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Abstract
Fairness in graph neural networks has been actively studied recently. However,
existing works often do not explicitly consider the role of message passing in in-
troducing or amplifying the bias. In this paper, we first investigate the problem of
bias amplification in message passing. We empirically and theoretically demon-
strate that message passing could amplify the bias when the 1-hop neighbors
from different demographic groups are unbalanced. Guided by such analyses, we
propose BeMap, a fair message passing method, that leverages a balance-aware
sampling strategy to balance the number of the 1-hop neighbors of each node
among different demographic groups. Extensive experiments on node classifi-
cation demonstrate the efficacy of BeMap in mitigating bias while maintaining
classification accuracy.

1 Introduction
Graph neural network (GNN) learns node representations via message passing, which aggregates
the information from the local neighborhood of each node, to capture the topological and attributive
characteristics of graph data [1–4]. Despite the substantial research progress, concrete evidence has
shown that GNNs could carry certain biases, which lead to unfair learning results. For example, a
graph-based recommender system may discriminate individuals from certain demographic groups by
recommending fewer career opportunities [5, 6]. As such, the widespread use of GNNs in safe-critical
and life-changing applications, such as employment systems [7], is in imminent need of fairness
considerations.

In this paper, we study group fairness, which is one of the most intuitive and fundamental fairness
notions. To date, researchers have developed a collection of algorithms to ensure group fairness
for graph neural networks [8–12]. A typical approach is to impose the fairness consideration as a
regularization term from the optimization perspective. Though achieving promising performance
in bias mitigation, these methods often do not explicitly take into account the bias introduced
or amplified by message passing during model training. To our knowledge, only a few works
consider bias mitigation during message passing [12, 13]. They either manipulate the graph structure
empirically [13, 14] or completely change the message passing procedure to solve a complex minimax
problem [12, 15]. Several fundamental questions remain nascent in the context of algorithmic fairness
on GNN: (Q1) Does the message passing in GNN introduce or amplify bias? (Q2) If so, how to
ensure fairness during message passing without changing the GNN architecture in a principled way?

To answer these questions, we study the problems of (Q1) bias amplification in message passing and
(Q2) fair message passing. For (Q1) bias amplification in message passing, we both empirically and
theoretically show that message passing can indeed amplify bias when the numbers of neighboring
nodes from different demographic groups are unbalanced. The key idea is to measure the bias as the
reciprocal of the expected squared Euclidean distance of each node to the centroid of the demographic
group it belongs to.1 Based on the distance-based bias definition, for each node, if the numbers of
neighbors from different demographic groups are unbalanced, the expected squared distance to the
corresponding centroid would shrink after message passing, meaning that the dependence of the
model on the sensitive attributes increases, and the bias in predictions is thus amplified. For (Q2)
fair message passing in GCNs, guided by the theoretical insights from Q1, we propose BeMap that

1The more biased the model, the smaller the distance.
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leverages a balance-aware sampling strategy to selectively sample a subset of neighbors to achieve a
balanced number of neighbors from different demographic groups for bias mitigation.

In summary, our main contributions are as follows:
• Problems. We study the problems of bias amplifications in message passing and fair message

passing from the perspective of neighborhood balance of each node.
• Analyses. Our analyses both empirically and theoretically reveal that the message passing

schema could amplify the bias, if the demographic groups with respect to a sensitive attribute in
the local neighborhood of each node are unbalanced.

• Algorithm. Guided by our analyses, we propose an easy-to-implement sampling-based method
named BeMap, which leverages a balance-aware sampling strategy to mitigate bias.

• Evaluations. We conduct extensive experiments on real-world datasets, which demonstrate that
BeMap could significantly mitigate bias while maintaining a competitive accuracy compared
with the baseline methods.

2 Related Work
Graph neural network (GNN) has demonstrated state-of-the-art performance in various learning
tasks, including anomaly detection [16], crime rate prediction [17], and recommender systems [18].
[1] proposes the Graph Convolutional Network (GCN) by utilizing a localized first-order approxi-
mation of spectral graph convolutions. [2] introduces graph neural networks for inductive learning
via neighborhood sampling and aggregation. [19] leverages the self-attention mechanism to learn
the attention weights for neighborhood aggregation. [3] scales up the training on large graphs by
importance sampling. [20] learns node representations by randomly dropping nodes to augment
data and enforcing the consistency of predictions among augmented data. Similarly, [21] randomly
drops nodes for several runs and aggregates the predictions for the final prediction by ensemble.
Different from [3, 20, 21] that drop nodes for scalable training or improving the generalization and/or
expressiveness of GNN, our work drops edges (i.e., dropping nodes in the local neighborhood of a
node) to mitigate bias in GNN. [22] randomly drops edges to perform data augmentation and prevents
over-smoothing. Different from [22] that randomly drops edges to alleviate over-smoothing, our work
selectively removes edges to obtain balanced graph structures to improve the model fairness. For
comprehensive literature reviews on graph neural networks, please refer to [23–27].
Fairness in graph neural networks has been actively studied. A common strategy to learn fair graph
neural networks is through optimizing a regularization-based optimization problem [8, 9, 11, 28, 29].
For group fairness, [8] ensures group fairness by minimizing the mutual information between sensitive
attributes and node embeddings via adversarial learning. [9] leverages a similar debiasing strategy
to learn fair graph neural networks with limited sensitive attributes. For individual fairness, [30]
mitigates individual bias using the Laplacian regularization on the learning results. [31] adopts
learning-to-rank for ranking-based individual fairness. In terms of counterfactual fairness, [28] learns
counterfactually fair node embeddings through contrastive learning. [29] generates the counterfactual
graph with variational graph auto-encoder [32]. Different from the aforementioned techniques, our
work does not require any regularization in the objective function. Other than regularization-based
formulation, [11] preprocesses the input graph by minimizing the Wasserstein distance between
the embedding distributions of majority and minority groups. [14] generates fair neighborhoods by
neighborhood rewiring and selection. [12] proposes a novel message passing schema that solves a
minimax problem w.r.t. group fairness. [13] promotes the existence of edges connecting nodes in
different demographic groups. However, [12] bears little resemblance to the original message passing
schema, thus completely changing the training procedures; [14] lacks a theoretical understanding on
the connection between balanced neighborhood and group fairness; [11] requires a pre-trained model
to pre-process the input graph; and [13] cannot guarantee a balanced neighborhood consequently.
Compared to [11–14], our work fills the gap between a balanced neighborhood and group fairness and
tunes the message passing in a easy-to-implement node sampling strategy with theoretical guarantee.
Further discussion on prior works related to fairness in GNNs is provided in Appendix I.

3 Preliminaries
In this section, we first briefly introduce the Graph Convolutional Network (GCN) and the commonly
used group fairness definitions. Then, we formally define the problem of bias amplification in
message passing and fair message passing in GCN.
Notation Convention. We use bold uppercase/lowercase letters for matrices/vectors (e.g., A, x),
italic letters for scalars (e.g., d), and calligraphic letters for sets (e.g., N ). For matrix indexing, the
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i-th row of a matrix is denoted as its corresponding bold lowercase letter with subscript i (e.g., the
i-th row of matrix X is xi). Notations are summarized in Table 3.
Graph Convolutional Networks. In this paper, we study the message passing schema in Graph
Convolutional Network (GCN) [1], which is one of the most classic graph neural networks. Let
G = {V,A,X} denote a graph with a node set of n nodes V = {v1, . . . , vn}, a binary adjacency
matrix A, and node feature matrix X. For any node vi, we denote its degree and the feature as di and
xi. 2 For the l-th hidden layer in an L-layer GCN, we denote its weight matrix as W(l) and the input
and output representations of node vi as h(l)

i and h
(l+1)
i , respectively.3 Then the message passing

schema in GCN is ĥ(l)
i =

∑
vj∈N̂ (vi)

αijh
(l)
j , where N̂ (vi) = N (vi) ∪ {vi} is the self-augmented

neighborhood (i.e., the union of node vi and its 1-hop neighborhood N (vi)) and αij is the aggregation
weight with the source node being vi and the target node being vj (e.g., αij = 1√

di+1
√

dj+1
for

symmetric normalization and αij = 1
di+1 for row normalization). Based on the message passing

schema, the graph convolution for vi in GCN can be formulated as h(l+1)
i = σ

(
ĥ
(l)
i W(l)

)
, where

σ(·) is the nonlinear activation (e.g., ReLU).
Group Fairness. Group fairness aims to ensure the parity of model predictions among the demo-
graphic groups of data points, where the demographic groups are often determined by a sensitive
attribute (e.g., gender and race). Specifically, we adopt two widely used fairness criteria, i.e., statistical
parity [33] and equal opportunity [34], which are defined in Definitions 1 and 2, respectively.
Definition 1. (Statistical parity [33]) Given any label y ∈ {0, 1}, any sensitive attribute s ∈ {0, 1}
and the prediction ŷ ∈ {0, 1} inferred by a model, a model satisfies statistical parity if and only if the
acceptance rate with respect to the model predictions are equal for different demographic groups.
Mathematically, statistical parity can be expressed as

Pr (ŷ = 1 | s = 0) = Pr (ŷ = 1 | s = 1) (1)
where Pr (·) refers to the probability of an event.
Definition 2. (Equal opportunity [34]) Following the settings of Definition 1, a model satisfies equal
opportunity if and only if the true positive rate with respect to the model predictions are equal for
different demographic groups. Mathematically, equal opportunity can be expressed as

Pr (ŷ = 1 | y = 1, s = 0) = Pr (ŷ = 1 | y = 1, s = 1) (2)
where Pr (·) refers to the probability of an event.

Given Definitions 1 and 2, the bias with respect to statistical parity and equal opportunity are
naturally defined as the discrepancies in the acceptance rate and the true positive rate across different
demographic groups. Mathematically, the quantitative measures of bias with respect to statistical
parity and equal opportunity are defined as Eq. (3) and Eq. (4), respectively.

∆SP = |Pr (ŷ = 1 | s = 1)− Pr (ŷ = 1 | s = 0) | (3)
∆EO = |Pr (ŷ = 1 | y = 1, s = 1)− Pr (ŷ = 1 | y = 1, s = 0) | (4)

From the information-theoretic perspective, minimizing Eq. (3) and Eq. (4) is essentially equivalent
to eliminating the statistical dependency between the model prediction ŷ and the sensitive attribute s.
Consequently, to ensure group fairness, existing works [8, 9, 11] propose to impose the statistical
dependency (e.g., mutual information) between ŷ and s as regularization in the optimization problem.
Nevertheless, these works could not explicitly consider the bias caused by the message passing
schema. To this end, we seek to understand the role of message passing in the context of algorithmic
fairness. Based on that, we define the problem of bias amplification in message passing as follows:
Problem 1. Bias amplification in message passing.
Given: (1) An undirected graph G = {V,A}; (2) an L-layer GCN; (3) the vanilla message passing
schema in any l-th hidden layer ĥ(l)

i =
∑

vj∈N (vi)∪{vi} αijh
(l)
j ; (4) a sensitive attribute s; (5) a bias

measure bias for statistical parity.
Find: A binary decision regarding whether or not the bias will be amplified after message passing.

Based on the answer to Problem 1, our goal is to develop a generic fair message passing such that
the bias measure in Problem 1 will decrease after message passing. We define the problem of fair
message passing as follows:

2Although we only consider binary adjacency matrix, our theoretical analysis and proposed method can be
naturally generalized to graph with weighted edges by replacing 0/1 edge weight to other values.

3For notation simplicity, we denote h
(1)
i = xi for all vi ∈ V .
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(a) A toy example of calculating the majority neighbor ratio. (b) Homophily among the sensitive 
attributes of a node and its neighbors. 

(c) Empirical evidence of bias 
amplification in GCN.

(b) The correlation between the sensitive 
attribute of a node and its neighbors.

(a) A toy example of calculating majority neighbor ratio. (c) Empirical evidence of bias 
amplification in GCN.

Figure 1: The empirical evidence of bias amplification in GCN on the Pokec-z dataset. Best viewed
in color. In (b), majority neighbor ratio is grouped into 10 equal-width bins with width being 0.1, i.e.,
[0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0].

Problem 2. Fair message passing.
Given: (1) An undirected graph G = {V,A,X}; (2) an L-layer GCN; (3) a sensitive attribute s; (4)
a bias measure ∆SP.
Find: A fair message passing ĥ

(l)
i = MP

(
h
(l)
i ,G

)
such that ∆SP decreases after message passing.

4 Bias Amplification in Message Passing
In this section, we provide both the empirical evidence and the theoretical analysis on bias amplifica-
tion in message passing.

4.1 Empirical Evidence
We first empirically illustrate that message passing could amplify the bias. The design of our
experiment is based on the assumption that the learning results (e.g., class probabilities) from a fair
model (e.g., FairGNN [9]) should be independent of the sensitive attribute [9]. Therefore, we use
a logistic regression classifier to predict the sensitive attribute of a node using its corresponding
learning result output by a model, where the accuracy of the sensitive attribute estimator naturally
serves as an indicator of how biased a model is.

We investigate the effect of bias amplification of message passing on the Pokec-z dataset by comparing
the behavior of a two-layer multi-layer perception (MLP) and a two-layer GCN.4 Note that the only
difference between the MLP and GCN is whether the message passing is utilized or not, while the
hidden dimensions and the nonlinear activation function are the same with each other. The details
for the empirical evaluation are as follows. First, we train the MLP and GCN to predict labels using
the node features without sensitive attributes as input. When the graph neural networks reach the
best performance, we freeze the parameters of the first layer of both the MLP and GCN. Hence, the
first layer of the MLP and GCN can serve as embedding extractors. Second, we train two logistic
regression classifiers to predict sensitive attributes with the embeddings extracted from the MLP
and GCN, respectively. If the classifier can accurately predict the sensitive attribute, it implies that
those embeddings contain rich sensitive information. In this way, we use the accuracy as a proxy to
measure the dependency between sensitive attributes and embeddings extracted from the two models.
The evaluation results are presented in Figure 1. From the figure, we have three key observations.
First, from Figure 1(b), we can observe a strong positive correlation between the sensitive attribute of
a node and the sensitive attribute of its neighbors, i.e., a node tends to have the same sensitive attribute
as the majority of its neighbors. Second, as shown in Figure 1(c), the MLP predicts the sensitive
attribute of all nodes as the sensitive attribute of the majority demographic group, even when a node
and all its neighbors do not belong to the majority demographic group. Third, in Figure 1(c), the GCN
makes much more accurate predictions than the MLP when the neighbors of a node are more likely to
be in the minority group. The first and second observations imply that the embeddings extracted from
the MLP have little correlation with sensitive attributes, thus leading to the less biased predictions. On
the contrary, the GCN extracts the embeddings containing rich sensitive information for those nodes
that belong to the same demographic group as their neighbors, as indicated in the third observation,
regardless of the minority group and the majority group. These results demonstrate that message
passing could aggregate the sensitive information from the neighborhood, which further amplifies the
bias and guides the logistic regression classifier to correctly predict the sensitive attribute.

4.2 Theoretical Analysis
4Details about the Pokec-z dataset is deferred to Section 6 and Appendix G.1.
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(a) Classification accuracy (ACC) 

for each training epoch.

(b) AUC score (AUC) for each trai-

ning epoch.

Figure 2: Node classification accuracy (ACC) and AUC score
(AUC) curves of linear GCN (Linear GCN) vs. nonlinear GCN
(ReLU GCN) on the NBA dataset.

For analysis purposes, we consider
a binary sensitive attribute and an
L-layer linear GCN with row nor-
malization (i.e., αij =

1
di+1 ) for bi-

nary node classification, where lin-
ear GCN is a special type of GCN
model without the nonlinear acti-
vation (e.g., [4]).5 Although our
analysis relies on linearity, recent
works have shown that lack of non-
linearity in GCN enjoys almost the
same expressive power as nonlinear
GCN [35, 36]. Moreover, as shown
in Figure 2, linear GCN exhibits similar or even slightly better node classification accuracy than
its nonlinear counterpart, which also demonstrates that linearizing GCN is a good alternative to
understand the behavior of GNN models.

To analyze the connection between the bias amplification phenomenon and graph topology, we make
the assumption (Assumption 1) concerning the generation of graphs. Specifically, we use random
graphs to analyze the key properties in Proposition 1 of GNNs, which has been widely adopted in
previous works [12, 37, 38]. For example, FMP [12] investigates the connection between group
fairness and graph properties using random graphs as the basis for analysis. OOD-GNN [38] examines
the out-of-distribution generalization abilities of GNNs on specific random graphs with distribution
shifts. And Keriven et al. [37] explores the convergence and stability of GCNs by analyzing their
behavior on standard models of random graphs.
Assumption 1. The graphs discussed in theoretical analysis are generated by the Gilbert random
graph model [39], in which each edge is added independently with a fixed possibility P .

To measure how biased a GNN is after message passing, we further make the following assumption
on the existence of ideal fair node embedding. The intuition is that a fair graph neural network would
output fair node embeddings without sensitive information after the last hidden layer. Following this
intuition, a node embedding output by any GNN can be decomposed into a fair node embedding and
the residual (i.e., for a fair GNN, the residual would be 0).
Assumption 2. The output node embedding z from the last hidden layer is a linear combination
of fair embedding zt and bias residual zb, i.e., z = zt + zb, where the fair embedding gives fair
prediction while the bias residual corresponds to the bias in predictions. Written in matrix form, we
have Z = Zt + Zb.

Supposing that Assumption 2 holds, we show in Lemma 1 that for any vi ∈ V , the output embedding
from any hidden layer can be viewed as a linear combination of fair embedding and bias residual.
Proof is deferred in Appendix B.
Lemma 1. (Linear decomposition of a node embedding) Suppose that Assumption 2 holds. Given
an input graph G = {V,A,X} and an L-layer linear GCN with row normalization, we have

h
(l)
i =

(
t
(l)
i + b

(l)
i

)
W(1) . . .W(l−1) (5)

for any vi ∈ V and any hidden layer l ∈ {1, . . . , L}, where t
(l)
i = Ãl−1(ÃL)†ztW

† is the fair
embedding, b(l)

i = Ãl−1(ÃL)†zbW
† is the bias residual, Ã = D−1A is the row-normalized

adjacency matrix, and W† is the Moore–Penrose inverse of W = W(1)W(2) . . .W(L).

Lemma 1 offers a fresh perspective on the interplay between message passing and fairness. In
particular, we will show that message passing alters the distribution of bias residuals associated
with all nodes, thereby influencing fairness. Specifically, when the bias residuals of all nodes
converge to the same point after message passing, the output node embeddings from the last hidden
layer equals to the sum of fair node embeddings and a constant vector, resulting in fair prediction
results. Conversely, if the differences between the bias residuals from different demographic groups
are magnified through message passing, the unfairness in prediction results will be also amplified.
Therefore, the distributional shift in the bias residual reveals how message passing would affect the
fairness.

5Our analysis can be generalized to non-binary sensitive attribute and multi-class classification.
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Figure 3: An illustrative example of BeMap. After BeMap, the bias residuals will move towards the
fair centroid (the green point), whereas, after the vanilla message passing in GCN, they will move
towards the centroid of the majority group and the minority group (the red points).

For GCNs with row normalization, message passing essentially performs a weighted average over the
bias residuals from local neighborhoods. Since the summation of the weight from all the neighbors
is 1 for row normalization, the centroid of the distribution of the bias residual for any demographic
group remains unchanged during message passing. Please see the detailed proof in Appendix C.
In this case, an increase in the difference of bias residuals is directly related to the shrinkage in
the expected distance between the bias residual of any node and the centroid of its corresponding
demographic group. For example, if the expected distance is much larger than the distance between
centroids, then the distributions of bias residuals from various demographic groups likely exhibit
substantial overlapping areas. Within this overlap, identifying the demographic group to which a
specific bias residual belongs becomes challenging. This suggests that when the distance between
the centroids of two demographic groups is fixed, an increase in the expected distance results in
a considerable expansion of the overlapping area. Consequently, the difference between the two
distributions diminishes. Meanwhile, an extreme unfair situation is that the bias residual of any node
exactly falls into the centroid of its demographic group. Then the bias residual essentially becomes an
indicator for sensitive attributes. As a result, even if the input data excludes any information related
to sensitive attributes, GNNs can readily distinguish the sensitive attribute associated with each node.
It grants GNNs a convenient path to infer labels through the leaked information of sensitive attributes,
thus leading to severe unfairness.

To better understand the change of the expected distances during message passing, we introduce a
distance-based bias that captures the model bias. Let us denote the centroid of the bias residuals from
the majority as µ0 and denote the centroid from the minority as µ1.
Definition 3. (Distance-based bias) Suppose that we have an input graph G = {V,A,X} and
an L-layer GCN. For any l-th hidden layer, the distance-based bias is defined as the reciprocal of
the expected squared Euclidean distance from the bias residual of each node to the centroid of its
corresponding demographic group, which is shown below.

bias(l)(G,B(l), s) =
1

Evi [∥b
(l)
i − µ(vi)∥22]

(6)

where b(l)
i is the i-th row of B(l), and µ(vi) is the centroid of the bias residuals of all nodes belonging

to the demographic group of node vi.

With the distance-based bias, we furthermore show in Theorem 1 that the expected squared distance
would shrink after message passing in any l-th hidden layer, which is equivalent to the amplification
of the distance-based bias. Proof is deferred to Appendix C.
Theorem 1. (Distance shrinkage) Suppose we have an L-layer linear GCN with row normalization
and an input graph G = {V,A,X}. In the l-th hidden layer, let b(l)

i and di be the biased embedding
and the degree of any vi ∈ V , respectively. For any l-th hidden layer, we have

Evi [∥b
(l+1)
i − µ(vi)∥22] = Evi [

1

di
]Evi [∥b

(l)
i − µ(vi)∥22], (7)

which means bias amplification after message passing
(

bias(l)(G,B(l+1), s) < bias(l)(G,B(l), s)
)

.

Theorem 1 demonstrates that message passing drives the convergence of bias residuals towards
their centroids, thereby magnifying the differences in the distributions of bias residuals of different
demographic groups. Moreover, as the expectation of node degrees increases, the distance shrinks at
a faster rate. This distance shrinkage exacerbates distance-based biases, causing unfair predictions.
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5 BeMap: A Fair Message Passing Schema
In this section, we first present how to avoid bias amplification in message passing and then propose
a fair message passing method named BeMap.

5.1 Fair Message Passing
Motivated by the observation in Theorem 1 that bias amplification can lead to unfairness, we put
forward the idea that a fair message passing schema should possess the capability to automatically
diminish such differences of bias residuals across various demographic groups. Hence, a fair message
passing schema entails two primary objectives: (1) centroid consistency. The centroid of bias
residuals becomes the same across different demographic groups after fair message passing; (2)
distance shrinkage. The distance between bias residuals and their centroids will shrink through
message passing. An illustrative example is presented in Figure 3.

To achieve our first objective centroid consistency, as shown in Lemma 2, we have to make sure the
proportion of neighbors from each demographic group is similar.
Lemma 2. (Sufficient condition for centroid consistency) Suppose Assumption 1 and Assumption 2
hold, and we are given an input graph G = {V,A,X} and an L-layer linear GCN with row
normalization. For any node vi ∈ V , let N̂0 (vi) and N̂1 (vi) be the number of neighbors in
N̂ (vi) = N (vi) ∪ {vi} that belong to the minority group and majority group, respectively. In the
l-th hidden layer, the centroid of the bias residual b(l)

i keeps the same for any vi ∈ V when

N̂0 (vi)

N̂1 (vi)
=

r0
r1

, ∀vi ∈ V (8)

where rs, s ∈ {0, 1} is the ratio of neighbors from demographic group s, and r0 + r1 = 1.

Lemma 2 states that, as long as the self-augmented neighborhood of any node in the graph has the
same ratio of neighbors from each demographic group, the bias residuals would be centered around
the same centroid. Actually, the new fair centroid, which is denoted as µ̄, can be expressed as a linear
combination of the original centroid of each demographic group, i.e., µ̄ = r0µ0 + r1µ1. Therefore,
we can change the position of the fair centroid µ̄ by changing the ratio of each demographic group.
However, if edge deletion is used to control the ratio for every node, then the ratio rs are not supposed
to be some extreme values, i.e., 0 or 1. It is because that those extreme values will result in the
removal of a large number of edges, thus leading to a severe degradation in the utility of the model.
To ensure the balance between utility and fairness, we set the ratio of the minority group and majority
group to be the same, i.e., r0 = r1 = 1

2 .

To achieve our second objective distance shrinkage, as shown in Theorem 2, by increasing the
balanced self-augmented neighborhood to sufficiently large, the expected squared distance between
the bias residual and their fair centroids µ̄ will shrink after message passing via self-augmented
neighborhood. Proof is deferred to Appendix D.
Theorem 2. (Fair message passing) Suppose Lemma 2 holds. As long as N̂0 (vi) + N̂1 (vi) ≥ 4,
∀vi ∈ V , the expected squared distance between the bias residual b(l)

i and the fair centroid µ̄ will
shrink after message passing. Mathematically, we have

Evi [∥b
(l+1)
i − µ̄∥22] < Evi [∥b

(l)
i − µ̄∥22], l ∈ {1, . . . , L} (9)

5.2 BeMap Algorithm
To achieve centroid consistency and distance shrinkage, we propose a fair message passing
algorithm named BeMap, whose key idea is to perform message passing on a sufficiently large
and balanced self-augmented neighborhood (which we call fair neighborhood). To obtain the
fair neighborhood, we consider sampling (i.e., edge deletion) over the original self-augmented
neighborhood in BeMap. Note that other types of neighborhood augmentation techniques (e.g., edge
addition, edge rewiring) could also be applied to obtain the fair neighborhood, which we leave for
future work. Hereafter, BeMap is referred to as message passing over the sampled fair neighborhood.

In practice, there are two main challenges in obtaining the fair neighborhood in BeMap due to the long-
tailed in many real-world networks. First, there could exist some node vi such that N̂0 (vi) = N̂1 (vi)

and N̂0 (vi) + N̂1 (vi) ≥ 4 cannot be satisfied simultaneously. In this case, we apply the following
two empirical remedies.
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• If all neighbors in N̂ (vi) of a node vi belong to one demographic group, we sample a subset
of k nodes where k = max {4, β|N (vi) |}, |N (vi) | is the cardinality of N (vi) and β is a
hyperparameter. The intuition is that when the local neighborhood is sufficiently large to satisfy
Theorem 2 (i.e., k ≥ 4), decreasing the number of neighbors (i.e., the degree di of node vi)
helps reduce the difference between the expected squared distances before and after message
passing as shown in Eq. (7). Thus, it helps decelerate the bias residuals moving towards the
original centroid of the demographic group of vi.

• Otherwise, we keep the sampled neighborhood to be balanced, i.e., N̂0 (vi) = N̂1 (vi), by
sampling over N0 (vi) if N̂0 (vi) > N̂1 (vi) or N1 (vi) if N̂0 (vi) < N̂1 (vi). By balancing the
sampled neighborhood, it helps shrink the bias residual to converge into the fair centroid µ̄.

Second, there might exist some node vi such that its neighbors within L hops could contain node(s)
whose neighbors always belong to only one demographic group. Note that the receptive field of the
l-th hidden layer in an L-layer GCN is the l-hop neighborhood of a node. Then, for such node vi,
it is hard to maintain a balanced l-hop neighborhood if we apply uniform sampling, so as to satisfy
Lemma 2. To alleviate this issue, we propose balance-aware sampling. Its key idea is to adjust the
sampling probability based on the difference between the numbers of neighbors in the majority group
and in the minority group. Specifically, for any node vi ∈ V , we define the balance score as

balancei =
1

|Ñ0 (vi)− Ñ1 (vi) |+ δ
(10)

where δ is a hyperparameter to avoid division by zero and Ñ0 (vi) as well as Ñ1 (vi) are the numbers of
all neighbors within L hops that belong to the minority group and majority group, respectively. Then
in the balance-aware sampling, for any node vi ∈ V , the sampling probability of node vj ∈ N (vi) is

P (vj |vi) =
balancej∑

vk∈N (vi)
balancek

(11)

In general, BeMap includes three key steps: pre-processing, balance-aware sampling, and fair
message passing. First, during pre-processing, we precompute the sampling probability based on
Eq. (11). Then, during the every epoch of training, we first generate the fair neighborhood using the
balance-aware sampling, and then aggregate neighbors’ information on the generated fair subgraph,
which is called fair message passing. Finally, we update the model parameters with back-propagation.
The detailed workflow and the extension to non-binary sensitive attribute of BeMap is presented in
Appendix E and Appendix F, respectively.

6 Experiments
6.1 Experimental Settings
Datasets. We conduct experiments on 4 real-world datasets, including Pokec-z [40], Pokec-n [40],
NBA [9], Credit [11], and Recidivism [28]. For each dataset, we use the same 50%/25%/25% splits
for train/validation/test sets. Detailed descriptions of the datasets are provided in Appendix G.1.
Baseline Methods. We compare BeMap with graph neural networks with and without fairness
considerations. Graph neural networks without fairness considerations include GCN [1] and Graph-
SAGE [2]. Fair graph neural networks for comparison include FairGNN [9], EDITS [11], Fair-
Drop [13], NIFTY [28] and FMP [12]. Descriptions of baseline methods are in Appendix G.2. For
BeMap, BeMap (sym) uses GCN with row normalization, BeMap (sym) uses GCN with symmetric
normalization, and BeMap (gat) uses GAT.
Parameter Settings. Unless otherwise specified, we use default hyperparameter settings in the
released code of corresponding publications. For BeMap, we set the learning rate as 1e− 3, weight
decay as 1e− 5, β as 1

4 , and δ as 1. We set the backbone model of BeMap as a 2-layer GCN with 128
hidden dimensions and the optimizer as Adam. To be consistent with the number of hidden layers,
for each node, all neighbors within 2 hops are used to calculate the balance score in Eq. (10).
Metrics. We consider the task of semi-supervised node classification. To measure the utility, we
use the classification accuracy (ACC) and the area under the receiver operating characteristic curve
(AUC). Regarding fairness, we use ∆SP and ∆EO mentioned in Section 3. For ACC and AUC, the
higher the better; while for ∆SP and ∆EO, the lower the better.
6.2 Experimental Results
Main Results. The main evaluation results on the utility (ACC and AUC) and fairness (∆EO and ∆SP)
are presented in Table 1. Similar evaluation results on Pokec-n are presented in Table 6. Regarding
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Table 1: Main results on semi-supervised node classification. Higher is better (↑) for ACC and AUC
(white). Lower is better (↓) for ∆SP and ∆EO (gray). Bold font indicates the best performance for fair
graph neural networks, and underlined number indicates the second best.

Methods Pokec-z NBA
ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓ ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓

GCN 70.62± 0.22 76.41± 0.61 8.86± 2.32 7.81± 1.99 72.16± 0.46 78.45± 0.25 4.00± 2.15 13.07± 3.34
GraphSAGE 70.27± 0.32 75.73± 0.30 7.11± 2.69 6.97± 2.65 75.21± 0.86 77.83± 2.00 7.81± 3.45 8.87± 5.58

GAT 64.24 ± 0.57 69.48 ± 0.53 11.56 ± 0.94 12.40 ± 1.85 72.14 ± 2.34 76.94 ± 0.82 5.97 ± 2.89 12.07 ± 2.47
FairGNN 65.74± 2.49 72.54± 4.21 4.31± 0.80 4.34± 1.22 72.39± 0.46 77.74± 1.24 3.96± 1.81 4.94± 2.35
EDITS 67.25± 0.61 73.05± 0.57 10.36± 1.20 9.00± 1.34 66.19± 0.75 69.94± 0.72 18.15± 3.64 13.19± 3.48

FairDrop 67.45± 0.80 73.77± 0.50 9.46± 2.06 7.91± 1.59 70.81± 0.63 77.05± 0.46 5.42± 1.59 7.30± 1.34
NIFTY 67.55± 0.79 73.87± 0.23 8.83± 1.60 7.00± 1.70 60.84± 3.32 65.94± 1.30 10.03± 5.46 5.70± 3.21
FMP 72.05± 0.42 80.50± 0.11 5.03± 1.22 1.72± 0.64 67.57± 1.58 77.73± 0.35 31.41± 1.11 27.17± 3.19

BeMap (row) 68.88± 0.30 72.34± 0.44 0.74± 0.52 1.55± 0.25 67.84± 0.64 78.87± 0.17 3.91± 1.28 4.08± 2.15
BeMap (sym) 68.94± 0.46 73.01± 0.29 1.45± 0.40 1.03± 0.42 65.37± 1.77 78.76± 0.62 3.54± 0.97 3.81± 0.98
BeMap (gat) 66.89 ± 1.26 71.42 ± 0.96 0.97 ± 0.22 1.29 ± 0.78 71.99 ± 1.10 77.36 ± 0.01 4.01 ± 3.26 5.08 ± 2.8

Methods Recidivism Credit
ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓ ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓

GCN 85.89± 0.18 88.74± 0.23 8.51± 0.48 5.75± 1.08 75.80± 0.92 73.83± 1.50 17.92± 0.50 15.41± 0.77
GraphSAGE 85.00± 0.52 89.41± 0.36 8.99± 0.37 6.14± 0.54 74.25± 0.25 74.35± 0.12 13.82± 0.84 11.62± 0.87

GAT 88.66 ± 1.08 92.31 ± 0.62 7.45 ± 0.48 4.99 ± 0.67 70.61 ± 2.30 73.78 ± 0.35 10.85 ± 0.62 8.84 ±0.56
FairGNN 69.54± 5.70 80.79± 5.33 6.61± 2.29 4.75± 3.50 75.34± 1.18 70.79± 2.76 11.23± 4.69 8.95± 2.76
EDITS 83.88± 0.84 86.82± 0.40 7.63± 0.57 5.06± 0.44 73.49± 0.03 73.52± 0.10 13.33± 0.15 10.93± 0.06

FairDrop 91.81± 0.36 92.17± 0.86 6.80± 0.22 3.30± 0.13 68.41± 9.20 70.76± 4.11 14.23± 2.24 12.01± 2.14
NIFTY 83.43± 0.83 84.56± 0.33 4.75± 0.92 4.04± 1.46 73.48± 0.04 72.33± 0.01 11.80± 0.09 9.51± 0.08
FMP 56.80± 10.83 61.79± 4.87 22.43± 9.72 17.50± 8.87 74.37± 0.21 72.92± 0.14 14.07± 0.78 11.87± 0.72

BeMap (row) 77.61± 0.33 81.11± 1.44 2.87± 0.46 2.09± 0.38 71.46± 0.74 69.41± 0.71 10.51± 0.23 10.87± 1.55
BeMap (sym) 77.66± 0.35 80.77± 1.02 1.76± 0.14 2.68± 0.12 72.55± 0.28 72.98± 0.66 10.74± 0.46 8.36± 0.46
BeMap (gat) 71.83 ± 1.23 71.97 ± 1.28 3.67 ± 1.22 3.60 ± 1.78 76.72± 0.77 68.18 ± 0.50 7.92± 1.03 6.22± 0.57

Table 2: Ablation study of different sampling strategy. Higher is better (↑) for ACC and AUC (white).
Lower is better (↓) for ∆SP and ∆EO (gray). Bold font indicates the best performance for fair graph
neural networks, and underlined number indicates the second best.

Sampling Pokec-z NBA
Methods ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓ ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓
Uniform 69.65± 0.23 73.50± 0.24 4.98± 0.78 2.87± 1.19 72.67± 1.58 78.48± 0.42 3.70± 1.18 12.02± 2.97
Degree 70.00± 0.36 73.98± 0.37 5.85± 1.46 3.40± 1.84 71.64± 1.41 78.37± 0.32 4.25± 1.60 14.88± 4.60

Balance-aware 68.94± 0.46 73.01± 0.29 1.45± 0.40 1.03± 0.42 65.37± 1.77 78.76± 0.62 3.54± 0.97 3.81± 0.98

Sampling Recidivism Credit
Methods ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓ ACC(%) ↑ AUC(%) ↑ ∆SP(%) ↓ ∆EO(%) ↓
Uniform 81.80± 0.93 76.58± 0.31 4.40± 0.15 3.29± 0.45 75.04± 0.40 73.66± 0.14 14.34± 0.64 11.70± 0.54
Degree 85.06± 1.16 87.12± 0.52 6.13± 0.13 2.78± 0.90 75.82± 0.45 73.64± 0.06 15.45± 0.82 12.59± 0.84

Balance-aware 77.66± 0.35 80.77± 1.02 1.76± 0.14 2.68± 0.12 72.55± 0.28 72.98± 0.66 10.74± 0.46 8.36± 0.46

fairness, our proposed BeMap is the only method that can consistently mitigate bias (i.e., a smaller
value of ∆EO and ∆SP than the vanilla GCN and GAT) for all datasets. Moreover, compared with
the vanilla GCN and GAT, all the variants of BeMap could effectively reduce ∆EO and ∆SP to a low
degree. For example, on the Pokec-z dataset, ∆EO(∆SP) are reduced to 8.35% (19.84%), 24.75%
(14.77%) and 8.39% (10.40%) of original values for BeMap (row), BeMap (sym), and BeMap (gat),
respectively. More detailed statistics are exhibited in Table 5. At the same time, BeMap also achieves
comparable performance in terms of the utility (ACC and AUC). This is because BeMap generates a
new balanced graph for each epoch, analogous to data augmentation, which prevents the graph neural
network from overfitting. For example, on NBA, the AUC scores of BeMap (sym) and BeMap (row)
are 78.87% and 78.76%, respectively, both of which are higher than the AUC of vanilla GCN and
GraphSAGE (78.45% and 77.83%, respectively). In short words, BeMap could achieve a good
balance between mitigating the bias and maintaining the classification accuracy.
Ablation Study. To evaluate the effectiveness of the balance-aware sampling, we compare it with
two other heuristic sampling strategies: (1) uniform sampling (Uniform), which assigns the same
probability to all neighbors of a node, and (2) degree-based sampling (Degree), which sets the
probability of node vi in the neighborhood of node u as P (vi | u) ∝ d0.75i ,∀vi ∈ N (u) [41].
From Table 2, we can see that the balance-aware sampling achieves the lowest ∆EO and ∆SP on all
datasets and maintains a comparable classification accuracy, which demonstrates the superiority of
the balance-aware sampling in balancing the utility and fairness.

7 Conclusion
In this paper, we study bias amplification in message passing and fair message passing. We empirically
and theoretically prove that message passing amplifies the bias as long as the numbers of neighbors
from different demographic groups for each node are unbalanced. Guided by our analyses, we
propose BeMap, which relies on a balance-aware sampling strategy to generate a fair neighborhood
among different demographic groups. Then, BeMap performs message passing over the generated
fair neighborhood. Extensive evaluations on the real-world datasets demonstrate the effectiveness of
our proposed method in mitigating bias while maintaining utility.
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A Key Symbols of BeMap

Table 3: Table of key symbols in the paper.

Symbol Definition
V The set of nodes
Vs The set of nodes with the sensitive attribute of s
N The set of 1-hop neighbors
N̂ The set of 1-hop neighbors and the node itself
N k The set of k-hop neighbors
Ns The set of 1-hop neighbors with the sensitive attribute of s

A The adjacency matrix
Ã The row-normalized adjacency matrix
X The node feature matrix
H(k+1) The node representation matrix of the k-th hidden layer
D The degree matrix of nodes
W(k) The weight matrix of the k-th hidden layer
T The fair embedding matrix
B The bias residual matrix

xi The node feature of the node i

h
(k)
i The node representation of the node i in the k-th hidden layer

t
(k)
i The fair embedding of the node i in the k-th hidden layer
b
(k)
i The bias residual of the node i in the k-th hidden layer

b
(k)
i,s The bias residual of the node i with the sensitive attribute of s in the k-th hidden layer

µ The centroid of all the nodes
µs The centroid of the nodes with the sensitive attribute of s

di The degree of the node i
rs The ratio of the neighbors with the sensitive attribute of s in BeMap

B Proof of Lemma 1
Given a L-layer linear GCN, the weight matrix in the l-th hidden layer is represented as W(l), and
the input node features and output node features for all nodes are denoted as H(l) and H(l+1). Then
the output node features can be calculated as H(l+1) = ÃH(l)W(l), where Ã is the normalized
adjacency matrix. Therefore, the output node feature of the last hidden layer can be expressed as

Z = ÃLH(1)W (12)

where W = W(1)W(2) . . .W(L). Then given a particular output node feature Z, if there exists a
solution, then a feasible solution of the input node feature is

H(1) = (ÃL)†ZW† (13)

where W† and (ÃL)† are the Moore–Penrose inverse of W and ÃL, respectively.

Based on Assumption 2, the input node feature can be further expressed as

H(1) = (ÃL)†ZtW
† + (ÃL)†ZbW

† = T(1) +B(1) (14)

where T(1) = (ÃL)†ZtW
† is the fair part of input node features while B(1) = (ÃL)†ZbW

† is
the bias residual which lead to discrimination towards different demographic groups in predictions.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
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Therefore, the input node feature could be linearly separated into two vectors: the fair embeddings
T(1) and the bias residual B(1).

Then for any l-th hidden layer ∈ {1, . . . , L}, the following expression holds.

H(l) = ÃH(l−1)W(l−1)

= Ãl−1H(1)W(1) . . .W(l−1)

= Ãl−1
(
T(1) +B(1)

)
W(1) . . .W(l−1)

=
(
Ãl−1(ÃL)†ZtW

† + Ãl−1(ÃL)†ZbW
†
)
W(1) . . .W(l−1)

=
(
T(l) +B(l)

)
W(1) . . .W(l−1)

(15)

where T(l) = Ãl−1(ÃL)†ZtW
† and B(l) = Ãl−1(ÃL)†ZbW

†. Written in vector form, we
naturally have the following expression

h
(l)
i =

(
t
(l)
i + b

(l)
i

)
W(1) . . .W(l−1) (16)

which completes the proof.

C Analysis on Linear GCN
In this section, we first prove that the centroid for each demographic group remains unchanged after
message passing. Then we prove Theorem 1 (i.e., distance shrinkage).

To complete both proofs, we present the following two propositions. The first proposition focuses on
two key properties of Gilbert random graphs (Assumption 1).
Proposition 1. Given a Gilbert random graph G, we have the following key properties.

• Independence between nodes. For any node vi in G, its node features and the node features
of any of its 1-hop neighbor vj ∈ N (vi) are independently and identically distributed, where
N (·) represents the set of 1-hop neighbors.

• Independence between node features and topology. The probability distribution of node
features are independent to topology structure of the graph G, i.e., the input node features X is
independent with the adjacency matrix A.

Proof. First, we first prove the independence between nodes. Note that in a Gilbert random graph,
an edge is randomly added with a fixed probability. This process is equivalent to randomly selecting
one node from the graph as the starting point and then randomly selecting another node as the
endpoint. Consequently, two nodes from the same edge are obtained through simple random sampling
from the given probability distribution. Therefore, node features for any node and its neighbors are
independent and identically distributed.

Second, since the edge generation of a Gilbert random graph is independent to node features, the
probability distribution of node features are naturally independent to the topology structure.

For Gilbert random graphs, since node features are independent to topology, the bias residual matrix
B is also independent to the adjacency matrix A. Actually, a prerequisite for this independence
is that, for any node vi, the information from its neighbors does not affect the mean and variance
of the biased vector distribution for the node vi. Therefore, we propose proposition 2 and give the
corresponding proof.
Proposition 2. Given a graph G, if bias residual matrix is independent to the adjacency matrix, then
the following expressions hold true:

Evi∈V
[
Evj∈N (vi) [bj ]

]
= Evj∈V [bj ] (17a)

Evi∈V
[
Evj∈N (vi)

[
(bj − E[bj ])

2
]]

= Evj∈V [(bj − E[bj ])
2] (17b)

where N (vi) means the set of the neighbors of the node vi.

14
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Proof. We will only prove Eq. (17a) here, and the proof of Eq. (17b) is exactly the same.

Actually, proving proposition 2 is equivalent to proving its contrapositive. Therefore, we only need to
prove that given a graph G, if the following expression hold true:

Evi∈V
[
Evj∈N (vi) [bj ]

]
̸= Evj∈V [bj ] (18)

then the bias residual matrix is not independent to the adjacency matrix.

Imagine the situation that the bias residual matrix is independent to adjacency matrix. It means that
we cannot obtain any information of the adjacency matrix even if we have the bias residual matrix.
Then given the bias residual matrix, the probability of correctly predicting the adjacency matrix
should be the same as random guessing. Considering a graph with N nodes, the adjacency matrix
contains a total of N2 elements. With each element having two possible values, 0 or 1, the probability
of random guessing correctly is given by Pr (random) = 1

2N2 .

However, we can readily identify two specific types of graph topology structure that fail to meet the
requirement of Eq. (18). Then we can prove that if Eq. (18) holds true, the possibility of predicting
the adjacency matrix is larger than random guessing. Here are the two types of graph structures.

The first type is a graph with only self-loop edges. In such a graph, the adjacency matrix is an identity
matrix. For this particular graph topology, regardless of the distribution of the bias matrix, Eq. (17a)
always holds for this particular graph topology.

Another type of graph is a cyclic graph. Each node in the graph is assigned a unique sequential
number from 1 to N , and the nodes are sorted accordingly. We denote the node with number k as
vk. Node vk is exclusively connected to nodes vk−1 and vk+1. The adjacency matrix for this type
of graph topology is shown below. For this graph structure, we can mathematically prove that the
left-hand side of Eq. (17a) represents the expectation obtained by summing the values twice for each
node and taking the average subsequently, which is equal to the right-hand side of Eq. (17a).



0 1 0 0 . . . 1
1 0 1 0 . . . 0
0 1 0 1 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 0


Hence, if Eq. (18) holds, the adjacency matrices of the aforementioned two types of graphs do not
satisfy the requirement. As a result, the number of possible adjacency matrices will be less than
or equal to

(
2N

2 − 2
)

. Therefore, the probability of correctly predicting the adjacency matrix,

Pr (correct), satisfies Pr (correct) ≥ 1
2N2−2

> Pr (random) = 1
2N2 . Thus, the contrapositive is valid

because the adjacency matrix is not independent to the bias input matrix, which completes the proof
of Proposition 2.

With the above two propositions hold, we will further prove the stable centroid after message passing
(Appendix C.1) and distance shrinkage (Theorem 1, Appendix C.2).

C.1 Stable Centroid

Here, we prove that, for GCNs with row normalization, the distribution centroid keeps unchanged
after message passing. Mathematically, our goal is to prove the following equation.

Evi∈V

[
b
(l+1)
i

]
= Evj∈V

[
b
(l)
j

]
(19)
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In the l-th iteration of message passing, the mean of the bias residuals can be calculated as

Evi∈V

[
b
(l+1)
i

]
= Evi∈V

 ∑
vj∈N (vi)

αib
(l)
j

 = Evi∈V

αi

∑
vj∈N (vi)

b
(l)
j


= Evi∈V

αi

∑
vj∈N (vi)

Evj∈N (vi)

[
b
(l)
j

] = Evi∈V

[
Evj∈N (vi)

[
b
(l)
j

]]
= Evj∈V

[
b
(l)
j

]
(20)

which completes the proof.

C.2 Proof of Theorem 1 (Distance Shrinkage)

Let µ = µ(vi) and b̂
(l+1)
i = b

(l+1)
i − µ. We have

Evi [∥b
(l+1)
i − µ(vi)∥22]

= Evi∈V

[(
b
(l+1)
i − µ

)T (
b
(l+1)
i − µ

)]
= Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]

= Evi∈V


 ∑

vj∈N (vi)

αib
(l)
j − µ

T  ∑
vj∈N (vi)

αib
(l)
j − µ




= Evi∈V


 ∑

vj∈N (vi)

αib̂
(l)
j

T  ∑
vj∈N (vi)

αib̂
(l)
i




= Evi∈V

α2
i

∑
vj∈N (vi)

∑
vk∈N (vi)

(
b̂
(l)
j

)T
b̂
(l)
k


= Evi∈V

α2
i

∑
vj∈N (vi)

(
b̂
(l)
j

)T
b̂
(l)
j


︸ ︷︷ ︸

①

+Evi∈V

α2
i

∑
vj∈N (vi)

∑
vk∈N (vi)\{vj}

(
b̂
(l)
j

)T
b̂
(l)
k


︸ ︷︷ ︸

②

(21)

For ①, we have

Evi∈V

α2
i

∑
vj∈N (vi)

(
b̂
(l)
j

)T
b̂
(l)
j


= Evi∈V

α2
i

∑
vj∈N (vi)

Evj∈N (vi)

[(
b̂
(l)
j

)T
b̂
(l)
j

]
= Evi∈V

[
αiEvj∈N (vi)

[(
b̂
(l)
j

)T
b̂
(l)
j

]]
= Evi∈V [αi]Evi∈V

[
Evj∈N (vi)

[(
b̂
(l)
j

)T
b̂
(l)
j

]]
= Evi∈V

[
1

di

]
Evi∈V

[(
b̂
(l)
i

)T
b̂
(l)
i

]

(22)
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where di is the degree of the i-th node. For ②, we have

Evi∈V

α2
i

∑
vj∈N (vi)

∑
vk∈N (vi)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k


= Evi∈V

[
α2
i

]
Evi∈V

 ∑
vj∈N (vi)

∑
vk∈N (vi)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k


= Evi∈V

[
α2
i

] 1

|V|
∑
vi∈V

∑
vj∈N (vi)

∑
vk∈N (vi)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k

= Evi∈V
[
α2
i

] 1

|V|
∑
vj∈V

∑
vk∈N 2(vj)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k

(23)

where N 2 (vj) is the set of the 2-hop neighbors of the node vj . Since the bias residual matrix B

is independent to the adjacency matrix A, it is also independent to Ã = ϕ(A2), where ϕ(·) is the
function that sets the diagonal elements of a given matrix to 0. Let Ñ (v) represent the neighborhood
of node v in the new adjacency matrix Ã. Please note that the new neighborhood Ñ (·) is the 2-hop
neighborhood excluding the node itself, i.e., Ñ (vi) = N 2 (vi) \ {i}. Then we have

Evi∈V

α2
i

∑
vj∈N (vi)

∑
vk∈N (vi)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k


= Evi∈V

[
α2
i

] 1

|V|
∑
vj∈V

∑
vk∈N 2(vj)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k

= Evi∈V
[
α2
i

]
Evj∈V

 ∑
vk∈Ñ (vj)

(
b̂
(l)
j

)T
b̂
(l)
k


= Evi∈V

[
α2
i

]
Evj∈V

(b̂(l)
j

)T ∑
vk∈Ñ (vj)

b̂
(l)
k



(24)

Since there is no self-loop in Ã, the bias residual b̂j is different from the bias residual vector b̂k,
hence independent to b̂k. Therefore, we have

Evi∈V

α2
i

∑
vj∈N (vi)

∑
vk∈N (vi)\{j}

(
b̂
(l)
j

)T
b̂
(l)
k

 ②

= Evi∈V
[
α2
i

]
Evj∈V

(b̂(l)
j

)T ∑
vk∈Ñ (vj)

b̂
(l)
k


= Evi∈V

[
α2
i

]
Evj∈V

[(
b̂
(l)
j

)T]
Evj∈V

 ∑
vk∈Ñ (vj)

b̂
(l)
k


= Evi∈V

[
α2
i

]
0T Evj∈V

 ∑
vk∈Ñ (vj)

b̂
(l)
k


= 0

(25)

Combining everything together, we have the following equation holds.

Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]
= Evi∈V

[
1

di

]
Evi∈V

[(
b̂
(l)
i

)T
b̂
(l)
i

]
(26)
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Based on Eq. (26), for every demographic group, the corresponding distance will shrink at the rate
proportional to the reciprocal of node degree, which completes the proof of Theorem 1.

D Analysis on BeMap
In this section, we prove centroid consistency (Appendix D.1) and distance shrinkage (Ap-
pendix D.2). We first present a variant of Proposition 2 in Proposition 3.
Proposition 3. Given a graph G and a specific demographic group S, if bias residuals from the
demographic group is independent to the adjacency matrix, then the following equations holds

Evi∈V
[
Evj∈N (vi)∩S [bj ]

]
= Evj∈S [bj ] (27)

Evi∈V

[
Evj∈N (vi)∩S

[(
bj − Evj∈S [bj ]

)2]]
= Evj∈S

[(
bj − Evj∈S [bj ]

)2]
(28)

where N (vi) means the set of the neighbors of the node vi.

Proof. Similar to the proof of Proposition 2, we prove the contrapositive related to Eq. (27). Specif-
ically, we want to prove that given a graph and a specific demographic group S, if the following
equation holds

Evi∈V
[
Evj∈N (vi)∩S [bj ]

]
̸= Evj∈S [bj ] (29)

the bias residual matrix from the demographic group S is not independent to the adjacency matrix. To
begin with, same as Appendix C, when the bias residuals are independent to the adjacency matrix, then
we can easily have the probability of correctly predicting the adjacency matrix Pr(random) = 1

2N2

with N representing the number of nodes.

Then we will prove that if Eq. (29) is true, the probability of correctly predicting the adjacency matrix
will be lager than that of random guessing. First, we give every node a unique index. For the nodes
from the demographic group S, we assign them consecutive numbers from 1 to |S|, and assign the
nodes that do not belong to the demographic group S the consecutive numbers from |S|+ 1 to N .
Then we sort all the nodes, and use vk to represent the node with the index k.

Consider the given adjacency matrix A∗ listed below. Specifically, the matrix M1 is a |S| × |S|
matrix which can be any type of adjacency matrices described in Proof C, i.e., the identity matrix
or the adjacency matrix of a cyclic graph. The matrix M2 is a (N − |S|)× |S| matrix with all the
elements being 1. The matrix M3 can be any matrix whose shape is (N − |S|) × (N − |S|). We
can naturally prove that the adjacency matrix A∗ does not meet the requirement of Eq. (29). For
any node vk from the demographic group S, the neighbor relationship between the node vi and its
neighbors N (vi)∩S from the demographic group S can be depicted by the matrix M1. Then due to
Proof C, the expression of Evi∈S

[
Evj∈N (vi)∩S [bj ]

]
= Evj∈S [bj ] holds true for the nodes from the

demographic group S . For the nodes vi which are not from the demographic group S , their neighbors
N (vi) ∩ S from the demographic group S are the demographic group S since any element in the
matrix M2 is 1. Then naturally, the expression of Evi∈V−S

[
Evj∈N (vi)∩S [bj ]

]
= Evj∈S [bj ] holds

true. Therefore, the given adjacency matrix A∗ cannot satisfy Eq. (29).

A∗ =

[
M1 MT

2
M2 M3

]
Since the matrix M1 has at least two possible solutions listed in Proof C and the matrix M3

has 2(N−|S|)×(N−|S|) possible solutions, the matrix A∗ has at least 2(N−|S|)×(N−|S|)+1 possi-
ble solutions. Therefore, the probability of correcting predicting the adjacency matrix satisfies
Pr (correct) ≥ 1

2N2−2(N−|S|)×(N−|S|)+1
> 1

2N2 = Pr (random). Thus, the contrapositive is valid,
which completes the proof.

D.1 Centroid Consistency

First, in the following paper, the last subscript separated by the comma on the lower right corner are
used to refer to the demographic group to which bias vectors belongs. For example, bi,s represents
the bias vector of the node vi with the sensitive attribute of s. Then the mean of the biased vector
b
(l+1)
i can be calculated as
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Evi∈V

[
b
(l+1)
i

]
= Evi∈V

 ∑
vj∈N0(vi)

αib
(l)
j,0 +

∑
vj∈N1(vi)

αib
(l)
j,1


= Evi∈V

 ∑
vj∈N0(vi)

αib
(l)
j,0

+ Evi∈V

 ∑
vj∈N1(vi)

αib
(l)
j,1


= Evi∈V

αi

∑
vj∈N0(vi)

b
(l)
j,0

+ Evi∈V

αi

∑
vj∈N1(vi)

b
(l)
j,1


= Evi∈V

[
αi|N0 (vi) |Evj∈N0(vi)

[
b
(l)
j,0

]]
+ Evi∈V

[
αi|N1 (vi) |Evj∈N1(vi)

[
b
(l)
j,1

]]
= Evi∈V

[
r0Evj∈N0(vi)

[
b
(l)
j,0

]]
+ Evi∈V

[
r1Evj∈N1(vi)

[
b
(l)
j,1

]]
= r0Evj∈V0

[
b
(l)
j,0

]
+ r1Evj∈V1

[
b
(l)
j,1

]
(30)

where Ns (vi) represent the neighbors of the node vi with the sensitive attribute s.

For non-binary sensitive attribute s ∈ {0, . . . , S − 1}, we can easily rewrite the above results as

Evi∈V

[
b
(l+1)
i

]
=

S−1∑
s=0

rsEvj∈Vs

[
b
(l)
j,s

]
(31)

Actually, Eq. (30) and Eq. (31) hold for any node regardless of its sensitive attribute. Therefore, we
successfully prove centroid consistency.

D.2 Distance Shrinkage

We will calculate the distance Evi [∥b
(l+1)
i − µ̄∥22] = Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]
here. First, we

simplify the expression of the bias residual b̂(l+1)
i

b̂
(l+1)
i = b

(l+1)
i − Evi∈V

[
b
(l+1)
i

]
=

∑
vj∈N0(vi)

αib
(l)
j,0 +

∑
vj∈N1(vi)

αib
(l)
j,1 − Evi∈V

 ∑
vj∈N0(vi)

αib
(l)
j,0

− Evi∈V

 ∑
vj∈N1(vi)

αib
(l)
j,1


=

∑
vj∈N0(vi)

αib
(l)
j,0 +

∑
vj∈N1(vi)

αib
(l)
j,1 − Evi∈V

[
r0Evj∈N0(vi)

[
b
(l)
j,0

]]
+ Evi∈V

[
r1Evj∈N1(vi)

[
b
(l)
j,1

]]
=

∑
vj∈N0(vi)

αib
(l)
j,0 +

∑
vj∈N1(vi)

αib
(l)
j,1 − r0Evj∈V0

[
b
(l)
j,0

]
− r1Evj∈V1

[
b
(l)
j,1

]
=

∑
vj∈N0(vi)

αi

(
b
(l)
j,0 − Evj∈V0

[
b
(l)
j,0

])
+

∑
vj∈N1(vi)

αi

(
b
(l)
j,1 − Evj∈V1

[
b
(l)
j,1

])
=

∑
vj∈N0(vi)

αib̂
(l)
j,0 +

∑
vj∈N1(vi)

αib̂
(l)
j,1

(32)
where Ns (vi) represent the set of neighbors with the sensitive attribute of s for the node vi, Vs

represent the set of all the nodes with the sensitive attribute of s, and b̂
(l)
j,s = b

(l)
j,s−Evj∈Vs

[
b
(l)
j,s

]
, s ∈

{0, 1}. Obviously, the mean of the distribution of b̂(l)
j,s is 0. Then the expectation of distance will be

expressed as:
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Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]

= Evi∈V


 ∑

vj∈N0(vi)

αib̂
(l)
j,0 +

∑
vj∈N1(vi)

αib̂
(l)
j,1

T  ∑
vj∈N0(vi)

αib̂
(l)
j,0 +

∑
vj∈N1(vi)

αib̂
(l)
j,1




= Evi∈V

α2
i

∑
vj∈N0(vi)

∑
vk∈N0(vi)

(
b̂
(l)
j,0

)T
b̂
(l)
k,0

+ Evi∈V

α2
i

∑
vj∈N1(vi)

∑
vk∈N1(vi)

(
b̂
(l)
j,1

)T
b̂
(l)
k,1


+ 2Evi∈V

α2
i

∑
vj∈N0(vi)

∑
vk∈N1(vi)

(
b̂
(l)
j,0

)T
b̂
(l)
k,1


≤ 2Evi∈V

α2
i

∑
vj∈N0(vi)

∑
vk∈N0(vi)

(
b̂
(l)
j,0

)T
b̂
(l)
k,0


︸ ︷︷ ︸

①

+2Evi∈V

α2
i

∑
vj∈N1(vi)

∑
vk∈N1(vi)

(
b̂
(l)
j,1

)T
b̂
(l)
k,1


︸ ︷︷ ︸

②

(33)

The first item ① can be simplified as

Evi∈V

α2
i

∑
vj∈N0(vi)

∑
vk∈N0(vi)

(
b̂
(l)
j,0

)T
b̂
(l)
k,0


= Evi∈V

α2
i

∑
vj∈N0(vi)

(
b̂
(l)
j,0

)T
b̂
(l)
j,0

+ Evi∈V

α2
i

∑
vj∈N0(vi)

∑
vk∈N0(vi)\{j}

(
b̂
(l)
j,0

)T
b̂
(l)
k,0


= Evi∈V

[
α2
i d

(0)
i Evj∈N0(vi)

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]]
+ Evi∈V

[
α2
i

] |V0|
|V|

Evj∈V0

(b̂(l)
j,0

)T ∑
vk∈Ñ0(vj)

b̂
(l)
k,0


= Evi∈V

[
α2
i d

(0)
i

]
Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
+ Evi∈V

[
α2
i

] |V0|
|V|

Evj∈V0

[(
b̂
(l)
j,0

)T]
Evj∈V0

 ∑
vk∈Ñ0(vj)

b̂
(l)
k,0


= Evi∈V [r0αi]Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
+ 0

= r0Evi∈V

[
1

di

]
Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
(34)

where d
(s)
i the the number of the node vi’s neighbors with the sensitive attribute of s, and Ñs (vi) is

the neighbors from Ñ (vi) with the sensitive attribute of s, s ∈ {0, 1}.

Similarly, the second item ② can be simplified as:

Evi∈V

α2
i

∑
vj∈N1(vi)

∑
vk∈N1(vi)

(
b̂
(l)
j,1

)T
b̂
(l)
k,1

 = r1Evi∈V

[
1

di

]
Evj∈V1

[(
b̂
(l)
j,1

)T
b̂
(l)
j,1

]
(35)

Combining everything together, we have the following relationship between the distances to centroids
before and after message passing.
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Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]
= r0Evi∈V

[
2

di

]
Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
+ r1Evi∈V

[
2

di

]
Evj∈V1

[(
b̂
(l)
j,1

)T
b̂
(l)
j,1

]
= Evi∈V

[
2

di

](
r0Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
+ r1Evj∈V1

[(
b̂
(l)
j,1

)T
b̂
(l)
j,1

]) (36)

For the non-binary sensitive attribute s ∈ {0, 1, . . . , S − 1}, similarly, we have

Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]
= Evi∈V

[
S

di

] S−1∑
s=0

rsEvj∈Vs

[
(b̂

(l)
j,s)

T b̂
(l)
j,s

]
(37)

Let us revisit the discussion concerning binary sensitive attribute. Since the local neighborhood is
large enough mentioned in Theorem 2, i.e., di > 2 for any node vi, we have

Evi [∥b
(l+1)
i − µ̄∥22] = Evi∈V

[(
b̂
(l+1)
i

)T
b̂
(l+1)
i

]
≤ Evi∈V

[
2

di

](
r0Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
+ r1Evj∈V1

[(
b̂
(l)
j,1

)T
b̂
(l)
j,1

])
<

(
r0Evj∈V0

[(
b̂
(l)
j,0

)T
b̂
(l)
j,0

]
+ r1Evj∈V1

[(
b̂
(l)
j,1

)T
b̂
(l)
j,1

])
< Evi∈V

[(
b̂
(l)
i

)T
b̂
(l)
i

]
< Evi

[
∥b(l)

i − µ̄∥22
]

(38)
which completes the proof.

E Pseudocode of BeMap
The pseudocode of BeMap is presented in Algorithm 1. Before training, we precompute the sampling
probability in the balance-aware sampling (lines 3 – 5). During each epoch, we first generate the fair
neighborhood using the balance-aware sampling (lines 7 – 11). Then for each hidden layer, the fair
node representation of each node is learned on the fair neighborhood (lines 12 – 15). Finally, we
update the model parameters with back-propagation (lines 16 – 17).

F Extension of BeMapto Non-binary Sensitive Attribute
We consider a non-binary sensitive attribute s which forms ns demographic groups, i.e., s ∈
{1, . . . , ns}. The key idea of BeMap is to balance the number of neighbors across different demo-
graphics. We discuss two cases for balancing the neighborhood in the following.

• When all neighbors belong to one demographic group: We adopt the same strategy as the case
of binary sensitive attribute by sampling a subset of k neighbors for any node vi such that
k = max {β|N (vi) |, 4}.

• When the neighbors belong to different demographic groups: In this case, for any node vi,
we first count the number of neighbors in each demographic group

{
N̂s (vi) |∀s = 1, . . . , ns

}
.

Then we set the number of neighbors to be sampled for any demographic group k as the smallest
non-zero value in

{
N̂s (vi) |∀s = 1, . . . , ns

}
. After that, for each demographic group in the

neighborhood of vi, we sample k neighbors to create a balanced neighborhood.

Regarding the balance-aware sampling probability in the above sampling steps, we modify Eq. (10) by
replacing the absolute difference |Ñ0 (vi)− Ñ1 (vi) | in the cardinalities of two demographic groups
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Algorithm 1: Training GCN with BeMap.
Input :An input graph G = {V,A,X}, a set of training nodes Vtrain, ground-truth labels Ytrain,

an L-layer GCN with weight matrices Θ =
{
W(1), . . . ,W(L)

}
, a task-specific loss

function J , maximum number of epochs epochmax, hyperaprameters β, m, δ;
Output :A well trained GCN Θ =

{
W(1), . . . ,W(L)

}
.

1 Initialize H(1) = X;
2 Initialize the gradient-based optimizer OPT;
3 for each node vi ∈ V do
4 for each node vj ∈ N (vi) do
5 Precompute P (vj |vi) by Eqs. (10) and (11);

6 for epoch = 1 → epochmax do
// Fair neighborhood generation

7 for each node vi ∈ V do
8 if ∀vj ∈ N̂ (vi) belongs to the same demographic group then
9 Sample the fair neighborhood N̂ fair (vi) = N fair (vi) ∪ {vi} with probability

P (vj |vi),∀vj ∈ N (vi) such that |N fair (vi) | = max {β|N (vi) |,m};
10 else
11 Sample the neighborhood N fair (vi) with probability P (vj |vi),∀vj ∈ N (vi) and

generate the fair neighborhood N̂ fair (vi) = N fair (vi) ∪ {vi} such that
|N̂ fair

0 (vi) | = |N̂ fair
1 (vi) |

// Forward propagation
12 for each hidden layer l ∈ {1, . . . , L} do
13 for each node vi ∈ V do
14 ĥ

(l)
i =

∑
vj∈N̂ (vi)

αijh
(l)
j with αij =

1

|N̂ fair(vi)|
if row normalization else

αij =
1√

|N̂ fair(vi)|
√

|N̂ fair(vj)|
;

15 h
(l+1)
i = σ

(
ĥ
(l)
i W(l)

)
;

// Backward propagation

16 Calculate the empirical loss loss = J(Vtrain,Ytrain,
{
h
(L+1)
i ,∀vi ∈ V

}
);

17 Update Θ by OPT(∇loss);

18 return Θ =
{
W(1), . . . ,W(L)

}
;

in binary case to the average squared difference between the cardinalities of any two demographic
groups.

balancei =
1√

2
ns(ns−1)

∑ns

s=1

(
N̂k (vi)− N̂j (vi)

)2
+ δ

∀k, j ∈ {1, . . . , ns} , k ̸= j

(39)

It should be noted that when s is binary sensitive attribute, Eq. (39) is equivalent to Eq. (10). In this
way, we could adopt similar training procedure in Algorithm 1 to train the fair graph neural network.

G Detailed Experimental Settings
G.1 Dataset Descriptions

Here, we provide detailed descriptions for Pokec-z [40], NBA [9], Credit [11], and Recidivism [28].
The Pokec-z dataset [40] is drawn from Pokec, a Facebook-like social network in Slovakia, based
on regional information. In Pokec-z, we set the sensitive attribute as the region of a user and aim
to predict the field of work of a user. The NBA dataset [9] includes the age, nationality (US vs.
overseas), salary of a NBA player for the 2016 – 2017 season. Two players are connected if one
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follows another on Twitter. In this dataset, the nationality is used as the sensitive attribute, and the
goal is to predict whether the salary of a player is above the median. The Credit dataset [11] contains
age, education and payment patterns of a credit card customer. The links among customers are
determined by the pairwise similarity of their credit accounts. Here, age is set as the sensitive attribute
and the label is whether a user will default on credit card payments. The Recidivism dataset [28]
consists of defendants who were released on bail during 1990 – 2009. Two defendants are connected
if they share similar demographic information and criminal records. The goal is to predict whether a
defendant is likely to commit a crime when released (i.e., bail) or not (i.e., no bail) with race as the
sensitive attribute. The detailed statistics of the four datasets are provided in Table 4.

Table 4: The statistics of datasets.
Pokec-z NBA Recidivism Credit

# Nodes 5,631 313 9,538 21,000
# Edges 17,855 14,543 167,930 160,198

# Attributes 59 39 18 13
# Classes 2 2 2 2

Avg. Degrees 6.4 92.9 35.2 15.3
Sensitive Attr. Region Country Race Age

Label Working field Salary Bail decision Future default

G.2 Descriptions of Baseline Methods

Regarding graph neural networks without fairness considerations,

• GCN [1] learns the representation of a node by iteratively aggregating the representations of its
1-hop neighbors;

• GraphSAGE [2] aggregates node representations from a subset of 1-hop neighbors.

For fair graph neural networks,

• FairGNN [9] leverages adversarial learning to debias the node representations;
• EDITS [11] removes bias in the input data by minimizing the Wasserstein distance;
• FairDrop [13] mitigates bias by randomly masking edges in the input graph;
• NIFTY [28] debias the graph neural networks with a contrastive learning framework;
• FMP [12] redesigns the message passing schema in Graph Convolutional Network for bias

mitigation.

H Additional Experimental Results

Table 5: Relative reduction with respect to ∆SP and ∆EO for BeMap on Pokec-z, NBA, Recidivism,
and Credit. For BeMap (row) and BeMap (sym), the relative reduction is computed by comparing to
the vanilla GCN. For BeMap (gat), the relative reduction is computed by comparing to the vanilla
GAT.

Methods Pokec-z NBA
ReductionSP (%) ↑ ReductionEO (%) ↑ ReductionSP (%) ↑ ReductionEO (%) ↑

BeMap (row) 91.7 80.0 2.25 68.8
BeMap (sym) 83.6 86.8 0.12 70.8
BeMap (gat) 91.6 89.5 32.8 57.9

Methods Recidivism Credit
ReductionSP (%) ↑ ReductionEO (%) ↑ ReductionSP (%) ↑ ReductionEO (%) ↑

BeMap (row) 66.3 63.7 41.4 29.5
BeMap (sym) 79.3 53.4 40.1 45.7
BeMap (gat) 50.4 27.8 27.2 29.6

Relative Reductions with respect to ∆SP and ∆EO. We present the relative reduction of ∆SP and
∆EO for BeMap in Table 5. The relative reductions with respect to ∆SP and ∆EO are defined as
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follows.

ReductionSP =

(
1−

∆BeMap
SP

∆vanilla
SP

)
× 100%

ReductionEO =

(
1−

∆BeMap
EO

∆vanilla
EO

)
× 100%

(40)

where ∆BeMap
SP and ∆BeMap

EO are ∆SP and ∆EO for the proposed BeMap, respectively, and ∆vanilla
SP and

∆vanilla
EO are ∆SP and ∆EO for the corresponding vanilla graph neural network, i.e., vanilla GCN for

BeMap (row) and BeMap (sym) and vanilla GAT for BeMap (gat), respectively. From Table 5, we
observe that BeMap consistently reduce more than 25% of ∆SP and ∆EO on all datasets, except for
BeMap (row) and BeMap (sym) on NBA. On Pokec-z, BeMap could even reduce more than 80% of
∆SP and ∆EO compared to vanilla graph neural networks without fairness consideration.

Table 6: Semi-supervised node classification on the Pokec-n. Higher is better (↑) for ACC and AUC
(white). Lower is better (↓) for ∆SP and ∆EO (gray). Bold font indicates the best performance for fair
graph neural networks, and underlined number indicates the second best.

Methods Pokec-n
ACC (%) ↑ AUC (%) ↑ ∆SP (%) ↓ ∆EO (%) ↓

GCN 68.41 ± 0.30 73.4 ± 0.09 6.83 ± 1.09 9.59 ± 1.16
GraphSAGE 65.41 ± 0.74 69.35 ± 0.76 6.81 ± 0.47 11.20 ± 0.84

GAT 65.81 ± 0.43 69.30 ± 0.86 6.63 ± 0.68 10.34 ± 1.37
FairGNN 68.20 ± 0.87 72.92 ± 0.18 8.73 ± 1.37 11.02 ± 1.32
EDITS 66.82 ± 0.98 70.39 ± 0.02 4.32 ± 0.43 6.20 ± 0.74
NIFTY 66.91 ± 1.38 71.27 ± 0.32 7.72 ± 1.06 5.83 ± 0.43
FMP 67.62±1.27 77.40±0.23 32.78±1.89 29.67±2.51

BeMap (row) 68.39 ± 0.52 71.58 ± 0.61 5.63 ± 2.65 6.11 ± 1.85
BeMap (sym) 69.12 ± 0.76 71.59 ± 1.12 5.45 ± 0.62 7.97 ± 0.61
BeMap (gat) 65.47 ± 0.97 67.95 ± 0.39 5.67 ± 0.56 8.73 ± 0.50

Additional Results on Pokec-n. We conduct experiments on another social network named Pokec-n.
Similar to Pokec-z, it is also drawn from the Slovakian social network Pokec, but focuses on different
province in the country compared to Pokec-z. Additionally, the sensitive attribute is selected as the
region of a user and aim to predict the field of work of a user, which is consistent with the settings
in Pokec-z. Experimental results on Pokec-n is shown in Table 6. From the table, BeMap can still
consistently mitigate bias, despite being the second bias method in terms of bias mitigation (as shown
by ∆SP and ∆EO). In the meanwhile, BeMap achieves the best classification results (as shown by
ACC and AUC) while mitigating bias, which demonstrate that BeMap achieves the best trade-off
between fairness and utility.

I More Related Works
Here, we discuss more related works in designing fair message passing, and a few related work on
class-imbalanced graph learning, graph rewiring and graph sampling.

Fair message passing ensures fairness on graphs by either preprocessing the input graph or redesign-
ing message passing in graph neural networks [10, 15, 42]. [15] views message passing as the solution
to an optimization and introduces Maximum Mean Discrepancy (MMD) as a regularization in the
optimization problem to redesign the fairness-aware message passing. [10] learns a fair adjacency
matrix for link prediction by aligning the edge weights between intra-group edges and inter-group
edges. [42] reduces the discrimination risk, in order to ensure fairness on mean aggregation feature
imputation. Our work bears subtle differences existing works. Compared to [15], we do not change
how neighborhood aggregation procedure in message passing, but change the neighborhood itself
to ensure fairness. Compared to [10], we focus on fairness in node classification rather than dyadic
fairness in link prediction. Compared to [42], we only perform sampling on the adjacency matrix and
do not consider changing node features.

Class-imbalanced graph learning refers to graph learning with uneven label distribution, i.e., one
class has a significantly higher number of data than other classes [43–46]. For example, [44] mixes
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up the nodes from the minority class and selected target nodes. [45] generates synthetic nodes from
the minority class via generative adversarial networks (GAN) [47]. [46] reweighs the influence of
labeled node adaptively based on their distances to class boundaries. [43] generalizes SMOTE [48]
to graphs and synthesizes new samples in the embedding space. It should be noted that, different
from this line of work that focuses on the imbalance with respect to class label, our work focuses on
the imbalance with respect to a sensitive attribute. For more related work, please refer to [49].

Graph rewiring changes the graph topology by rewiring edges in the graph (i.e., delete an edge from
a source node to a target node and add an edge between the source node to a different target node)
to find a better graph topology for the learning task [50–53]. [53] proposes degree-preserving edge
rewiring to maximally improve its robustness under a certain budget. Different from [53], our method
focuses on the balance of neighborhoods with respect to a sensitive attribute for fairness rather than
node degrees. [50] rewires the input graph via reinforcement learning for adversarial attacks on
graphs, whereas our work focuses on learning fair graph neural network. [51] reduces heterophily by
rewiring graphs in consideration of pairwise similarity of label/feature-distribution between a node
and its neighbors. Compared to [51], we focuses on generating balanced neighborhood with respect to
a sensitive attribute instead of reducing heterophily with respect to class labels. [52] incorporates the
Lovász bound into graph rewiring to overcome over-smoothing, over-squashing and under-reaching
in graph neural networks, while our work focuses on fairness in node classification.

Graph sampling aims to reduce computational complexity by sampling a subset of edges in the graph.
[54] preserves neighbors with higher influence for node representation learning with better utility,
wheres our method applies sampling to generate balanced neighborhoods for fair representation
learning. [55] considers node degrees and selects edges based on the ranks of node degrees in an
deterministic way. Different from it, our work does not consider node degree but the sensitive attribute
of the neighbors and samples the neighborhood in a non-deterministic way. [56] develops an adaptive
layer-wise sampling method by sharing the same neighborhood in low layers with different parent
nodes in high layers. Different from it, we do not associate the same neighborhood with different
nodes across layers, and the balanced neighborhood keeps the same across all layers.
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