j=1

1(i,j)/∈E logp((i,j) /∈E|hi,hj)

nV∑
j=1

1(i,j)/∈E

=

nV∑
j=1

Ãij((d(hi,hj)
2−r)/t)

nV∑
j=1

Ãij

+

∑
j

Ãij logZ

nV∑
j=1

Ãij

+

nV∑
j=1

(1−Ãij)logZ

nV∑
j=1

(1−Ãij)

,

(7)

where 1event is the indicator function taking value 1 if event is true or 0 if event is false. An efficient
matrix-wise implementation of the loss is derived in Appendix A.4.

Node outlier detection is accomplished by evaluating the outlier score
score(i)=αℓc(i)+(1−α)ℓs(i). (8)

In general, this α is a hyperparameter. However, interestingly, superior results were achieved when
setting α = 0 (Section 5.2). In this configuration, contextual reconstruction error is disregarded
and therefore, it utilizes contextual information during encoding but not decoding; and it utilizes
structural information for decoding but not encoding. Given our assumption of anomalies existing in
both contextual and structural information available to the models, we prevent them from propagating
by “looking only once” at them.

5 Experiments
5.1 Experimental setup

We conduct experiments on datasets containing various types of outlier nodes as defined in Section 3,
and specify the training parameters in Appendix C.1. The benchmark models and our Euclidean
model were optimized using Adam, while our Lorentz and Poincaré models were optimized using
Riemannian Adam [47]. The experiments were conducted using NVIDIA GeForce RTX 3090
GPUs, and we provide the running time and complexity analysis in Appendix C.4. Experiments
are conducted on datasets containing various types of outlier nodes defined in Section 3. We share
the code implementation on GitHub at https://github.com/Jing-DS/HNN_GAD.

5.2 Results and Discussion

Benchmark We present the ROC-AUC results for both our models and the baseline models on the
Cora, Squirrel, and Amazon datasets in Tables 3-5. Additionally, the AP results for these datasets,
along with the results for the remaining datasets, are provided in Appendix C.5.

Our models significantly outperform the baseline models in detecting “path”, DICE-n, and
“path”+DICE-n outliers. This suggests that our models are adept at distinguishing more intricate and
graph-based outliers. Moreover, our models display competence in identifying traditional contextual
and structural outliers. Our models achieve the best results in most datasets when both types of
outliers are present. Among the three alternatives, our Poincaré model is the best in most scenarios,
validating our claim following Lemma 4.2.

Comparing models with/without message passing and contextual loss In Tables 6 and 7, we
report the ROC-AUC results of our models, with or without message passing and contextual loss,
on Cora and Squirrel datasets. We report results on other datasets and AP scores in Appendix C.6.

1NaN denotes error occured during training due to numerical instability.
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Table 3: Mean and standard deviation of ROC-AUC (%) scores on Cora dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 42.5±1.2 38.6±2.1 53.8±0.6 48.9±0.9 48.9±2.7 51.4±2.7
IF 32.9±1.4 18.8±1.3 49.1±1.8 51.9±2.3 52.6±3.4 49.8±0.7

MLPAE 52.2±2.4 56.3±2.0 50.3±3.5 51.6±1.7 54.1±0.5 51.6±2.8
SCAN 72.6±1.1 50.8±1.6 96.1±0.6 49.8±0.3 49.4±0.2 47.8±0.2
Radar 59.1±2.5 52.5±1.5 59.0±2.7 47.2±2.8 47.5±2.0 49.1±1.3

ANOMALOUS 52.1±2.6 50.4±1.8 61.0±0.3 46.7±1.6 46.3±1.4 48.0±1.0
GCNAE 60.1±0.6 71.7±0.9 50.6±1.1 52.0±0.9 53.9±2.4 50.2±1.3

DOMINANT 75.9±1.2 52.1±0.3 94.6±0.2 51.9±1.7 49.1±2.3 48.9±3.4
DONE 72.4±3.2 53.1±0.7 95.3±0.3 50.0±2.6 54.0±2.8 48.4±0.8

AdONE 74.8±1.0 56.5±1.1 94.4±0.2 50.3±2.8 55.3±1.2 48.0±1.2
AnomalyDAE 73.3±1.0 53.7±0.8 90.1±0.1 52.7±0.7 53.8±1.6 49.5±2.2

GAAN 50.3±3.0 48.1±2.0 50.1±1.8 49.4±2.4 47.9±1.7 48.9±1.4
CONAD 74.0±0.4 55.5±1.8 94.6±0.2 51.7±2.8 51.2±3.1 45.1±2.0
GINAE 58.8±0.4 63.5±1.3 59.5±3.7 52.3±2.2 52.6±3.1 52.1±3.0

Ours (Euclidean) 79.4±0.1 66.8±0.7 87.3±2.9 74.3±2.3 71.7±1.3 80.5±0.4
Ours (Lorentz) 70.2±2.7 64.0±0.7 79.5±1.2 66.8±1.6 63.7±1.1 69.6±2.1
Ours (Poincaré) 81.3±2.3 72.5±1.8 90.3±0.9 79.2±0.9 76.1±1.7 86.6±0.5

Table 4: Mean and standard deviation of ROC-AUC (%) scores on Squirrel dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 29.8±1.1 8.4±0.1 50.4±1.5 30.6±1.4 10.7±0.1 48.8±0.7
IF 29.5±1.7 10.6±0.3 50.3±0.7 54.5±1.4 61.2±0.7 50.5±1.4

MLPAE 70.0±0.7 90.0±0.8 48.7±1.4 47.3±0.3 44.1±0.6 48.8±0.6
SCAN 66.2±0.9 51.5±1.5 83.3±0.2 44.6±0.9 49.5±1.1 39.7±1.3
Radar 56.0±1.1 52.8±1.3 61.6±0.5 44.4±0.6 48.3±1.4 42.6±0.6

ANOMALOUS 53.5±0.7 53.6±1.2 58.9±2.3 45.7±0.2 51.3±0.2 42.5±1.3
GCNAE 70.0±0.3 91.3±1.2 52.3±2.3 44.9±1.5 44.9±0.6 50.4±2.6

DOMINANT 68.0±1.6 51.5±0.5 86.2±0.3 52.5±2.5 51.4±0.9 50.7±1.6
DONE 74.7±0.6 53.4±1.3 92.3±0.3 52.7±1.7 51.2±0.9 50.5±0.4

AdONE 75.7±0.6 52.8±0.9 98.6±0.1 52.2±1.1 52.7±1.0 57.6±2.3
AnomalyDAE 70.1±3.6 54.8±3.0 83.4±0.5 50.1±1.4 49.6±1.7 54.1±3.5

GAAN 54.9±2.2 48.4±2.7 60.7±1.0 53.9±0.7 51.9±0.6 56.2±0.5
CONAD NaN1 NaN NaN NaN NaN NaN
GINAE 62.0±4.8 76.0±3.2 54.7±5.5 51.5±1.6 52.3±1.7 54.4±2.5

Ours (Euclidean) 71.1±13.3 49.8±1.0 53.0±0.9 60.6±15.5 57.9±10.9 49.0±0.8
Ours (Lorentz) 79.9±1.9 70.9±0.6 91.8±0.5 82.2±1.4 75.5±1.4 88.0±0.3
Ours (Poincaré) 81.6±2.0 80.7±1.2 84.4±2.2 85.0±1.1 77.6±2.1 90.3±1.4

Table 5: Mean and standard deviation of ROC-AUC (%) scores on Amazon dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 26.3±1.0 3.3±0.2 48.4±0.7 45.5±1.2 38.9±0.3 51.2±1.9
IF 26.5±0.6 2.8±0.1 50.1±0.8 49.1±0.4 46.0±0.8 49.9±0.7

MLPAE 74.5±0.1 98.2±0.1 51.1±1.0 53.2±0.5 56.7±0.4 49.7±0.4
SCAN 69.3±0.5 50.8±0.6 90.1±0.1 48.0±0.9 50.1±0.3 45.8±0.4
Radar 59.4±1.7 49.2±1.1 72.6±1.6 47.2±0.5 51.6±0.7 47.8±2.1

ANOMALOUS 58.9±0.4 49.7±1.0 70.9±0.3 48.6±1.1 49.7±0.2 47.5±0.6
GCNAE 74.1±0.9 98.4±0.0 50.6±0.2 53.7±0.5 57.4±1.2 50.3±0.2

DOMINANT 73.8±0.9 52.3±0.5 92.1±0.3 51.3±1.0 52.8±0.4 50.3±0.7
DONE 82.7±1.1 71.8±2.1 89.7±1.1 52.5±0.6 52.5±0.2 50.3±0.2

AdONE 83.1±0.3 73.2±1.9 91.3±0.3 51.9±1.1 55.5±1.8 50.8±1.0
AnomalyDAE 76.8±0.4 61.6±0.3 91.9±0.1 51.4±1.1 51.2±1.8 49.8±0.4

GAAN 56.1±0.7 49.1±2.6 62.9±1.5 52.3±0.7 53.1±1.3 52.4±0.5
CONAD 72.6±0.6 52.0±0.2 92.2±0.1 51.3±1.2 52.4±0.8 50.5±1.5
GINAE 78.4±1.0 84.6±1.4 74.1±2.0 56.0±0.0 53.1±1.3 61.1±5.0

Ours (Euclidean) 89.7±0.5 83.9±0.6 98.2±0.2 86.6±0.6 79.6±1.5 95.6±0.5
Ours (Lorentz) 87.7±2.5 81.0±1.7 97.6±0.6 89.2±3.2 84.9±3.3 93.9±0.8
Ours (Poincaré) 90.2±1.0 86.5±1.0 98.7±0.1 93.6±0.6 90.0±0.9 96.7±0.5

The performances with no message passing are substantially better than those with message passing,
which is consistent with our analysis in Section 4.1.

As previously mentioned, models that exclude contextual loss in both the loss and score functions
(α=0) have overall better results than those with equal weights assigned to structural and contextual
reconstruction errors (α=0.5). This is the case even when only contextual outliers are considered.
This indicates that, in our current formulation, reconstructing the node attributes may add to
additional error caused by outliers and we thus recommend the setting with α=0.

Why Poincaré models work We visualize the distribution of the pairwise node embeddings for the
Cora dataset in Figure 2. We also report the result on Squirrel dataset in Appendix C.7. The figures
reveal that, thanks to their capacity, Poincaré models tend to map originally disconnected nodes
farther apart. Additionally, the curve of disconnected nodes of the other models displays a peak near
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Table 6: Comparison of models with/without message passing and contextual loss on Cora dataset.
Mean and standard deviation of ROC-AUC (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 79.4±0.1 66.8±0.7 87.3±2.9 74.3±2.3 71.7±1.3 80.5±0.4

0.5 46.0±2.7 47.3±1.8 44.1±1.2 49.8±2.5 52.7±1.1 51.6±1.4

Yes 0 68.6±1.7 49.3±3.7 82.7±0.5 65.0±1.7 51.8±1.8 79.4±0.3
0.5 68.4±2.1 54.2±1.9 82.0±1.7 68.5±2.1 55.9±0.7 77.8±2.5

Ours (Lorentz)
No 0 70.2±2.7 64.0±0.7 79.5±1.2 66.8±1.6 63.7±1.1 69.6±2.1

0.5 70.2±3.6 56.8±0.4 78.5±4.3 68.9±1.8 61.7±2.9 71.2±1.5

Yes 0 70.6±1.3 50.1±1.2 89.5±1.6 69.3±1.1 53.9±0.9 87.1±1.8
0.5 72.2±0.7 52.7±0.5 90.1±0.3 71.6±0.6 61.3±0.9 86.5±0.9

Ours (Poincaré)
No 0 81.3±2.3 72.5±1.8 90.3±0.9 79.2±0.9 76.1±1.7 86.6±0.5

0.5 77.7±2.8 59.4±1.0 89.0±0.2 74.4±1.5 72.7±0.9 82.7±0.4

Yes 0 72.2±1.6 50.7±1.7 91.6±0.8 71.2±2.9 54.4±1.9 87.9±0.3
0.5 71.9±2.6 53.2±0.8 91.5±1.6 75.1±0.5 62.6±2.0 85.7±0.9

Table 7: Comparison of models with/without message passing and contextual loss on Squirrel
dataset. Mean and standard deviation of ROC-AUC (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 71.1±13.3 49.8±1.0 53.0±0.9 60.6±15.5 57.9±10.9 49.0±0.8

0.5 62.3±0.4 70.0±0.5 52.1±1.3 49.6±0.3 50.2±1.2 48.2±1.4

Yes 0 47.9±3.3 49.3±0.7 35.9±14.4 57.9±0.7 50.3±1.4 62.9±6.7
0.5 41.1±3.3 52.7±2.1 25.8±3.5 51.9±0.8 51.5±1.0 46.7±5.0

Ours (Lorentz)
No 0 79.9±1.9 70.9±0.6 91.8±0.5 82.2±1.4 75.5±1.4 88.0±0.3

0.5 78.0±1.7 67.8±2.6 85.9±0.4 79.9±1.5 74.0±2.0 86.0±1.0

Yes 0 62.0±1.2 63.8±0.8 65.4±4.1 74.0±1.3 62.8±1.1 85.0±0.5
0.5 62.1±1.5 62.6±2.9 66.4±1.9 71.3±1.5 65.0±1.2 82.5±1.3

Ours (Poincaré)
No 0 81.6±2.0 80.7±1.2 84.4±2.2 85.0±1.1 77.6±2.1 90.3±1.4

0.5 76.8±2.3 74.8±1.0 82.1±0.6 84.4±2.0 77.1±1.9 89.3±0.8

Yes 0 38.2±1.5 50.9±1.7 27.7±1.5 61.5±0.1 50.9±1.6 70.3±1.1
0.5 40.6±1.1 52.4±1.1 33.6±2.8 60.4±1.0 50.8±0.9 66.6±0.8

the origin, overlapping with that of connected nodes, which could potentially result in more severe
misclassification. This observation underscores the advantage of the Poincaré model in capturing and
representing node attribute information.

Figure 2: Probability density function for pairwise distances between embeddings of nodes that
are originally connected ({d(hi,hj)}(i,j)∈E ) and disconnected ({d(hi,hj)}(i,j)/∈E ) of the Euclidean,
Lorentz, and Poincaré models in Cora dataset injected with cntxt.+strct. and “path”+DICE outliers.

6 Conclusion
In this work, we proposed new outlier injection methods that pose challenge for traditional GAD
methods. Additionally, we investigated designs of neural network architecture and loss functions
for reconstruction-based outlier detection, identifying hyperbolic neural networks without message
passing as effective approaches.

In our approach, we attributed the excelling performance of hyperbolic methods to the large capacity
and thus high distinguishability. In the future, we plan to delve deeper into this regime to gain a more
comprehensive understanding. Furthermore, we intend to explore the tradeoff between contextual
and structural reconstructions to gain additional insights and potential improvements.
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Appendix
We review preliminaries in Appendix A. We offer proofs for the technical results in the main text
in Appendix B. We present more details and additional results for the experiments in Appendix C.

A Preliminaries
A.1 Relevance to Real Scenarios

We briefly motivate how our outlier injection methods in Section 3 align with real-world applications.

The original DICE method, initially introduced in [20], was specifically motivated by addressing
real-world scenarios, particularly within the context of terrorist networks. Even when using a
simplified version of DICE, it is possible to easily hide a terrorist’s identity, posing a significant
security threat. The ability to detect such anomalies is important, particularly in the context of
security applications. Our DICE-n outlier injection method is inherently aligned with this motivation.

Regarding the “path" method, it shares the same real-world relevance as the contextual outlier in
[9]. However, focusing on GAD problem, we have designed the outlier in a way where it is less
likely to easily detect outliers based on attributes alone. We have considered a more graph-based
approach that considers the graph distance instead of Euclidean distance of features between nodes.

A.2 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry that has recently gained significant attention in
machine learning due to its unique properties. Unlike Euclidean geometry, hyperbolic geometry
introduces a space which is negatively curved. We refer to [48] for a mathematical introduction and
[49] for a comprehensive survey on deep learning in the hyperbolic spaces.

The use of hyperbolic geometry in machine learning stems from its capacity to represent data. Balls
with the same radii will have a larger volume in the hyperbolic space than in the Euclidean space.
In particular, hyperbolic spaces can model hierarchical and tree-like structures with arbitrarily small
distortion [22, 50] and are therefore suitable for representing graph data.

Next, we review some fundamental geometric concepts.

Geodesic Geodesics are locally distance-minimizing curves on manifolds. Unlike straight paths in
the Euclidean space, geodesics in the hyperbolic space follow curved paths. The lengths of these
paths are used to measure distances between points.

Tangent space The tangent space at a point on a manifold is a vector space that captures the local
behavior of the manifold at that specific point. Given a hyperbolic manifold M, we denote the
tangent space at x∈M as TxM. The dimension of the tangent space is equal to the dimension of the
manifold.

Exponential and logarithmic maps Exponential and logarithmic maps describe the connection
between the manifold and the tangent space. Given x,y∈M and v∈TxM, the exponential map
expx :TxM→M projects v to γ(1)∈M, where γ is the geodesic satisfying γ(0)=x and γ′(0)=v.
The logarithmic map logx :M→TxM defines an inverse process, satisfying logx(expx(v))=v.

Parallel transport Given x,y ∈M, parallel transport PTM
x→y translates the vector v ∈ TxM to

PTM
x→y(v)∈TyM along the geodesic from x to y.

There are several coordinate systems, or models, for describing points in the hyperbolic space. In our
paper, we have used the Lorentz model and the Poincaré model. We briefly review them as follows.
Note that in general the curvature can be taken to be other negative constants, but for simplicity we
take it as −1.

A.2.1 Hyperbolic Geometry for Lorentz Model

The n-dimensional Lorentz model Ln = (L,gL) is the manifold L isometrically embedded in the
(n+1)-dimensional Minkowski space. It comes with the metric tensor gL=diag(−1,1,...,1), and
constant negative curvature κ=−1. Each vector in Ln can be represented using (n+1) coordinates.
Each x∈Ln satisfies ⟨x,x⟩L=1/κ, where ⟨·,·⟩L is the Minkowski inner product defined as follows.
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Inner product For x,y∈Ln, the inner product is defined as

⟨x,y⟩L=−x0y0+
n∑

i=1

xiyi,x,y∈Ln. (9)

Distance The distance between two vectors x,y∈Ln is expressed as

dL(x,y)=
1√
−κ

cosh−1(κ⟨x,y⟩L). (10)

Exponential and logarithmic maps Given x,y∈Ln,x ̸=y and v∈TxLn\{0}, the exponential and
logarithmic maps in Ln are expressed by

expLx (v)=cosh(ϕ)x+ϕ−1sinh(ϕ)v,ϕ=
√
−κ∥v∥L,

logLx (y)=
cosh−1(ψ)√

−κ
y−ψx

∥y−ψx∥L
,ψ=κ⟨x,y⟩L,

(11)

where ∥·∥L=
√
⟨·,·⟩L.

Parallel transport Given x,y∈Ln and v∈TxL, in Ln, parallel transport is expressed as

PTL
x→y(v)=

⟨y,v⟩L
−1/κ−⟨x,y⟩L

(x+y). (12)

A.2.2 Hyperbolic Geometry for Poincaré Model

The Poincaré ball model with constant negative curvature κ = −1 and unit radius is defined as
Bn = (B,gB). Here, the manifold B= {x∈Rn : ∥x∥< 1} is the n-dimensional unit ball, and the
metric tensor gB=λ2xI, where λx=2/(1−||x||2) is the conformal factor and I∈Rn×n represents
the identity matrix.

Distance Distance between two points x,y∈Bn is defined as

dB(x,y)=cosh−1

(
1+2

∥x−y∥2

(1−∥x∥2)(1−∥y∥2)

)
. (13)

Möbius addition Given x,y∈Bn, Möbius addition is defined as

x⊕y :=
(1+2⟨x,y⟩+∥y∥2)x+(1−∥x∥2)y

1+2⟨x,y⟩+∥x∥2∥y∥2
. (14)

Möbius scalar multiplication For r∈R and x∈Bn\{0}, Möbius scalar multiplication is defined as

r⊗x :=tanh(rtanh−1(∥x∥)) x

∥x∥
. (15)

Möbius matrix-vector multiplication Given M ∈ Rm×n and x ∈ Bn, for Mx ̸= 0, Möbius
matrix-vector multiplication is given by

M⊗(xB)=tanh

(
∥Mx∥
∥x∥

tanh−1(∥x∥)
)

Mx

∥Mx∥
. (16)

Exponential and logarithmic maps For x,y∈Bn,x ̸=y and v∈TxBn\{0}, the exponential and
logarithmic maps in Bn are given by

expBx (v)=x⊕
(
tanh

(
λx∥v∥

2

)
v

∥v∥

)
,

logBx(y)=
2

λx
tanh−1(∥−x⊕y∥) −x⊕y

∥−x⊕y∥
.

(17)

Parallel transport Given x,y∈Bn and v∈TxB, parallel transport in Bn is defined as

PTB
x→y(v)=logBy(y⊕expBx (v))=

λx
λy

v. (18)
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A.3 Euclidean Model

For completeness, we also outline the construction of our model in the Euclidean space.
In the Euclidean model, each layer operates with the input xE ∈ Rn being transformed to
fE(x

E) = ReLU(WxE +b) ∈Rm. Here, W and b are trainable parameters, and the activation
function ReLU(x)=max(0,x) is applied.

We implemented batch centralization on the embeddings following the feature transformation. In
the case of the Euclidean model, we performed centralization using the function gE(xE)=xE−µE ,

where µE=
nbatch∑
i=1

xE
i /nbatch∈Rm.

A.4 Pairwise Distance Computing Using Matrices

Given matrix X=[x1,x2,...,xn]
⊤∈Rn×m, to obtain the distance matrix D where Dij =d(xi,xj)

without iteratively computing each entry or row, we use the equations below in our algorithm.

Euclidean Given {xi|xi ∈ Rm,∀i = 1, 2, ... , n}, and the equation dE(xi,xj) = ∥xi − xj∥ =√
∥xi∥2+∥xj∥2−2(xi)⊤xj , we can compute D by

D=dE(X)=


∑

j

X2
ij

⊞

∑
j

X2
ij

⊤

−2XX⊤


1
2

. (19)

Here, the “⊞” refers to addition with broadcasting. For x,y∈Rm, we can define “⊞” as

x⊞y⊤=

[ | | |
x x ··· x
| | |

]
m×m

+


−y⊤−
−y⊤−

...
−y⊤−


m×m

. (20)

Lorentz The distance in L, for xi,xj ∈ Lm, is defined as dL(xi,xj) = cosh−1(⟨xi,xj⟩L). For
{xi|xi∈Lm,∀i=1,2,...,n}, we have

D=dL(X)=cosh−1
((
−x:,0x

⊤
:,0+X:,1:X

⊤
:,1:

))
. (21)

Poincaré Given xi, xj ∈ Bm, the distance in B is given by dB(xi, xj) =

cosh−1
(
1+2

∥xi−xj∥2

(1−∥xi∥2)(1−∥xj∥2)

)
. For {xi|xi∈Bm,∀i=1,2,...,n}, we can define

D=dB(X)=cosh−1

1+2

(∑
j

X2
ij

)
⊞

(∑
j

X2
ij

)⊤

−2XX⊤

(
1−

(∑
j

X2
ij

))(
1−

(∑
j

X2
ij

))⊤

. (22)

A.5 Fermi-Dirac Decoder

Fermi-Dirac Decoder [46] originates from the physics equation that describes the probability of a
state being occupied by particles. Specifically,

p(n)=
1

Z
e−n(E−µ)/kT , (23)

where Z =
∑
n
e−n(E−µ)/kT is the grand partition function, E is the energy of the system when

occupied by a single particle, µ is the chemical potential, and T is the temperature. The term
“Fermi-Dirac” comes from the Fermi-Dirac distribution n̄FD, which describes the average occupancy
of a state when the particles are fermions. For fermions, the occupancy n could take values of 0
and 1, so Z simplifies to Z=1+e−(E−µ)/kT and

n̄FD=
∑
n

np(n)=0· 1
Z
+1· 1

Z
e−(E−µ)/kT =

1

1+e(E−µ)/kT
. (24)

Viewing a connected edge as occupation n = 1 and a disconnected edge as n = 0, we take the
squared distance d(hi,hj)

2 to be energy E, where hi and hj are the embeddings of node i and j,
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and hyperparameters r and t to be µ and T , respectively. Given the distance d(hi,hj), the probability
of an edge being connected can be computed as

p((i,j)∈E|hi,hj)=p(n=1)=
1

Z
e−(d(hi,hj)

2−r)/t=
1

1+e(d(hi,hj)2−r)/t
. (25)

This probability expression mirrors the structure of the Fermi-Dirac distribution n̄FD. Similarly,
we can calculate the probability of edge being disconnected by

p((i,j) /∈E|hi,hj)=p(n=0)=
1

Z
. (26)

B Proofs
B.1 Proof of Lemma 4.1

Proof. 1. Since the MLPAE is linear with latent dimension one, it finds the best one-dimensional
subspace that fits the data. Clearly, when optimized, this subspace should lie in the two-dimensional
plane spanned by xnormal and xoutlier, for otherwise projecting the subspace into the plane will reduce
the distance between xnormal and the subspace as well as the distance between xoutlier and the subspace.

Consider the plane spanned by xnormal and xoutlier. A natural coordinate system sets xnormal=(1,0)⊤

and xoutlier=(0,1)⊤. Accordingly, the subspace representing the MLPAE output can be represented
as L={(tcosθ,tsinθ)} which is parameterized by θ.

The MSE reconstruction error is thus given by

ℓ(θ)=
1

nV

(
nnormald

2(xnormal,L)+(nV−nnormal)d
2(xoutlier,L)

)
(27)

=
1

nV

(
nnormal

(
(1−cos2θ)2+cos2θsin2θ

)
+

(nV−nnormal)
(
sin2θcos2θ+(sin2θ−1)2

))
(28)

=

(
1−nnormal

nV

)
+

(
1−2

nnormal

nV

)
cos2θ. (29)

Since 1−2
nnormal

nV
<0, the minimum of (29) is 1−nnormal

nV
, which is achieved if and only if cosθ=0,

yielding
d(xnormal,L)=0, d(xoutlier,L)=1. (30)

2. Firstly, the output of GCNAE, denoted as x, should lie in the line passing through xnormal and
xoutlier, for otherwise projecting x into this line would reduce both ∥x−xnormal∥ and ∥x−xoutlier∥
and thus the reconstruction error. Let

x=(1−t)xnormal+txoutlier, t∈R. (31)
The MSE reconstruction error is given by

ℓ(x)=nnormal∥x−xnormal∥2+(nV−nnormal)∥x−xoutlier∥2 (32)

=nnormalt
2∥xnormal−xoutlier∥2+(nV−nnormal)(1−t)2∥xnormal−xoutlier∥2 (33)

=2
(
nnormalt

2+(nV−nnormal)(1−t)2
)
. (34)

Clearly, the minimizer of the quadratic function (34) is t=1−nnormal

nV
, leading to

∥x−xnormal∥=
√
2

(
1−nnormal

nV

)
, ∥x−xoutlier∥=

√
2
nnormal

nV
. (35)

B.2 Proof of Lemma 4.2

Proof. For convenience, we denote
d :=

∥∥xE−yE
∥∥. (36)

First, the exponential maps of xE and yE in the hyperbolic space under the Lorentz model are given by

xL=

[
cosh(1)

sinh(1)xE

]
, yL=

[
cosh(1)

sinh(1)yE

]
. (37)
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Their hyperbolic distance is given by
dL(x

L,yL)=cosh−1
(
cosh2(1)−sinh2(1)

〈
xE ,yE

〉)
(38)

=cosh−1

(
cosh2(1)−sinh2(1)

(
1− d2

2

))
(39)

=cosh−1

(
1+

sinh2(1)

2
d2
)
. (40)

A routine calculus shows that, when 0≤d≤2,

1+
sinh2(1)

2
d2≥cosh(d). (41)

Since both xE and yE have unit norms, 0≤d≤2 holds and thus
dL(x

L,yL)≥d. (42)

Next, the exponential maps of xE and yE in the hyperbolic space under the Poincaré model are
given by

xB=tanh(1)xE , yB=tanh(1)yE . (43)
Their hyperbolic distance is given by

dB(x
B,yB)=cosh−1

(
1+2

∥∥xB−yB
∥∥2

(1−∥xB∥2)(1−∥yB∥2)

)
(44)

=cosh−1

(
1+

2tanh2(1)

(1−tanh2(1))2
d2
)
. (45)

Since
sinh2(1)

2
<

2tanh2(1)

(1−tanh2(1))2
, (46)

it holds that dL(xL,yL)<dB(x
B,yB) unless d=0, where dL(xL,yL)=dB(x

B,yB)=0.

C More Details and Results
C.1 Datasets and Baselines

Dataset We assess our model’s performance across the datasets in Table 1, which includes citation
networks comprising Cora [51], Citeseer [51], PubMed [52], and obgn-arxiv [53]. We also incorporate
Amazon Computers (Amazon) [54] and the image-sharing social network Flickr [55]. Additionally,
we use the Wikipedia Network datasets [56], namely Squirrel and Chameleon, along with the Actor
Co-occurrence Network dataset [57] (Actor).

Baselines We compare our models (denoted as Euclidean, Lorentz, Poincaré) with benchmark models
for outlier node detection, as organized in previous benchmarking research [9]. The benchmark
models include LOF [17], IF [18], MLPAE [10], SCAN [19], Radar [12], ANOMALOUS [13],
GCNAE [11], DOMINANT [5], DONE [15], AdONE [15], AnomalyDAE [6], GAAN [7], and
CONAD [16]. The omission of the GUIDE model [8] from our comparative analysis is attributed to
its substantial memory consumption. Additionally, we have implemented a GIN-based [58] model by
replacing the GCN used in GCNAE with GIN. We call this new model GINAE.

Parameters During training, we used a learning rate of 0.005, dropout 0.1, regularization weight
0.001, and hidden dimensions 32. The number of trained epochs for Squirrel, Chameleon, Actor,
Cora, and Citeseer datasets is set to 300. For the PubMed, Flickr, and ogbn-arxiv datasets, we used
a batch size of 1028 in training our models, and trained 100, 20, 10 epochs respectively. For the
training of benchmarking models on the three datasets, we took the batch size to be 128 and epoch
number to be 10, 2, 1 respectively, since the sampling of neighbors of certain models restricts the
batch size from being too large. For the special hyperparameters of certain models, we referenced the
choices in [9]. We took ϵ=0.5 and µ=5 for SCAN, θ=40 and η=5 for AnomalyDAE, and the
noise dimension to be 16 for GAAN. For models that incorporated both contextual and structural
loss, we set α=0.5 as the hyperparameter to balance the weights of the two losses.

We implemented the injection of contextual and structural outliers, as well as the benchmarking
models, using code sourced from https://github.com/pygod-team/pygod/. For construction
of hyperbolic models, we utilized code available at https://github.com/HazyResearch/hgcn.
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C.2 Outlier Injection Details

In Table 8, we provide the specific values of the number of injected outliers o, which are taken to
be approximately 5% of nV . We take p=0.2 for structural outliers, same as in [9], and r=0.5 for
DICE-n outliers in all datasets. For structural outlier injection, the values of the parameter s are
given in Table 8, and t= o/m. s is set to be around twice the degree of graph, except in Squirrel
and Chameleon datasets, where we adopt a smaller s to avoid t being too smaller. For contextual
and “path” outlier injections, we take the parameter q=s.

Table 8: Parameters for outlier injection.
Squirrel Chameleon Actor Cora Citeseer Amazon PubMed Flickr ogbn-arxiv

nV 5,201 2,277 7,600 2,708 3,312 13,752 19,717 89,250 169,343
Degree 76.3 27.6 7.0 3.9 2.8 35.8 4.5 10.1 13.7

o 280 120 390 140 180 700 1,000 4,480 8,400
s 70 30 15 10 10 70 10 20 30

C.3 Outlier Detection Results Using Norm Information

In Tables 9–12, we report the ROC-AUC and AP results in outlier detection using the score function
scorenorm defined in Section 3.1.

Table 9: Outlier node detection results using the score function scorenorm(i) = ∥x̃i∥. Mean and
standard deviation of ROC-AUC (%) taken over 3 trials are reported.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Squirrel 72.7±0.5 97.3±0.0 50.8±1.5 56.7±0.8 60.5±2.3 50.3±1.3

Chameleon 72.3±1.5 94.5±0.0 49.0±2.5 52.8±1.1 54.0±0.6 47.3±2.6
Actor 71.5±0.7 91.7±0.1 48.7±0.5 50.9±1.5 50.4±0.9 49.9±1.1
Cora 68.8±0.4 90.0±0.9 49.5±3.0 49.6±2.3 48.9±2.1 50.0±1.1

Citeseer 70.9±1.1 89.7±0.7 49.5±1.2 50.5±0.8 50.7±0.8 49.3±1.1
Amazon 74.6±0.8 98.5±0.0 50.4±0.8 53.5±1.0 56.6±0.8 49.9±0.4
PubMed 69.9±0.1 90.6±0.2 50.5±0.3 52.7±0.6 56.1±0.3 50.8±0.7

Flickr 72.1±0.1 94.4±0.2 49.9±0.1 49.4±0.2 49.4±0.0 49.6±0.3
ogbn-arxiv 72.5±0.2 95.2±0.0 50.3±0.1 48.0±0.1 45.8±0.2 50.1±0.2

Table 10: Outlier node detection results using the score function scorenorm(i)= ∥x̃i∥. Mean and
standard deviation of AP (%) taken over 3 trials are reported.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Squirrel 23.5±0.2 52.0±0.5 5.6±0.2 6.4±0.1 6.9±0.5 5.5±0.2

Chameleon 16.2±0.6 33.7±0.3 5.4±0.4 5.7±0.0 5.7±0.1 5.0±0.4
Actor 13.5±0.2 28.4±0.3 5.1±0.0 5.2±0.2 5.2±0.1 5.2±0.1
Cora 13.1±1.1 26.8±1.2 5.7±0.9 5.0±0.3 4.6±0.2 5.3±0.4

Citeseer 14.0±1.6 27.7±1.1 5.7±0.4 5.5±0.1 5.7±0.2 5.3±0.2
Amazon 33.4±1.1 69.3±0.7 5.3±0.2 5.7±0.1 6.2±0.2 5.0±0.1
PubMed 13.4±0.1 27.1±0.1 5.1±0.1 5.6±0.1 6.3±0.1 5.3±0.0

Flickr 18.5±0.1 39.9±0.5 5.1±0.0 4.9±0.1 4.9±0.0 5.0±0.0
ogbn-arxiv 22.6±0.2 49.9±0.2 5.0±0.0 4.7±0.0 4.4±0.0 5.0±0.0

Table 11: Outlier node detection results using the score function scorenorm(i)=∥ãi∥1. Mean and
standard deviation of ROC-AUC (%) taken over 3 trials are reported.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Squirrel 67.1±1.2 50.2±1.0 82.7±0.6 50.0±0.5 50.8±0.8 51.1±2.9

Chameleon 67.7±1.6 51.2±2.5 86.9±0.5 49.0±3.3 50.7±2.1 49.3±2.1
Actor 73.9±0.6 48.9±2.0 96.3±0.1 47.7±2.2 49.4±2.3 50.0±0.5
Cora 72.9±1.3 50.4±2.7 95.8±0.2 50.6±2.0 54.1±1.8 50.9±1.9

Citeseer 74.5±1.5 49.8±1.0 96.4±0.0 55.5±0.9 60.2±0.7 50.1±0.2
Amazon 69.9±0.5 50.7±0.2 91.0±0.1 51.0±1.0 51.9±0.4 50.7±0.2
PubMed 68.4±0.3 50.5±0.6 87.9±0.2 49.4±0.3 49.9±1.0 51.0±0.5

Flickr 72.3±0.3 50.0±0.3 94.8±0.0 49.5±0.2 49.8±0.4 49.7±0.5
ogbn-arxiv 73.4±0.1 50.2±0.1 96.7±0.0 50.0±0.2 49.9±0.3 50.0±0.3
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Table 12: Outlier node detection results using the score function scorenorm(i)=∥ãi∥1. Mean and
standard deviation of AP (%) taken over 3 trials are reported.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Squirrel 9.9±0.9 5.5±0.1 16.3±1.2 5.5±0.1 5.6±0.2 5.7±0.5

Chameleon 11.8±1.0 5.4±0.3 20.5±2.3 5.6±0.3 5.5±0.6 5.3±0.2
Actor 18.6±0.5 5.1±0.2 41.4±1.2 5.0±0.2 5.1±0.3 5.3±0.1
Cora 17.4±1.2 5.3±0.3 37.6±1.2 5.7±0.5 5.8±0.2 5.4±0.2

Citeseer 20.2±0.9 5.7±0.3 42.2±0.2 6.9±0.1 6.9±0.2 5.4±0.1
Amazon 11.3±0.1 5.2±0.0 21.2±0.2 5.3±0.1 5.3±0.1 5.3±0.1
PubMed 9.5±0.1 5.1±0.0 17.3±0.2 5.0±0.0 5.2±0.2 5.2±0.1

Flickr 14.5±0.1 5.0±0.0 31.2±0.0 5.0±0.0 5.0±0.0 5.0±0.1
ogbn-arxiv 19.6±0.2 5.0±0.0 43.3±0.1 5.0±0.0 4.9±0.0 5.0±0.0

C.4 Running Time and Complexity Analysis

Running time In Table 13, we report the running time for the outlier detection models to train 1
epoch on the Cora dataset. Time consumption for IF, LOF, SCAN algorithms are not included because
they are non-iterative.

Table 13: Time consumption (ms) of outlier detection models to train 1 epoch on the Cora dataset.
Mean and standard deviation taken over 10 trials are reported.

Model Time(ms)
MLPAE 3.8±0.2
Radar 3.2±0.1

ANOMALOUS 4.0±0.2
GCNAE 9.6±0.3

DOMINANT 17.3±0.8
DONE 17.9±1.1

AdONE 20.6±0.3
AnomalyDAE 23.5±3.2

GAAN 10.5±0.7
CONAD 25.8±0.7

Ours (Euclidean) 22.2±8.3
Ours (Lorentz) 51.1±8.5
Ours (Poincaré) 58.7±7.1

Complexity analysis We conducted complexity analysis on our models in the Euclidean and hyper-
bolic spaces. Let nV denote the number of nodes. For simplicity we assume there are L layers, each
with the same input and output dimensionality, denoted as n.

1. Euclidean model
• Linear layer: each linear layer of the Euclidean model consists of feature transformation, bias

addition, and activation as defined in Appendix A.3. The time complexity is O(nV ·n2), and
space complexity is O(nV ·n+n2).

• Centralization layer: each centralization layer involves of calculation of mean values and transla-
tion according to the mean. The time complexity isO(nV ·n) and space complexity isO(nV ·n).

• Loss and score function: since we took the score function to be the same as the loss function,
they have the same complexity. In this step, the calculation of distance matrix in Equation
(19) has time complexity O(n2V ·n) and space complexity O(n2V +nV ·n). The computing of
structural loss in Equation (7) has time complexity O(n2V ) and space complexity O(n2V ).
Therefore, for the Euclidean model, the time complexity is O(nV ·n2 ·L+n2V ·n) and the space

complexity is O(n2V +nV ·n·L+n2 ·L).
2. Lorentz model

• Exponential map: the data is first exponentially mapped to the Lorentz model L at the origin
according to Equation (11). This step has time complexity O(nV ·n) and space complexity
O(nV ·n).

• Linear layer: for the fully hyperbolic linear layer for the Lorentz model given by Equation (1),
the time complexity is O(nV ·n2), and space complexity is O(nV ·n+n2).

• Centralization layer: the centralization layer defined in Equation (2) consists of the calculation
of centroid and parallel transport. The calculation of centroid in Equation (2) has time
complexity O(nV ·n) and space complexity O(nV ·n), and the parallel transport defined in
Equation (12) has time complexity O(nV ·n) and space complexity O(nV ·n).
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• Loss and score function: for the computing of distance matrix in Equation (21), the time complex-
ity is O(n2V ·n) and the space complexity is O(n2V +nV ·n). The computing of structural loss is
the same as the Euclidean model, so it has time complexityO(n2V ) and space complexityO(n2V ).

Therefore, for the Lorentz model, the time complexity is O(nV ·n2 ·L+n2V ·n) and the space
complexity is O(n2V +nV ·n·L+n2 ·L).

3. Poincaré model

• Exponential map: the data is exponentially mapped to the Poincaré model at the origin according
to Equation (17), which has time complexity O(nV ·n) and space complexity O(nV ·n).

• Linear layer: the linear layer defined in Equation (3) consists of the Möbius matrix-vector
multiplication, bias addition, and activation. The Möbius matrix-vector multiplication given
by Equation (16) has time complexity O(nV ·n2) and space complexity O(nV ·n+n2). The
bias addition involves parallel transport in Equation (18) and exponential map, which have
time complexity O(nV ·n) and space complexity O(nV ·n). The activation is composed of
logarithmic mapping in Equation (17), applying activation on the tangent space, and exponential
mapping, which has time complexity O(nV ·n) and space complexity O(nV ·n).

• Centralization layer: the centralization layer defined in Equation (4) consists of logarithmic
mapping, applying the same centralization layer as the Euclidean model on the tangent space, and
exponential mapping. This step has time complexity O(nV ·n) and space complexity O(nV ·n).

• Loss and score function: The computing of distance matrix in Equation (22) has time complexity
O(n2V ·n) and space complexity O(n2V +nV ·n). We calculated the structural loss in the same
way as the Euclidean model, which has time complexity O(n2V ) and space complexity O(n2V ).

Therefore, Poincaré model has time complexity is O(nV ·n2 ·L+n2V ·n) and space complexity
O(n2V +nV ·n·L+n2 ·L).

Overall, for all the three models that we consider, the time complexity is O(nV ·n2 ·L+n2V ·n) and
the space complexity is O(n2V +nV ·n·L+n2 ·L). We note that complexities are of the same order
for Euclidean and hyperbolic models, but there is a scalar difference that results in the longer running
time of hyperbolic models.

C.5 Additional Benchmarking Results

In Tables 14–16, we report AP results of models in outlier detection in datasets Cora, Squirrel, and
Amazon. In Tables 17–28, we report ROC-AUC and AP results of outlier detection in Chameleon,
Actor, Citeseer, PubMed, Flickr, and ogbn-arxiv.

Table 14: Mean and standard deviation of AP (%) scores on Cora dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 4.5±0.1 4.6±0.8 6.0±0.2 5.3±0.2 5.2±0.3 5.3±0.2
IF 3.7±0.1 3.0±0.0 5.4±0.3 5.5±0.5 5.8±0.6 5.4±0.2

MLPAE 7.9±0.6 13.5±0.9 5.6±1.0 5.5±0.2 6.1±0.2 5.9±0.8
SCAN 16.8±0.7 5.3±0.2 42.7±1.3 5.2±0.0 5.1±0.0 5.1±0.0
Radar 6.2±0.6 6.3±0.9 5.8±0.4 4.6±0.3 4.6±0.2 4.8±0.2

ANOMALOUS 5.0±0.3 5.3±0.2 6.0±0.1 4.5±0.1 4.5±0.1 4.6±0.1
GCNAE 9.5±1.2 15.6±1.4 5.5±0.5 5.9±0.2 5.8±0.3 5.4±0.4

DOMINANT 17.0±0.7 5.4±0.1 31.8±0.9 5.5±0.3 5.0±0.2 5.0±0.6
DONE 20.6±7.8 5.9±0.3 38.7±3.8 5.5±0.7 7.5±0.4 5.0±0.2

AdONE 15.3±0.8 6.5±0.3 31.3±1.5 5.5±0.5 6.3±0.7 4.9±0.2
AnomalyDAE 11.4±0.1 5.8±0.1 20.5±0.4 5.6±0.3 5.7±0.2 5.2±0.4

GAAN 5.5±0.3 5.0±0.2 5.6±0.5 5.6±0.7 5.1±0.3 5.1±0.1
CONAD 15.6±0.4 6.0±0.3 32.0±1.2 5.6±0.7 5.7±0.7 4.5±0.1
GINAE 7.5±0.1 11.0±2.3 7.2±0.8 5.6±0.1 6.4±1.4 5.4±0.5

Ours (Euclidean) 19.8±2.4 13.0±0.6 23.6±6.2 27.6±3.4 16.0±2.0 42.2±2.9
Ours (Lorentz) 10.5±1.9 10.0±0.7 12.9±0.4 14.3±2.0 9.4±0.4 16.9±1.3
Ours (Poincaré) 19.9±2.5 15.3±0.8 26.7±1.0 34.2±0.9 17.7±2.6 57.6±1.7
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Table 15: Mean and standard deviation of AP (%) scores on Squirrel dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 3.7±0.1 3.2±0.0 5.4±0.2 3.9±0.1 3.4±0.0 5.3±0.1
IF 3.8±0.1 3.5±0.1 5.6±0.4 6.2±0.2 7.4±0.4 5.5±0.4

MLPAE 17.3±0.6 33.0±1.6 5.4±0.0 5.2±0.3 4.6±0.0 5.5±0.2
SCAN 8.5±0.2 5.6±0.2 14.6±0.2 5.0±0.0 5.3±0.1 5.0±0.0
Radar 7.0±0.2 8.0±0.8 6.2±0.1 4.6±0.1 5.5±0.3 4.3±0.0

ANOMALOUS 5.9±0.4 8.0±0.9 5.9±0.3 4.7±0.1 5.8±0.1 4.3±0.1
GCNAE 17.0±1.2 36.5±1.6 5.8±0.4 4.9±0.3 4.7±0.0 5.8±0.5

DOMINANT 10.9±0.6 5.8±0.1 19.3±0.7 6.4±0.8 5.9±0.1 6.1±0.3
DONE 14.8±0.6 5.8±0.3 24.8±0.7 6.6±0.4 5.6±0.2 6.9±1.2

AdONE 30.5±3.5 5.9±0.2 64.7±1.0 11.1±0.9 5.7±0.2 19.9±2.8
AnomalyDAE 17.0±7.8 6.0±0.5 18.7±1.8 8.0±3.9 6.2±1.0 12.0±8.7

GAAN 6.4±0.6 5.3±0.4 7.2±0.2 6.1±0.2 5.6±0.1 6.7±0.1
CONAD NaN NaN NaN NaN NaN NaN
GINAE 8.4±1.6 14.1±3.4 6.4±0.6 5.6±0.2 6.2±0.8 5.9±0.4

Ours (Euclidean) 18.1±9.0 5.4±0.0 5.9±0.2 17.8±17.5 15.5±14.3 5.3±0.1
Ours (Lorentz) 25.7±5.2 22.6±2.5 28.2±2.4 35.7±2.0 34.7±5.6 35.2±5.4
Ours (Poincaré) 24.9±2.2 33.4±3.9 18.6±1.5 49.0±3.2 34.7±1.6 62.7±1.3

Table 16: Mean and standard deviation of AP (%) scores on Amazon dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 3.3±0.1 2.6±0.0 5.0±0.1 4.5±0.1 3.9±0.0 5.4±0.3
IF 3.3±0.1 2.6±0.0 5.2±0.1 5.1±0.1 4.7±0.1 5.0±0.1

MLPAE 31.9±1.0 66.3±1.1 5.2±0.1 5.8±0.2 6.6±0.1 5.1±0.1
SCAN 10.1±0.2 5.2±0.1 22.0±0.1 4.9±0.0 5.1±0.0 4.9±0.0
Radar 6.0±0.3 4.8±0.1 8.1±0.4 4.5±0.1 5.3±0.0 4.5±0.2

ANOMALOUS 5.8±0.1 5.3±0.4 7.6±0.1 4.6±0.2 4.9±0.0 4.4±0.0
GCNAE 32.7±1.1 68.4±0.6 5.2±0.1 5.7±0.1 6.4±0.4 5.2±0.0

DOMINANT 13.1±0.4 5.5±0.1 23.4±0.7 5.3±0.1 5.7±0.2 5.3±0.1
DONE 15.9±1.8 11.2±0.6 19.9±2.1 5.6±0.2 5.6±0.1 5.1±0.1

AdONE 17.1±0.4 10.2±1.0 23.9±0.5 5.6±0.3 6.6±0.7 5.2±0.1
AnomalyDAE 13.0±0.1 6.5±0.1 23.3±0.6 5.4±0.4 5.4±0.2 5.0±0.1

GAAN 5.7±0.1 4.8±0.1 7.3±0.3 5.4±0.1 5.5±0.1 5.6±0.1
CONAD 12.6±0.5 5.4±0.0 23.8±0.3 5.4±0.2 5.6±0.3 5.3±0.2
GINAE 14.7±1.9 33.0±13.6 9.0±0.7 6.0±0.2 5.6±0.5 6.5±1.2

Ours (Euclidean) 44.3±3.9 35.5±2.1 62.6±2.3 49.8±0.6 40.9±2.4 64.5±3.2
Ours (Lorentz) 50.9±8.5 43.7±4.7 63.1±6.2 58.9±7.0 52.6±8.0 65.2±2.7
Ours (Poincaré) 49.9±2.4 35.4±2.3 75.9±1.7 73.3±1.4 55.5±4.2 84.1±1.3

Table 17: Mean and standard deviation of ROC-AUC (%) scores on Chameleon dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 34.0±0.8 19.1±0.8 50.8±3.2 35.7±0.3 25.2±0.7 49.8±2.2
IF 36.7±1.1 20.9±1.1 50.6±0.7 51.0±2.2 53.0±2.1 52.1±3.4

MLPAE 63.4±3.5 74.8±3.9 51.8±1.1 48.9±3.2 50.1±1.8 49.5±4.7
SCAN 64.1±1.9 49.0±0.0 81.2±0.2 45.3±0.9 49.0±1.6 41.8±0.5
Radar 59.8±1.4 51.5±3.7 70.3±2.7 48.1±2.5 51.8±1.1 49.3±0.3

ANOMALOUS 62.5±2.0 53.3±1.1 67.2±3.0 46.3±1.5 50.4±1.7 49.0±1.1
GCNAE 61.3±2.2 74.3±1.9 50.1±1.6 50.7±2.1 48.7±2.7 48.2±0.2

DOMINANT 73.7±0.6 51.9±3.4 91.6±0.2 52.6±2.8 50.8±2.6 53.3±4.5
DONE 72.0±1.6 50.9±3.2 89.6±0.8 56.0±1.3 56.4±3.8 52.8±2.3

AdONE 74.7±1.4 51.4±2.2 97.0±0.3 56.5±2.5 52.3±2.7 63.6±1.6
AnomalyDAE 58.2±4.5 67.6±1.2 55.4±6.8 67.5±0.3 63.1±5.7 72.2±3.3

GAAN 56.2±2.4 54.9±3.5 54.2±3.2 52.8±2.2 53.3±1.7 53.5±2.4
CONAD NaN NaN NaN NaN NaN NaN

Ours (Euclidean) 86.5±0.8 79.8±0.6 95.1±0.8 80.3±2.0 76.6±2.9 91.4±0.8
Ours (Lorentz) 86.0±1.6 77.7±2.9 96.7±0.6 82.9±2.9 74.5±1.8 91.4±1.6
Ours (Poincaré) 88.9±1.8 84.2±1.5 93.9±1.1 87.4±2.2 83.0±2.5 92.3±0.3
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Table 18: Mean and standard deviation of AP (%) scores on Chameleon dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 3.8±0.1 3.4±0.0 5.5±0.5 4.0±0.0 4.1±0.2 5.2±0.2
IF 4.2±0.1 3.8±0.1 5.5±0.1 5.8±0.6 5.5±0.4 5.8±0.4

MLPAE 8.9±1.1 13.7±1.6 6.1±0.4 5.1±0.3 5.1±0.2 5.3±0.7
SCAN 7.7±0.4 5.2±0.0 13.0±0.1 4.9±0.0 5.2±0.1 4.8±0.0
Radar 6.7±0.3 7.7±2.0 8.2±0.6 5.0±0.3 5.7±0.3 5.2±0.4

ANOMALOUS 7.0±0.7 7.5±0.8 7.6±0.5 4.8±0.4 5.3±0.1 4.9±0.1
GCNAE 8.5±0.7 14.5±1.5 5.4±0.4 5.8±0.8 4.9±0.2 5.4±0.5

DOMINANT 16.9±2.9 5.8±0.6 28.7±1.4 6.4±0.6 6.0±0.8 7.7±1.7
DONE 15.6±3.3 6.3±1.0 20.5±1.7 6.8±0.4 10.1±3.9 5.9±0.2

AdONE 27.2±2.9 5.6±0.1 54.7±3.3 10.8±1.0 6.3±0.7 17.8±5.2
AnomalyDAE 14.8±2.2 16.9±1.6 18.1±2.9 16.2±1.6 12.2±4.7 22.0±2.5

GAAN 6.3±0.5 6.0±0.7 6.5±0.8 6.2±0.7 6.0±0.5 5.9±0.6
CONAD NaN NaN NaN NaN NaN NaN

Ours (Euclidean) 34.2±3.0 27.7±0.8 44.9±1.0 40.8±3.4 33.3±7.5 56.2±4.9
Ours (Lorentz) 32.2±6.4 28.0±7.0 44.7±4.0 34.4±4.0 24.2±4.8 47.2±3.7
Ours (Poincaré) 32.6±4.0 32.5±3.4 39.8±3.5 48.5±0.9 35.9±1.8 59.8±2.4

Table 19: Mean and standard deviation of ROC-AUC (%) scores on Actor dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 40.4±2.0 31.5±2.0 51.1±0.3 48.5±1.4 48.1±0.9 48.5±3.3
IF 37.1±2.0 24.6±4.8 50.6±1.1 47.8±1.2 51.1±1.4 51.3±0.6

MLPAE 55.7±3.6 49.5±1.6 51.6±1.3 49.1±0.3 51.6±1.2 49.0±1.1
SCAN 74.6±0.3 50.0±0.2 98.9±0.3 50.1±0.1 49.9±0.1 49.9±0.1
Radar 71.7±1.1 66.3±1.5 73.6±1.1 49.0±0.9 51.0±0.5 44.9±0.8

ANOMALOUS 69.3±0.9 66.8±1.3 72.8±0.9 48.5±1.1 47.4±0.8 45.4±0.9
GCNAE 61.9±0.5 72.9±1.5 50.0±0.3 49.2±1.2 50.7±0.8 50.4±0.7

DOMINANT 73.5±0.7 51.9±2.7 92.0±0.0 50.5±1.8 51.2±2.4 46.3±1.0
DONE 77.1±0.4 56.8±3.9 95.5±0.1 48.2±0.4 49.8±1.2 48.2±2.5

AdONE 73.8±1.2 52.7±1.0 90.8±0.7 47.5±1.4 51.1±2.5 48.0±0.5
AnomalyDAE 67.5±0.6 48.3±0.8 85.9±0.4 48.6±1.4 48.4±0.9 44.5±0.2

GAAN 50.5±0.6 52.4±1.6 53.0±0.7 51.2±0.6 48.6±0.9 50.3±1.1
CONAD 71.9±0.7 52.7±0.6 92.2±0.1 48.0±1.5 50.4±0.8 46.6±0.4

Ours (Euclidean) 55.2±1.6 57.1±1.0 60.1±0.6 51.9±1.0 52.7±0.9 52.2±0.7
Ours (Lorentz) 62.7±3.9 47.9±3.5 77.1±0.8 53.9±0.2 50.7±0.8 55.8±2.3
Ours (Poincaré) 60.1±2.6 56.2±0.6 66.6±1.5 55.2±2.3 56.8±1.0 55.6±1.8

Table 20: Mean and standard deviation of AP (%) scores on Actor dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 4.3±0.2 4.1±0.1 5.3±0.1 4.9±0.2 4.8±0.1 5.1±0.4
IF 4.0±0.2 3.5±0.2 5.2±0.3 4.8±0.2 5.4±0.2 5.6±0.2

MLPAE 8.4±0.9 11.3±0.3 5.5±0.2 5.1±0.0 5.4±0.2 5.0±0.1
SCAN 44.5±0.6 5.1±0.0 92.1±1.4 5.1±0.0 5.1±0.0 5.1±0.0
Radar 9.6±0.6 12.3±1.2 8.5±0.3 5.2±0.3 5.4±0.3 4.8±0.2

ANOMALOUS 9.2±0.4 12.6±0.6 8.2±0.2 5.1±0.1 4.9±0.2 4.7±0.2
GCNAE 9.7±0.4 16.6±1.1 5.2±0.1 5.1±0.1 5.3±0.1 5.3±0.2

DOMINANT 12.7±0.6 5.3±0.4 23.3±0.0 5.1±0.2 5.4±0.4 4.5±0.1
DONE 25.5±2.0 7.5±3.0 41.4±1.8 4.9±0.1 5.4±0.3 4.7±0.3

AdONE 13.2±0.2 5.4±0.2 21.7±1.1 4.8±0.1 5.3±0.4 4.8±0.0
AnomalyDAE 9.5±0.1 5.1±0.1 14.9±0.3 4.9±0.2 4.9±0.2 4.3±0.0

GAAN 5.1±0.2 5.4±0.2 5.6±0.2 5.4±0.1 5.1±0.0 5.3±0.1
CONAD 12.3±0.2 5.4±0.1 23.6±0.3 4.9±0.2 5.3±0.1 4.5±0.1

Ours (Euclidean) 5.6±0.2 6.5±0.3 6.0±0.0 6.7±0.8 6.6±0.2 7.0±0.2
Ours (Lorentz) 7.1±1.0 5.0±0.6 9.9±0.3 6.1±0.3 5.5±0.3 6.9±1.1
Ours (Poincaré) 6.2±0.5 6.3±0.3 6.9±0.2 8.4±0.9 7.7±0.4 8.4±0.7
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Table 21: Mean and standard deviation of ROC-AUC (%) scores on Citeseer dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 56.1±1.2 58.6±1.2 50.9±1.7 48.4±1.0 44.9±1.7 50.1±2.1
IF 43.1±1.2 36.4±1.3 50.4±0.9 47.5±1.4 51.8±0.9 52.3±1.8

MLPAE 60.1±1.1 69.7±1.5 51.3±1.8 48.8±2.9 47.4±0.8 48.2±1.0
SCAN 74.1±0.0 50.3±1.2 97.9±0.2 50.4±0.7 51.2±0.3 49.7±0.5
Radar 47.0±0.1 54.6±3.0 45.8±0.4 39.4±3.0 32.1±0.6 41.3±0.2

ANOMALOUS 43.6±0.8 49.2±2.4 38.5±0.1 34.7±0.7 30.3±0.5 37.2±0.8
GCNAE 59.8±2.2 71.8±2.0 50.4±2.1 50.5±1.5 48.2±1.9 49.7±0.5

DOMINANT 75.4±1.3 53.8±1.3 95.9±0.1 52.9±3.3 58.1±1.7 48.1±2.4
DONE 74.1±1.8 56.7±0.9 94.3±0.1 53.2±0.9 61.8±1.0 47.1±2.8

AdONE 74.1±1.3 53.1±2.0 95.4±0.1 55.1±1.0 59.9±1.9 46.6±0.8
AnomalyDAE 74.8±2.0 55.7±0.9 92.5±0.2 51.2±1.6 59.8±0.9 48.8±1.6

GAAN 51.6±1.9 50.4±1.5 53.1±1.7 48.5±2.9 52.2±1.8 49.8±2.6
CONAD 75.4±0.7 54.9±2.3 96.0±0.1 53.3±2.0 55.7±1.2 47.7±1.5

Ours (Euclidean) 72.0±1.0 61.8±1.2 86.8±3.3 71.6±2.0 75.2±2.0 73.5±0.7
Ours (Lorentz) 72.4±1.1 60.7±3.3 85.1±1.2 71.3±1.4 75.8±0.7 73.7±2.0
Ours (Poincaré) 77.8±3.4 69.9±0.8 90.2±0.7 78.8±1.4 82.4±0.7 78.3±3.0

Table 22: Mean and standard deviation of AP (%) scores on Citeseer dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 6.5±0.4 7.8±0.4 5.7±0.3 5.2±0.1 4.8±0.2 5.6±0.3
IF 4.7±0.3 4.0±0.1 5.5±0.3 5.3±0.3 5.8±0.3 5.8±0.1

MLPAE 8.5±0.2 13.6±1.3 5.5±0.3 5.6±0.3 5.3±0.1 5.5±0.3
SCAN 26.3±0.4 5.5±0.2 60.3±0.8 5.5±0.1 5.6±0.1 5.4±0.0
Radar 5.7±0.1 9.6±0.6 4.7±0.0 4.1±0.2 3.7±0.0 4.2±0.0

ANOMALOUS 4.4±0.1 5.2±0.5 4.2±0.0 3.8±0.0 3.6±0.0 3.9±0.0
GCNAE 8.9±1.2 14.2±0.7 6.0±0.4 5.6±0.3 5.4±0.3 6.0±0.2

DOMINANT 18.9±0.7 6.0±0.3 39.2±1.0 6.0±0.7 7.2±0.1 5.1±0.3
DONE 17.1±2.0 7.5±0.5 31.3±0.4 6.3±0.3 9.7±1.9 5.6±0.9

AdONE 17.6±0.5 6.2±0.6 36.0±0.8 6.8±0.1 7.8±0.7 5.0±0.1
AnomalyDAE 14.7±1.5 6.5±0.3 26.3±0.5 5.7±0.1 7.6±0.4 5.1±0.2

GAAN 6.1±0.5 5.9±0.2 6.6±0.4 5.5±0.3 6.1±0.6 5.6±0.4
CONAD 18.9±0.8 6.1±0.4 39.9±0.5 6.0±0.4 6.6±0.3 5.0±0.2

Ours (Euclidean) 13.9±0.4 10.7±0.4 22.2±3.0 20.6±2.9 14.7±1.5 33.9±3.2
Ours (Lorentz) 13.0±0.8 9.1±0.8 19.1±2.0 14.1±0.9 14.9±1.1 22.6±4.1
Ours (Poincaré) 21.1±5.1 14.7±1.6 29.9±1.8 29.5±1.3 20.1±0.1 40.6±4.1

Table 23: Mean and standard deviation of ROC-AUC (%) scores on PubMed dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 45.1±0.3 39.0±1.3 49.3±1.3 49.8±0.5 48.8±0.9 48.9±0.8
IF 35.3±0.5 21.5±0.2 51.2±0.3 48.3±0.9 46.3±0.2 49.5±0.4

MLPAE 68.4±0.8 85.5±0.5 49.6±1.2 52.8±0.7 54.4±0.2 50.1±0.9
SCAN 74.2±0.2 50.0±0.1 98.6±0.2 50.0±0.1 49.9±0.1 50.0±0.0
Radar 58.1±0.7 54.0±0.4 62.9±0.7 50.7±1.1 50.2±0.7 51.2±0.6

ANOMALOUS 58.2±1.2 53.4±1.2 64.0±0.6 50.7±0.4 49.7±0.2 52.3±0.4
GCNAE 68.0±0.8 85.9±0.8 50.1±0.1 52.5±0.8 55.6±0.8 50.7±0.7

DOMINANT 75.8±0.5 60.0±0.5 92.3±0.1 40.5±0.7 52.5±1.2 29.1±0.2
DONE 69.0±0.1 57.0±1.4 81.9±0.1 49.5±0.7 48.4±2.5 49.5±1.4

AdONE 70.6±1.2 52.0±0.1 87.9±0.1 50.7±0.9 50.6±0.4 50.1±0.5
AnomalyDAE 69.0±0.5 59.3±1.3 73.6±2.3 41.5±4.1 56.0±2.1 22.4±0.6

GAAN 50.0±1.4 49.8±0.5 50.4±0.2 49.8±0.4 50.2±0.8 50.2±0.7
CONAD 71.1±0.9 63.5±0.2 79.2±0.4 45.5±0.2 52.5±1.1 41.2±0.7

Ours (Euclidean) 89.1±0.7 85.6±0.9 94.9±0.4 88.0±1.3 88.8±0.5 89.1±0.2
Ours (Lorentz) 91.4±0.0 87.3±0.4 94.8±0.1 90.6±0.2 89.6±0.2 90.7±0.5
Ours (Poincaré) 91.2±0.6 86.9±1.1 94.7±0.1 91.3±0.2 90.6±0.2 92.0±0.2
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Table 24: Mean and standard deviation of AP (%) scores on PubMed dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 4.7±0.1 4.2±0.2 5.1±0.3 5.1±0.0 4.9±0.1 5.0±0.2
IF 3.7±0.0 3.0±0.0 5.3±0.1 4.8±0.1 4.6±0.1 5.0±0.0

MLPAE 12.1±0.6 21.9±0.3 5.0±0.2 5.6±0.1 5.9±0.2 5.2±0.1
SCAN 46.3±0.7 5.1±0.0 92.5±1.2 5.1±0.0 5.1±0.0 5.1±0.0
Radar 5.6±0.1 5.7±0.2 6.1±0.1 4.8±0.1 5.1±0.0 4.7±0.1

ANOMALOUS 5.6±0.2 5.7±0.2 6.2±0.1 4.8±0.0 5.0±0.1 4.8±0.0
GCNAE 11.4±0.4 21.9±1.7 5.2±0.1 5.7±0.1 6.2±0.1 5.2±0.1

DOMINANT 13.0±0.3 6.1±0.1 24.2±0.1 4.2±0.1 5.3±0.2 3.4±0.0
DONE 8.7±0.0 6.3±0.4 12.1±0.2 4.9±0.1 4.8±0.2 5.2±0.1

AdONE 10.0±0.4 5.3±0.0 16.6±0.2 5.2±0.2 5.1±0.1 5.1±0.1
AnomalyDAE 11.4±1.7 7.1±0.4 11.9±3.1 4.4±0.6 6.3±0.6 3.0±0.0

GAAN 5.3±0.2 4.9±0.1 5.4±0.2 5.1±0.1 5.0±0.1 5.2±0.1
CONAD 10.3±0.5 6.9±0.0 15.4±0.5 4.4±0.0 5.5±0.2 4.0±0.1

Ours (Euclidean) 30.1±1.3 28.0±1.1 37.6±1.4 28.5±2.1 35.8±0.6 26.9±0.7
Ours (Lorentz) 34.8±0.6 29.1±0.8 37.7±1.0 32.2±0.7 35.7±0.8 28.3±1.2
Ours (Poincaré) 34.2±0.6 29.6±1.3 37.7±1.0 33.9±0.4 38.4±0.5 31.6±0.1

Table 25: Mean and standard deviation of ROC-AUC (%) scores on Flickr dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 58.9±0.2 68.6±0.6 49.9±0.4 48.1±0.7 47.0±0.5 50.1±0.5
IF 29.1±0.3 8.5±0.1 50.3±0.2 50.7±0.2 51.5±0.2 50.2±0.2

MLPAE 71.8±0.1 93.2±0.3 50.1±0.1 50.0±0.5 49.7±0.3 49.7±0.5
SCAN 74.4±0.1 50.0±0.0 98.8±0.1 50.0±0.0 50.0±0.0 50.0±0.0
Radar OOM2 OOM OOM OOM OOM OOM

ANOMALOUS OOM OOM OOM OOM OOM OOM
GCNAE 71.7±0.1 92.9±0.3 50.0±0.7 49.8±0.1 49.4±0.1 50.3±0.2

DOMINANT 79.5±0.1 61.1±0.6 97.5±0.0 31.6±0.5 50.1±0.1 13.8±0.1
DONE 83.0±2.3 65.7±13.0 83.4±0.3 49.1±0.5 49.5±0.8 49.9±0.4

AdONE 64.7±0.3 36.2±1.8 90.8±0.7 50.1±0.2 50.5±0.4 50.2±0.4
AnomalyDAE 63.1±0.9 72.3±1.9 48.5±0.4 31.0±1.0 49.7±0.2 8.9±1.6

GAAN 50.1±0.5 50.2±0.1 50.1±0.2 48.3±0.5 50.2±0.2 46.9±0.2
CONAD 65.9±0.5 65.3±0.1 66.5±0.4 44.3±0.2 49.6±0.4 39.2±0.1

Ours (Euclidean) 62.2±6.2 45.3±2.5 73.3±14.3 50.8±0.6 50.6±0.5 49.9±1.4
Ours (Lorentz) 60.8±4.0 51.2±7.6 68.6±0.3 54.5±0.4 55.5±0.7 53.2±0.9
Ours (Poincaré) 57.8±4.9 54.4±6.9 68.0±1.1 53.3±0.2 52.6±1.0 53.2±0.6

Table 26: Mean and standard deviation of AP (%) scores on Flickr dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 8.6±0.1 14.2±0.2 5.0±0.1 4.8±0.1 4.6±0.1 5.0±0.1
IF 3.3±0.0 2.6±0.0 5.1±0.0 5.1±0.0 5.2±0.0 5.1±0.0

MLPAE 17.6±0.4 36.6±0.5 5.1±0.0 5.0±0.1 4.9±0.1 5.0±0.0
SCAN 49.0±0.2 5.0±0.0 95.2±0.1 5.0±0.0 5.0±0.0 5.0±0.0
Radar OOM OOM OOM OOM OOM OOM

ANOMALOUS OOM OOM OOM OOM OOM OOM
GCNAE 17.5±0.2 35.7±0.3 5.0±0.1 5.0±0.0 5.0±0.0 5.1±0.1

DOMINANT 29.5±0.3 6.7±0.1 59.7±0.2 3.5±0.0 5.1±0.0 2.8±0.0
DONE 17.7±3.3 9.6±4.7 14.8±0.6 4.9±0.1 5.0±0.2 5.0±0.1

AdONE 13.8±1.6 4.2±0.2 29.4±2.2 5.0±0.0 5.1±0.0 5.1±0.0
AnomalyDAE 9.5±0.3 11.5±0.7 6.1±0.1 3.5±0.0 5.0±0.0 2.6±0.0

GAAN 5.0±0.0 5.1±0.0 5.1±0.0 4.8±0.1 5.0±0.0 4.6±0.1
CONAD 8.5±0.2 7.6±0.0 9.8±0.1 4.3±0.0 5.0±0.1 3.8±0.0

Ours (Euclidean) 8.7±3.1 4.6±0.5 14.3±10.9 5.1±0.0 5.1±0.1 5.0±0.2
Ours (Lorentz) 6.8±0.7 5.5±1.2 8.2±0.2 5.7±0.0 6.0±0.2 5.4±0.1
Ours (Poincaré) 6.5±1.0 6.2±1.4 8.4±0.6 5.4±0.0 5.5±0.2 5.5±0.1

2OOM denotes out of memory error.
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Table 27: Mean and standard deviation of ROC-AUC (%) scores on ogbn-arxiv dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 51.6±0.2 51.7±0.2 49.9±0.1 51.6±0.5 52.2±0.2 49.6±0.5
IF 62.7±0.4 76.0±1.0 50.1±0.3 53.0±0.6 55.0±0.1 50.0±0.4

MLPAE 62.9±0.3 75.0±0.6 50.3±0.3 52.9±0.1 56.1±0.3 49.9±0.2
SCAN 73.1±0.1 50.0±0.1 96.5±0.0 49.2±0.1 50.1±0.2 48.5±0.1
Radar OOM OOM OOM OOM OOM OOM

ANOMALOUS OOM OOM OOM OOM OOM OOM
GCNAE 63.1±0.6 76.3±0.5 50.2±0.1 53.2±0.2 55.7±0.2 50.2±0.4

DOMINANT 87.0±0.1 75.2±0.4 99.1±0.1 52.3±0.4 55.5±0.2 49.4±0.2
DONE 81.0±0.7 65.4±2.3 97.2±0.3 51.0±0.2 52.1±0.3 50.5±0.2

AdONE 79.8±0.6 60.4±2.2 92.4±3.1 51.4±0.1 52.5±0.3 50.4±0.2
AnomalyDAE 71.5±0.6 60.3±1.0 82.2±0.4 50.6±0.2 51.3±0.3 49.7±0.1

GAAN 46.8±0.2 46.5±1.1 50.5±0.1 50.0±0.5 49.7±0.3 50.0±0.1
CONAD 81.6±0.3 75.7±0.2 87.4±0.2 52.6±0.2 55.8±0.2 50.0±0.4

Ours (Euclidean) 71.8±3.9 58.7±11.6 76.6±2.8 63.9±7.0 58.1±6.1 60.7±7.5
Ours (Lorentz) 84.1±2.6 71.3±3.9 94.9±0.6 73.2±1.7 77.6±1.3 73.5±1.7
Ours (Poincaré) 82.3±0.4 72.7±4.1 93.7±1.0 75.8±0.9 78.3±0.9 72.5±0.4

Table 28: Mean and standard deviation of AP (%) scores on ogbn-arxiv dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

LOF 5.4±0.0 5.4±0.1 5.0±0.0 5.2±0.1 5.3±0.0 4.9±0.1
IF 11.4±0.0 21.9±0.4 5.0±0.0 5.3±0.1 5.6±0.0 5.0±0.0

MLPAE 11.1±1.3 16.6±0.1 5.0±0.1 5.3±0.0 5.7±0.1 5.0±0.0
SCAN 18.8±0.1 5.0±0.0 47.4±0.2 4.9±0.0 5.0±0.0 4.9±0.0
Radar OOM OOM OOM OOM OOM OOM

ANOMALOUS OOM OOM OOM OOM OOM OOM
GCNAE 12.2±0.4 23.8±0.4 5.0±0.0 5.3±0.0 5.6±0.0 5.0±0.0

DOMINANT 65.0±0.1 18.3±0.0 98.4±0.1 5.1±0.1 5.5±0.1 4.8±0.0
DONE 32.2±0.9 7.9±0.9 64.9±3.3 5.5±0.0 5.2±0.1 5.9±0.1

AdONE 21.3±0.5 6.5±0.4 38.8±3.0 5.3±0.1 5.3±0.0 5.5±0.1
AnomalyDAE 22.4±0.4 12.8±1.3 29.5±1.2 5.0±0.0 5.1±0.0 4.9±0.0

GAAN 4.7±0.0 4.6±0.1 5.0±0.0 5.0±0.1 4.9±0.1 5.0±0.0
CONAD 37.7±0.6 20.6±0.4 52.6±0.4 5.2±0.0 5.6±0.0 4.9±0.0

Ours (Euclidean) 12.2±1.8 12.0±6.3 10.0±0.9 11.3±4.2 8.1±3.2 7.3±1.8
Ours (Lorentz) 32.7±3.6 16.9±4.3 39.5±4.0 18.4±4.2 36.3±3.9 12.9±2.6
Ours (Poincaré) 29.1±0.9 21.6±7.3 44.8±3.2 24.0±2.2 35.3±3.3 11.4±0.6

C.6 Additional Results Comparing the Use of Message Passing and Contextual Loss

In Tables 29 and 30, we report AP results of our models with or without message passing and
contextual loss in outlier detection on datasets Cora and Squirrel. In Tables 31-36, we report
ROC-AUC and AP results of outlier detection in Chameleon, Actor, and Citeseer.

Table 29: Comparison of models with/without message passing and contextual loss on Cora dataset.
Mean and standard deviation of AP (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 19.8±2.4 13.0±0.6 23.6±6.2 27.6±3.4 16.0±2.0 42.2±2.9

0.5 4.8±0.2 5.0±0.2 4.6±0.1 5.3±0.4 5.6±0.1 5.3±0.3

Yes 0 11.1±0.2 5.7±0.6 15.4±0.5 18.2±2.9 5.2±0.1 33.4±1.9
0.5 9.6±0.7 6.0±0.4 15.8±1.6 21.4±2.1 5.9±0.2 27.7±3.1

Ours (Lorentz)
No 0 10.5±1.9 10.0±0.7 12.9±0.4 14.3±2.0 9.4±0.4 16.9±1.3

0.5 11.5±2.0 8.9±1.4 12.2±3.0 17.8±4.0 11.7±3.3 19.0±2.1

Yes 0 13.2±0.4 5.3±0.1 25.2±3.4 27.2±1.2 5.8±0.2 52.1±2.6
0.5 16.1±0.5 5.8±0.1 25.5±0.5 29.3±1.1 7.0±0.3 52.8±3.7

Ours (Poincaré)
No 0 19.9±2.5 15.3±0.8 26.7±1.0 34.2±0.9 17.7±2.6 57.6±1.7

0.5 20.5±4.2 12.7±0.6 22.7±1.8 31.6±3.2 17.2±2.5 49.1±4.1

Yes 0 14.9±2.2 5.1±0.2 31.5±2.9 28.8±4.3 5.9±0.3 55.4±2.6
0.5 15.4±2.5 5.9±0.3 30.1±2.8 34.6±2.6 7.8±0.6 51.3±1.9
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Table 30: Comparison of models with/without message passing and contextual loss on Squirrel
dataset. Mean and standard deviation of AP (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 18.1±9.0 5.4±0.0 5.9±0.2 17.8±17.5 15.5±14.3 5.3±0.1

0.5 7.4±0.0 9.7±0.1 5.7±0.2 5.3±0.0 5.4±0.1 5.3±0.2

Yes 0 4.9±0.4 5.2±0.1 4.2±1.0 6.8±0.2 5.5±0.2 7.5±1.5
0.5 4.3±0.3 5.8±0.4 3.5±0.2 5.4±0.1 5.6±0.2 4.9±0.6

Ours (Lorentz)
No 0 25.7±5.2 22.6±2.5 28.2±2.4 35.7±2.0 34.7±5.6 35.2±5.4

0.5 24.8±2.1 23.7±0.9 23.1±3.1 36.7±1.1 33.2±4.7 35.6±2.5

Yes 0 12.2±0.4 13.3±1.3 11.0±0.9 23.5±2.4 17.9±2.8 36.7±2.4
0.5 12.8±0.7 12.9±0.4 14.1±3.1 20.7±2.1 18.3±4.4 31.9±2.6

Ours (Poincaré)
No 0 24.9±2.2 33.4±3.9 18.6±1.5 49.0±3.2 34.7±1.6 62.7±1.3

0.5 24.3±0.1 31.2±1.0 15.9±1.2 50.6±1.2 35.0±0.8 65.9±0.9

Yes 0 4.9±0.3 5.7±0.1 4.3±0.1 8.3±0.4 5.4±0.2 11.2±0.3
0.5 5.1±0.2 6.0±0.3 5.5±0.5 7.7±0.2 5.6±0.2 9.9±0.5

Table 31: Comparison of models with/without message passing and contextual loss on Chameleon
dataset. Mean and standard deviation of ROC-AUC (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 86.5±0.8 79.8±0.6 95.1±0.8 80.3±2.0 76.6±2.9 91.4±0.8

0.5 53.7±0.4 64.1±2.2 43.4±1.3 50.5±1.3 52.1±2.8 50.2±2.2

Yes 0 54.8±3.5 50.3±2.2 55.8±3.9 56.4±4.6 48.5±4.0 58.6±2.1
0.5 53.5±0.4 53.2±1.5 49.4±2.7 55.1±3.3 51.1±0.7 57.2±1.1

Ours (Lorentz)
No 0 86.0±1.6 77.7±2.9 96.7±0.6 82.9±2.9 74.5±1.8 91.4±1.6

0.5 82.5±3.7 74.0±2.4 91.2±3.3 83.4±2.9 75.8±1.6 88.5±3.6

Yes 0 77.1±4.5 62.7±4.2 89.6±2.8 73.0±2.0 64.4±4.4 89.2±2.7
0.5 77.4±0.3 70.1±2.6 85.6±2.7 71.3±2.6 63.8±1.9 82.5±1.1

Ours (Poincaré)
No 0 88.9±1.8 84.2±1.5 93.9±1.1 87.4±2.2 83.0±2.5 92.3±0.3

0.5 79.1±1.4 73.4±5.5 83.7±2.0 82.0±0.4 77.0±2.1 81.6±2.6

Yes 0 41.0±0.6 50.9±1.6 41.3±7.0 61.5±2.4 52.8±1.1 71.6±2.0
0.5 57.0±8.9 53.7±4.6 41.7±6.1 59.6±0.5 52.1±0.8 69.5±1.7

Table 32: Comparison of models with/without message passing and contextual loss on Chameleon
dataset. Mean and standard deviation of AP (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 34.2±3.0 27.7±0.8 44.9±1.0 40.8±3.4 33.3±7.5 56.2±4.9

0.5 6.0±0.2 8.8±0.8 4.8±0.2 5.4±0.2 5.6±0.3 5.4±0.3

Yes 0 6.0±1.0 5.2±0.4 5.5±0.5 6.4±1.2 5.7±0.3 6.2±0.2
0.5 5.6±0.4 5.5±0.3 4.8±0.2 6.1±0.9 5.4±0.2 6.3±0.5

Ours (Lorentz)
No 0 32.2±6.4 28.0±7.0 44.7±4.0 34.4±4.0 24.2±4.8 47.2±3.7

0.5 32.4±8.7 24.0±2.1 37.9±4.0 36.2±2.8 28.1±7.2 45.6±3.1

Yes 0 27.3±5.2 18.0±4.5 31.7±3.1 23.2±3.2 18.7±5.1 38.3±7.9
0.5 22.7±0.7 20.1±3.9 36.3±8.1 21.8±2.7 17.2±1.3 36.2±3.8

Ours (Poincaré)
No 0 32.6±4.0 32.5±3.4 39.8±3.5 48.5±0.9 35.9±1.8 59.8±2.4

0.5 34.9±3.7 29.1±3.5 38.8±1.8 54.0±4.0 32.2±3.7 65.3±3.9

Yes 0 4.7±0.1 5.4±0.4 5.3±0.6 8.9±1.0 6.2±0.2 12.3±1.3
0.5 7.5±1.9 6.1±0.8 5.5±1.1 7.9±0.2 5.7±0.5 12.4±0.2

Table 33: Comparison of models with/without message passing and contextual loss on Actor dataset.
Mean and standard deviation of ROC-AUC (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 55.2±1.6 57.1±1.0 60.1±0.6 51.9±1.0 52.7±0.9 52.2±0.7

0.5 51.5±4.2 56.8±8.1 58.6±1.4 50.6±0.5 50.7±1.8 50.5±1.4

Yes 0 44.6±2.9 48.7±0.7 37.4±1.3 50.1±1.3 50.4±2.0 51.2±1.8
0.5 42.5±1.0 48.5±0.2 36.7±3.4 49.2±1.5 51.6±1.7 50.0±1.6

Ours (Lorentz)
No 0 62.7±3.9 47.9±3.5 77.1±0.8 53.9±0.2 50.7±0.8 55.8±2.3

0.5 49.2±2.0 41.3±2.3 57.4±2.0 51.1±0.3 48.8±1.1 51.3±1.0

Yes 0 45.5±0.6 51.6±0.4 40.6±1.4 51.2±1.0 51.0±1.3 52.7±2.4
0.5 48.8±0.6 46.0±1.0 49.8±0.8 52.3±0.5 51.2±1.3 52.8±0.6

Ours (Poincaré)
No 0 60.1±2.6 56.2±0.6 66.6±1.5 55.2±2.3 56.8±1.0 55.6±1.8

0.5 45.7±3.0 41.2±7.2 57.9±2.5 51.6±0.9 49.1±0.9 51.3±0.9

Yes 0 42.9±2.1 50.4±0.9 36.5±1.7 53.1±2.3 48.9±1.2 52.5±1.4
0.5 45.0±0.7 42.5±0.2 50.5±1.0 53.3±1.6 49.6±1.4 55.6±1.6

26



Three Revisits to Node-Level Graph Anomaly Detection

Table 34: Comparison of models with/without message passing and contextual loss on Actor dataset.
Mean and standard deviation of AP (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 5.6±0.2 6.5±0.3 6.0±0.0 6.7±0.8 6.6±0.2 7.0±0.2

0.5 6.6±0.7 9.0±1.0 7.4±0.8 5.4±0.2 5.7±0.5 5.5±0.4

Yes 0 4.4±0.2 5.0±0.3 3.8±0.1 5.5±0.3 5.3±0.4 5.6±0.5
0.5 4.3±0.1 4.8±0.1 3.7±0.2 5.2±0.2 5.4±0.2 5.7±0.3

Ours (Lorentz)
No 0 7.1±1.0 5.0±0.6 9.9±0.3 6.1±0.3 5.5±0.3 6.9±1.1

0.5 5.9±0.2 6.3±0.8 6.9±0.4 5.7±0.2 5.0±0.2 5.9±0.1

Yes 0 4.8±0.2 5.5±0.0 4.2±0.2 6.4±0.2 5.7±0.2 7.2±0.8
0.5 5.2±0.2 4.9±0.2 5.0±0.1 6.8±0.1 5.3±0.2 7.6±0.4

Ours (Poincaré)
No 0 6.2±0.5 6.3±0.3 6.9±0.2 8.4±0.9 7.7±0.4 8.4±0.7

0.5 5.2±0.4 5.6±0.9 6.6±0.5 5.9±0.6 5.6±0.4 6.2±0.5

Yes 0 4.4±0.2 5.4±0.4 3.8±0.0 6.7±0.6 5.0±0.2 7.5±0.9
0.5 4.6±0.2 4.5±0.2 4.8±0.1 6.4±0.3 5.3±0.4 7.9±0.3

Table 35: Comparison of models with/without message passing and contextual loss on Citeseer
dataset. Mean and standard deviation of ROC-AUC (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 72.0±1.0 61.8±1.2 86.8±3.3 71.6±2.0 75.2±2.0 73.5±0.7

0.5 51.8±2.6 54.1±1.0 52.4±1.2 47.6±0.8 50.8±1.0 49.6±2.2

Yes 0 69.7±1.3 51.2±1.1 87.0±0.8 76.1±0.3 65.1±2.5 82.5±4.1
0.5 67.3±2.0 52.5±1.2 82.5±4.1 72.0±0.6 61.9±1.1 78.6±1.4

Ours (Lorentz)
No 0 72.4±1.1 60.7±3.3 85.1±1.2 71.3±1.4 75.8±0.7 73.7±2.0

0.5 73.8±2.0 62.6±4.8 86.0±0.1 74.8±2.0 73.0±0.3 75.2±0.9

Yes 0 67.9±1.1 49.9±1.9 87.9±0.6 71.1±1.9 68.5±1.0 76.7±1.4
0.5 74.4±0.4 57.2±2.1 88.5±0.8 72.5±0.0 71.4±1.8 76.0±1.7

Ours (Poincaré)
No 0 77.8±3.4 69.9±0.8 90.2±0.7 78.8±1.4 82.4±0.7 78.3±3.0

0.5 78.0±1.0 63.8±2.9 90.5±2.1 79.5±0.9 79.1±1.7 79.7±2.2

Yes 0 69.3±1.7 50.2±1.9 89.2±1.0 70.7±1.2 70.2±0.6 77.6±0.5
0.5 72.1±0.7 54.8±0.6 88.7±1.0 76.6±0.8 73.3±0.5 80.5±1.8

Table 36: Comparison of models with/without message passing and contextual loss on Citeseer
dataset. Mean and standard deviation of AP (%) taken over 3 trials are reported.

message α cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Ours (Euclidean)
No 0 13.9±0.4 10.7±0.4 22.2±3.0 20.6±2.9 14.7±1.5 33.9±3.2

0.5 5.9±0.5 6.0±0.2 6.2±0.4 5.2±0.0 5.7±0.3 5.5±0.4

Yes 0 12.3±1.7 5.7±0.4 21.4±2.1 25.7±3.4 8.1±0.7 37.3±8.8
0.5 9.9±0.8 5.9±0.2 16.5±3.0 18.1±2.3 7.0±0.1 30.3±1.5

Ours (Lorentz)
No 0 13.0±0.8 9.1±0.8 19.1±2.0 14.1±0.9 14.9±1.1 22.6±4.1

0.5 15.0±1.7 11.8±2.8 18.1±0.9 20.7±1.2 13.2±0.7 24.9±2.9

Yes 0 13.6±1.6 5.7±0.5 26.2±1.1 19.0±1.6 8.5±0.1 31.9±1.8
0.5 18.8±0.9 6.6±0.5 29.2±3.9 19.8±0.6 10.3±1.2 32.2±1.6

Ours (Poincaré)
No 0 21.1±5.1 14.7±1.6 29.9±1.8 29.5±1.3 20.1±0.1 40.6±4.1

0.5 20.0±2.5 12.2±1.3 28.7±3.2 30.4±2.2 18.0±1.7 43.6±3.8

Yes 0 15.0±2.3 5.8±0.5 28.9±2.1 20.9±1.6 8.8±0.7 35.2±1.2
0.5 16.8±2.3 6.1±0.2 26.5±1.2 27.0±2.4 10.9±1.3 33.4±3.8

C.7 Additional Visualization of the Distribution of Pairwise Distances

In Figure 3, we provide visualization of distribution of the pairwise distance of node embeddings
of the dataset Squirrel.
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Figure 3: Probability density function (PDF) of the distribution of pairwise distances between
embeddings of nodes that are originally connected ({d(hi, hj)}(i,j)∈E ) and disconnected
({d(hi,hj)}(i,j)/∈E ) of the Euclidean, Lorentz, and Poincaré models in Squirrel dataset injected with
cntxt.+strct. and “path”+DICE outliers.

C.8 Results on Transformer Models

To further explore the influence of message passing in anomaly detection, we are also conducting
experiments using transformer, which does not rely on message passing. Specifically, we replaced
the last encoding layer of our models with a transformer layer [59]. For the hyperbolic models, we
first mapped the embedding onto the tangent space at the origin via a logarithmic map, and applied
the transformer layer on the tangent space, then mapped its output back to the hyperbolic space via
exponential map.

Table 37: Mean and standard deviation of ROC-AUC (%) scores of Transformer model on Cora
dataset.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Transformer (Euclidean) 75.4±0.4 65.9±2.0 86.0±0.5 70.6±3.6 66.1±5.6 79.1±2.2
Transformer (Lorentz) 65.2±1.9 56.0±2.8 79.8±2.8 56.2±2.0 59.5±1.5 54.5±1.2
Transformer (Poincaré) 77.7±1.9 70.8±3.7 86.4±1.7 77.0±1.6 70.7±2.5 77.0±5.4

Table 38: Mean and standard deviation of AP (%) scores of Transformer model on Cora dataset.
cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE

Transformer (Euclidean) 14.6±0.6 12.0±0.9 18.8±1.3 22.8±6.4 13.9±3.1 32.6±4.4
Transformer (Lorentz) 8.2±0.5 6.9±0.6 12.7±2.1 6.7±0.8 7.0±0.5 6.3±0.2
Transformer (Poincaré) 16.9±1.2 15.5±3.8 18.6±2.6 28.2±2.6 16.2±1.9 32.4±11.1

Table 39: Mean and standard deviation of AP (%) scores of Transformer model on Squirrel dataset.
cont_struc contextual structural path_dice path dice

Transformer (Euclidean) 18.5±2.6 27.0±0.9 20.1±1.9 36.4±0.8 33.0±1.5 40.0±0.1
Transformer (Lorentz) 6.5±0.2 6.1±0.5 9.3±0.8 6.5±0.9 6.4±0.5 6.0±0.6
Transformer (Poincaré) 23.5±3.1 32.5±2.1 20.7±2.8 39.2±2.4 28.0±1.7 55.5±5.5

Table 40: Mean and standard deviation of ROC-AUC (%) scores of Transformer model on Squirrel
dataset.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Transformer (Euclidean) 71.0±7.9 69.8±1.8 88.8±1.6 79.5±1.8 74.3±1.7 88.9±1.5
Transformer (Lorentz) 60.4±0.4 53.8±1.3 73.8±3.0 54.8±3.5 53.5±0.6 53.5±2.9
Transformer (Poincaré) 81.9±2.1 80.2±1.7 85.8±3.0 81.7±0.4 73.3±2.1 89.3±1.0
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Table 41: Mean and standard deviation of ROC-AUC (%) scores of Transformer model on Amazon
dataset.

cntxt.+strct. cntxt. strct. “path”+DICE “path” DICE
Transformer (Euclidean) 85.4±0.6 78.2±0.5 96.1±0.2 84.1±0.7 78.6±2.5 91.7±0.8
Transformer (Lorentz) 71.4±4.1 61.3±9.2 83.9±3.0 64.4±1.4 60.7±2.1 68.0±0.2
Transformer (Poincaré) 78.0±16.6 69.6±15.0 97.9±1.0 88.2±3.1 82.3±3.7 85.2±7.0

Table 42: Mean and standard deviation of AP (%) scores of Transformer model on Amazon dataset.
cont_struc contextual structural path_dice path dice

Transformer (Euclidean) 38.2±2.9 30.8±4.8 41.8±1.9 43.3±2.2 42.5±3.0 38.8±2.7
Transformer (Lorentz) 12.3±3.9 11.2±6.6 14.5±2.1 9.4±1.0 7.7±0.6 9.2±0.3
Transformer (Poincaré) 34.8±20.5 21.8±11.8 66.3±11.4 52.6±10.1 44.1±9.3 30.5±17.2
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