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Abstract
Intrinsically motivated exploration has proven useful for reinforcement learning,
even without additional extrinsic rewards. When the environment is naturally
represented as a graph, how to guide exploration best remains an open ques-
tion. In this work, we propose a novel approach for exploring graph-structured
data motivated by two theories of human curiosity: the information gap the-
ory and the compression progress theory. The theories view curiosity as an
intrinsic motivation to optimize for topological features of subgraphs induced
by nodes visited in the environment. We use these proposed features as rewards
for graph neural-network-based reinforcement learning. On multiple classes of
synthetically generated graphs, we find that trained agents generalize to longer
exploratory walks and larger environments than are seen during training. Our
method computes more efficiently than the greedy evaluation of the relevant topo-
logical properties. The proposed intrinsic motivations bear particular relevance
for recommender systems. We demonstrate that next-node recommendations
considering curiosity are more predictive of human choices than PageRank cen-
trality in several real-world graph environments.

1 Introduction

Providing a task-agnostic incentive for exploration as an intrinsic reward has proven useful for
reinforcement learning, even in the absence of any task-specific (extrinsic) rewards [1, 2]. Termed
curiosity in reference to the analogous drive in humans, prior formulations are based on different
means of quantifying the novelty or surprisal of states encountered by an agent [3]. If states are
represented as graphs, the task-agnostic motivation to explore can additionally be content-agnostic,
depending only on the topological properties of the visited state subgraph. Leading theories of human
curiosity are similarly content-agnostic, based only on the structural properties of a relational graph
connecting atoms of knowledge without regard to their actual content [4].

Theories of curiosity seek to describe the intrinsic motivations that underlie human decision-making
when acquiring information through exploration. The information gap theory (IGT) argues that
curiosity collects knowledge to regulate gaps in our understanding of the world [5]. Exposure
to a small amount of novel information pushes an individual’s uncertainty about the environment
past an acceptable threshold, creating an information gap. Curious agents are driven to resolve
the discrepancy by acquiring information to close the gap [6, 7]. An alternative account, the
compression progress theory (CPT), posits that information-seeking behavior is motivated to build
increasingly compressible state representations [8, 9]. Compression enables abstraction and improved
generalization by emphasizing the essential latent structures of knowledge [10–12]. Both theories
provide optimization objectives for the human exploration of graph-structured environments.
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Figure 1: Neural network for graph exploration. The subgraph induced by the set of currently visited nodes
is denoted in orange. Candidate nodes to visit at the next time step are denoted in green. We build candidate
subgraphs by adding each neighbor to the already visited subgraph. The candidates are processed with a GNN to
obtain Q-values, denoting their long-term potential to create or close gaps or to improve compressibility. Two
example trajectories are shown: one with a high number of gaps and one with greater compressibility.

In this work, we demonstrate that network theoretic measurements of information gaps and com-
pression progress can be meaningful exploration incentives for graph neural network (GNN)-based
reinforcement learning (RL). Here, similar to human curiosity, which is typically conceived of
as being non-instrumental, and unlike traditional RL formulations, where artificial curiosity is a
means to an end, exploration itself is the broader goal. To that end, we train GNN agents to explore
graph-structured environments while optimizing for gap creation and improved compression (Figure
1). Additionally, we use GNNs trained with human curiosity rewards to modify PageRank centrality.
We measure an alternative form of PageRank by biasing underlying random walks towards nodes that
create information gaps or improve network compressibility. We use human exploration trajectories
acquired from spaces that can be naturally represented as graphs—movies, books, and Wikipedia—to
evaluate predictions of user choices made by PageRank against those made by our new metric.

Our primary contributions are the following:

• We adapt intrinsic motivations for human curiosity as reward functions for reinforcement learning.
• We replace expensive reward computations with graph neural networks. Subject to training costs,

our method is computationally efficient and generalizes to longer exploratory walks and larger
environments than are seen during training.

• We demonstrate that incorporating curiosity into PageRank centrality leads to better predictions
of human preferences compared to standard PageRank.

2 Related work
Human curiosity as graph exploration. Curiosity in humans is conceptualized as the intrinsic
motivation to gather information from the environment [5, 13, 14]. Humans acquire information even
when it is expensive [15, 16] and may have no tangible utility [17, 18], suggesting that exploration is
inherently valuable. Recent work has expanded the traditional knowledge acquisition perspective on
curiosity by also considering how units of knowledge relate to each other. This perspective defines
curiosity as an exploratory walk on a graph. Here, curiosity entails building a growing knowledge
network by acquiring informational units as nodes and their relationships as edges [4, 19]. The
state of an individual’s knowledge is viewed as the subgraph of the environment induced by the
visited nodes [20, 21]. Under this formulation, humans explore Wikipedia via trajectories with fewer
information gaps and greater network compressibility than relevant null models [21].

Intrinsic motivations in reinforcement learning. The need for improved exploration has led rein-
forcement learning to incorporate curiosity-like intrinsic motivations into its algorithmic framework
[22, 23]. Exploration rewards in RL take several forms. At the core of all approaches is an induce-
ment for the learning agent to seek novelty. Count-based approaches encourage visits to unfamiliar
or infrequently visited states [24–28]. When the state space is large, enumerating the frequencies
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of visits to all possible states is expensive. To overcome this challenge, density models derive
uncertainty-based pseudo-counts [24, 25]. A complementary perspective emphasizes model building
and formulates curiosity in terms of learning progress and surprisal [1, 9, 29–32]. For instance, in the
prediction error approach—alongside an extrinsic task—the agent attempts to learn a model of the
environment’s dynamics. Curiosity rewards are proportional to the error when predicting transitions
between states. Memory-based methods assign rewards considering how different a newly visited
state is from those stored in memory [33, 34]. Instead of a prescriptive approach, parametric methods
attempt to explicitly learn an intrinsic reward function [35–38]. In general, improved exploration is a
means to an end, with intrinsic rewards supplementing extrinsic task-specific rewards.

Graph combinatorial optimization and reinforcement learning. Combinatorial optimization
entails selecting elements from a finite set of options such that the chosen subset satisfies an objective
function [39]. Graph analyses often involve combinatorial optimization, with graph structure imposing
constraints on the solution space. Recent work combines graph neural networks and reinforcement
learning to construct solutions by incrementally adding nodes to a partial set [40–42]. First, a GNN
constructs an embedding for the candidate solution; second, an agent, for instance, a deep Q-network
(DQN), trained via RL, selects an action to expand the solution [43]. The two networks can be
trained end-to-end with an optimization objective driving gradients for learning. This approach solves
various graph combinatorial tasks, such as the traveling salesperson problem [43–45], finding the
maximum independent set [46], or the minimum vertex cover [43, 47], and identifying isomorphic
subgraphs [48]. Instead of uncovering nodes, GNNs can also sequentially collapse nodes into each
other with implications for matrix multiplication [49]. Recent work has also sought to formulate the
graph exploration task explicitly as a Markov decision process, using domain-specific node features
and novelty rewards [50, 51]. GNNs, in combination with RL, have also been used to build and
rewire graphs such that they possess high values of specific features of interest [52, 53].

PageRank and human navigation on graphs. PageRank seeks to model and predict online human
browsing preferences. PageRank assigns centrality scores to web pages, considering their importance
and relevance, determined by the number and quality of links between pages [54]. It employs a
random walks-based approach that includes occasional jumps, known as teleportation, to simulate
the likelihood that users will transition between different pages [55]. Beyond its initial application to
serving search results, PageRank has found broad utility in modeling human navigation in other graph-
structured environments [54]. PageRank-based recommendations show alignment with empirical
observations of human behavior [56–59]. Further, topological characteristics of the underlying graph
impact user navigation, underscoring the importance of considering connectivity patterns when
forecasting noisy human preferences [60]. The PageRank algorithm explicitly factors topology into
its computations by adjusting the underlying random walk process, aligning either the transition or
teleportation weights with the environment’s topological features [57, 61].

3 Methods
Our goal is to train an agent to explore while optimizing for a structural property of the visited
subgraph. Consider a graph-structured environment G = (V, E) with node set V and edge set
E ⊆ V × V . Let VT = {v1, v2, · · · , vT } ⊆ V be an ordered set of explored nodes at time T . The
corresponding subgraph trajectory is the sequence S1 ⊂ S2 ⊂ · · · ⊂ ST , wherein the t-th subgraph
St is induced by the first t visited nodes. Specifically, given the graph G, the number of nodes to visit
T , a graph feature function F : 2G → R, and a discount factor γ ∈ [0, 1], we seek an ordered set
V∗
T such that

∑T
t=1 γ

t−1F(St) is maximal. The function F acts as an intrinsic reward to encourage
exploration. The discounting parameter determines the extent to which future values of F factor into
the decision-making at each step. Drawing inspiration from human curiosity, we adopt information
gap theory and compression progress theory to design two reward functions, FIGT and FCPT .

3.1 Network theories of curiosity

Information gap theory views human curiosity as an intrinsic motivation to regulate gaps in
knowledge. Exposure to new information pushes the level of uncertainty about the environment past
an acceptable threshold, creating an uncertainty gap. Curiosity seeks to find information units to
close this gap. By modeling the state of knowledge as a graph, we can characterize information gaps
as topological cavities. In a graph, cavities can take several forms: dimension 0 cavities represent
disconnected network components, whereas those of dimension 1, known as 1-cycles, represent
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non-triangular loops of edges (Figure 2A). In order to identify and count topological cavities, a graph
is first converted into a higher-order relational object known as a simplicial complex [62]. A simplicial
complex is comprised of simplices. Geometrically, a d-simplex is a shape with flat sides formed by
connecting d+ 1 points. For 0 ≤ d ≤ 2, by definition a node is a 0-simplex, an edge is a 1-simplex,
and a filled triangle is a 2-simplex. We can construct a simplicial complex by assigning a d-simplex
to each (d+ 1)-clique in a binary graph. In a simplicial complex, a d-dimensional topological cavity
is identified as an enclosure formed by d-simplices that cannot be filled by a higher-dimensional
simplex. We refer the reader to Refs. [63–67] for more details on algebraic topology.

Given a simplicial complex, the d-th Betti number βd counts the number of topological gaps of
dimension d. Prior work examining human curiosity finds compelling evidence in support of
information gap theory. In particular, humans create induced subgraphs with an increasing number of
1-dimensional cavities [21]. Therefore, in this work, at each time step t with a visited subgraph St,
we assign rewards equal to β1, that is, we set FIGT = β1(St).
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Figure 2: Quantifying network theories of human curiosity. (A) Gaps or cavities in a graph can be formalized
using algebraic topology. A 1-dimensional cavity, also known as a 1-cycle, is a non-triangular loop of edges. (B)
The information rate of a random walk x on a graph is given by its entropy. If we cluster the nodes, the walk
sequence x is compressed into a new sequence y, where y is the cluster that contains node x. The new sequence
has a lower information rate than the original sequence. The number of clusters defines the scale at which the
network is described. We can find an optimal clustering at every scale of description that maximally lowers
the information rate. These values can be recorded in a rate-distortion curve. Network compressibility is the
maximal reduction in the information rate, averaged across all scales. Graphically, this value represents the area
above the rate-distortion curve bounded by the entropy of the unclustered random walk.

Compression progress theory posits that curiosity is a drive to compress the state of knowledge [8].
During graph exploration, at each step t in a trajectory, a reward for compression can be assigned
as network compressibility [68]. Consider a subgraph St with t nodes and q edges, represented
by a symmetric adjacency matrix M ∈ Rt×t. Information about the subgraph’s structure can
be encoded in the form of a random walk x = (x1, x2, . . . ). The walk sequence is generated
by randomly transitioning from a node to one of its neighbors. Thus, for a random walk on St,
the probability of transitioning from node i to node j is Pij = Mij/

∑
j Mij . Since the walk is

Markovian, its information content (or entropy) is given by H = −
∑

i πi

∑
j Pij logPij . Here, πi

is the stationary distribution representing the long-term probability that a walk arrives at node i, given
by πi =

∑
j Mij/2q.

Assigning nodes to clusters leads to a coarse-grained sequence y = (y1, y2, . . . ). The number of
clusters n can be used to define a scale of the network’s description s = 1− n−1

t . When n = t, the
network is described at a fine-grained scale s = 1/t; at the other extreme, when n = 1 the network is
described at the coarsest scale s = 1. At every description scale in between, it is possible to identify
a clustering of nodes that minimizes the information rate (Figure 2B). After computing these optimal
clusterings across all scales, we arrive at a rate-distortion curve R(s), representing a bound on the
information rate as a function of the scale s. The compressibility C of the network is then given as
the average reduction in the information rate across all scales [68], C = H − 1

t

∑
s R(s). Human

curiosity in graph-structured environments leads to induced subgraphs with increasing network
compressibility [21]. Therefore, we assign compression rewards as FCPT = C(St), where C(St)
denotes the compressibility of subgraph St.

3.2 Reinforcement learning for graph exploration

We formulate the graph exploration problem as a Markov decision process (MDP) [69]:
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• States: The state is defined as the subgraph induced by the visited nodes at time t, St = G[Vt].
We specify the initial state S1 by randomly selecting a starting node v1 ∈ V . Each state represents
a partial solution to the broader sequential exploration task.

• Actions: The agent can transition to a neighbor of the most recently visited node. We denote the
neighborhood of a node v as N (v) = {u ∈ V | (v, u) ∈ E}. Therefore, given the state at time t,
the set of available next nodes is A(St) = N (vt)\Vt. If no nodes are available in the immediate
neighborhood, we expand the action set to include all neighbors of the explored subgraph.

• Transitions: Given the pair St and v ∈ A(St), the transition to state St+1 is deterministic with
P (St+1 | St, v) = 1.

• Rewards: The reward at time t is defined as Rt = F(St). Considering information gap theory, we
reward agents for visiting nodes that create 1-cycles (FIGT ). Considering compression progress
theory, we reward agents for visiting nodes that improve network compressibility (FCPT ).

The policy π(v | St) maps states to actions, fully describing the agent’s behavior in the environment.
At each step, the agent makes decisions using a value function Q(St, v), which evaluates candidate
nodes v ∈ A(St) in the context of the currently explored subgraph St. The function measures the
total (discounted) reward that is expected to accumulate if the agent selects action v in state St and
thereafter follows policy π. In turn, the policy can be viewed as behaving greedily with respect to the
value function, π = argmaxv∈A(St) Q (St, v). Solving an MDP entails finding an optimal policy
that maximizes the expected discounted sum of rewards.

We parameterize the value function Q using a GNN Φ(·) : G → R. GNNs build vector embeddings
for nodes by iteratively aggregating their features with those from their local neighborhoods [70].
Each aggregation step is typically followed by a fully connected layer and a non-linear activation
function. Depending on the number of rounds of aggregation, features from more distant locations in
the graph can inform the embedding for each node. Specifically, we use the GraphSAGE architecture
[71], where at the l-th round of feature aggregation, the embedding for node u is given as,

h(l)
u = f (l)

(
h(l−1)
u , h

(l−1)
N (u)

)
= g

[
θ
(l)
C h(l−1)

u + θ
(l)
A Ã

(
h
(l−1)
N (u)

)]
, (1)

where Ã represents the aggregation operator, g [.] is the activation function, and θC and θA are
parameters for combination and aggregation, respectively [42, 71]. Our choice of GraphSAGE
is motivated not by its sampling-based approach but rather by its capacity for inductive learning.
Therefore, we do not perform neighbor sampling during feature aggregation. Further, considering that
leading network theories of human curiosity are agnostic to the precise content of individual nodes,
we only use the local degree profile (LDP) of each node as the initial feature set [72]. LDP comprises
features of a node’s neighborhood, including its degree, the minimum and maximum degrees of its
neighbors, and the average and standard deviation of the degrees of its neighbors.

We train GNNs for exploration using the DQN algorithm, with a replay buffer for experience sampling,
a target network, and a decaying ϵ-greedy exploration rate [73]. Details of the full neural network
architecture and the training process are included in the Supplement.

3.3 Curiosity-biased node centrality

Several graph theoretical quantities can be defined in terms of random walk processes. We can
use agents trained to explore graphs to bias random walkers and, by extension, the corresponding
quantities. PageRank is a widely recognized algorithm that assigns node centrality scores to graph
data [54, 55, 74, 75]. The per-node score η can be interpreted as the stationary distribution of a
random walk process on a network. With probability α, a random walker moves along an edge from
node vi to one of its neighbors. The probability of reaching a connected node vj is Pij . Alternatively,
with probability 1 − α, the walker jumps, or teleports, to a random node in the network. The
probability of jumping to node vk is qk. Under conditions of irreducibility and aperiodicity [76], the
stationary distribution is given as ∑

i

(I − αP t
ij)ηi = (1− α)qj . (2)

The PageRank algorithm follows a random walk that is entirely Markovian. Typically, the probability
Pij depends solely on the out-degree of node vi and, in the case of node-weighting, on the vector q.
Personalized PageRank biases the random walk process using qk by taking into account nodes that
are already visited in the network [77].
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Adaptations of PageRank often incorporate biases in the weighting scheme or the teleportation
mechanism to better predict human navigation in graph-structured environments [56–61]. We can
integrate agents trained to optimize for the exploration objectives described earlier into the PageRank
algorithm in the form of similar biases. Specifically, given an already visited subgraph, we propose
to modify transition probabilities using the Q-values assigned to candidate nodes. Consider a non-
Markovian random walker sitting at node vl with a path history Vl = {v1, · · · , vl−1, vl}. The visited
nodes in the path induce a corresponding subgraph Sl. Paths are built starting from the most recent
initialization or teleportation event. We use a Q-value function trained to optimize for an objective F
to bias the walker. The transition probability from node vl to node vm can be re-defined as,

PF
lm(Sl) ≡

{
(1−pg)p

rank(Q(Sl,vm))−1
g

1−p|A(Sl)|
, vm ∈ A(Sl),

0, otherwise,
(3)

where rank(Q(Sl, vm)) is the rank for vm considering the Q-values for the candidate nodes and
pg ∈ [0, 1] is a parameter that controls how likely the walker is to select nodes greedily. To compute
biased per-node PageRank values, we simulate a walker using PF

ij (Si) until probabilities converge.

4 Experiments
4.1 Exploration in synthetically generated networks

We train a curiosity-based GNN agent to explore synthetically generated graph environments that
exhibit a broad range of degree profiles and topologies [78, 79]. We examine synthetic networks
generated using the random geometric (RG), Watts-Strogatz (WS), Barabási-Albert (BA), and Erdös-
Rényi (ER) graph models. Details surrounding the generation process are available in the Supplement.
For each of the four graph models, we build 100 training, 10 validation, and 10 testing environments.
Each environment is constructed to have N = 50 nodes. Each episode lasts for 10 steps and,
therefore, consists of visits to 10 distinct nodes. After training, we evaluate the GNN agent in the
testing environments against four baseline approaches:

• Random: Select a candidate node at random.
• Greedy: For each candidate node, build a candidate state subgraph. Evaluate the reward function

for each subgraph and select the node that results in the biggest one-step improvement.
• Max Degree: Select the candidate node with the largest degree.
• Min Degree: Select the candidate node with the smallest degree.

F G Random Max Degree Min Degree Greedy GNN

IGT RG 0.312±0.034 0.010±0.007 0.144±0.027 1.495±0.079 2.308±0.092

WS 1.141±0.068 1.048±0.068 1.586±0.082 2.707±0.103 3.303±0.106

BA 7.593±0.145 2.565±0.083 3.932±0.115 19.332±0.206 21.970±0.169

ER 9.197±0.144 9.638±0.162 4.953±0.127 25.20±0.164 24.058±0.183

CPT RG 8.607±0.027 8.928±0.027 7.864±0.033 9.615±0.014 9.271±0.017

WS 7.117±0.021 6.788±0.025 6.937±0.021 7.668±0.012 7.174±0.014

BA 6.926±0.023 8.526±0.015 5.899±0.016 8.669±0.016 8.556±0.010

ER 6.767±0.020 6.931±0.019 6.022±0.017 8.262±0.016 7.880±0.015

Table 1: Performance of GNN-based agents using information gap theory (IGT) and compression progress
theory (CPT) compared to four baseline methods (random, max degree, min degree, greedy). We compare
results using the total average return gathered by agents in four types of synthetic graph environments (random
geometric - RG, Watts-Strogatz - WS, Barabási-Albert - BA, Erdős-Rényi - ER).

The total average reward gathered by the different agents is presented in Table 1. For the IGT
reward, in all graph models except for ER, the GNN outperforms the greedy agent. By contrast,
the one-step-ahead greedy agent consistently performs best for CPT, with the GNN a close second.
Baseline approaches broadly perform well compared to the GNN for CPT than they do for IGT.
When exploring a graph with the IGT objective, adding a single node can close several topological
gaps simultaneously, requiring careful consideration of options. By contrast, compressibility is less
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sensitive to the choice of node at each step due to its strong correlation with the clustering coefficient
[68]. If exploring inside a cluster, neighbors of a node are likely to be neighbors of each other,
lowering the likelihood that a single choice will significantly alter long-term network compressibility.
For instance, the max degree baseline performs well for the CPT objective in random geometric
graphs because high-degree nodes are centrally placed and surrounded by dense, highly clustered
neighborhoods [79]. Barabási-Albert graphs, similarly, have highly clustered cores due to preferential
attachment in their generative process [80]. Watts-Strogatz networks have high clustering when
the edge rewiring probability is low. As a result, even random exploration in such topologies tends
to occur inside clusters leading to greater compressibility. In support of this view, the minimum
degree baseline, which is likely to select a node outside of a cluster, is typically further apart from the
performance of the GNN compared to the other baselines.

4.1.1 Trajectory length and environment size generalization
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Figure 3: Trajectory length and environment size generalization. GNNs trained for graph exploration
generalize to shorter and longer trajectories and to smaller and larger environments than are seen during
training. We train GNNs to explore 10 steps for IGT and CPT in random geometric environments with 50
nodes. Performance does not degrade for exploratory walks of a different length in 50-node environments.
Similarly, when taking 10 steps, GNN-based agents outperform or match the greedy agent in smaller and larger
environments than those of size 50 that are seen during training. Bands denote standard error.

After training the GNN agent to explore 10 nodes in RG graph environments with 50 nodes, we
evaluate generalization performance for longer trajectories and larger environments. We test trajectory
length generalization while holding environment size fixed at 50 nodes. For walks shorter and longer
than 10 steps, the GNN performs comparably to the greedy agent for both IGT and CPT (Figure 3).
Next, we test environment size generalization by evaluating 10-step walks in graph environments
that are larger than 50 nodes. In environments that are up to two orders of magnitude larger than
those seen during training, the GNN is consistently superior to the greedy agent for IGT and exhibits
comparable performance for CPT (with an average return of 9.4 compared to 10). In summary, the
performance of trained GNNs does not degrade for settings outside the training regime. These results
indicate that we can train GNNs for graph exploration in regimes where reward computations are
relatively inexpensive due to the smaller size of subgraphs and expect them to scale to longer walks
and larger networks.
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Figure 4: Wall time. Wall time for a forward pass through the GNN compared to the greedy evaluation of
rewards. Bands denote standard error over computations for 50 networks.

4.1.2 Time complexity

Using graphs of different sizes, we evaluate the computational efficiency of our approach by compar-
ing the wall time for a forward pass through the GNN with that for a greedy evaluation of the two
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reward functions. Figure 4 displays results for RG graphs. Wall time for greedy evaluation of the
IGT and CPT objectives grows quickly with subgraph size, while the GNN offers a faster alternative.
Calls to FIGT scale according to O(|St|2) [81], whereas those to FCPT scale according to O(|St|3).
By contrast, the computational complexity for the GNN grows linearly as O(|St|). Comparing
the rewards for the two theories of curiosity, the information gap reward is significantly cheaper
to evaluate compared to network compressibility. Therefore, in addition to approximating human
intrinsic motivations for exploration, we find that the GNN offers a route to efficient computation of
meaningful topological features of graphs.

4.2 Predicting human choices during graph navigation

Next, we evaluate the utility of curiosity-trained agents for predicting human choices in graph-
structured environments. We gather human trajectories of graph exploration from three real-world
datasets: MovieLens [82], Amazon Books [83, 84], and Wikispeedia [85, 86]. Each dataset can
be naturally represented as a graph-structured environment. Details on how we process the data
are available in the Supplement. We train GNNs for graph exploration in each environment for
both information gap theory and compression progress theory. We use GNNs trained with curiosity
rewards to bias PageRank centrality to predict next nodes visited by humans.

To incorporate person-specific data when computing PageRank, we modify the hop vector q to be
zero for all nodes except a user’s nburn-in most recently visited nodes [77]. We assign a uniform
jump probability to the nburn-in nodes, with qk = 1/nburn-in. Each graph feature function F yields a
PageRank vector ηFi . We combine these vectors linearly to obtain a final PageRank vector, denoted
as η′ such that η′ ≡ β̃ηPR(α) + γ̃ηIGT(α) + δ̃ηCPT(α) where β̃2 + γ̃2 + δ̃2 = 1 and ηPR is the
score vector obtained using standard PageRank. To evaluate this approach, we optimize the set of
variables α, β̃, γ̃, δ̃ using a training set of transitions. We then compare performance against unbiased
PageRank, where only α is optimized. We split the set of user trajectories acquired from each dataset
into Stest and Strain. These sets consist of portions of human trajectories with a length of nburn-in + 1.
Next, we perform Bayesian optimization to compute parameters â and âbias for the two sets,

â ≡ argmax
α

∑
S∈Strain

rankvburn-in(ηPR(α)) (4)

âbias ≡ arg max
α,β̃,γ̃,δ̃

∑
S∈Strain

rankvburn-in(η
′(α, β̃, γ̃, δ̃)). (5)

To evaluate our method, we calculate the ratio of improvement on the test set, given as

rStest ≡
∑

S∈Stest

rankvburn-in(η
′(âbias))/

∑
S∈Stest

rankvburn-in(ηPR(â)). (6)

Table 2 displays rStest in percentage terms for the three datasets when considering curiosity theories
alone or in combination. Across all combinations, improvement ranges from 2.9% to 32.2%,
indicating that incorporating curiosity for the biasing of walks is useful. The IGT or CPT-trained
agents perform better with roughly similar values depending on the dataset. In the Wikispeedia data,
however, CPT leads to improvement nearly four times higher than IGT. The books and movie datasets
exhibit similarities since the selection mechanism in both environments is not directed towards a
goal. By contrast, the Wikispeedia dataset involves goal-directed navigation. We provide illustrative
examples from the MovieLens dataset of user paths alongside predictions made by both unbiased and
curiosity-biased PageRank in the Supplement.

Graph dataset G IGT CPT IGT + CPT

MovieLens +4.2%±2.1% +5.1%±1.5% +7.9%±1.7%

Amazon Books +5.4%±1.9% +4.6%±1.6% +9.6%±1.9%

Wikispeedia +2.9%±2.9% +12.2%±3.2% +32.2%±7.7%

Table 2: Percentage improvement (rStest) with curiosity-biased centrality for the MovieLens, Amazon Book,
Wikispeedia datasets.

Figure 5B shows the improvement in predicting the transitions made by humans in the Wikispeedia
dataset. We compare percentile ranks for each transition made by the human when making predictions
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Figure 5: Re-defining centrality using agents trained for curiosity. (A) We measure curiosity-biased
PageRank centrality using a set of biased walkers that explore the graph starting from a subset of already visited
nodes. Biases are incorporated using GNNs trained for IGT and CPT rewards. (B) Example demonstrating the
improvement in predicting human transitions when using curiosity-biased versus standard PageRank. Biased
curiosity assigns higher percentile ranks to actual transitions than standard PageRank. (C) Random walker
diffusion, measured as the distance from the initial node for each graph. A comparison is made between the
unbiased (blue), IGT-biased (orange), and CPT-biased walkers (green).

with and without biasing the random walk process. We find that biased curiosity assigns higher
percentile ranks to actual transitions than standard PageRank. We also analyze the distance from
the initial node with respect to time for individual random walk trajectories (Figure 5C). In general,
observed differences between the biased walkers are small and fall within the standard deviation of
the walk process. However, the CPT-biased walker stands out as it tends to remain closer to the initial
node in both the MovieLens and the Wikispeedia datasets (see Supplement). These observations
suggest that the differences observed in the biased PageRank algorithm are not solely attributable to
changes in the diffusion properties of the random walks.

5 Discussion

How to measure curiosity best remains an open question both in the context of humans and for
reinforcement learning. While our specific choices—1-cycles and network compressibility—are
motivated by recent work studying human behavior, other topological features may be more suited
to drive graph exploration. Nonetheless, through our work, we demonstrate the utility of content-
agnostic topology-aware intrinsic motivations. Similar to leading theories of human curiosity that are
intentionally content independent, our method 1) uses no node information other than topological
statistics and 2) uses no information in the reward other than what is available in the structure of
visited subgraphs. Even at this level of abstraction, where topology takes precedence over content,
we show that agents learn generalizable and transferable graph exploration strategies. Further, we
show that agents trained with human-like motivations can help devise centrality measures that predict
human behavior better than PageRank. This result has two critical implications. First, we can use our
method to test hypotheses about human motivations when navigating graph-structured environments.
Trained agents can act as hypothesis testers by examining whether their choices for the subsequent
nodes to visit align with human choices. Second, our method can be used to design recommender
systems for environments where human navigation of graphs is largely goalless.
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