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Abstract
Molecule generation is a very important practical problem, with uses in drug
discovery and material design, and AI methods promise to provide useful solu-
tions. However, existing methods for molecule generation focus either on 2D
graph structure or on 3D geometric structure, which is not sufficient to represent
a complete molecule as 2D graph captures mainly topology while 3D geometry
captures mainly spatial atom arrangements. Combining these representations is
essential to better represent a molecule. In this paper, we present a new model for
generating a comprehensive representation of molecules, including atom features,
2D discrete molecule structures, and 3D continuous molecule coordinates, by
combining discrete and continuous diffusion processes. The use of diffusion
processes allows for capturing the probabilistic nature of molecular processes
and exploring the effect of different factors on molecular structures. Addition-
ally, we propose a novel graph transformer architecture to denoise the diffusion
process. The transformer adheres to 3D roto-translation equivariance constraints,
allowing it to learn invariant atom and edge representations while preserving
the equivariance of atom coordinates. This transformer can be used to learn
molecular representations robust to geometric transformations. We evaluate the
performance of our model through experiments and comparisons with existing
methods, showing its ability to generate more stable and valid molecules. Our
model is a promising approach for designing stable and diverse molecules and
can be applied to a wide range of tasks in molecular modeling. Our codes and
models are available on https://github.com/WillHua127/mudiff

1 Introduction
Generative models for molecules in machine learning have gained significant attention in recent years
as a promising approach for the design and discovery of novel molecules with desired properties
[1–3]. These models are trained on a dataset of known molecular structures and can then generate
unseen molecules similar to those in the training dataset. As one specific type of generative models,
diffusion models are based on the idea of learning small changes in the molecular structures [4]. The
model learns the likelihood of these changes and can generate new molecules by sampling from the
learned distribution. This approach has been used to generate new drug candidates, optimize drug
properties, etc.[4–6].

While 2D graph structures capture the topology and connectivity of molecules [7, 8], 3D geometric
structures provide an insight into the spatial arrangements of atoms [3, 9], the two structural informa-
tion are essential for a comprehensive representation of a molecule. So, learning 2D and 3D structures
together leads to an accurate and complete molecule representation. However, existing generative
models for molecules focus solely on either 2D or 3D molecular data generation [2, 4, 6], thus
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limiting their ability to exploit an accurate and complete representation of molecules. This limitation
highlights the need for joint generation and learning of 2D and 3D molecular data, and motivates us
to work on the joint generation problem. To address the gap, we are motivated to propose a novel
generative model that jointly generates 2D and 3D molecular data, capturing both the topological
information from 2D graphs, and spatial atom arrangements from 3D geometry, thereby enabling a
more holistic understanding of molecular structures.

In this paper, we present a novel approach to overcome the aforementioned limitations by jointly
generating 2D and 3D aspects of molecules, yielding a complete representation of molecules by
learning the graph connectivity and atom arrangements together. We propose a diffusion generative
model that co-generates the 2D graph structure and 3D geometric structure of a molecule, named
MUDiff, and a transformer model that co-learns both molecular structures, named MUformer.
Our diffusion model simultaneously adds continuous noises to the continuous features, including
atom features and coordinates, and discrete noises to the categorical features, including the graph
structure. The denoising model then makes predictions for the clean graph structure, as well as
estimations of noises for atom features and coordinates, The primary innovation of our denoising
transformer model lies in designing an attention mechanism that facilitates interaction between 2D
and 3D structural information. This design enables our transformer to concurrently compute graph
connectivity and spatial atom arrangements. Moreover, when computing 3D geometric structures,
the denoising transformer model adheres to the critical 3D roto-translation equivariance constraints.
This compliance ensures insensitivity to geometric transformations on the molecule, allowing the
entire diffusion process to adhere to these constraints. Through the novel designs, our model can
generate and learn a comprehensive molecular representation that captures both 2D and 3D structures,
addressing the aforementioned limitations.

Furthermore, a distinct advantage of MUDiff and MUformer is the ability to function independently
when either 2D or 3D structural information is missing. Our model remains effective in generating
and learning a complete representation of molecules, even when the input data lacks the 2D graph
structure or the 3D geometric structure. This design is particularly useful because datasets sometimes
have missing 3D coordinates and geometry, resulted from limitations in experimental techniques or
the unavailability of suitable computational resources [10]. For instance, the conformational analysis
of molecules, which involves determining the 3D structures that result from the rotation of single
bonds, is of critical importance in understanding molecular interactions [11, 12]. However, obtaining
accurate conformational data can be computationally demanding [13]. In such cases, MUDiff and
MUformer can provide a robust and versatile solution for handling incomplete molecular datasets,
ensuring comprehensive molecular representations even when faced with such challenges.

Emperically, MUDiff generates 7.9% more stable molecules and increases molecular uniqueness by
2% compared to existing methods (see Sec 6.2). Additionally, even when trained with limited 3D
structures, MUDiff still achieve competitive performance compared to existing methods trained with
complete 3D structures (see Sec 6.1). The results show the better model performance in generating
stable and valid molecules, emphasizing the importance of joint 2D and 3D molecule generation for
advancing the field. In Sec 3, we present the molecule unified diffusion model (MUDiff), followed
by the introduction of the molecule unified transformer model (MUformer) in Sec 4 and App A. The
MUformer architecture is visually demonstrated in Fig 1. Detailed experimental results can be found
in Sec 6 and App D.

2 Preliminaries
2.1 Diffusion Models
Diffusion models consist of a noising model and a denoising network. The noising model q adds noise
to a data point X to generate a sequence of noisy points {X̃t}Tt=0. This process follows the Markov
property, q(X̃0, . . . , X̃T |X) = q(X̃0|X)

∏T
t=1 q(X̃t|X̃t−1). The denoising network ψθ aims to

reverse the noising process: given a noisy point X̃t, it predicts a clean estimate X̂ = ψθ(X̃t, t) of X.
Continuous Data The noising process in diffusion models for continuous data point X can be
represented by a multivariate normal distribution, q(X̃t|X) = N (X̃t|αtX, σ

2
t I), where αt ∈ R+

controls the amount of signal retained and σt ∈ R+ represents the amount of Gaussian noise added,
and αt smoothly transitions from 1 to 0. Following [14], we choose αt =

√
1− σ2

t in order to obtain
a variance preserving process, and the signal-to-noise ratio SNR(t) = α2

t /σ
2
t is defined by [15]. For

every two time steps t, t − 1, the noising process is q(X̃t|X̃t−1) = N (X̃t|αt|t−1X̃t−1, σ
2
t|t−1I),

where αt|t−1 = αt/αt−1 and σ2
t|t−1 = σ2

t − α2
t|t−1σ

2
t−1.
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The posterior of the transitions gives the denoising process, q(X̂t−1|X̂t,X) =

N (X̂t−1|µt→t−1(X̃t,X), σ2
t→t−1I), where the functions are defined as µt→t−1(X̃t,X) =

αt|t−1σ
2
t−1

σ2
t

X̃t +
αt−1σ

2
t|t−1

σ2
t

X, σt→t−1 =
σt|t−1σt−1

σt
. In the true denoising process, the clean data X

is unknown, so it is replaced by the network approximation X̂ as,

p(X̂t−1|X̂t) = N (X̂t−1|µt→t−1(X̃t, X̂), σ2
t→t−1I). (1)

Discrete Data Discrete objects, such as graph structures, may not be well suited for Gaussian
noise models as they can destroy sparsity and connectivity, as suggested by [6]. Following [6, 16],
we use a series of transition matrices {Qt}Tt=0 to represent noise on one-hot encoded discrete
data points, where Qtij = q(Xt = j|Xt−1 = i) is the probability of transitioning from state
i to state j. We obtain noisy data by multiplying the clean data point with a transition matrix,
q(X̃t|X̃t−1) = X̃tQt, q(X̃t|X) = XQ̄t, where Q̄t = QtQt−1 . . . Q0. The posterior distribution
is computed using the Bayes rule, q(X̃t−1|X̃t,X) ∝ X̃tQ

T
t ⊙ XQ̄t−1, where QT represents the

transpose of the transition matrix Q, and ⊙ denotes the Hadamard product.
2.2 The Basics of Molecules
A molecule is a group of atoms held together by chemical bonds, which can be classified into various
types based on the nature of the bond. The structure of a molecule can be visualized and represented
in both 2D and 3D forms, with the 2D representation showing the connectivity of the atoms and
the 3D representation showing the arrangement of the atoms in space. To completely describe a
molecule, we represent it as a tuple M = (H,E,X), where H ∈ Rn×d denotes the collection of
atoms, n is the number of atoms, and d is the feature dimension; E ∈ Rn×n×b is the 2D graph
representation for chemical bonds, the bond type is represented by one-hot encoding, and b is the
number of bond(edge) types; X ∈ Rn×3 represents the 3D geometric structure and each row indicates
the position of the atom in the Euclidean space. For simplicity, we assume that molecules are fully
connected and include no-bond as a special edge type. To account for symmetry, we use symmetric
edge representations, i.e., E = ET .
3D Molecule Representation For each pair of atoms (i, j) in the 3D space, we process the
Euclidean distance between them using an exponential normal radial basis function [9], i.e.,
fRBFk(dij) = exp (−βk(exp (−dij)− µk)

2), where k is the number of basis kernels, dij is the
distance between atoms i and j, βk and µk are fixed parameters determining the function’s center,
and width, respectively. These parameters are initialized as per [17].

To smooth out the transition to 0 as the distance dij approaches a cutoff distance of dcut = 5Å, we
also apply a cosine cutoff function fcos(dij), i.e., fcos(dij) = 1

2 (cos (
πdij

dcut
) + 1) if dij ≤ dcut, and

fcos(dij) = 0 if dij > dcut. In the model, we will use both fcos(dij) and fcos(fRBFk(dij)).

3 MUDiff: Molecule Unified Diffusion
Both the continuous and discrete elements of molecules are essential in order to depict a comprehen-
sive molecular representation, however, the existing models [2–4, 6] have only been able to generate
a portion of these components. Our diffusion model is designed to denoise continuous and discrete
aspects of a molecule separately. The continuous aspects encompass atom features and 3D coordi-
nates, while the discrete aspects include molecular structure. This separation allows for independent
handling of atoms and edges, a similar approach is shown to be successful in image diffusion models
[16], but unexplored for molecules. By jointly generating the continuous 3D geometry and discrete
2D graph representation, our model enhances the representation of atom and edge features, yielding a
more comprehensive and holistic understanding of the molecule that incorporates both geometric and
topological information.
3.1 Diffusion Process
Our diffusion model distinctly applies noises to atom and edge representations to enhance the
generative process. Specifically, we apply continuous noises to atom representations, encompassing
both atom features and coordinates, while introducing discrete noises to edge representations, which
correspond to the graph structure. This targeted approach differentiates our diffusion process from
previous molecule diffusion models, allowing for a more comprehensive generation of molecules that
captures both geometric and topological information.
Atom Features and Coordinates As introduced in Sec 2.1, we add Gaussian noise to atom features
and coordinates at each time step t, with ϵtH ∼ NH(0, I) ∈ Rn×d, ϵtX ∼ NX(0, I) ∈ Rn×3, where
n is the number of atoms, d denotes the feature dimension. For the 3D coordinates, we follow [18] to
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use the linear subspace of zero center of gravity for NX such that
∑

i xi = 0. This leads to noisy
atom features and coordinates,

H̃t = αtH+ σtϵ
t
H, X̃t = αtX+ σtϵ

t
X. (2)

This method ensures that the perturbations applied to the 3D coordinates do not affect the center of
gravity of the molecule, allowing for the denoising process to be invariant w.r.t. to translations.
Edge Features Following Sec 2.1, we transform the discrete clean edge type to obtain noisy ones,

Ẽt = EQ̄t. (3)
where the transition matrix Q̄t is obtained by Q̄t = αtI+ (1− αt)1b1

t
b/b ∈ Rb×b. We use uniform

transitions over the number of edge types b [6, 16], resulting in a uniform limit distribution q∞ over
edge categories (see App E). Additionally, since molecules are always undirected graphs, we only
apply noise to the upper triangular of the edge representation matrix and then symmetrize the matrix,
which ensures that changes made on the edges are consistent across the graph.
3.2 Denoising Process
To date, no existing models can simultaneously predict the features of atoms H, their coordinates
X, and the structures of molecules E. To address this gap, we introduce a novel denoising network,
named MUformer, which learns the denoising process to make predictions for the comprehensive
representation of molecules. This model is unique in its ability to consider all aspects of the molecule
in a unified manner while ensuring that the denoising process is equivariant, as suggested by [3].

Algorithm 1 Training MUDiff

1: Input: A complete molecule M = (H,E,X)
2: Sample t ∼ U(1, · · · , T )
3: Sample ϵH, ϵX ∼ N (0, I)
4: Subtract center of gravity from ϵX
5: Compute H̃t = αtH + σtϵ

t
H, X̃t = αtX +

σtϵ
t
X

6: Sample Ẽt ∼ EQ̃t

7: Compute ϵ̂tH, ϵ̂
t
X, p(Ê) =

ψθ([H̃t,
t
T
], X̃t, Ẽt)− (0, X̃t,0)

8: Minimize ∥ϵtH − ϵ̂tH∥2 + ∥ϵtX − ϵ̂tX∥2 +

CE(E, p(Ê))

The denoising network, denoted by ψθ, takes as
input a noisy molecule M̃t = (H̃t, Ẽt, X̃t) and
outputs estimates for the clean molecule M̂. The
detailed architecture and methodology of MUformer
are presented in Sec 4, showcasing its capacity
to generate comprehensive molecular representa-
tions that encompass atom features, coordinates, and
molecular structures.
Network Estimation Instead of directly predict-
ing the atom representations Ĥ, X̂, the network at-
tempts to predict the Gaussian noises for atom fea-
tures and coordinates ϵ̂H, ϵ̂X, as it has been shown
to be easier to optimize in [14]. This approach allows the network to differentiate between the noise
added by the noising process and the ground-truth representations, H,X. The network takes as input
a noisy molecule, where atom features are concatenated with the normalized time step t

T , and predicts
the probability of edge features, as well as the estimates of noises for atom features and coordinates,

ϵ̂tH, ϵ̂
t
X, p(Ê) = ψθ([H̃t,

t

T
], X̃t, Ẽt)− (0, X̃t,0), (4)

where the input coordinates are then subtracted from the estimated noise for coordinates to ensure
that the outputs lie on the zero center of gravity subspace, as suggested by [4]. We subsequently
obtain estimates of atom features and coordinates by

Ĥ =
1

αt
H̃t −

σt
αt

ϵ̂tH, X̂ =
1

αt
X̃t −

σt
αt

ϵ̂tX. (5)

Training Objective For atom features and coordinates, the objective is to accurately predict the
true noise present in the observations of atom features and coordinates. To achieve this, we follow
the approach outlined in [4] and minimize the distance between the true noise and the estimates of
noise predicted by the network ψθ. The objectives for atoms are defined as,

LH
t =

1

2
EϵtH∼NH(0,I)

[
ω(t)∥ϵtH − ϵ̂tH∥2

]
, LX

t =
1

2
EϵtX∼NX(0,I)

[
ω(t)∥ϵtX − ϵ̂tX∥2

]
, (6)

where ω(t) = (1− SNR(t− 1)/SNR(t)). To stabilize the training process, we set ω(t) = 1 during
the training phase, as suggested by [4, 14].

To handle edge features, we approach it as a classification problem and minimize the cross-entropy
loss for each atom pair (i, j) ∈ E. The loss is calculated between the actual edge type and the
predicted edge probability distribution,

LE
t = E(i,j)∼E

[
Eij log(p(Êij))

]
. (7)

At every time step t, the total loss is computed as the sum of the three losses, Lt = LH
t + LE

t + LX
t .
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Algorithm 2 Sampling from MUDiff

1: Sample M̃T : H̃T , X̃T ∼ N (0, I), ẼT ∼ q∞
2: for t = T, T − 1, . . . , 1 do
3: Compute ϵ̂tH, ϵ̂

t
X, Ê =

ψθ([H̃t,
t
T
], X̃t, Ẽt)− (0, X̃t,0)

4: Sample Ẽt−1 ∼ p(Ẽt−1|Ẽt)
5: Sample ϵH, ϵX ∼ N (0, I)

6: Compute H̃t−1 = H̃t
αt|t−1

−
σ2
t|t−1ϵ̂

t
H

αt|t−1σt
+

σt→t−1ϵH
7: Subtract center of gravity from ϵX

8: Compute X̃t−1 = X̃t
αt|t−1

−
σ2
t|t−1ϵ̂

t
X

αt|t−1σt
+

σt→t−1ϵX
9: end for

10: Sample M ∼ p(M|M̃0)

The entire training process is described in Algo-
rithm 1. Additionally, the derivation of the varia-
tional evidence lower bound on the likelihood can
be found in App F.
Sampling Once the model is trained, it can be
used to sample new molecules. The true sampling
process p(M̃t−1|M̃t) uses the approximation of a
complete molecule M̂ = (Ĥ, Ê, X̂). The complete
molecule is sampled by taking the product of the
posterior distributions of atom features, coordinates,
and edge features as

p(M̃t−1|M̃t) = p(H̃t−1|H̃t)p(Ẽt−1|Ẽt)p(X̃t−1|X̃t),
(8)

with the posterior distributions of atom features and
coordinates from Eq 1 and the posterior distribution of edges defined in the App G. The sampling
process is described in Algorithm 2. Also, the zeroth likelihood estimation is explained in App H.

4 MUformer: Molecule Unified Transformer
To learn the complete molecular representation, in this section, we propose a novel equivariant
graph transformer MUformer, denoted by ψθ (visualized in Fig 1), which contains 6 encoding
functions (Sec 4.1&App A.1), 4 attention biases (Sec 4.2&App A.3), and 2 attention channels
(Sec 4.3&App A.3). It takes as input a complete molecule M = (H,E,X) with H ∈ Rn×d,E ∈
Rn×n×b,X ∈ Rn×3, and outputs the predicted molecule M̂ = (Ĥ, Ê, X̂). For clarity, we refer to
the 2D molecular structure as M2D = (H,E), and the 3D geometric structure as M3D = (H,X). In
the following subsections, we will introduce each component of our MUformer in details.

Our MUformer architecture can be used under different input conditions. When only 2D molecular
information is available, only the invariant channel is activated, and the model makes predictions for
atom and edge features only. When only 3D molecular information is available, only the equivariant
channel is activated, and the model makes predictions for atom features and coordinates only. When
both 2D and 3D molecular data are provided, the invariant and equivariant channels are activated,
and the model can make predictions for the complete molecule, including atom features, molecular
structure, and geometric structure. A detailed introduction of MUformer is discussed in App A.
4.1 Encodings
The MUformer consists of 6 encoding functions, with 3 being message-passing based, designed to
incorporate atomic, positional, and structural information into a concise and expressive representation,
particularly suited for handling graph-structured inputs. A more complete introduction of MUformer
encoding functions are discussed in App A.1.
1. Atom Encoding The authors in [19] propose a method of utilizing in-degree deg− and out-
degree deg+ obtained from 2D molecular graphs M2D to incorporate centrality information into the
atom-wise encoding process, z1D

hi
for node i is,

z1D
hi

=Watom1
hi +Win-deg1deg−

i +Wout-deg1deg+
i . (9)

2. Bond Encoding We incorporate pair-wise atom information into the edge encoding with
message-passing mechanism. For every edge eij , we use a permutation-invariant function to
generate the embedded edge representations, ensuring consistency in the learned representation
regardless of the order of the atoms,

zeij
=Wcomb1([Watom2

hi +Wedge1eij +Watom2
hj ]) + bcomb1 . (10)

In addition, to ensure the symmetry of edge encoding, we calculate it as zeij
= (zeij

+ zeji
)/2.

3. Graph Encoding We encode graph-level structural hstruct, spectral hspect and molecular infor-
mation hmol to a molecule M. As suggested in [6, 20], we add cycle counts for hstruct, the number of
cycles of up to size 6 and the number of connected components; and we add eigenvalue features to
hspect, including the multiplicity of eigenvalue 0, as well as the first 5 nonzero eigenvalues. For hmol,
we include the current valency of each atom and the current molecular weight of the entire molecule
as features. For every molecule M, the graph-level representation is given by,

ZM =Wgraph([hstruct,hspect,hmol]) + bgraph. (11)
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Figure 1: The figure showcases our MUformer for processing 2D and 3D molecular data. Within
the Transformer backbone, two channels exist: purple for 2D data and brown for 3D data. The blue
part encodes 2D molecular structures, while the green part handles atom-level information and the
red part processes 3D geometric structures. With missing 2D or 3D structures, the model activates
either the invariant (purple) or equivariant (brown) channel. The invariant channel predicts atom and
edge features, while the equivariant channel offers geometric transformation robustness and predicts
atom features and positions. When both channels are operational, the model maintains robustness to
geometric transformations and predicts a complete molecule, and final atom features are derived by
merging outputs from both channels and feeding the combined data through an output network.

4. 2D Neighborhood Encoding To get local neighborhood information, we use message passing to
aggregate information from the immediate neighbors of each atom in the 2D graph M2D. Specifically,
for hi ∈ H and eij ∈ E, the aggregated representation of atom i is calculated by

mj→i = (Watom3
hj)⊙

(
Wedge2eij

)
, z2D

hi
=Watom3hi +

1

|N(i)|
∑

j∈N(i)

mj→i, (12)

where N(i) denotes the neighbors of atom. To formulate the messages m, we use the Hadamard
product, ⊙, between the atom embedding and edge embeddings.
5. 3D Neighborhood Encoding We use message passing to collect the atom information in the
vicinity of the given atom to get the 3D neighborhood encoding M3D. For atom i, it follows

dij = ∥xi − xj∥2, eij = SiLU
(
Wedge3 (fRBF1 (dij))

)
⊙ fcos(dij)

mj→i = (Watom4
hj)⊙ eij , z

3D
hi

=Watom4
hi +

1

|N(i)|
∑

j∈N(i)

mj→i.
(13)

where dij is the Euclidean distance between atoms i, j and fRBF1(·) is the exp radial basis function.
To calculate messages m, we use the Hadamard product, ⊙, between the atom and edge embeddings.

We use the cosine cutoff fcos(dij) to determine which atoms in the Euclidean space given by M3D

should be considered as part of the neighborhood of atom i. This provides a smooth way to incorporate
spatial locality in the message-passing process. Only atoms j for which fcos(dij) > 0 are included in
the message-passing process, resulting in a new node representation z3D

hi
∈ Rfh3 for atom i.

Remark We can integrate 2D graph information by assigning fcos(dij) = 1 when an edge is
present between atoms i and j in the 2D molecular structure M2D. By doing so, we effectively
incorporate locality information from both the 2D molecular structure and the 3D geometric structure,
providing a more comprehensive representation of the molecule.
6. Combine Encoding In the final step of encoding, we compute the atomic embedding ZH by
concatenating the atom encoding, 2D neighborhood encoding, and 3D neighborhood encoding,

ZH =Wcomb2([Z
1D
H ,Z2D

H ,Z3D
H ]) + bcomb2 . (14)

Additionally, the bond encoding ZE and graph encoding ZM are utilized to calculate attentions
(visualized in Fig 1), with details discussed in Sec 4.3 and App A.3.
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4.2 Attention Biases
The MUformer incorporates 4 attention biases, which serve to encode spatial relationships in both
2D molecular structure and 3D geometric arrangement. These biases are integrated into the attention
mechanism, enhancing the model’s ability to process and understand molecular representations. A
more complete introduction of MUformer attention biases is discussed in App A.2. And a detailed
discussion of the importance and advantages of employing these attention biases for computing
attentions in the MUformer can be found in App B.
1. 2D Spatial Attention Bias To capture the structural relationships between atoms in the 2D
molecular graph, we use the shortest path distance (SPD) encoding [19]. The SPD encoding, denoted
as Φ2D

SPD(i, j) : V × V → R, calculates the distance between atoms i, j in M2D. Moreover, we
incorporate edge information along the shortest path between atoms i, j to reflect edge characteristics,

Φ2D
ENCij

=
1

N

N∑
n=1

en(wn)
T ∈ R. (15)

The combined bias, Φ2D
E , is calculated as the sum of Φ2D

SPD and Φ2D
ENC, both in Rn×n×1. The 2D

spatial attention bias enables the model to capture the intricate relationships between atoms and their
surroundings, ultimately improving its performance.
2. 3D Spatial Attention Bias To encode 3D spatial relationships between atom pairs in M3D,
we use Euclidean distance and an exponential radial basis function, fRBF2(·) [9]. This 3D spatial
attention bias, Φ3D

E , enables the model to account for the geometric arrangement of atoms in the
molecule, which is crucial for understanding 3D structure and molecular properties.

dij = ∥xi − xj∥2, Φ3D
eij

=W3D2 (SiLU(W3D1 (fRBF2 (dij)))) . (16)

By incorporating this 3D spatial attention bias, the MUformer is able to better capture complex
3D spatial relationships between atoms, leading to improved performance in tasks involving 3D
molecular structures.
Edge Feature & Graph Feature The embeddings obtained from the 2D structure, ZE, and the
molecular graph information, ZM, can be further projected and employed as additional attention
biases, enhancing the model’s understanding of the molecular structure and relationships.
4.3 Transformer Channels
The MUformer employs two channels, the invariant and the equivariant channel, to process molecular
data, and an output block to combine the processed information from the two channels (see Fig 1). A
more complete introduction of MUformer transformer channels is discussed in App A.3.
Invariant Channel The invariant channel in MUformer captures intrinsic properties of the input
2D molecule graph, M2D, but also utilizes 2D and 3D spatial biases as attention biases when 3D
geometric structure is provided. Its main goal is to predict invariant features, including atom and
edge-level features, by leveraging the underlying graph structure. Unlike in [19], the invariant channel
in MUformer is used to predict atom and edge features, generating embeddings for invariant features
ẐH and ẐE, respectively (see purple part in Fig 1).
Equivariant Channel The equivariant channel in MUformer extracts features from the input 3D
molecule graph M3D that can vary under geometric transformations. Unlike [21], which only focuses
on the 3D molecular structure, our equivariant channel can utilize both 2D molecular structure and
3D geometric structure in Euclidean space (if the 2D molecular structure is provided). This enables
the channel to predict atom features ẐH and their coordinates ẐX that are insensitive to geometric
transformations (see the brown part in Fig 1). The unique capability of our equivariant channel
enables it to capture richer structural information from both 2D and 3D molecular representations.

Interaction Embedding The atom representations ẐH from two transformer channels are com-
bined, and fed in to the next layer of the transformer channels or used as input for the final predictions,

ẐH =Wcomb3 [Z
inv
H ,Zeqv

H ] + bcomb3 . (17)
Output Block The output block generates the final output utilizing the embeddings from invariant
and equivariant channels. Specifically, it takes in the atom ẐH and edge embeddings ẐE, along with
the velocity embedding v̂. Through feature extractions, the output block makes predictions,

Hout =WXout2

(
SiLU(WXout1

ẐH)
)
∈ Rn×dout ,Xout = X+Wvout2

(
SiLU(Wvout1

v̂)
)
∈ Rn×3

Eout =WEout2

(
SiLU(WEout1

ẐE)
)
∈ Rn×n×bout .

(18)
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5 Related Work
5.1 Graph Models and Equivariant Models
Graph models, i.e., graph neural networks and graph transformers, and equivariant models have
emerged as crucial tools to perform molecule-relevant tasks. Graph models are a class of neural
networks specifically designed for graph-structured data [22–28], such as molecular structures, and
have demonstrated effectiveness in capturing the complex relationships between atoms and bonds
within a molecule [19, 21, 29, 30]. Equivariance is a property of a function f w.r.t. a group, such
that the function preserves its structure under group transformations, mathematically expressed as
f(gx) = gf(x) for any g ∈ G and input x [2]. Equivariant graph models constitute a subcategory
of GNNs that exhibit equivariance with respect to a group of symmetries, enabling them to learn
representations invariant to specific transformations such as translation, rotation, and reflection. This
makes them well-suited for tasks involving geometric structure [2, 21, 31]. The integration of graph
models and equivariance in graph-structured data has led to significant advancements in the design
and discovery of molecules.
5.2 Diffusion Models
Diffusion models have gained significant traction as powerful generative models for drug discovery
applications [14–16]. For instance, [3] employs diffusion models to generate molecules with the
lowest conformation energy. In another work, [6] presents a diffusion model that utilizes a graph
transformer to denoise the diffusion process, operating jointly on atom features and molecular
structures. Moreover, recent studies have explored the integration of equivariant graph models
within diffusion models for molecule generation. For example, [4] introduces a diffusion model
with an equivariant GNN, enabling the model to work jointly on atom features and coordinates.
Overall, incorporating equivariant graph models into diffusion models for molecule generation has
demonstrated promising results in recent research.
5.3 Joint Generative Models
[32] employs an autoregressive flow as the backbone model to generate atom types, bond types,
and 3D coordinates sequentially. For the atomic coordinates, [32] constructs a local spherical
coordinate system based on local reference atoms and predicts the relative coordinates. [33] tackles
the atom-bond inconsistency problem in 3D molecule generation by employing a diffusion model
that generates atoms and bonds simultaneously while maintaining their consistency. [33] incorporates
a noise schedule to gradually add noise to the atom positions and types, as well as bond types with a
guidance, to perturb them towards the correct values. Moreover, [34] works on the structure-based
drug design that generate both 2D and 3D molecular graphs to enhance the overall representation.

6 Experiments
To evaluate our MUDiff framework, we conduct experiments on the QM9 dataset [35], which
contains 130k small molecules with up to 9 heavy atoms (29 atoms including hydrogens) and their
associated molecular properties and structures. We use the train/val/test splits from [36], consisting
of 100K/18K/13K samples respectively, for evaluation. This protocol follows the method used in
previous works such as [2, 4].
6.1 Molecule Generation with Limited 3D Data
In this section, we introduce a new molecule generation task that incorpo-
rates limited 3D data, as many real-world datasets lack complete 3D structures.

Table 1: Negative log-likelihood, atom stabil-
ity, and molecule stability are evaluated with
standard deviation across 3 runs on QM9, us-
ing 10K samples from the model. 30K+70K
means model trained with limited 3D data.

Method NLL Atom Stable(%) Mol Stable(%)
EDM -110.7± 1.5 98.7± 0.1 82.0± 0.4
DiGress - 98.1± 0.3 79.8± 5.6
MUDiff −135.5± 2.1 98.8± 0.2 89.9± 1.1
MUDiff (30K+70K) −120.6± 3.4 98.2± 0.7 84.5± 2.5

To accomplish this, we randomly split the 100K
training molecules into two sets: 30K with both 2D
and 3D structures and 70K with only 2D structures.
We train the model on the 30K samples using both
the invariant and equivariant channels and validate
on 18K samples until NLL converges. We then
fine-tune the trained model on the remaining 70K
molecules with only 2D structures and validate/test
on 18K/13K samples.
Remark Notably, this training framework with limited 3D data is only possible with MUDiff for
now, because of the flexible two-channel design.
Results The results of the molecule generation task with limited 3D data are summarized in
Table 1. MUDiff achieved competitive results in generating stable molecules, even with limited 3D
information in the training set, compared to the baselines. These results suggest that MUDiff has the
ability to leverage sufficient 2D structures to infer 3D geometry. This finding may motivate further
research on the co-generation of 2D and 3D structures for molecules.
6.2 Molecule Generation
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Table 2: Negative log-likelihood, atom stabil-
ity, and molecule stability are evaluated with
standard deviation across 3 runs on QM9, us-
ing 10K samples (with hydrogen) from the
model. The results surpass those of previous
models, as reported in [4, 6].

Method NLL Atom Stable(%) Mol Stable(%)
Data - 99.0 95.2
ENF -59.7 85.0 4.9
GSchnet - 95.7 68.1
GDM -92.5 97.6 71.6
EDM -110.7± 1.5 98.7± 0.1 82.0± 0.4
DiGress - 98.1± 0.3 79.8± 5.6
MDM - 98.6 91.9
GeoLDM - 98.9 ± 0.1 89.4± 0.5
MUDiff (ours) -135.5 ± 2.1 98.8 ± 0.2 89.9 ± 1.1

We compare the performance of our MUDiff model
with popular generative models, including Graph-
VAE [1], GSchenet [37], Set2GraphVAE [38], ENF
[2], GDM [4], EDM [4], DiGress [6], MDM [39],
and GeoLDM [40]. The results of the baseline mod-
els can be found in the studies by [4] and [6].

As outlined in [2], we evaluate the atom and
molecule stability of the generated compounds by
measuring the proportion of atoms that have the cor-
rect valency for atom stability, and the proportion of
generated molecules in which all atoms are stable for
molecule stability. Additionally, we also measure
the validity and uniqueness using the RDKit tool, as used in [4].
Remark We would like to emphasize that the dataset statistics are not ideal, with atom stability at
99%, molecule stability at 95.2%, and molecule validity at 99.3% in the original data. These statistics
are not perfect, pointing to potential imperfections in the dataset. The imperfections of the dataset
have also been acknowledged in [2, 4, 6]. Additionally, the metrics used in this study have their own
limitations, which are discussed in App J. Table 3: Validity and uniqueness of over 10K

molecules are shown with standard deviation
across 3 runs, surpassing the results of previous
models according to studies by [4, 6].

Method w/ Hydrogen Valid (%) Unique (%)
Data 99.3 100.0
GraphVAE 55.7 42.3
Set2GraphVAE 59.9± 1.7 56.2± 1.4
EDM 97.5± 0.2 94.3± 0.2
DiGress 99.0 ± 0.1 96.2± 0.1
MUDiff (ours) 98.9 ± 0.4 99.3 ± 0.3
Data ✓ 97.8 100.0
ENF ✓ 40.2 39.4
GSchnet ✓ 85.5 80.3
GDM ✓ 90.4 89.5
EDM ✓ 91.9± 0.5 90.7± 0.6
DiGress ✓ 95.4 ± 1.1 97.6± 0.4
GeoLDM ✓ 93.8± 0.4 92.7± 0.5
MUDiff (ours) ✓ 95.3 ± 1.5 99.1 ± 0.5

Results Table 2 presents the evaluated results of
atom and molecule stability for molecules generated
by MUDiff and the baseline models. The reported
average results and standard deviations are over 3
runs, using 10,000 samples from each model. The ta-
ble shows that MUDiff can generate molecules that
are significantly more stable than the baseline mod-
els in terms of negative log-likelihood and molecule
stability and matches the performance of SOTA
model w.r.t. atom stability.

Table 3 presents the results of the validity and
uniqueness of the generated samples. It should be
noted that, following the guidelines outlined in [38],
novelty is not reported in this table. The table shows that MUDiff generates a significantly higher
rate of unique molecules than the baselines and matches the rate of valid molecules of SOTA models.
6.3 Conditional Generation
We follow the experimental setting in [4] to train the conditional MUDiff on the QM9 dataset,
conditioning the generation on properties α, ϵhomo, ϵlumo, ∆ϵ, µ, and Cv , respectively. The details of
the experimental setup are presented in Appendix D.2.1, and the results are discussed in Appendix D.2.
6.4 Ablation Study
To investigate how different components affect the performance of MUDiff, we conduct an ablation
study in App D.4. Further details about the experimental settings can be found in App D.4.1.
6.5 Property Prediction
Additionally, we conduct a comprehensive comparison of our MUformer with several baselines on the
QM9 dataset for property prediction, including SchNet [9], EGNN [2], PhysNet [17], DimeNet [41],
Cormorant [36], PaiNN [42], and ET [21]. The dataset consists of molecules with various properties,
and we estimate 12 chemical properties per molecule following [2]. The comparison results in terms
of mean absolute error are presented in App D.3.
7 Conclusion
In this work, we introduced MUDiff, a transformer-based framework for learning and generating a
complete molecule representation using a novel architecture, MUformer. Our contributions include
proposing a new molecule generation method, named MUDiff, which successfully generates more
stable and valid molecules, demonstrating the potential for further research and applications. We also
explored the interplay between 2D and 3D structure generation in App C, which reveals the benefits
of jointly generating both structures to enhance the overall performance. Additionally, we discussed
the scalability issues in App K and provided insights for future work to improve the efficiency and
accuracy of MUDiff. By addressing these challenges, we aim to support progress in machine learning
for molecules and facilitate advancements in areas such as drug discovery and material design.
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A MUformer
A.1 MUformer Encodings

The MUformer consists of 6 encoding functions, with 3 being message-passing based, designed to
incorporate atomic, positional, and structural information into a concise and expressive representation,
particularly suited for handling graph-structured inputs.

1. Atom Encoding Incorporating centrality information into the atom representations is crucial as
it helps to highlight the importance of individual atoms in the molecular structure. The authors in
[19] propose a method of utilizing in-degree deg− and out-degree deg+ obtained from 2D molecular
graphs M2D to incorporate centrality information into the atom-wise encoding process. This allows
for a detailed and accurate representation of the molecular structure, taking into account the relative
importance of each atom. After the centrality encoding, the new representation z1D

hi
for node i is,

z1D
hi

=Watom1
hi +Win-deg1deg−

i +Wout-deg1deg+i , (19)

where Watom1 ∈ Rd×fh1 ,Win-deg1 ∈ R1×fh1 ,Wout-deg1 ∈ R1×fh1 are designated learnable parame-
ters for the atom features, in-degree deg−, and out-degree deg+. The resulting atom embedding for
atom i, z1D

hi
∈ Rfh1 , includes the degree centrality information.

2. Bond Encoding To obtain a richer edge representation, we incorporate the pair-wise atom
information into the edge encoding with message-passing information. For each edge eij ∈ E,
we use a permutation-invariant function to generate the embedded edge representations, ensuring
consistency in the learned representation regardless of the order of the atoms,

zeij
=Wcomb1([Watom2

hi +Wedge1eij +Watom2
hj ]) + bcomb1 . (20)

where Watom2 ∈ Rd×fein and Wedge1 ∈ Rb×fein are learnable parameters that handle the atom features
and edge types respectively, Wcomb1 ∈ Rfein×fein combines the representations with bias bcomb1 . In
addition, in order to make the edge representation symmetric, we calculate the edge representation as
zeij = (zeij + zeji)/2. The resulting edge embedding is ZE ∈ Rn×n×fein .

3. Graph Encoding Standard GNNs have limitations in detecting simple substructures such as
cycles [29], which can hinder their ability to accurately capture the properties of the data distribution.
To overcome this limitation, we enhance our model by extra features as follows.

In the graph encoding process, we encode graph-level structural hstruct, spectral hspect and molecular
information hmol to a molecule M. As suggested in [6, 20], we add cycle counts for hstruct, the
number of cycles of up to size 6 and the number of connected components; and we add eigenvalue
features to hspect, including the multiplicity of eigenvalue 0, as well as the first 5 nonzero eigenvalues.
For hmol, we include the current valency of each atom and the current molecular weight of the entire
molecule as features. For every molecule M, the graph-level representation is given by,

ZM =Wgraph([hstruct,hspect,hmol]) + bgraph, (21)

where Wgraph ∈ R13×fin combines the encoded information with bias bgraph. The resulting graph
representation, ZM ∈ R1×fin , encapsulates all the information from the structural, spectral and
molecular features.

4. 2D Neighborhood Encoding To get local neighborhood information, we use message passing to
aggregate information from the immediate neighbors of each atom in the 2D graph M2D. Specifically,
for hi ∈ H and eij ∈ E, the aggregated representation of atom i is calculated by

mj→i = (Watom3
hj)⊙

(
Wedge2eij

)
, z2D

hi
=Watom3hi +

1

|N(i)|
∑

j∈N(i)

mj→i, (22)

where N(i) denotes the neighbors of atom i, Watom3
∈ Rd×fh2 and Wedge2 ∈ Rb×fh2 are learnable

parameters for atom features and edge types, respectively. To formulate the messages m, we use the
Hadamard product, ⊙, between the atom embedding and edge embedding. This new representation
z2D
hi

∈ Rfh2 takes into account not only the atom features, but also the features of its neighboring
atoms and the edges connecting them.

5. 3D Neighborhood Encoding We use message passing to collect the atom information in the
vicinity of the given atom to get the 3D neighborhood encoding M3D as suggested by [2]. For atom i,
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its representation z3D
hi

is computed by following steps,

dij = ∥xi − xj∥2, eij = SiLU
(
Wedge3 (fRBF1

(dij))
)
⊙ fcos(dij)

mj→i = (Watom4hj)⊙ eij , z
3D
hi

=Watom4hi +
1

|N(i)|
∑

j∈N(i)

mj→i.
(23)

where dij is the distance from atom i to j in the Euclidean space, fRBF1(·) is the exponential radial
basis function, fcos(·) is the cosine cutoff, SiLU(·) is the activation function, ⊙ denotes the Hadamard
product, Watom4

∈ Rd×fh3 and Wedge3 ∈ Rk×fh3 are designated learnable parameters for atom
features and edge features, k is the number of basis kernels as mentioned in Sec 2.2. To calculate
messages m, we use the Hadamard product, ⊙, between the atom and edge embeddings.

We use the cosine cutoff fcos(dij) to determine which atoms in the Euclidean space given by M3D

should be considered as part of the neighborhood of atom i. This provides a smooth and differentiable
way to incorporate spatial locality in the message-passing process, focusing on atoms that are closer
in the 3D space while ignoring distant ones. This allows the model to better capture local geometric
information and reduce computational complexity by not considering interactions between atoms that
are too far apart, which would be less relevant for the molecular properties under investigation. Only
atoms j for which fcos(dij) > 0 are included in the message passing aggregation process, resulting
in a new node representation z3D

hi
∈ Rfh3 for atom i.

Remark We can integrate 2D graph information by assigning fcos(dij) = 1 when an edge is
present between atoms i and j in the 2D molecular structure M2D. This ensures that messages
between these atoms are not influenced by the smooth transition. By doing so, we effectively
incorporate locality information from both the 2D molecular structure and the 3D geometric structure,
providing a more comprehensive representation of the molecule.

6. Combine Encoding In the final step of the encoding process, we compute the atomic embedding
ZH by concatenating the centrality embedding, 2D neighborhood embedding, and 3D neighborhood
embedding. This concatenated representation is then passed through a learnable parameter, Wcomb2 ∈
R(fh1+fh2+fh3)×f in. The final equation for this calculation is given by

ZH =Wcomb2([Z
1D
H ,Z2D

H ,Z3D
H ]) + bcomb2 . (24)

This combination of different embeddings, ZH ∈ Rn×fin , enables the incorporation of various
molecular structure features, including centrality, 2D, and 3D neighborhood information, into a
unified, comprehensive representation.

Additionally, the bond encoding ZE and graph encoding ZM are utilized to calculate attentions, with
details discussed in Sec 4.3 and App A.3.

A.2 Attention Biases

The MUformer incorporates 4 attention biases, which serve to encode spatial relationships in both
2D molecular structure and 3D geometric arrangement. These biases are integrated into the attention
mechanism, enhancing the model’s ability to process and understand molecular representations.
A detailed discussion of the importance and advantages of employing these attention biases for
computing attentions in the MUformer can be found in App B.

1. 2D Spatial Attention Bias To encode the structural relationships between atoms in the molecule
graph M2D, we usethe shortest path distance (SPD) encoding [19], denoted as Φ2D

SPD(i, j) : V × V →
R, which calculates the distance between atoms i and j in M2D, providing valuable information
about the structural relationships between atoms in the 2D molecular graph.

Additionally, following the approach of [19], we incorporate edge-type information along the shortest
path between atoms i and j to reflect edge characteristics. This inclusion of edge-type information
further enriches the model’s understanding of the 2D molecular structure. To achieve this, we
determine the shortest path SPij = (e1, e2, ..., eN ), where N is the longest shortest path distance
for all pairs of atoms i and j. The edge encoding is computed using the following equation,

Φ2D
ENCij

=
1

N

N∑
n=1

en(wn)
T ∈ R (25)
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where wn ∈ Rb×1 is a learnable vector with the same dimension as the edge feature. Both 2D spatial
biases, Φ2D

SPD and Φ2D
ENC, are in Rn×n×1, and the combined bias is calculated as Φ2D

E = Φ2D
SPD +Φ2D

ENC.
This 2D spatial attention bias enables the model to better capture the intricate relationships between
atoms and their surroundings in the 2D molecular graph, ultimately improving its performance.

2. 3D Spatial Attention Bias The 3D spatial relationships between atom pairs in M3D can be
effectively encoded using the Euclidean distance and an exponential radial basis function, fRBF2(·)
[9]. By incorporating this 3D spatial attention bias, the model is able to account for the geometric
arrangement of atoms in the molecule, which is essential for understanding the 3D structure and its
impact on molecular properties. The 3D spatial bias, Φ3D

E , is calculated using the following equation

dij = ∥xi − xj∥2, Φ3D
eij

=W3D2
(SiLU(W3D1

(fRBF2
(dij)))) , (26)

where W3D1
∈ Rk×k,W3D2

∈ Rk×1 are learnable parameters, k is the number of basis kernels, and
the resulting 3D spatial bias, Φ3D

E , is in Rn×n×1. By including this 3D spatial attention bias in the
model, the MUformer is able to better capture the complex 3D spatial relationships between atoms,
leading to improved performance in tasks involving 3D molecular structures.

Edge Feature & Graph Feature The embeddings obtained from the 2D structure, ZE, and the
molecular graph information, ZM, can be further projected and employed as additional attention
biases, enhancing the model’s understanding of the molecular structure and relationships. This allows
the MUformer to better capture the complexities of the molecular system and improve its performance
in various tasks. A detailed explanation of this process can be found in the subsequent section.

A.3 Transformer Channels

Our MUformer architecture draws inspiration from Transformer-M [43], which employs two separate
channels to process 2D and 3D molecular data, respectively. However, our model takes a different
approach to processing the invariant and equivariant features of molecular data. While Transformer-M
is limited to predicting atom features only, and is invariant to geometric transformations, our model
can predict atom features, molecule structures, and atom positions, and is equivariant to geometric
transformations. Our model can be used under different conditions of the input data. When the
input data only contains 2D molecular information M2D = (H,E) and the geometric structure is
missing, only the invariant channel is applied, and the model predicts invariant features including
atom features Hout and molecular structure Eout. Similarly, when the input data only contains 3D
molecular information M3D = (H,X) and the molecular structure is missing, only the equivariant
channel is used and the model becomes insensitive to geometric information, predicting atom features
Hout and coordinates Xout. Finally, when both 2D and 3D molecular data are provided as input,
both the invariant and equivariant channels are activated. The model is equivariant to geometric
transformations, predicting the complete molecule including atom features Hout, molecular structure
Eout, and geometric structure Xout.

The MUformer architecture utilizes two channels, the invariant channel and the equivariant channel,
to learn the 2D molecular structure and 3D geometric structure, respectively. We simplify the notation
by omitting the indices of the attention head h and layer l.

Invariant Channel. The invariant channel is an improved version of the one presented in [19],
which is specifically designed to extract the inherent characteristics of the input molecule graph M2D,
and is utilized to make predictions for atom and edge features by leveraging the underlying graph
structure.

We enhance the MUformer’s attention mechanism by incorporating pair-wise information in the
invariant channel. First, we calculate intermediate representations for the edge and graph features

ZE1 =WE1ZE, ZE2 =WE2ZE

ZM1 =WM1ZM, ZM2 =WM2ZM,
(27)

using weight matrices WE1 ,WE2 ,WM1 ,WM2 . We then compute the attention weights by taking
the dot product of the query and key, and modify them by multiplying and adding the intermediate
representations,

A =
(WQZH)T (WKZH)√

F
∈ Rn×n×F

A = A× (ZE1 + 1) + ZE2 .

(28)
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And the predicted edge and graph representations, ẐE, ẐM, are computed from the attention weights
as

ẐE =WEout((A× (ZM1 + 1) + ZM2)

ẐM =WMout(fNode2Graph(ZH) + fEdge2Graph(ZE) + ZM),
(29)

where fNode2Graph(·) and fEdge2Graph(·) are designated functions (see App I) that map node and edge
features to graph features, respectively. Finally, the spatial relationships in 2D and 3D are added to the
attention weights, the attention is passed through a softmax function and the predicted representation
ẐF is obtained by the equation,

A = softmax(A+Φ2D
E +Φ3D

E ) ∈ Rn×n×F

ẐH = ZH +WHout((WV ZH)A).
(30)

The invariant channel can capture the inherent features of the input molecule graph, allowing for
predictions of discrete 2D structures, as well as invariant atom and graph features.

Equivariant Channel. The equivariant channel is an upgraded version of the one presented in
[21]. It is specifically engineered to extract the features of the input molecule graph M3D that change
under 3D rotations and translations. This channel is used to make predictions for atom features and
coordinates by leveraging the 3D geometric structure of the molecule. It is activated when only the
3D geometric structure M3D is provided. The velocity features v ∈ Rn×3×F are initialized to 0.

First, we calculate the distance between each pair of atoms, dij , and project them into a multidimen-
sional filter for keys. The attention weights are calculated by taking the dot product of the query, key,
and filter, and are modified by incorporating the 3D spatial relationship between atoms. The attention
weights are then passed through a softmax function, and the cosine cutoff is applied to the weights to
ensure that atoms with a distance larger than dcut do not interact.

dij = ∥xi − xj∥2
DK = SiLU(WdistK (fRBF3

(d)) + bdistK ) ∈ Rn×n×F

A =
(WQZH)T (WKZH)⊙DK√

F

A = softmax(A+Φ3D
E )⊙ fcos(d).

(31)

Here, the final attention weights can also include 2D spatial relationship by adding 2D spatial
relationship term Φ2D

E to the equation, and setting fcos(dij) = 1 if an edge exists between atoms i
and j in the 2D molecule graph M2D.

In order to incorporate interatomic distances into the features directly, we also project the distance
between atoms into a multidimensional filter for values. This approach, which has been used in
[9, 21], enables the model to not only consider interatomic distances in the attention weights, but also
to incorporate this information into the features themselves.

DV = SiLU(WdistV (fRBF3
(d)) + bdistV ) ∈ Rn×n×3F

ZV =WV ZH ∈ Rn×3F

ZV1
,ZV2

,ZV3
= split(ZV ⊙DV ) ∈ Rn×n×F

ZO =WO(ZV1A) ∈ Rn×3F

ZO1 ,ZO2 ,ZO3 = split(ZO) ∈ Rn×F ,

(32)

where the function split(·) divides the input into three equal-sized parts.

Then, we use a weight matrix Wv to project the velocity features v into three separate vectors,

Zv =Wvv ∈ Rn×3×3F

Zv1
,Zv2

,Zv3
= split(Zv) ∈ Rn×3×F .

(33)

Finally, new atom and velocity features, ẐH, v̂, are calculated following the steps in [21]. The atom
features are updated by adding the residual of the scaled features ZO1

and the inner product between
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velocity projections ⟨Zv1 ,Zv2⟩. The velocity features are updated by incorporating equivariant
features using the edge directional information dij and scaled vector features.

ẐH = ZH + (ZO1
+ ZO2

⊙ ⟨Zv1
,Zv2

⟩)

wi =
∑

j∈N(i)

ZV2,ij
⊙ vi + ZV3,ij

⊙ dij

v̂ = v + (w + ZO3
⊙ Zv3

).

(34)

Interaction Embedding We denote the predicted atom features of the invariant channel and the
equivariant channel as Zinv

H and Zeqv
H , respectively. We combine these predictions by multiplying

them with a weight matrix Wcomb3 , and adding a bias term bcomb3 ,

ẐH =Wcomb3 [Z
inv
H ,Zeqv

H ] + bcomb3 . (35)

By doing so, we obtain a mixed feature that includes rich invariant representations. This mixed atom
feature ẐH is then fed into the next layer of the transformer channels or used as input for the final
predictions.

Output Block The output block generates the final output by utilizing the embeddings from
invariant and equivariant channels. Specifically, it takes in the atom ẐH and edge embeddings ẐE,
along with the velocity embedding v̂. Through feature extractions, the output block makes predictions
for the atom features Hout, edge features Eout, and atom coordinates Xout,

Hout =WXout2

(
SiLU(WXout1

ẐH)
)
∈ Rn×dout

Eout =WEout2

(
SiLU(WEout1

ẐE)
)
∈ Rn×n×bout

Xout = X+Wvout2

(
SiLU(Wvout1

v̂)
)
∈ Rn×3.

(36)

Analysis of Memory Complexity We compare the memory complexity of our method, MUDiff,
with two existing methods: EDM [4] and DiGress [6]. Considering atom features of size n × d,
atom positions of size n× 3, and edge features of size n× n× b, where n is the number of atoms,
d is the dimension of atom features, and b is the dimension of edge features, EDM’s memory
complexity is O(nd+3n), and DiGress’s is O(nd+ n2b). MUDiff has a higher memory complexity
of O(nd+ 3n+ n2b), but offers a more comprehensive molecular representation by including both
2D and 3D information for topological and geometric structures. For more on scalability issues and
potential solutions, see App K.

Unlike Transformer-M [43], which also employs a two-channel architecture to process 2D and 3D
molecular data but is limited to predicting atom features only, our model can make predictions
for atom features, molecular structures, and atom positions, while also being robust to geometric
transformations. The two channels in Transformer-M are not explicitly designed as invariant and
equivariant channels, which makes their model less robust to geometric transformations.

Our MUformer architecture can be used under different input conditions. When only 2D molecular
information is available, only the invariant channel is activated, and the model makes predictions for
atom and edge features only. When only 3D molecular information is available, only the equivariant
channel is activated, and the model makes predictions for atom features and coordinates only. When
both 2D and 3D molecular data are provided, the invariant and equivariant channels are activated,
and the model can make predictions for the complete molecule, including atom features, molecular
structure, and geometric structure. More details about our MUformer architecture, as well as a
comparison with Transformer-M, can be found in App A.3.

B Importance of 2D and 3D Attention Biases
In Sec 4.2, we introduce two attention biases employed in MUformer to compute attentions, one for
2D molecular structure and another for 3D geometric structure. For the 2D spatial attention bias, we
use the Shortest Path Distance (SPD) encoding to capture the distance between atoms i and j in the
2D molecular graph, providing vital structural relationship information. Additionally, we incorporate
edge-type information along the shortest path, which reflects the connections between atoms i and
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j, further enhancing the model’s understanding of the 2D molecular graph. In the case of the 3D
spatial attention bias, we calculate the bias using the Euclidean distance and an exponential radial
basis function, which encodes the 3D spatial relationships between atom pairs in the 3D molecular
structure. This approach helps the model account for the geometric arrangement of atoms in the
molecule. These biases are used to improve the model’s representation of molecular structures by
capturing essential structural features and relationships in both 2D and 3D spaces.

2D Attention Bias. The 2D spatial attention bias, which consists of the Shortest Path Distance
(SPD) encoding and edge-type information, helps the model to capture the topological relationships
between atoms in the 2D molecular graph. By incorporating this bias into the attention computation,
the model can better understand the structural relationships and chemical properties of the molecule,
leading to improved prediction and generation tasks.

3D Attention Bias. The 3D spatial attention bias encodes the 3D spatial relationships between atom
pairs in the molecular structure using Euclidean distance and an exponential radial basis function.
By including this information as a bias in the attention computation, the model can account for the
geometric arrangement of atoms in the molecule. This allows the MUformer to recognize spatial
patterns and interactions that are not apparent in the 2D graph representation alone.

The attention biases introduced in Sec 4.2 for both 2D and 3D molecular structures enhance the
MUformer ability to capture essential structural features and relationships in both spaces. By
incorporating these biases in the attention computation, the model can prioritize and focus on the
most relevant connections between atoms, resulting in a more accurate and comprehensive molecular
representation.

C Analysis of Interdependence of Generation of 2D and 3D Structures
Motivation. Generating both 2D and 3D structures can provide a more complete representation
of the molecular structure, as it captures both the planar arrangement of atoms in the molecule and
their spatial arrangement in 3D space. By combining the generation of 2D and 3D structures, we can
provide a more comprehensive understanding of the molecular structure, which could be useful for a
variety of applications in drug discovery, materials science, and other fields.

We discuss their effects from three perspectives, (1) conformational space, (2) stereochemistry, and
(3) constraint.

Impact of 2D Generation on 3D Generation. (1) From the conformational perspective, the 2D
structure can provide information about the planar arrangement of atoms in the molecule, which can
be used to guide the generation of the 3D structure. By considering the 2D structure, the generation
algorithm can explore different conformations and orientations of the molecule in a 3D space, which
can help generate a more accurate 3D structure. (2) From the stereochemistry perspective, the 2D
structure can provide information about the stereochemistry and chirality of the molecule, which can
be used to guide the generation of the 3D structure. For example, if the 2D structure indicates that
two atoms are connected by a double bond, the generation algorithm can infer the correct geometry
for the double bond in the 3D space based on the stereochemistry of the molecule. (3) From the
constraints’ perspective, the 2D structure can provide constraints on the geometry of the molecule,
which can be used to guide the generation of the 3D structure. For example, if the 2D structure
indicates that two atoms are connected by a ring, the generation algorithm can use this information to
constrain the geometry of the ring in a 3D space.

Impact of 3D Generation on 2D Generation. (1) From the conformational perspective, the
generation of 3D structures can provide information about the conformational space of the molecule,
which can be used to refine the 2D structure. For example, if the 3D structure indicates that two
atoms are in close proximity, the generation algorithm can adjust the 2D structure to reflect this. (2)
From the stereochemistry perspective, the 3D structure can provide additional information about
the stereochemistry and chirality of the molecule, which can be used to refine the 2D structure. For
example, if the 3D structure indicates that two atoms have a specific orientation in 3D space, the
generation algorithm can adjust the 2D structure to reflect this. (3) From the constraint perspective,
the 3D structure can provide additional constraints on the geometry of the molecule, which can
be used to refine the 2D structure. For example, if the 3D structure indicates that two atoms are
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connected by a ring, the generation algorithm can adjust the 2D structure to ensure that the ring is
planar.

D Additional Empirical Results
D.1 Molecule Generation on DRUG

We compare the performance of our MUDiff model with popular generative models, including GDM
[4], EDM [4], MDM [39], and GeoLDM [40]. The results are reported in Table 4 As outlined in
[39, 40], we evaluate the atom and molecule stability of the generated compounds.

Table 4: Atom stability, molecule stability, and validity are evaluated across 3 runs on DRUG.

Method Validity Atom Stable(%) Mol Stable(%)
GDM 90.8 75.0 −
EDM 92.6 81.3 13.0
MDM 99.8 − 62.2
GeoLDM 99.3 84.4 −
MUDiff (ours) 98.9 84.0 60.9

D.2 Conditional Generation

Our method can be extended for conditional molecule generation, as detailed in App D.2.1. We
follow the experimental setting in [4] to train the conditional MUDiff model on the QM9 dataset,
conditioning the generation on properties α, ϵhomo, ϵlumo, ∆ϵ, µ, and Cv , respectively.

Additionally, we follow [4] to use a property classifier ψc proposed in [31]. We split QM9 training
data into two halves, A and B, each containing 50K samples, and use A subset to train ψc and B
subset for training the conditional MUDiff. Then, ψc is used to evaluate the generated samples of
conditional MUDiff. Also, we follow [4] to report the loss of ψc on B as a lower bound (L-bound).
The smaller the gap between MUDiff and L-bound, the more similar MUDiff generated samples to B.

Table 5: Mean Absolute Error for the prediction of molecular properties by the property classifier ψc

on a QM9 subset (L-bound), MUDiff samples and three baselines.

Property α ϵhomo ϵlumo ∆ϵ µ Cv

Units a3 meV meV meV D meV
U-bound 9.01 645 1457 1470 1.616 6.857
#Atoms 3.86 426 813 866 1.053 1.971
EDM 2.76 356 584 655 1.111 1.101
MUDiff (ours) 2.15 315 597 604 1.033 0.978
L-bound 0.10 39 36 64 0.043 0.040

We evaluate the performance against the baselines used in EDM [4]. In addition to L-bound, they also
use two other baselines: U-bound and #Atoms. The U-bound is obtained by shuffling the properties
of molecules in the B subset and evaluating ψc on it. The #Atoms baseline predicts the molecular
properties in the B subset by only using the number of atoms in the molecule.

Results. Table 5 showcases the results of conditional generation on the QM9 dataset. Evidently,
conditional MUDiff generates samples that more closely resemble the molecules in subset B compared
to the baselines, indicating that MUDiff outperforms baselines in generating molecules with desired
properties and capturing structural similarities.

D.2.1 Conditional Generation

We follow the conditional molecule generation procedure in [4]. We train the conditional MUDiff by
concatenating the conditions c with atom features, the Eq 4 is rewritten as

ϵ̂tH, p(Ê), ϵ̂tX = ψθ([H̃t,
t

T
, c], Ẽt, X̃t)− (0,0, X̃t), (37)
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and the loglikelihood (in Eq 43) is modified to

log p(M|c) ≥ DKL[q(MT |M, c)∥p(MT |c)]︸ ︷︷ ︸
Prior loss

+Eq(M0|M,c)[log p(M|M0, c)]︸ ︷︷ ︸
Reconstruction loss

+

T∑
t=1

Lt,c︸ ︷︷ ︸
Diffusion loss

,
(38)

where
Lt,c = Eq(Mt|M,c)[DKL[q(Mt−1|Mt,M, c)∥p(Mt−1|Mt, c)]]. (39)

In order to perform conditional sampling, we adopt the method outlined in [4]. Specifically, we first
sample a condition c from the condition distribution, and then use this condition to generate molecules
via the conditional distribution p(M̂|c). The details of the model training procedure and architecture
can be found in App J. This approach allows us to generate molecules that are conditioned on specific
properties, such as electronic energy levels or heat capacity.

Properties. Following the methodology used in previous works such as [4], we condition the
generation of molecules on several properties. Specifically, we condition the generation on the
polarizability (α), the highest occupied molecular orbital energy (ϵhomo), the lowest unoccupied
molecular orbital energy (ϵlumo), the energy difference between the highest occupied and lowest
unoccupied molecular orbital energy (∆ϵ), the dipole moment (µ) and the heat capacity at 298.15K
(Cv). These properties provide specific information about the physical and chemical properties of a
molecule, allowing us to generate molecules with specific desired characteristics.

D.3 Property Prediction on QM9

We conduct a thorough comparison of our MUformer model against several state-of-the-art (SOTA)
models for property prediction on the QM9 dataset, including SchNet [9], EGNN [2], PhysNet [17],
DimeNet [41], Cormorant [36], PaiNN [42], and ET [21]. The results, which can be found in Table 6,
are obtained by averaging over three runs. We use a learning rate of 1e-3, 1e-4, 5e-4 and 1e-5, weight
decay of 5e-5, 128 hidden dimensions, and 6 layers for our MUformer model. The results of the
baseline models are taken from [21].

Table 6: Results on all QM9 targets and comparison to previous literature. Scores are reported as
mean absolute errors (MAE) with standard deviation. Results of different models are averaged over
three runs.

Target Unit SchNet EGNN PhysNet DimeNet++ Cormorant PaiNN ET MUformer
µ D 0.033 0.029 0.0529 0.041 0.0297 0.012 0.011 0.013 ± 0.003
α a30 0.235 0.071 0.0615 0.0435 0.085 0.045 0.059 0.041 ± 0.008
ϵHOMO meV 41 29 32.9 24.6 34 27.6 20.3 24.7 ± 1.2
ϵLUMO meV 34 25 24.7 19.5 38 20.4 17.5 20.2 ± 0.8
∆ϵ meV 63 48 42.5 32.6 61 45.7 36.1 30.3 ± 1.7
〈R2〉 a20 0.073 0.106 0.765 0.331 0.961 0.066 0.033 0.117 ± 0.012
ZPV E meV 1.7 1.55 1.39 1.21 2.027 1.28 1.84 1.76 ± 0.08
U0 meV 14 11 8.15 6.32 22 5.85 6.15 6.11 ± 0.12
U meV 19 12 8.34 6.28 21 5.83 6.38 6.04 ± 0.19
H meV 14 12 8.42 6.53 21 5.98 6.16 6.77 ± 0.07
G meV 14 12 9.4 7.56 20 7.35 7.62 7.24 ± 0.08
Cv

cal
mol K

0.033 0.031 0.028 0.023 0.026 0.024 0.026 0.023 ± 0.002

D.4 Ablation Study

To investigate how different components will impact the performance of MUDiff, we conduct ablation
study in this subsection . The details of the experimental settings can be found in App D.4.1.

Results. The results in Table 7 demonstrate the effectiveness of each component in MUformer. We
can see that each component proposed in Sec 4 plays an indispensable role in learning all aspects of
the molecule in a unified manner and the diffusion model with all components combined generates
the most stable and valid molecules.
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Table 7: The performance of molecule stability and validity across different ablation models, as
shown by the average value with standard deviation of 1K generated molecules (with hydrogen) from
each model. Model variations include using (i) 2D structure encoding, (ii) graph encoding, (iii)
2D neighborhood encoding, (iv) 3D neighborhood encoding, (v) 2D spatial attention bias, (vi) 3D
spatial attention bias, (vii) edge features as attention bias, (viii) graph features as attention bias, and
(ix) 2D discrete graph structures into 3D geometric structures.

Encoding Bias
i ii iii iv v vi vii viii ix Mol Stable (%) Valid (%)

82.5± 6.3 90.7± 2.2
✓ 82.7± 1.9 91.3± 1.7
✓ ✓ 82.9± 1.5 91.6± 2.1
✓ ✓ ✓ ✓ 84.7± 1.2 92.9± 1.3
✓ ✓ 85.3± 1.0 93.6± 1.9
✓ ✓ ✓ 86.1± 1.7 93.5± 1.3
✓ ✓ ✓ ✓ 87.2± 1.6 93.4± 1.0
✓ ✓ ✓ ✓ ✓ 87.1± 1.5 94.8± 1.4
✓ ✓ ✓ ✓ ✓ ✓ 88.3± 1.5 94.5± 1.3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 88.4± 1.6 95.1± 1.3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 89.3± 1.3 95.3± 1.2

D.4.1 Ablation Study

To improve efficiency, we conduct ablation studies using smaller models than those described in App J.
Specifically, these models consist of 4 layers, 64 embedding dimensions for atom- and edge-level
features, 32 embedding dimensions for graph-level features, 8 attention heads, 100 feedforward
dimensions for atom- and edge-level features, 50 feedforward dimensions for graph-level features, 0.3
dropout rate for all latent embeddings and attention values, SiLU activation function, 1e-4 learning
rate, and Adam optimizer with 5e-5 weight decay. Additionally, we use a diffusion process with 500
time steps over the course of 3000 training epochs.

Additionally, if 2D structure encoding is not used, the edge type E is simply embedded by a weight
matrix W as

ZE =WE ∈ Rn×n×fein . (40)

To reduce computation costs, we sample 1,000 molecules from each MUDiff ablation model instead
of the 10,000 samples typically generated by the diffusion model during sampling. This allows us
to evaluate the performance of the various MUDiff models while minimizing the computational
resources required.

Model variations for ablation study include: (1) no extra technique, (2) 2D structure encoding, (3)
2D structure encoding + 2D neighborhood encoding, (4) 2D structure encoding + 2D neighborhood
encoding + 2D spatial attention bias + edge features as attention bias, (5) 2D structure encoding +
3D neighborhood encoding, (6) 2D structure encoding + 3D neighborhood encoding + 3D spatial
attention bias, (7) 2D structure encoding + graph encoding + 2D neighborhood encoding + 3D
neighborhood encoding, (8) 2D structure encoding + graph encoding + 2D neighborhood encoding +
3D neighborhood encoding + 3D spatial attention bias, (9) 2D structure encoding + graph encoding +
2D neighborhood encoding + 3D neighborhood encoding + 2D spatial attention bias + 3D spatial
attention bias, (10) 2D structure encoding + graph encoding + 2D neighborhood encoding + 3D
neighborhood encoding + 2D spatial attention bias + 3D spatial attention bias + edge features as
attention bias + graph features as attention bias, (11) 2D structure encoding + graph encoding +
2D neighborhood encoding + 3D neighborhood encoding + 2D spatial attention bias + 3D spatial
attention bias + edge features as attention bias + graph features as attention bias + 2D discrete graph
structures into 3D geometric structures.

E Limit Distribution for Edges

[6] suggests that the limit distribution q∞ = limT→∞ q(ẼT |E) should be independent of clean data
E for efficient diffusion models. In our diffusion model, the discrete process for noising/denoising
discrete graph structures E ∈ Rn×n×b, we use a sequence of transition matrices {Q̄t}Tt=0 to add
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noise to E. In our choice, we follow [6, 16] to use the simplest uniform transition parameterized by

Q̄t = αtI+ (1− αt)
1b1

T
b

b
∈ Rb×b

Ẽt = EQ̄t ∈ Rn×n×b

(41)

with αt smoothly transition from 1 → 0 as t goes from 0 → T . When t gradually goes to ∞,

lim
t→∞

Q̄t = lim
t→∞

αtI+ (1− αt)
1b1

T
b

b

= lim
t→∞

αtI+ (1− lim
t→∞

αt)
1b1

T
b

b

=
1b1

T
b

b
.

(42)

It suggests that q(Ẽt|E) converges to a uniform distribution as t→ T , and the limit distribution q∞
is just a uniform distribution over the edge categories independently of E.

F Likelihood and Lower Bound
For simplicity, we use Mt = (Ht,Et,Xt) to denote the noisy molecule M̃t = (H̃t, Ẽt, X̃t) at time
t. Following [15], the variational lower bound on the log-likelihood of a molecule M is derived as

log p(M) ≥ DKL[q(MT |M)∥p(MT )]︸ ︷︷ ︸
Prior loss

+Eq(M0|M)[log p(M|M0)]︸ ︷︷ ︸
Reconstruction loss

+

T∑
t=1

Lt︸ ︷︷ ︸
Diffusion loss

, (43)

where
Lt = Eq(Mt|M)[DKL[q(Mt−1|Mt,M)∥p(Mt−1|Mt)]]. (44)

The prior loss is fairly simple,

DKL[q(MT |M)∥p(MT )] = DKL[q(HT ,ET ,XT |H,E,X)∥p(HT ,ET ,XT )]

by chain rule
= DKL[q(HT |H,E,X)∥p(HT )] +DKL[q(ET ,XT |H,E,X,HT )∥p(ET ,XT |HT )]

= DKL[q(HT |H,E,X)∥p(HT )] +DKL[q(ET |H,E,X,HT )∥p(ET |HT )]

+DKL[q(XT |H,E,X,HT ,ET )∥p(XT |HT ,ET ))]

due to indenpendence
= DKL[q(HT |H)∥p(HT )] +DKL[q(ET |E)∥p(ET )] +DKL[q(XT |X)∥p(XT )],

(45)
where DKL[q(HT |H)∥p(HT )] models the distance between a standard normal distribution
NH(0, I) and the final noisy variable q(HT |H), DKL[q(XT |X)∥p(XT )] models the distance be-
tween another standard normal distribution NX(0, I) and the final noisy variable q(XT |X), and
DKL[q(ET |E)∥p(ET )] measures the KL divergence between the uniform distribution over edge
categories and the final noisy variable q(ET |E). The prior loss DKL[q(MT |M)∥p(MT )] is always
close to zero.

The reconstruction loss,

Eq(M0|M)[log p(M|M0)] = Eq(H0,E0,X0|H,E,X)[log p(H,X,E|H0,E0,X0)]

= Eq(H0,E0,X0|H,E,X)[log p(H|H0)p(E|E0)p(X|X0)]

= Eq(H0,E0,X0|H,E,X)[log p(H|H0) + log p(E|E0) + log p(X|X0)]

= Eq(H0|H,E,X)[log p(H|H0)]Eq(E0,|H,E,X)[log p(E|E0)]Eq(X0|H,E,X)[log p(X|X0)]

= Eq(H0|H)[log p(H|H0)]Eq(E0,|E)[log p(E|E0)]Eq(X0|X)[log p(X|X0)].
(46)

For discrete data E, log p(E|E0) is computed from the probability of clean edge features given noisy
edge features p(E|E0). For continuous data H,X, log p(H|H0) models the likelihood of H given
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H0 ∼ q(H0|H), log p(X|X0) models the likelihood of X given X0 ∼ q(X0|X), and the details of
zeroth likelihood is discussed in App H.

The diffusion loss is different than the training loss in Eq 6,7, but still at each time step t, the diffusion
loss is composed of atom feature loss, edge feature loss, and atom coordinate loss,

Lt = Eq(Mt|M)[DKL[q(Mt−1|Mt,M)∥p(Mt−1|Mt)]]

= Eq(Mt|M)[DKL[q(Ht−1,Et−1,Xt−1|Mt,M)∥p(Ht−1,Et−1,Xt−1|Mt)]]

by chain rule
= Eq(Mt|M)[DKL[q(Ht−1|Mt,M)∥p(Ht−1|Mt)] +DKL[q(Et−1,Xt−1|Mt,M,Ht−1)∥p(Et−1,Xt−1|Mt,Ht−1)]]

= Eq(Mt|M)[DKL[q(Ht−1|Mt,M)∥p(Ht−1|Mt)] +DKL[q(Et−1|Mt,M,Ht−1)∥p(Et−1|Mt,Ht−1)]

+DKL[q(Xt−1|Mt,M,Ht−1,Et−1)∥p(Xt−1|Mt,Ht−1,Et−1)]]

due to independence
= Eq(Mt|M)[DKL[q(Ht−1|Mt,M)∥p(Ht−1|Mt)] +DKL[q(Et−1|Mt,M)∥p(Et−1|Mt)] +DKL[q(Xt−1|Mt,M)∥p(Xt−1|Mt)]]

= Eq(Mt|M)[DKL[q(Ht−1|Mt,M)∥p(Ht−1|Mt)]] + Eq(Mt|M)[DKL[q(Et−1|Mt,M)∥p(Et−1|Mt)]]

+ Eq(Mt|M)[DKL[q(Xt−1|Mt,M)∥p(Xt−1|Mt)]]

= Eq(Ht|H)[DKL[q(Ht−1|Ht,H)∥p(Ht−1|Ht)]] + Eq(Et|E)[DKL[q(Et−1|Et,E)∥p(Et−1|Et)]]

+ Eq(Xt|X)[DKL[q(Xt−1|Xt,X)∥p(Xt−1|Xt)]].
(47)

For discrete data E, DKL[q(Et−1|Et,E)∥p(Et−1|Et)] measures the KL divergence between
the true categorical distribution q(Et−1|Et,E) and the predicted categorical distribution
p(Et−1|Et). For continuous data H,X with Gaussian noise being added, [4, 15] show that
DKL[q(Ht−1|Ht,H)∥p(Ht−1|Ht)], DKL[q(Xt−1|Xt,X)∥p(Xt−1|Xt)] can be expressed as,

DKL[q(Ht−1|Ht,H)∥p(Ht−1|Ht)] =
1

2
EϵtH∼NH(0,I)

[
ω(t)∥ϵtH − ϵ̂tH∥2

]
DKL[q(Xt−1|Xt,X)∥p(Xt−1|Xt)] =

1

2
EϵtX∼NX(0,I)

[
ω(t)∥ϵtX − ϵ̂tX∥2

]
,

(48)

where ω(t) = (1− SNR(t− 1)/SNR(t)).

G Posterior Distribution of Edge Features p(Ẽt−1|Ẽt)

For simplicity, we use Mt = (Ht,Et,Xt) to denote the noisy molecule M̃t = (H̃t, Ẽt, X̃t) at time
t. The posterior distribution of a molecule is calculated by,

p(Mt−1|Mt) = p(Ht−1,Et−1,Xt−1|Ht,Et,Xt) H,E,X are independent
= p(Ht−1|Ht)p(Et−1|Et)p(Xt−1|Xt).

(49)

Posterior distributions of atom features and coordinates are simple to compute as they are derived
from normal distributions for continuous data (see Eq 1). Here, we compute the posterior distribution
for edge features,

p(Et−1|Et) =
∏

(i,j)∈E

p(et−1ij |etij )

p(et−1ij |etij ) =
∑

êij∈Ê

p(et−1ij |etij , êij)p(êij |etij )

=
∑

êij∈Ê

p(et−1ij |etij , êij)p(êij),

(50)

where we choose

p(et−1ij |etij , êij) =
{
q(et−1ij |etij , êij), if q(etij |êij) > 0

0, otherwise.

The posterior distribution for discrete objects is given in Sec 2.1, as q(Et−1|Et,E), but since the
clean edge features E are unknown during sampling, we substitute it with the network approximation
Ê, resulting in the posterior distribution q(Et−1|Et, Ê).
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H Zeroth Likelihood Estimation
For simplicity, we use Mt = (Ht,Et,Xt) to denote the noisy molecule M̃t = (H̃t, Ẽt, X̃t) at
time t. The zeroth likelihood term for edge features is computed simply, which is just defined as the
probabilities of the estimate of clean edge features computed from E0.

The zeroth likelihood term for atom positions can be computed similarly to the way it is defined in
Eq 1,

p(X|X0) = N (X| 1
α0

X0 −
σ0
α0

ϵ̂0X,
σ2
0

α2
0

I)

X =
1

α0
X0 −

σ0
α0

ϵ̂0X +
σ0
α0

ϵX,

(51)

and the reconstruction loglikelihood follows,

log p(X|X0) =
1

2
Eϵ0X∼NX(0,I)

[
ω(0)∥ϵ0X − ϵ̂0X∥2

]
, (52)

where ω(0) = −1.

The zeroth likelihood term for atom features is not easy to compute as atom features can be continuous
and categorical. We follow [4] to compute the zeroth likelihood term for atom features. For integer
molecular properties, the likelihood follows

p(H|H0) =

∫ H+ 1
2

H− 1
2

N (h|H0, σ0)dh

= fCDF(
H+ 1

2 −H0

σ0
)− fCDF(

H− 1
2 −H0

σ0
)

(53)

where fCDF(·) denotes the cumulative distribution function of a standard normal distribution. For
categorical features like atom types, a one-hot encoding is applied and the likelihood is calculated as,

p(H|H0) = C(H|p), p ∝
∫ 1+ 1

2

1− 1
2

N (h|H0, σ0)dh, (54)

where p is normalized to one and C is the categorical distribution, as suggested in [4].

I Node2Graph & Edge2Graph Functions
Node2Graph fNode2Graph(·) and Edge2Graph fEdge2Graph(·) functions map node- and edge-level fea-
tures to graph-level features, respectively.

The Node2Graph function transforms the node features H ∈ Rn×Fin by computing the mean, max,
and min values for each node, then concatenating them and applying a linear transformation with
weight matrix WNode2Graph and bias bNode2Graph,

Hmean = mean(H) ∈ R1×Fin

Hmax = max(H)

Hmin = min(H)

Hout =WNode2Graph([Hmean,Hmax,Hmin]) + bNode2Graph ∈ R1×Fout .

(55)

The Edge2Graph function transforms the node features E ∈ Rn×n×Fin by computing the mean, max,
and min values for each node pair (i, j), then concatenating them and applying a linear transformation
with weight matrix WEdge2Graph and bias bEdge2Graph,

Emean = mean(E) ∈ R1×1×Fin

Emax = max(E)

Emin = min(E)

Eout =WEdge2Graph([Emean,Emax,Emin]) + bEdge2GraphR1×1×Fout .

(56)
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J Molecule Generation
Discussion on Metrics. Following the methodology outlined in [2, 4], we evaluate the atom and
molecule stability, as well as the validity and uniqueness of the generated samples by building a
molecule with RdKit and attempting to obtain a valid SMILES string from it. However, as seen in
Table 2 and Table 3, the statistics of the QM9 dataset are not perfect (not reaching 100%). This is
due to the limitations of the method used by RDKit to process molecules, as explained in [4]. RDKit
first builds a molecule that contains only heavy atoms, then adds hydrogens to each heavy atom in a
way that matches the valency of each atom to its atom type. As a result, invalid molecules mostly
appear when an atom has a valency bigger than expected. Additionally, as stated in [5], this method
is not perfect as the QM9 dataset contains charged molecules that would be considered invalid by this
method.

Regarding novelty, [38] argue that the QM9 dataset is a comprehensive enumeration of small
molecules that meet a set of specified constraints. Therefore, a novel molecule would not satisfy at
least one of these constraints, indicating that the model does not accurately capture the correct data
distribution. This makes evaluating and reporting novelty for molecules generated from the QM9
dataset difficult and potentially misleading.

Training Procedure. Our MUDiff model is trained using NVIDIA A100 GPUs. The model
architecture consists of 6 layers, with 256-dimensional embeddings for atom and edge-level features,
and 64-dimensional embeddings for graph-level features. Additionally, we use 8 attention heads, 300
feedforward dimensions for atom and edge-level features, 100 feedforward dimensions for graph-level
features, and 0.3 dropout rate for all latent embeddings and attention values. The activation function
used is SiLU, the learning rate is set to 1e-4, and weight decay is set to 5e-5. The optimizer used is
Adam. These hyperparameter settings are chosen to balance the trade-off between computational
cost and model performance.

For the diffusion process, we use 1000 time steps and a cosine schedule for the diffusion coefficient
over 10000 training epochs. This schedule is introduced in [44], where the coefficient is defined
as αt = cos(0.5π( t

T + s)/(1 + s))2, where T is the total number of time steps and s is a small
value (e.g., 10−6). This schedule helps to ensure a smooth transition from an initial low diffusion
coefficient at the start of the process to a high diffusion coefficient at the end. This schedule also
helps avoid the problem of over-diffusion at the early stages of the process and under-diffusion at the
later stages.

K Disscussion on Limitation & Future Work
K.1 Scalability Issue

Problem. Generating molecular structures using graph models presents a challenge in representing
the structures in a way that can be processed by the model. One commonly used approach is to
represent the structure as a dense adjacency tensor, where each element in the tensor corresponds to
the presence or absence of a bond between two atoms. However, generating these dense tensors can
be computationally expensive, particularly for larger or more complex molecular structures.

Approach & Limitation. In our model, which includes a transformer and diffusion model, we
generate 2D molecular structures and edge features by creating a dense adjacency tensor of size
n×n× b, where n represents the number of atoms in a molecule and b represents the number of edge
types. In the case of molecule scenarios, our model predicts a dense tensor of size n× n× 4, which
includes four bond types (no-bond, single bond, double bond, and triple bond). One advantage of
using dense tensors is that they can capture more detailed information about the molecular structure,
including the precise location and type of each bond. This level of detail can be particularly crucial
in cases where subtle differences in the structure can have a significant impact on the molecule’s
properties or behavior. However, a significant disadvantage of dense tensors is the computational cost
required to generate and process them, which can limit the scalability and efficiency of the model.

Sparse Tensor Solution. Sparse tensors can be a useful approach to reducing the computational
cost of generating molecular structures. Sparse tensors are similar to dense tensors, but they only
store the non-zero elements of the tensor, rather than the entire tensor. To use sparse tensors for
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the problem of generating molecular structures, one approach is to represent the adjacency matrix
as a sparse tensor. Rather than creating a dense tensor of size n × n × b, we can instead create a
sparse tensor that only stores the non-zero elements of the adjacency matrix. To make predictions for
sparse tensors, we can use specialized algorithms designed for sparse tensors. One common approach
is to use sparse matrix multiplication algorithms, which can efficiently perform matrix operations
on sparse tensors. These algorithms are designed to take advantage of the sparsity of the tensor to
perform the required computations more efficiently.

Multi-resolution Representation Solution. Multi-resolution representation of molecules is an
approach to represent molecular structures at multiple levels of detail, allowing for more efficient
processing while still capturing important structural information. Essentially, the idea is to represent
the molecule in different ways, with each representation capturing different levels of detail. One
common approach is to use a hierarchical representation, where the molecular structure is represented
as a series of nested substructures. For example, the molecule could be represented as a set of
atoms, each associated with a set of neighboring atoms. This set of neighboring atoms could then be
recursively expanded to include their own neighboring atoms, resulting in a hierarchical representation
of the molecule that captures different levels of detail at different scales. Another approach is to
use a multi-scale representation, where the molecular structure is represented at different levels of
detail using different feature maps or descriptors. For example, the molecule could be represented
as a set of atoms, each associated with a descriptor that captures its physical properties. By using
multi-resolution representations, we can reduce the computational cost of generating molecular
structures while still capturing important structural information.
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