
Edge Directionality Improves Learning on Heterophilic Graphs

Emanuele Rossi
Imperial College London

Bertrand Charpentier
Technical University of Munich

Francesco Di Giovanni
University of Cambridge

Fabrizio Frasca
Imperial College London

Stephan Günnemann
Technical University of Munich

Michael Bronstein
University of Oxford

Abstract
Graph Neural Networks (GNNs) have become the de-facto standard tool for
modeling relational data. However, while many real-world graphs are directed,
the majority of today’s GNN models discard this information altogether by
simply making the graph undirected. The reasons for this are historical: 1) many
early variants of spectral GNNs explicitly required undirected graphs, and 2) the
first benchmarks on homophilic graphs did not find significant gain from using
direction. In this paper, we show that in heterophilic settings, treating the graph
as directed increases the effective homophily of the graph, suggesting a potential
gain from the correct use of directionality information. To this end, we introduce
Directed Graph Neural Network (Dir-GNN), a novel general framework for deep
learning on directed graphs. Dir-GNN can be used to extend any Message Passing
Neural Network (MPNN) to account for edge directionality information by
performing separate aggregations of the incoming and outgoing edges. We prove
that Dir-GNN matches the expressivity of the Directed Weisfeiler-Lehman test,
exceeding that of conventional MPNNs. In extensive experiments, we validate
that while our framework leaves performance unchanged on homophilic datasets,
it leads to large gains over base models such as GCN, GAT and GraphSage
on heterophilic benchmarks, outperforming much more complex methods and
achieving new state-of-the-art results. The code can be found at https://
github.com/emalgorithm/directed-graph-neural-network.

1 Introduction
Graph Neural Networks (GNNs) have demonstrated remarkable success across a wide range of
problems and fields [1]. Most GNN models, however, assume that the input graph is undirected [2–4],
despite the fact that many real-world networks, such as citation and social networks, are inherently
directed. Applying GNNs to directed graphs often involves either converting them to undirected
graphs or only propagating information over incoming (or outgoing) edges, both of which may
discard valuable information crucial for downstream tasks.

We believe the dominance of undirected graphs in the field is rooted in two “original sins” of GNNs.
First, undirected graphs have symmetric Laplacians which admit orthogonal eigendecomposition.
Orthogonal Laplacian eigenvectors act as a natural generalization of the Fourier transform and allow
to express graph convolution operations in the Fourier domain. Since some of the early graph neural
networks originated from the field of graph signal processing [5, 6], the undirected graph assumption
was necessary for spectral GNNs [2, 7, 8] to be properly defined. With the emergence of spatial
GNNs, unified with the message-passing framework (MPNNs [9]), this assumption was not strictly
required anymore, as MPNNs can easily be applied to directed graphs by propagating over the
directed adjacency, resulting however in information being propagated only in a single direction, at
the risk of discarding useful information from the opposite one. However, early works empirically
observed that making the graph undirected consistently leads to better performance on established
node-classification benchmarks, which historically have been mainly homophilic graphs such as Cora
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(b) Homophilic Graphs

Figure 1: Extending popular GNN architectures with our Dir-GNN framework to incorporate edge-
directionality information brings large gains (10% to 15%) on heterophilic datasets (left), while
leaving performance mostly unchanged on homophilic datasets (right). The plots illustrate the
average performance over all datasets, while the full results are presented in Tab. 2.

and Pubmed [10], where neighbors tend to share the same label. Consequently, converting input
graphs to undirected ones has become a standard part of the dataset preprocessing pipeline, to the
extent that the popular GNN library PyTorch-Geometric [11] includes a general utility function that
automatically makes graphs undirected when loading datasets1.

The key observation in this paper is that while accounting for edge directionality indeed does not help
in homophilic graphs, it can bring extensive gains in heterophilic settings (Fig. 1), where neighbors
tend to have different labels. In the rest of the paper, we study why and how to use directionality to
improve learning on heterophilic graphs.

Contributions. Our contributions are the following:

• We show that considering the directionality of a graph substantially increases its effective homophily
in heterophilic settings, with negligible or no impact on homophilic settings (see Sec. 3).

• We propose a novel and generic Directed Graph Neural Network framework (Dir-GNN) which
extends any MPNN to work on directed graphs by performing separate aggregations of the incoming
and outgoing edges. Moreover, we show that Dir-GNN leads to more homophilic aggregations
compared to their undirected counterparts (see Sec. 4).

• Our theoretical analysis establishes that Dir-GNN is as expressive as the Directed Weisfeiler-
Lehman test, while being strictly more expressive than MPNNs (see Sec. 4.1).

• We empirically validate that augmenting popular GNN architectures with the Dir-GNN framework
yields large improvements on heterophilic benchmarks, achieving state-of-the-art results and
outperforming even more complex methods specifically designed for such settings. Moreover, this
enhancement does not negatively impact the performance on homophilic benchmarks (see Sec. 6).

2 Background
We consider a directed graph G = (V,E) with a node set V of n nodes, and an edge set E of m
edges. We define its respective directed adjacency matrix A ∈ {0, 1}n×n where aij = 1 if (i, j) ∈ E
and zero otherwise, its respective undirected adjacency matrix Au where (au)ij = 1 if (i, j) ∈ E
or (j, i) ∈ E and zero otherwise. In this paper, we focus on the task of (semi-supervised) node
classification on an attributed graph G with node features arranged into the n× d matrix X and node
labels yi ∈ {1, ..., C}.

2.1 Homophily and Heterophily in Undirected Graphs

In this Section, we first review the heterophily metrics for undirected graphs, while in Sec. 3 we
propose heterophily metrics adapted to directed graphs. Most GNNs are based on the homophily
assumption for undirected graphs, i.e., that neighboring nodes tend to share the same labels. While a

1This Pytorch-Geometric routine is used to load datasets stored in an npz format. It makes some directed
datasets, such as Cora-ML and Citeseer-Full, automatically undirected without any option to get the directed
version instead.

2
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reasonable assumption in some settings, it turns out not to be true in many important applications
such as gender classification on social networks or fraudster detection on e-commerce networks.

Homophily metrics. Several metrics have been proposed to measure homophily on undirected
graphs. Node homophily is defined as

h =
1

|V |
∑
i∈V

∑
j:(i,j)∈E I[yi = yj ]

di
(1)

where I[yi = yj ] is the indicator function with value 1 if yi = yj or zero otherwise. Intuitively, node
homophily measures the fraction of neighbors with the same label as the node itself, averaged across
all nodes. However, since heterophily is a complex phenomenon which is hard to capture with only a
single scalar, a better representation of a graph’s homophily is the C × C class compatibility matrix
H [12], capturing the fraction of edges from nodes with label k to nodes with label l:

hkl =
|(i, j) ∈ E : yi = k ∧ yj = l|

|(i, j) ∈ E : yi = k|
.

Homophilic datasets are expected to have most of the mass of their compatibility matrices concentrated
in the diagonal, as most of the edges are between nodes of the same class (e.g. see Citeseer-Full
in Fig. 3). Conversely, heterophilic datasets will have most of the mass away from the diagonal of the
compatibility matrix (e.g. see Chameleon in Fig. 3).

2.2 Message Passing Neural Network

In this Section, we first review the Message Passing Neural Network (MPNN) paradigm for undirected
graphs, while in Sec. 4 we extend this formalism to directed graphs. An MPNN is a parametric model
which iteratively applies aggregation maps AGG(k) and combination maps COM(k) to compute
embeddings x(k)

i for node i based on messages m(k)
i containing information on its neighbors. Namely,

the k-th layer of an MPNN is given by

m
(k)
i = AGG(k)

(
{{(x(k−1)

j ,x
(k−1)
i ) : (i, j) ∈ E}}

)
x
(k)
i = COM(k)

(
x
(k−1)
i ,m

(k)
i

) (2)

where {{·}} is a multi-set. The aggregation maps AGG(k) and the combination maps COM(k) are
learnable (usually a small neural network) and their different implementations result in specific
architectures (e.g. graph convolutional neural networks (GCN) use linear aggregation, graph attention
networks (GAT) use attentional layers, etc.). After the last layer K, the node representation x

(K)
i

is mapped into the C-probability simplex via a (learnable) decoding step, often given by an MLP.
Independent of the choice of AGG and COM, all MPNNs only send messages along the edges of the
graph, which make them particularly suitable for tasks where edges do encode a notion of similarity –
as it is the case when adjacent nodes in the graph often share the same label (homophilic). Conversely,
MPNNs tend to struggle in the scenario where they need to separate a node embedding from that
of its neighbours [13], often a challenging problem that has gained attention in the community and
which we discuss in detail next.

3 Heterophily in Directed Graphs
In this Section, we discuss how accounting for directionality can be particularly helpful for dealing
with heterophilic graphs. By leveraging the directionality information, we argue that even standard
MPNNs that are traditionally thought to struggle in the heterophilic regime, can in fact perform
extremely well.

Weighted homophily metrics. First, we extend the homophily metrics introduced in Section 2.1 to
account for directed edges and higher-order neighborhoods. Given a possibly directed and weighted
n× n message-passing matrix S, we define the weighted node homophily as

h(S) =
1

|V |
∑
i∈V

∑
j∈V sijI[yi = yj ]∑

j∈V sij
(3)

3
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Au A2
u h

(eff)
u A A⊤ A⊤A AA⊤ h

(eff)
d h

(eff)
gain

Homophilic
CITESEER-FULL 0.958 0.951 0.958 0.954 0.959 0.971 0.951 0.971 1.36%

CORA-ML 0.810 0.767 0.810 0.808 0.833 0.803 0.779 0.833 2.84%
OGBN-ARXIV 0.635 0.548 0.635 0.632 0.675 0.658 0.556 0.675 6.3%

Heterophilic

CHAMELEON 0.248 0.331 0.331 0.249 0.274 0.383 0.335 0.383 15.71%
SQUIRREL 0.218 0.252 0.252 0.219 0.210 0.257 0.258 0.258 2.38%

ARXIV-YEAR 0.289 0.397 0.397 0.310 0.403 0.487 0.431 0.487 22.67%
SNAP-PATENTS 0.221 0.372 0.372 0.266 0.271 0.478 0.522 0.522 40.32%

ROMAN-EMPIRE 0.046 0.365 0.365 0.045 0.042 0.535 0.609 0.609 66.85%

Table 1: Weighted node homophily for different diffusion matrices, and effective homophily for both
undirected (h(eff)

u ) and directed graph (h(eff)
d ). The last column reports the gain in effective homophily

obtained by using the directed graph as opposed to the undirected graph.

Accordingly, by taking S = A and S = A⊤ respectively, we can compute the node homophily
based on outgoing or incoming edges. Similarly, we can also take S to be any weighted 2-hop matrix
associated with a directed graph (see details below) and compute its node homophily.

We can also extend the construction to edge-computations by defining the C × C weighted compati-
bility matrix H(S) of a message-passing matrix S as

hkl(S) =

∑
i,j∈V :yi=k∧yj=l sij∑

i,j∈V :yi=k sij
(4)

As above, one can take S = A or S = A⊤ to derive the compatibility matrix associated with the out
and in-edges, respectively.

Effective homophily. Stacking multiple layers of a GNN effectively corresponds to taking powers of
diffusion matrices, resulting in message propagation over higher-order hops. Zhu et al. [12] noted
that for heterophilic graphs, the 2-hop tends to be more homophilic than the 1-hop. This phenomenon
of similarity within “friends-of-friends” has been widely observed and is commonly referred to as
monophily [14]. If higher-order hops exhibit increased homophily, exploring the graph through layers
can prove beneficial for the task. Consequently, we introduce the concept of effective homophily as
the maximum weighted node homophily observable at any hop of the graph.

For directed graphs, there exists an exponential number of k-hops. For instance, four 2-hop matrices
can be considered: the squared operators A2 and (A⊤)2, which correspond to following the same
forward or backward edge direction twice, as well as the non-squared operators AA⊤ and A⊤A,
representing the forward/backward and backward/forward edge directions. Given a graph G, we
define its effective homophily as follows:

h(eff) = max
k≥1

max
C∈Bk

h(C) (5)

where Bk denotes the set of all k-hop matrices for a graph. If G is undirected, Bk contains only Ak.
In our empirical analysis, we will focus on the 2-hop matrices, as computing higher-order k-hop
matrices becomes intractable for all but the smallest graphs 2.

Leveraging directionality to enhance effective homophily. We observe that converting a graph
from directed to undirected results in lower effective homophily for heterophilic graphs, while the
impact on homophilic graphs is negligible (refer to the last column of Tab. 1). Specifically, AA⊤ and
A⊤A emerge as the most homophilic diffusion matrices for heterophilic graphs. In fact, the average
relative gain of effective homophily, h(eff)

gain , when using directed graphs compared to undirected
ones is only around 3% for homophilic datasets, while it is almost 30% for heterophilic datasets. We
further validate this observation on synthetic directed graphs exhibiting various levels of homophily,
generated through a modified preferential attachment process (see Appendix H.1 for more details).
Fig. 2a displays the results: the directed graph consistently demonstrates higher effective homophily
compared to its undirected counterpart, with the gap being particularly prominent for lower node
homophily levels. The minimal effective homophily gain on homophilic datasets further substantiates

2This is attributed to the fact that while A is typically quite sparse, Ak grows increasingly dense as k
increases, quickly approaching n2 non-zero entries.
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Figure 2: In our synthetic experiments, we observe the following: (a) the effective homophily of
directed graphs is consistently higher compared to their undirected counterparts. Interestingly, this gap
widens for graphs that are less homophilic. (b) When examining the performance of GraphSage and
its Dir-GNN extensions on a synthetic task requiring directionality information, only Dir-Sage(α=0.5),
which utilizes information from both directions, is capable of solving the task.

the traditional practice of using undirected graphs for benchmarking GNNs, as the datasets were
predominantly homophilic until recently.

Real-world example. We illustrate the concept of effective homophily in heterophilic directed graphs
by taking the concrete task of predicting the publication year of papers based on a directed citation
network such as Arxiv-Year [15]. In this case, the different 2-hop neighbourhoods have very different
semantics: the diffusion operator (A2)i represents papers that are cited by those papers that paper i
cites. As these 2-hop neighboring papers were published further in the past relative to paper i, they
do not offer much information about the publication year of i. On the other hand, (A⊤A)i represents
papers that share citations with paper i. Papers cited by the same sources are more likely to have been
published in the same period, so the diffusion operator A⊤A is expected to be more homophilic.
The undirected 2-hop operator A2

u = ( 12 (A +A⊤))2 = 1
4 (A

2 + (A⊤)2 +AA⊤ +AA⊤) is the
average of the four directed 2-hops. Therefore, the highly homophilic matrix A⊤A is diluted by the
inclusion of (A2), leading to a less homophilic operator overall.

4 Directed Graph Neural Network
In this Section, we extend the class of MPNNs to directed graphs, and refer to such generalization
as Directed Graph Neural Network (Dir-GNN). We follow the scheme in Eq. (2), meaning that the
update of a node feature is the result of a combination of its previous state and an aggregation over
its neighbours. Crucially though, the characterization of neighbours now has to account for the
edge-directionality. Accordingly, given a node i ∈ V , we perform separate aggregations over the
in-neighbours (j → i) and the out-neighbours (i → j) respectively:

m
(k)
i,← = AGG(k)

←

(
{{(x(k−1)

j ,x
(k−1)
i ) : (j, i) ∈ E}}

)
m

(k)
i,→ = AGG(k)

→

(
{{(x(k−1)

j ,x
(k−1)
i ) : (i, j) ∈ E}}

)
x
(k)
i = COM(k)

(
x
(k−1)
i ,m

(k)
i,←,m

(k)
i,→

)
.

(6)

The idea behind our framework is that given any MPNN, we can readily adapt it to the directed
case by choosing how to aggregate over both directions. For this purpose, we replace the neighbour
aggregator AGG(k) with two separate in- and out-aggregators AGG(k)

← and AGG(k)
→ , which can have

independent sets of parameters for the two aggregation phases and, possibly, different normalizations
as discussed below – however the functional expression in both cases stays the same. As we will
show, accounting for both directions separately is fundamental for both the expressivity of the model
(see Sec. 4.1) and its empirical performance (see Sec. 6.1).

Extension of common architectures. To make our discussion more explicit, we describe extensions
of popular MPNNs where the aggregation map is computed by m

(k)
i = (Sx(k−1))i, where S ∈ Rn×n

5
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is a message-passing matrix. In GCN [2], S = D−1/2AuD
−1/2, where D is the degree matrix of

the undirected graph. In the case of directed graphs, two message-passing matrices S← and S→
are required for in- and out-neighbours respectively. Additionally, the normalization is slightly
more subtle, since we now have two different diagonal degree matrices D← and D→ containing the
in-degrees and out-degrees respectively. Accordingly, we propose a normalization of the form S→ =
D−1/2→ AD−1/2← i.e. (S→)ij = aij/

√
d→i d←j . To motivate this choice, note that the normalization

modulates the aggregation based on the out-degree of i and the in-degree of j as one would expect
given that we are computing a message going from i to j. We can then take S← = S⊤→ and write the
update at layer k of Dir-GCN as

X(k) = σ
(
S→X(k−1)W(k)

→ + S⊤→X(k−1)W(k)
←

)
, (7)

for learnable channel-mixing matrices W(k)
→ ,W(k)

← and with σ a pointwise activation map. Finally,
we note that in our implementation of Dir-GNN we use an additional learnable or tunable parameter
α allowing the framework to weight one direction more than the other (a convex combination),
depending on the dataset. Dir-GNN extensions of GAT [3] and GraphSAGE [4] can be found
in Appendix C.

Dir-GNN leads to more homophilic aggregations. Since our main application amounts to relying
on the graph-directionality to mitigate heterophily, here we comment on how information is iteratively
propagated in a Dir-GNN, generally leading to an aggregation scheme beneficial on most real-world
directed heterophilic graphs. We focus on the Dir-GCN formulation, however the following applies
to any other Dir-GNN up to changing the message-passing matrices. Consider a 2-layer Dir-GCN
as in Eq. (7), and let us remove the pointwise activation σ 3. Then, the node representation can be
written as

X(2) = A2
→X(0)W(1)

→W(2)
→ + (A⊤→)2X(0)W(1)

←W(2)
← +A→A⊤→X(0)W(1)

←W(2)
→ +A⊤→A→X(0)W(1)

→W(2)
← .

We observe that when we aggregate information over multiple layers, the final node representation
is derived by also computing convolutions over 2-hop matrices A⊤→A→ and A→A⊤→. From the
discussion in Sec. 3, we deduce that this framework may be more suited to handle heterophilic graphs
since generally such 2-hop matrices are more likely to encode similarity than A2

→, (A⊤→)2 or A2
u –

this is validated empirically on real-world datasets in Sec. 6.

Advantages of two-directional updates. We discuss the benefits of incorporating both directions in
the layer update, as opposed to using a single direction. Although spatial MPNNs can be adapted to
directed graphs by simply utilizing A instead of Au—resulting in message propagation only along
out-edges—relying on a single direction presents three primary drawbacks. First, if the layer update
only considers one direction, the exploration of the multi-hop neighbourhoods through powers of
diffusion operators would not include the mixed terms AA⊤ and A⊤A, which have been shown to
be particularly beneficial for heterophilic graphs in Sec. 3. Second, by using only one direction we
disregard the graph entirely for nodes where the out-degree is zero 4. This phenomenon frequently
occurs in real-world graphs, as reported in Tab. 9. Incorporating both directions in the layer update
helps mitigate this problem, as it is far less common for a node to have both in- and out-degree to be
zero, as also illustrated in Tab. 9. Third, limiting the update to a single direction reduces expressivity,
as we discuss in Sec. 4.1.

Complexity. The complexity of Dir-GNN depends on the specific instantiation of the framework.
Dir-GCN, Dir-Sage, and Dir-GAT maintain the same per-layer computational complexity as their
undirected counterparts (O(md+ nd2) for GCN and GraphSage, and O(md2) for GAT). However,
they have twice as many parameters, owing to their separate weight matrices for in- and out-neighbors.

4.1 Expressive power of Dir-GNN

It is a well known result that MPNNs are bound in expressivity by the 1-WL test, and that it is
possible to construct MPNN models which are as expressive as the 1-WL test [17]. In this section,
we show that Dir-GNN is the optimal way to extend MPNNs to directed graphs. We do so by proving
that Dir-GNN models can be constructed to be as expressive as an extension of the 1-WL test to

3Note that this does not affect our discussion, in fact any observation can be extended to the non-linear case
by computing the Jacobian of node features as in Topping et al. [16].

4Or in-degree, depending on which direction is selected.
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directed graphs [18], referred to as D-WL (for a formal definition, see Appendix D.1). Additionally,
we illustrate its greater expressivity over more straightforward approaches, such as converting the
graph to its undirected form and utilizing a standard MPNN (MPNN-U) or applying an MPNN
that propagates solely along edge direction (MPNN-D)5. Formal statements for the theorems in this
section along with their proofs can be found in Appendix D.

Theorem 4.1 (Informal). Dir-GNN is as expressive as D-WL if AGG(k)
→ , AGG(k)

← , and COM(k) are
injective for all k.

A discussion of how a Dir-GNN can be parametrized to meet these conditions (similarly to what is
done in Xu et al. [17]) can be found in Appendix D.4.

Theorem 4.2 (Informal). Dir-GNN is strictly more expressive than both MPNN-U and MPNN-D.

Intuitively, the theorem states that while all directed graphs distinguished by MPNNs are also
separated by Dir-GNNs, there also exist directed graphs separated by the latter but not by the former.
This holds true for MPNNs applied both on the directed and undirected graph. We observe these
theoretical findings to be in line with the empirical results detailed in Appendix I and Tab. 10, where
Dir-GNN performs comparably or better (typically in the case of heterophily) than MPNNs.

5 Related Work

GNNs for directed graphs. While several classical papers have alluded to the extension of their
spatial models to directed graphs, empirical validation has not been conducted [9, 19, 20]. Gat-
edGCN [21] deals with directed graphs, however it aggregates information only from out-neighbors,
neglecting potentially valuable information from in-neighbors. More recently, Vrček et al. [22]
tackle the genome assembly problem by employing a GatedGCN with separate aggregations for in-
and out-neighbors. Various approaches have been developed to generalize spectral convolutions for
directed graphs [23, 24]. Of particular interest are DGCN [25], which leverages A⊤A and AA⊤ for
its convolution (see Appendix G for a more detailed comparison with Dir-GNN), DiGCN [26], which
uses Personalized Page Rank matrix as a generalized Laplacian and incorporates k-hop diffusion
matrices, and MagNet [27], which adopts a complex matrix for graph diffusion where the real and
imaginary parts represent the undirected adjacency and edge direction respectively. The above
spectral methods share the following limitations: 1) in-neighbors and out-neighbors share the same
weight matrix, which restricts expressivity; 2) they are specialized models, often inspired by GCN, as
opposed to broader frameworks; 3) their scalability is severely limited due to their spectral nature.
Concurrently to our work, Geisler et al. [28] extend transformers to directed graph for the task of
graph classification, while Maskey et al. [29] generalize the concept of oversmoothing to directed
graphs.

GNNs for relational graphs. While counter intuitive at first, a directed graph cannot be equivalently
represented by an undirected relational graph (see Appendix E for more details). However, our Dir-
GCN model can be considered as a Relational Graph Convolutional Network (R-GCN) [30] applied
to an augmented directed relational graph that incorporates two relation types: one for the original
edges and another for the inverse edges added to the graph. Several papers handle multi-relational
directed graphs by adding inverse relations [30–33]. Similarly to the above, directionality can be
addressed using an MPNN [9] combined with binary edge features, although at the cost of increased
memory usage (see Appendix F for more details). In our work, however, we are the first to perform
an in-depth investigation of the role of directionality in graph learning and its relation with homophily
of the graph.

Heterophilic GNNs. Several GNN architectures have been proposed to handle heterophily. One
way amounts to effectively allow the model to enhance the high-frequency components by learning
‘generalized’ negative weights on the graph [34–38]. A different approach tries to enlarge the
neighbourhood aggregation to take advantage of the fact that on heterophilic graphs, the likelihood of
finding similar nodes increases beyond the 1-hop [12, 15, 39–41].

5The same results apply to a model which sends messages only along in-edges.
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HOMOPHILIC HETEROPHILIC
CITESEER_FULL CORA_ML OGBN-ARXIV CHAMELEON SQUIRREL ARXIV-YEAR SNAP-PATENTS ROMAN-EMPIRE

HOM. 0.949 0.792 0.655 0.235 0.223 0.221 0.218 0.05
HOM. GAIN 1.36% 2.84% 6.30% 15.71% 2.38% 22.67% 40.32% 66.85%

GCN 93.37 ± 0.22 84.37 ± 1.52 68.39 ± 0.01 71.12 ± 2.28 62.71 ± 2.27 46.28 ± 0.39 51.02 ± 0.07 56.23 ± 0.37
DIR-GCN 93.44 ± 0.59 84.45 ± 1.69 66.66 ± 0.02 78.77 ± 1.72 74.43 ± 0.74 59.56 ± 0.16 71.32 ± 0.06 74.54 ± 0.71
SAGE 94.15 ± 0.61 86.01 ± 1.56 67.78 ± 0.07 61.14 ± 2.00 42.64 ± 1.72 44.05 ± 0.02 52.55 ± 0.10 72.05 ± 0.41
DIR-SAGE 94.14 ± 0.65 85.84 ± 2.09 65.14 ± 0.03 64.47 ± 2.27 46.05 ± 1.16 55.76 ± 0.10 70.26 ± 0.14 79.10 ± 0.19
GAT 94.53 ± 0.48 86.44 ± 1.45 69.60 ± 0.01 66.82 ± 2.56 56.49 ± 1.73 45.30 ± 0.23 OOM 49.18 ± 1.35
DIR-GAT 94.48 ± 0.52 86.21 ± 1.40 66.50 ± 0.16 71.40 ± 1.63 67.53 ± 1.04 54.47 ± 0.14 OOM 72.25 ± 0.04

Table 2: Ablation study comparing base MPNNs on the undirected graphs versus their Dir-GNN
extension on the directed graphs. Homophilic datasets, located to the left of the dashed line, show
little to no improvement when incorporating directionality, sometimes even experiencing a minor
decrease in performance. Conversely, heterophilic datasets, found to the right of the dashed line,
demonstrate large accuracy improvements when directionality is incorporated into the model.

6 Experiments

6.1 Synthetic Task

Setup. In order to show the limits of current MPNNs, we design a synthetic task where the label of a
node depends on both its in- and out-neighbors: it is one if the mean of the scalar features of their
in-neighbors is greater than the mean of the features of their out-neighbors, or zero otherwise (more
details in Appendix H.2). We report the results using GraphSage as base MPNN, but similar results
were obtained with GCN and GAT and reported in Fig. 9 of the Appendix. We compare GraphSage
on the undirected version of the graph (Sage), with three Dir-GNN extensions of GraphSage using
different convex combination coefficients α: Dir-Sage(α = 0) (only considering in-edges), Dir-
Sage(α = 1) (only considering out-edges) and Dir-Sage(α = 0.5) (considering both in- and out-edges
equally).

Results. The results in Fig. 2b show that only Dir-Sage(α=0.5), which accounts for both directions,
is able to almost perfectly solve the task. Using only in- or out-edges results in around 75% accuracy,
whereas GraphSage on the undirected graph is no better than a random classifier.

6.2 Extending Popular GNNs with Dir-GNN

Datasets. We evaluate on the task of node classification on several directed benchmark datasets
with varying levels of homophily: Citesee-Full, Cora-ML [42], OGBN-Arxiv [43], Chameleon,
Squirrel [44], Arxiv-Year, Snap-Patents [15] and Roman-Empire [45] (refer to Tab. 7 for dataset
statistics). While the first three are mainly homophilic (edge homophily greater than 0.65), the last
five are highly heterophilic (edge homophily smaller than 0.24). Refer to Appendix H.3 for more
details on the experimental setup and on dataset splits.

Setup. We evaluate the gain of extending popular undirected GNN architectures (GCN [2], Graph-
Sage [4] and GAT [3]) with our framework. For this ablation, we use the same hyperparameters (pro-
vided in Appendix H.4) for all models and datasets. The aggregated results are plotted in Fig. 1, while
the raw numbers are reported in Tab. 2. For Dir-GNN, we take the best results out of α ∈ {0, 0.5, 1}
(see Tab. 10 for the full results).

Results. We report aggregated results in Fig. 1, while Tab. 2 shows the results for each dataset. On
heterophilic datasets, using directionality brings exceptionally large gains (10% to 20% absolute)
in accuracy across all three base GNN models. On the other hand, on homophilic datasets using
directionality leaves the performance unchanged or slightly hurts. This is in line with the findings of
Tab. 1, which shows that using directionality as in our framework generally increases the effective
homophily of heterophilic datasets, while leaving it almost unchanged for homophilic datasets. The
inductive bias of undirected GNNs to propagate information in the same way in both directions
is beneficial on homophilic datasets where edges encode a notion of class similarity. Moreover,
averaging information across all your neighbors, independent of direction, leads to a low-pass filtering
effect that is indeed beneficial on homophilic graphs [13]. In contrast, Dir-GNN has to learn to align
in- and out-convolutions since they have independent weights.
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SQUIRREL CHAMELEON ARXIV-YEAR SNAP-PATENTS ROMAN-EMPIRE

MLP 28.77 ± 1.56 46.21 ± 2.99 36.70 ± 0.21 31.34 ± 0.05 64.94 ± 0.62
GCN 53.43 ± 2.01 64.82 ± 2.24 46.02 ± 0.26 51.02 ± 0.06 73.69 ± 0.74
H2GCN 37.90 ± 2.02 59.39 ± 1.98 49.09 ± 0.10 OOM 60.11 ± 0.52
GPR-GNN 54.35 ± 0.87 62.85 ± 2.90 45.07 ± 0.21 40.19 ± 0.03 64.85 ± 0.27
LINKX 61.81 ± 1.80 68.42 ± 1.38 56.00 ± 0.17 61.95 ± 0.12 37.55 ± 0.36
FSGNN 74.10 ± 1.89 78.27 ± 1.28 50.47 ± 0.21 65.07 ± 0.03 79.92 ± 0.56
ACM-GCN 67.40 ± 2.21 74.76 ± 2.20 47.37 ± 0.59 55.14 ± 0.16 69.66 ± 0.62
GLOGNN 57.88 ± 1.76 71.21 ± 1.84 54.79 ± 0.25 62.09 ± 0.27 59.63 ± 0.69
GRAD. GATING 64.26 ± 2.38 71.40 ± 2.38 63.30 ± 1.84 69.50 ± 0.39 82.16 ± 0.78
DIGCN 37.74 ± 1.54 52.24 ± 3.65 OOM OOM 52.71 ± 0.32
MAGNET 39.01 ± 1.93 58.22 ± 2.87 60.29 ± 0.27 OOM 88.07 ± 0.27
DIR-GNN 75.31 ± 1.92 79.71 ± 1.26 64.08 ± 0.26 73.95 ± 0.05 91.23 ± 0.32

Table 3: Results on real-world directed heterophilic datasets. OOM indicates out of memory.

6.3 Comparison with State-of-the-Art Models

Setup. Given the importance of directionality on heterophilic tasks, we compare Dir-GNN with
state-of-the-art models on heterophilic benchmarks Chameleon, Squirrel [44], Arxiv-Year, Snap-
Patents [15] and Roman-Empire [45]. In particular, we compare to simple baselines: MLP and
GCN [2], heterophilic state-of-the-art models: H2GCN [12], GPR-GNN [34], LINKX [15], FS-
GNN [40], ACM-GCN [36], GloGNN [41], Gradient Gating [46], and state-of-the-art models for
directed graphs: DiGCN [26] and MagNet [27]. Appendix H.6 contains more details on how base-
line results were obtained. Differently from the results in Tab. 2, we now tune the hyperparameters of
our model using a grid search (see Appendix H.5 for the exact ranges).

Results. In Tab. 3 we observe that Dir-GNN obtains new state-of-the-art results on all five het-
erophilic datasets, outperforming complex methods which were specifically designed to tackle
heterophily. These results suggest that, when present, using the edge direction can significantly
improve learning on heterophilic graphs, justifying the title of the paper. In contrast, discarding
it is so harmful that not even complex architectures can make up for this loss of information. We
further note that DiGCN and MagNet, despite being specifically designed for directed graphs, strug-
gle on Squirrel and Chameleon. This is due to their inability to selectively aggregate from one
direction while disregarding the other, a strategy that proves particularly advantageous for these two
datasets (see Tab. 10). Our proposed Dir-GNN framework overcomes this limitation thanks to its
distinct weight matrices and the flexibility provided by the α parameter, enabling selective directional
aggregation.

7 Conclusion

We introduced Dir-GNN, a generic framework to extend any spatial graph neural network to directed
graphs, which we prove to be strictly more expressive than MPNNs. We showed that treating the
graph as directed improves the effective homophily of heterophilic datasets, and validated empirically
that augmenting popular GNN architectures with our framework results in large improvements on
heterophilic benchmarks, while leaving performance almost unchanged on homophilic benchmarks.
Surprisingly, we found simple instantiations of our framework to obtain state-of-the-art results on the
five directed heterophilic benchmarks we experimented on, outperforming recent architectures devel-
oped specifically for heterophilic settings as well as previously proposed methods for directed graphs.

Limitations. Our research has several areas that could be further refined and explored. First, the
theoretical exploration of the conditions that lead to a higher effective homophily in directed graphs
compared to their undirected counterparts is still largely unexplored. Furthermore, we have yet to
investigate the expressivity advantage of Dir-GNN in the specific context of heterophilic graphs,
where empirical gains were most pronounced. Finally, we haven’t empirically investigated different
functional forms for aggregating in- and out-edges. These aspects mark potential areas for future
enhancements and investigations.
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tangle genome assembly with graph convolutional networks. arXiv preprint arXiv:2206.00668,
2022.

[23] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based
graph convolutional network for directed graphs, 2019.

[24] Federico Monti, Karl Otness, and Michael M. Bronstein. Motifnet: A motif-based graph
convolutional network for directed graphs. In IEEE Data Science Workshop (DSW), 2018.

[25] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S. Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv, 2020.

[26] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. In NeurIPS, 2020.

[27] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. In NeurIPS, 2021.

[28] Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and
Cosmin Paduraru. Transformers meet directed graphs. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 11144–11172. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/geisler23a.html.

[29] Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
approach to oversmoothing, 2023.

[30] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic
Web. Springer International Publishing, 2018.

[31] Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolutional networks
for semantic role labeling. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2017.

[32] Guillaume Jaume, An-phi Nguyen, María Rodríguez Martínez, Jean-Philippe Thiran, and Maria
Gabrani. edgnn: a simple and powerful GNN for directed labeled graphs. CoRR, 2019.

[33] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In International Conference on Learning Repre-
sentations, 2020.

[34] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In ICLR, 2020.

[35] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. AAAI, 2021.

[36] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In NeurIPS, 2022.

[37] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and
Michael M Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and
oversmoothing in gnns. In NeurIPS, 2022.

[38] Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich, and
Michael M Bronstein. Graph neural networks as gradient flows. arXiv, 2022.

[39] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In ICML, 2019.

[40] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with
simple architecture design. arXiv, 2021.

[41] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In ICML, 2022.

[42] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. In ICLR, 2018.

11

https://proceedings.mlr.press/v202/geisler23a.html
https://proceedings.mlr.press/v202/geisler23a.html


Edge Directionality Improves Learning on Heterophilic Graphs

[43] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020.

[44] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In ICLR, 2020.

[45] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
2023.

[46] T Konstantin Rusch, Benjamin P Chamberlain, Michael W Mahoney, Michael M Bronstein,
and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In ICLR, 2023.

[47] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In ICLR, 2022.

[48] Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification:
Investigating the homophily principle on node distinguishability. In NeurIPS, 2023.

[49] Pablo Barcelo, Mikhail Galkin, Christopher Morris, and Miguel Romero Orth. Weisfeiler
and leman go relational. In The First Learning on Graphs Conference, 2022. URL https:
//openreview.net/forum?id=wY_IYhh6pqj.

[50] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI Series, 1968.

[51] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identifications. Combinatorica, 1992.

[52] G. Kollias, Vasileios Kalantzis, Tsuyoshi Id’e, Aurélie C. Lozano, and Naoki Abe. Directed
graph auto-encoders. In AAAI Conference on Artificial Intelligence, 2022.

[53] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, 2019.

[54] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. In International Conference on Learning Representations (ICLR), 2022.

[55] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lió,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In Proceedings of the 38th International Conference on Machine Learning. PMLR,
2021.

[56] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
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Figure 3: Compatibility matrices for the undirected version of Citeseer-Full (homophilic, left) and
Chameleon (heterophilic, right).
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Figure 4: Weighted compatibility matrices of the undirected diffusion operator Au and the two
directed diffusion operators A and A⊤ for Arxiv-Year. The last two have rows (classes) which are
much more distinguishable then the first, despite still being heterophilic.

A Compatibility Matrices
Fig. 3 shows the compatibility matrices for both Citeseer-Full (homophilic) and Chameleon (het-
erophilic). Additionally, Fig. 4 presents the weighted compatibility matrices of the undirected
diffusion operator Au and the two directed diffusion operators A and A⊤ for Arxiv-Year. The
last two have rows (classes) which are much more distinguishable then the first, despite still being
heterophilic. This phenomen, called harmless heterophily, is discussed in Sec. 3.

B Harmless Heterophily Through Directions
It has been recently shown that heterophily is not necessarily harmful for GNNs, as long as nodes
with the same label share similar neighborhood patterns, and different classes have distinguishable
patterns [47, 48] . We find that some directed datasets, such as Arxiv-Year and Snap-Patents, show
this form of harmless heterophily when treated as directed, and instead manifest harmful heterophily
when made undirected (see Fig. 4 in the Appendix). This suggests that using directionality can be
beneficial also when using only one layer, as we confirm empirically (see Fig. 10 in the Appendix).

Toy example. We further illustrate the concepts presented in this Section with the toy example in
Fig. 5, which shows a directed graph with three classes (blue, orange, green). Despite the graph being
maximally heterophilic, it presents harmless heterophily, since different classes have very different
neighborhood patterns that can be observed clearly from the compatibility matrix of A (b). When
the graph is made undirected (c), we are corrupting this information, and the classes become less
distinguishable, making the task harder. We also note that both A⊤A and AA⊤ presents perfect
homophily (d), while A2

u does not, in line with the discussion in previous paragraphs.

C Extension of Popular GNNs
We first consider an extension of GraphSAGE [4] using our Dir-GNN framework. The main choice
reduces to that of normalization. In the spirit of GraphSAGE, we require the message-passing matrices
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Figure 5: (a) A toy directed graph with three classes showcasing harmless heterophily. (b) Compati-
bility matrix of A showing that classes (blue, orange and green) have very different neighborhoods
and can be easily distinguished. (c) Making the graph undirected makes the classes harder to dis-
tinguish, making the task harder to solve. (d) The mixed directed 2-hops (A⊤A and AA⊤) have
perfect homophily, while (e) this is not the case for the undirected 2-hop.

A← and A→ to both be row-stochastic. This is done by taking A→ = D−1→ A and A← = D−1← A⊤,
respectively. In this case, the directed version of GraphSAGE becomes

X(k) = σ(X(k−1)Ω(k) +D−1→ AX(k−1)W(k)
→ +D−1← A⊤X(k−1)W(k)

← ).

Finally, we consider the generalization of GAT [3] to the directed case. Here we simply compute
attention coefficients over the in- and out-neighbours separately. If we denote the attention coefficient
over the edge (i, j) by βij , then the update of node i at layer k can be computed as

h
(k)
i = σ(

∑
(i,j)∈E

β→ij W
(k)
→ h

(k)
j +

∑
(j,i)∈E

β←ji W
(k)
← h

(k)
j ),

where β→, β← are both row-stochastic matrices with support given by A and A⊤, respectively.

D Analysis of Expressivity
In this appendix we prove the expressivity results reported in Sec. 4.1, after restating them more
formally. It is important to note that we cannot build on the expressivity results from Barcelo et al.
[49], since their scope is limited to undirected relational graphs, and (perhaps surprisingly) it is not
possible to equivalently represent a directed graph with an undirected relational graphs, as we show
in Appendix E.

We start by introducing useful concepts which will be instrumental to our discussion. As commonly
done, we will assume in our analysis that all nodes have constant scalar node features c.

D.1 (Directed) Weisfeiler-Lehman Test

The 1-dimensional Weisfeiler-Lehman algorithm (1-WL), or color refinement, is a heuristic approach
to the graph isomorphism problem, initially proposed by Weisfeiler and Leman [50]. This algorithm
is essentially an iterative process of vertex labeling or coloring, aimed at identifying whether two
graphs are non-isomorphic.

Starting with an identical coloring of the vertices in both graphs, the algorithm proceeds through
multiple iterations. In each round, vertices with identical colors are assigned different colors if their
respective sets of equally-colored neighbors are unequal in number. The algorithm continues this
process until it either reaches a point where the distribution of vertices colors is different in the two
graphs or converges to the same distribution. In the former case, the algorithm concludes that the
graphs are not isomorphic and halts. Alternatively, the algorithm terminates with an inconclusive
result: the two graphs are ‘possibly isomorphic’. It has been shown that this algorithm cannot
distinguish all non-isomorphic graphs [51].

Formally, given an undirected graph G = (V,E), the 1-WL algorithm calculates a node coloring
C(t) : V (G) → N for each iteration t > 0, as follows:

C(t)(i) = RELABEL
(
C(t−1)(i), {{C(t−1)(j) : j ∈ N(i)}}

)
(8)

where RELABEL is a function that injectively assigns a unique color, not used in previous iterations,
to the pair of arguments. The function N(i) represents the set of neighbours of i.
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Since we deal with directed graphs, it is necessary to extend the 1-WL test to accommodate directed
graphs. We note that a few variants have been proposed in the literature [18, 32, 52]. Here, we focus
on a variant whereby in- and out-neighbours are treated separately, as discussed in [18]. This variant,
which we refer to as D-WL, refines colours as follows:

D(t)(i) = RELABEL
(
D(t−1)(i), {{D(t−1)(j) : j ∈ N→(i)}}, {{D(t−1)(j) : j ∈ N←(i)}}

)
(9)

where N→(i) and N←(i) are the set of out- and in-neighbors of i, respectively. Our first objective is
to demonstrate that Dir-GNN is as expressive as D-WL. Establishing this will enable us to further
show that Dir-GNN is strictly more expressive than an MPNN operating on either the directed or
undirected version of a graph. Let us start by introducing some further auxiliary tools that will be
used in our analysis.

D.2 Expressiveness and color refinements

A way to compare graph models (or algorithms) in their expressiveness is by contrasting their
discriminative power, that is the ability they have to disambiguate between non-isomorphic graphs.

Two graphs are called isomorphic whenever there exists a graph isomorphism between the two:
Definition D.1 (Graph isomorphism). Let G1 = (V1, E1), G2 = (V2, E2) be two (directed) graphs.
An isomorphism between G1, G2 is a bijective map φ : V1 → V2 which preserves adjacencies, that
is: ∀u, v ∈ V1 : (u, v) ∈ E1 ⇐⇒ (φ(u), φ(v)) ∈ E2.

On the contrary, they are deemed non-isomorphic when such a bijection does not exist. A model
that is able to discriminate between two non-isomorphic graphs assigns them distinct representations.
This concept is extended to families of models as follows:
Definition D.2 (Graph discrimination). Let G = (V,E) be any (directed) graph and M a model
belonging to some family M. Let G1 and G2 be two graphs. We say M discriminates G1, G2 iff
M(G1) ̸= M(G2). We write G1 ̸=M G2. If there exists such a model M ∈ M, then family M
distinguishes between the two graphs and we write G1 ̸=M G2.

Families of models can be compared in their expressive power in terms of graph disambiguation:
Definition D.3 (At least as expressive). Let M1,M2 be two model families. We say M1 is at least
as expressive as M2 iff ∀G1 = (V1, E1), G2 = (V2, E2), G1 ̸=M2

G2 =⇒ G1 ̸=M1
G2. We

write M1 ⊑ M2.

Intuitively, M1 is at least as expressive as M2 if when M2 discriminates a pair of graphs, also M1

does. Additionally, a family can be strictly more expressive than another:
Definition D.4 (Strictly more expressive). Let M1,M2 be two model families. We say M1 is
strictly more expressive than M2 iff M1 ⊑ M2 ∧M2 ̸⊑ M1. Equivalently, M1 ⊑ M2 ∧ ∃G1 =
(V1, E1), G2 = (V2, E2), s.t. G1 ̸=M1

G2 ∧G1 =M2
G2.

Intuitively, M1 is strictly more expressive than M2 if M1 is at least as expressive as M2 and there
exist pairs of graphs that M1 distinguishes but M1 does not.

Many graph algorithms and models operate by generating node colorings or representations. These
can be gathered into multisets of colors that are compared to assess whether two graphs are non-
isomorphic. Other than convenient, in these cases it is interesting to characterise the discriminative
power at the level of nodes by means of the concept of color refinement [37, 53, 54].
Definition D.5 (Color refinement). Let G = (V,E) be a graph and C,D two coloring functions.
Coloring D refines colouring C when ∀v, w ∈ V,D(v) = D(w) =⇒ C(v) = C(w).

Essentially, when D refines C, if any two nodes are assigned the same color by D, the same holds
for C. Equivalently, if two nodes are distinguished by C (because they are assigned different colors),
then they are also distinguished by D. When, for any graph, D refines C, then we write D ⊑ C and,
when also the opposite holds, (C ⊑ D), we then write D ≡ C. As an example, for any t ≥ 0 it can
be shown that, on any graph, the coloring generated by the 1-WL algorithm at round t+ 1 refines
that at round t, that is C(t+1) ⊑ C(t); this being essentially due to the injectivity property of the
RELABEL function.
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Importantly, as we were anticipating above, this concept can be directly translated into graph
discrimination as long as graphs are represented by the multiset of their vertices’ colors, or an
injection thereof. This link, which explains the use of the same symbol to refer to the concepts of
color refinement and discriminative power, is explicitly shown, for example, in Bevilacqua et al.
[54], Bodnar et al. [55]. More concretely, it can be shown that, if coloring D refines coloring C,
then the algorithm which generates D is at least as expressive as the one generating C, as long as
multisets of node colours are directly compared to discriminate between graphs, or they are first
encoded by a multiset injection before the comparison is carried out. In the following we will resort
to the concept of color refinement to prove some of our theoretical results. This approach is not
only practically convenient for the required derivations, but it also informs us on the discriminative
power models have at the level of nodes, something which is of relevance to us given our focus on
node-classification tasks.

Furthermore, even though Dir-GNN outputs node-wise embeddings, it can be augmented with a global
readout function to generate a single graph-wise embeddings xG = READOUT

(
{{x(K)

i : i ∈ V }}
)

.
We will assume that all models discussed in this section are augmented with a global readout function.

D.3 MPNNs on Directed Graphs

Before moving forward to prove our expressiveness results, let us introduce the families of archi-
tectures we compare with. These embody straightforward approaches to adapt MPNNs to directed
graphs.

Let MPNN-D be a model that performs message-passing by only propagating messages in accordance
with the directionality of edges. Its layers can be defined as follows:

m
(k)
i = AGG(k)

(
{{(x(k−1)

j ,x
(k−1)
i ) : j ∈ N→(i)}}

)
x
(k)
i = COM(k)

(
x
(k−1)
i ,m

(k)
i

) (10)

Instead, let MPNN-U be a model which propagates messages equally along any incident edge,
independent of their directionality. Its layers can be defined as follows:

m
(k)
i = AGG(k)

(
{{(x(k−1)

j ,x
(k−1)
i ) : j ∈ N→(i)}} ∪ {{(x(k−1)

j ,x
(k−1)
i ) : j ∈ N←(i)}}

)
x
(k)
i = COM(k)

(
x
(k−1)
i ,m

(k)
i

) (11)

Note that if there are no bi-directional edges, MPNN-U is equivalent to first converting the graph to
its undirected form (where the edge set is redefined as E(u) = {(i, j) : (i, j) ∈ E ∨ (j, i) ∈ E}) and
then running an undirected MPNN( Eq. (2)). In practice, we observe that the number of bi-directional
edges is generally small on average, while extremely small on specific datasets (see Tab. 7). In these
cases, we expect the empirical performance of the two approaches to be close to each other. We
remark that, in our experiments, we opt for the latter strategy as it is easier and more efficient to
implement.

We can now formally define families for the models we will be comparing.
Definition D.6 (Model families). Let MMPNN−D be the family of Message Passing Neural Networks
on the directed graph (Eq. (10)), MMPNN−U that of Message Passing Neural Networks on the
undirected form of the graph (Eq. (11)), and MDir−GNN that of Dir-GNN models (Eq. (6)).

D.4 Comparison with D-WL

We start by restating Theorem 4.1 more formally:
Theorem D.7. MDir−GNN is as expressive as D-WL if AGG(k)

→ , AGG(k)
← , and COM(k) are

injective for all k and node representations are aggregated via an injective READOUT function.

We now prove the theorem by showing that D-WL and Dir-GNN (under the hypotheses of the
theorem) are equivalent in their expressive power. We will show this in terms of color refinement
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and, in particular, by showing that, not only the D-WL coloring at any round t refines that induced by
any Dir-GNN at the same time step, but also that, when Dir-GNN’s components are injective, the
opposite holds.

Proof of Theorem D.7. Let us begin by showing that Dir-GNN is upper-bounded in expressive power
by the D-WL test. We do this by showing that, at any t ≥ 0, the D-WL coloring D(t) refines
the coloring induced by the representations of any Dir-GNN, that is, on any graph G = (V,E),
∀v, w ∈ V, D(t)(v) = D(t)(w) =⇒ h

(t)
v = h

(t)
w , where h

(t)
v refers to the representation of node

v in output from any Dir-GNN at layer t > 0. For t = 0 nodes are populated with a constant color:
∀v ∈ V : D

(0)
v = c̄, or an appropriate encoding thereof in the case of the Dir-GNN h

(0)
v = enc(c̄).

We proceed by induction. The base step trivially holds for t = 0 given how nodes are initialised.
As for the recursion step, let us assume the thesis hold for t > 0; we seek to prove it also hold for
t + 1, showing that ∀v, w ∈ V, D(t+1)(v) = D(t+1)(w) =⇒ h

(t+1)
v = h

(t+1)
w . D(t+1)(v) =

D(t+1)(w) implies the equality of the inputs of the RELABEL function given it is injective. That
is: D(t)(v) = D(t)(w), {{D(t)(u) : u ∈ N→(v)}} = {{D(t)(u) : u ∈ N→(w)}}, and {{D(t)(u) :
u ∈ N←(v)}} = {{D(t)(u) : u ∈ N←(w)}}. By the induction hypothesis, we immediately get
h
(t)
v = h

(t)
w . Also, the induction hypothesis, along with [54, Lemma 2], gives us: {{h(t)

u : u ∈
N→(v)}} = {{h(t)

u : u ∈ N→(w)}}, and {{h(t)
u : u ∈ N←(v)}} = {{h(t)

u : u ∈ N←(w)}}. Given that
h
(t)
v = h

(t)
w = h̄, we also have {{(h(t)

u , h
(t)
v ) : u ∈ N→(v)}} = {{(h(t)

u , h
(t)
w ) : u ∈ N→(w)}}, and

{{(h(t)
u , h

(t)
v ) : u ∈ N←(v)}} = {{(h(t)

u , h
(t)
w ) : u ∈ N←(w)}}: it would be sufficient, for example, to

construct the well-defined function φ : h 7→ (h, h̄) and invoke [54, Lemma 3]. These all represents
the only inputs to a Dir-GNN layer – the two AGG(t) and the COM(t) function in particular. Being
well defined functions, they must return equal outputs for equal inputs, so that h(t+1)

v = h
(t+1)
w .

In a similar way, we show that, when AGG and COM functions are injective, the opposite hold,
that is, ∀v, w ∈ V, h

(t)
v = h

(t)
w =⇒ D(t)(v) = D(t)(w). The base step holds for t = 0 for

the same motivations above. Let us assume the thesis holds for t > 0 and seek to show that
for t + 1,∀v, w ∈ V, h

(t+1)
v = h

(t+1)
w =⇒ D(t+1)(v) = D(t+1)(w). If h

(t+1)
v = h

(t+1)
w ,

then COM(t)
(
h
(t)
v ,m

(t)
v,→,m

(t)
v,←

)
= COM(t)

(
h
(t)
w ,m

(t)
w,→,m

(t)
w,←

)
. As COM(t) is injective,

it must also hold h
(t)
v = h

(t)
w , which, by the induction hypothesis, gives D(t)(v) = D(t)(w).

Furthermore, by the same argument, we must also have m
(t)
v,→ = m

(t)
w,→, and m

(t)
v,← = m

(t)
w,←.

At this point we recall that, for any node v, m(t)
v,→ = AGG(t)

→ ({{(h(t)
u , h

(t)
v ) : u ∈ N→(v)}}) and

m
(t)
v,← = AGG(t)

← ({{(h(t)
u , h

(t)
v ) : u ∈ N←(v)}}), where, by our assumption, AGG(t)

← , AGG(t)
→ are

injective. This implies the equality between the multisets in input, i.e. {{(h(t)
u , h

(t)
v ) : u ∈ N→(v)}} =

{{(h(t)
u , h

(t)
w ) : u ∈ N→(w)}}, and {{(h(t)

u , h
(t)
v ) : u ∈ N←(v)}} = {{(h(t)

u , h
(t)
w ) : u ∈ N←(w)}}.

From these equalities it clearly follows {{h(t)
u : u ∈ N→(v)}} = {{h(t)

u : u ∈ N→(w)}}, and
{{h(t)

u : u ∈ N←(v)}} = {{h(t)
u : u ∈ N←(w)}} – one can invoke [54, Lemma 3] with the well

defined function φ : (h1, h2) 7→ h1. Again, by the induction hypothesis, and [54, Lemma 2], we
have {{D(t)(u) : u ∈ N←(v)}} = {{D(t)(u) : u ∈ N←(w)}} and {{D(t)(u) : u ∈ N→(v)}} =
{{D(t)(u) : u ∈ N→(w)}}. Finally, as all and only inputs to the RELABEL function are equal,
D(t+1)(v) = D(t+1)(w). The proof then terminates: as the READOUT function is assumed to be
injective, having proved the refinement holds at the level of nodes, this is enough to also state that,
if two graphs are distinguished by D-WL they are also distinguished by a Dir-GNN satisfying the
injectivity assumptions above.

As for the existence and implementation of these injective components, constructions can be found
in Xu et al. [17] and Corso et al. [56]. In particular, in [17, Lemma 5], the authors show that, for a
countable X , there exist maps f : X → Rn such that function h : X 7→

∑
x∈X f(x) is injective

for subsets X ⊂ X of bounded cardinality, and any multiset function g can be decomposed as
g(X) = φ

(∑
x∈X f(x)

)
for some function φ. As X is countable, there always exists an injection

Z : x → N, and function f can be constructed, for example, as f(x) = N−Z(x), with N being
the maximum (bounded) cardinality of subsets X ⊂ X . These constructions are used to build
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Figure 6: Two non-isomorphic directed graphs that cannot be distinguished by any MPNN-D model
but can be distinguished by Dir-GNN.

multiset aggregators in the GIN architecture [17] when operating on features from a countable set and
neighbourhoods of bounded size. Under the same assumptions, the same constructions can be readily
adapted to express the aggregators AGG(k)

→ ,AGG(k)
← as well as READOUT in our Dir-GNN. Similarly

to the above, under the same assumptions, injective maps for elements (c,X), c ∈ X , X ⊂ X can
be constructed as h(c,X) = (1 + ϵ)f(c) +

∑
x∈X f(x) for infinitely many choice of ϵ, including

all irrational numbers, and any function g on couples (c,X) can be decomposed as g(c,X) =
φ
(
(1+ ϵ)f(c)+

∑
x∈X f(x)

)
[17, Corollary 6]. The same approach can be extended to our use-case.

In fact, for irrationals ϵX , ϵY , an injection on triple (c,X, Y ) (with c ∈ X , X, Y ⊂ X of bounded size
and X countable) can be built as h(c,X, Y ) = ℓ

(
(1 + ϵX)fX(c) +

∑
x∈X fX(x), (1 + ϵY )fY (c) +∑

y∈Y fY (y)
)
, where ℓ is an injection on a countable set and (1 + ϵX)fX(c) +

∑
x∈X fX(x), (1 +

ϵY )fY (c) +
∑

y∈Y fY (y) realise injections over couples (c,X), (c, Y ) as described above. This
construction can be used to express the COM(k) components of Dir-GNN. In practice, in view of the
Universal Approximation Theorem (UAT) [57], Xu et al. [17] propose to use Multi-Layer Perceptrons
(MLPs) to learn the required components described above, functions f and φ in particular. We
note that, in order to resort to the original statement of the UAT, this approach additionally requires
boundedness of set X itself. Similar practical parameterizations can be used to build our desired
Dir-GNN layers. Last, we refer readers to [56] for constructions which can be adopted in the case
where initial node features have a continuous, uncountable support.

D.5 Comparison with MPNNs

In this subsection we prove Theorem 4.2, which we restate more formally and split into two separate
parts, one regarding MPNN-D and the other regarding MPNN-U. We start by proving that Dir-GNN
is stricly more expressive than MPNN-D, i.e an MPNN which operates on directed graphs by only
propagating messages according to the directionality of edges:
Theorem D.8. MDir−GNN is strictly more powerful than MMPNN−D.

We begin by first proving the following lemmas:
Lemma D.9. MDir−GNN is at least as expressive as MMPNN−D (MDir−GNN ⊑ MMPNN−D).

Proof of Lemma D.9. We prove this Lemma by noting that the Dir-GNN architecture generalizes that
of an MPNN-D, so that a Dir-GNN model can (learn to) simulate a standard MPNN-D by adopting
particular weights. Specifically, Dir-GNN defaults to MPNN-D (which only sends messages along
the out edges) if COM(k)

(
x
(k−1)
i ,m

(k)
i,←,m

(k)
i,→

)
= COM(k)

(
x
(k−1)
i ,m

(k)
i,→

)
, i.e. COM ignores

in-messages, and the two readout modules coincide. Importantly, the direct implication of the above
is that whenever an MPNN-D model distinguishes two graphs, then there exists a Dir-GNN which
can implement such a model and then discriminate the two graphs as well.

Lemma D.10. There exist graph pairs discriminated by a Dir-GNN model which are not discriminated
by any MPNN-D model.
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Proof of Lemma D.10. Let G1 and G2 be the non-isomorphic graphs illustrated in Fig. 6. To confirm
that they are not isomorphic, simply note that node 1 in G1 has an in-degree of two, while no node in
G2 has an in-degree of two.

To prove that no MPNN-D model can distinguish between the two graphs, we will show that any
MPNN-D induce the same coloring for the two graphs. In particular, we will show that, if C(t)(v)
refers to the representation a MPNN-D computes for node v at time step t, then C(t)(1) = C(t)(2) =
C(t)(5) = C(t)(6) and C(t)(3) = C(t)(4) = C(t)(7) = C(t)(8) for any t ≥ 0.

We proceed by induction. The base step trivially holds for t = 0 given that nodes are all initialised
with the same color. As for the inductive step, let us assume that the statement holds for t and
prove that it also holds for t + 1. Assume C(t)(1) = C(t)(2) = C(t)(5) = C(t)(6) and C(t)(3) =
C(t)(4) = C(t)(7) = C(t)(8) (induction hypothesis). Then we have:

C(t+1)(1) = COM(t)
(
C(t)(1),AGG(t)({{}})

)
C(t+1)(2) = COM(t)

(
C(t)(2),AGG(t)({{}})

)
C(t+1)(5) = COM(t)

(
C(t)(5),AGG(t)({{}})

)
C(t+1)(6) = COM(t)

(
C(t)(6),AGG(t)({{}})

)
The induction hypothesis then gives us that C(t+1)(1) = C(t+1)(2) = C(t+1)(5) = C(t+1)(6). As
for the other nodes, we have:

C(t+1)(3) = COM(t)
(
C(t)(3),AGG(t)({{(C(t)(3), C(t)(1))}})

)
C(t+1)(4) = COM(t)

(
C(t)(4),AGG(t)({{(C(t)(4), C(t)(1))}})

)
C(t+1)(7) = COM(t)

(
C(t)(7),AGG(t)({{(C(t)(7), C(t)(5))}})

)
C(t+1)(8) = COM(t)

(
C(t)(8),AGG(t)({{(C(t)(8), C(t)(6))}})

)
The induction hypothesis then gives us that C(t+1)(3) = C(t+1)(4) = C(t+1)(7) = C(t+1)(8).
Importantly, the above holds for any parameters of the COM(t) and AGG(t) functions. As any
MPNN-D will always compute the same set of node representations for the two graphs, it follows
that no MPNN-D can disambiguate between the two graphs, no matter the way they are aggregated.
To conclude our proof, we show that there exists Dir-GNN models that can discriminate the two
graphs. In view of Theorem 4.1, it is enough to show that the two graphs are disambiguated by D-WL.
Applying D-WL to the two graphs leads to different colorings after two iterations (see Tab. 4), so
the D-WL algorithm terminates deeming the two graphs non-isomorphic. Then, by Theorem 4.1,
there exist Dir-GNNs which distinguish them. In fact, it is easy to even construct simple 1-layer
architecture that can assign the two graphs distinct representations, an exercise which we leave to
the reader. Importantly, note how Dir-GNN can distinguish between the two graphs hinging on the
discrimination of non-isomorphic nodes such as 1, 2, something no MPNN-D is capable of doing.

With the two results above prove Theorem D.8.

Proof of Theorem D.8. The theorem follows directly from Lemmas D.9 and D.10.

Next, we focus on the comparison with MPNN-U, i.e. an MPNN on the undirected form of the graph:
Theorem D.11. MDir−GNN is strictly more expressive than MMPNN−U.

Instrumental to us is to consider a variant of the 1-WL test MPNN-U can be regarded as the neural
counterpart of. In the following we will show that such a variant, which we call U-WL, generates
colorings which refine the ones induced by any MPNN-U and that, in turn, are refined by the D-WL
test. In view of Theorem 4.1, this will be enough to show that there exists Dir-GNNs refining any
MPNN-U instantiation, so that, ultimately, MDir-GNN ⊑ MMPNN-U.
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ITERATION NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 NODE 6 NODE 7 NODE 8

1 A A A A A A A A
2 B C C D E E C C

M(v) RELABEL(M(v))

INITIALIZE A
(A, {{}}, {{(A,A), (A,A)}}) B
(A, {{(A,A)}}, {{}}) C
(A, {{}}, {{}}) D
(A, {{}}, {{(A,A)}}) E

Table 4: Node colorings at different iterations, as well as the RELABEL hash function, when
applying D-WL to the two graphs in Fig. 6.

# Nodes

# Features

X =

1 2

3

4 5

6

Figure 7: Two non-isomorphic directed graphs that cannot be distinguished by any MPNN-U model
but can be distinguished by Dir-GNN.

Lemma D.12. MDir−GNN is at least as expressive as MMPNN−U (MDir−GNN ⊑ MMPNN−U).

Proof of Lemma D.12. Let us start by introducing the U-WL test, which, on an undirected graph,
refines node colors as:

A(t+1)(v) = RELABEL
(
A(t)(v), {{A(t)(u) : u ∈ N→(v)}} ∪ {{A(t)(u) : u ∈ N←(v)}}

)
,

that is, by the gathering neighbouring colors from each incident edge, independent of its direction.
It is easy to show that U-WL generates a coloring that, at any round t ≥ 0 is refined by the
coloring generated by D-WL, i.e., for any graph G = (V,E) it holds that ∀v, w ∈ V,D(t)(v) =
D(t)(w) =⇒ A(t)(v) = A(t)(w), where D refers to the coloring of D-WL. Again, proceeding
by induction, we have the following. First, the base step hold trivially for t = 0. We assume the
thesis holds true for t and seek to show it also holds for t+ 1. If D(t+1)(v) = D(t+1)(w) then, by
the injectivity of RELABEL we must have D(t)(v) = D(t)(w), which implies A(t)(v) = A(t)(w)
via the induction hypothesis. Additionally, we have {{D(t)(u) : u ∈ N→(v)}} = {{D(t)(u) : u ∈
N→(w)}}, and {{D(t)(u) : u ∈ N←(v)}} = {{D(t)(u) : u ∈ N←(w)}} which, by the induction
hypothesis and [54, Lemma 2], gives A(t)

→,v = {{A(t)(u) : u ∈ N→(v)}} = {{A(t)(u) : u ∈
N→(w)}} = A(t)

→,w, and A(t)
←,v = {{A(t)(u) : u ∈ N←(v)}} = {{A(t)(u) : u ∈ N←(w)}} = A(t)

←,w.
From these equalities we then derive A(t)

→,v ∪ A(t)
←,v = A(t)

→,w ∪ A(t)
←,w. Indeed, let us suppose

that, instead, A(t)
→,v ∪ A(t)

←,v ̸= A(t)
→,w ∪ A(t)

←,w and that, w.l.o.g., this is due by the existence of a
color ā such that its number of appearances in A(t)

→,w ∪ A(t)
←,w is larger than that in A(t)

→,v ∪ A(t)
←,v.

We write #A
(t)
→,w∪A

(t)
←,w(ā) > #A

(t)
→,v∪A

(t)
←,v (ā). Then, as these are all multisets, we can rewrite

#A
(t)
→,w(ā) + #A

(t)
←,w(ā) > #A

(t)
→,v (ā) + #A

(t)
←,v (ā). Since A(t)

→,w = A(t)
→,v, we must have that

#A
(t)
→,w(ā) = #A

(t)
→,v (ā), which leads to necessarily having #A

(t)
←,w(ā) ̸= #A

(t)
←,v (ā). However,

this entails a contradiction, because by hypothesis we had that A(t)
←,w = A(t)

←,v. Last, given that
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ITERATION NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 NODE 6

1 A A A A A A
2 B B B C B D

M(v) RELABEL(M(v))

INITIALIZE A
(A, {{(A,A)}}, {{(A,A)}}) B
(A, {{(A,A), (A,A)}}, {{}}) C
(A, {{}}, {{(A,A), (A,A)}}) D

Table 5: Node colorings at different iterations, , as well as the RELABEL hash function, when
applying D-WL to the two graphs in Fig. 7.

A(t)(v) = A(t)(w), and A(t)
→,v ∪ A(t)

←,v = A(t)
→,w ∪ A(t)

←,w, being the only inputs to the RELABEL
function in U-WL, then we also have that A(t+1)(v) = A(t+1)(w), concluding the proof of the
refinement.

Now, in view of Theorem 4.1, it is sufficient to show that U-WL refines the coloring induced by
any MPNN-U; the lemma will then follow by transitivity. We want to show that t ≥ 0, the U-WL
coloring A(t) refines the coloring induced by the representations of any MPNN-U, that is, on any
graph G = (V,E), ∀v, w ∈ V, A(t)(v) = A(t)(w) =⇒ h

(t)
v = h

(t)
w , with h

(t)
v referring to the

representation an MPNN-U assigns to node v at time step t. The thesis is easily proved. It clearly holds
for t = 0 if initial node representations are produced by a well-defined function enc : c̄ 7→ enc(c̄).
Then, if we assume the thesis holds for t > 0, we can show it also holds for t + 1. Indeed, if
A(t+1)(v) = A(t+1)(w), from the injectivity of RELABEL, it follows that A(t)(v) = A(t)(w) and
A(t)
→,v ∪ A(t)

←,v = A(t)
→,w ∪ A(t)

←,w. By the induction hypothesis, we have h
(t)
v = h

(t)
w and, jointly due

to [54, Lemma 2], {{h(t)
u : u ∈ N→(v)}} ∪ {{h(t)

u : u ∈ N←(v)}} = {{h(t)
u : u ∈ N→(w)}} ∪ {{h(t)

u :

u ∈ N←(w)}}. Given that h(t)
v = h

(t)
w = h̄, it also clearly holds that {{(h(t)

u , h
(t)
v ) : u ∈ N→(v)}} ∪

{{(h(t)
u , h

(t)
v ) : u ∈ N←(v)}} = {{(h(t)

u , h
(t)
w ) : u ∈ N→(w)}} ∪ {{(h(t)

u , h
(t)
w ) : u ∈ N←(w)}} – it is

sufficient to construct the well-defined function φ : h 7→ (h, h̄) and invoke [54, Lemma 3]. These are
the inputs to the well-defined functions constituting the update equations of an MPNN-U architecture,
eventually entailing h

(t+1)
v = h

(t+1)
w .

Now, with the following lemma we show that, not only MDir−GNN is at least as expressive as
MMPNN−U, there actually exist pairs of graphs distinguished by former family but not by the latter.
Lemma D.13. There exist graph pairs distinguished by a Dir-GNN model which are not distinguished
by any MPNN-U model.

Proof of Lemma D.13. Let G1 and G2 be the non-isomorphic graphs illustrated in Fig. 7. From Tab. 6
we observe that U-WL is not able to distinguish between the two graphs, as after the first iteration all
nodes still have the same color: the U-WL is at convergence and terminates concluding that the two
graphs are possibly isomorphic. From Lemma D.12, we conclude that no MPNN-U can distinguish
between the two graphs. On the other hand, applying D-WL to the two graphs leads to different
colorings after two iterations (see Tab. 5, so the D-WL algorithm terminates deeming the two graphs
non-isomorphic. Then, by Theorem 4.1, there exists Dir-GNNs which distinguish them. In fact,
simple Dir-GNN architectures which distinguish the two graphs are easy to construct. Importantly,
we note, again, how these architectures distinguish between the two graphs by disambiguating
non-isomorphic nodes such as 4, 6, something no MPNN-U is capable of doing.

Last, the two results above are sufficient to prove Theorem D.11.

Proof of Theorem D.11. The theorem follows directly from Lemmas D.12 and D.13.
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ITERATION NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 NODE 6 NODE 7 NODE 8

1 A A A A A A A A
2 E E E E E E E E

M(v) RELABEL(M(v))

INITIALIZE A
(A, {{(A,A)}}, {{(A,A), (A,A)}}) E

Table 6: Node colorings at different iterations, as well as the RELABEL hash function, when
applying U-WL to the two graphs in Fig. 7.

# Nodes

# Features

X =

1 2

3

4 5

6
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Figure 8: The two non-isomorphic directed graphs G1 and G2 become isomorphic when converted
to an undirected relational graph. This shows that is not possible to represent directed graphs with
undirected relational graphs without losing information.

E Exploring Alternative Representations for Directed Graphs
One might intuitively consider the possibility of representing a directed graph equivalently through
an undirected relational graph, having two relations for original and inverse edges. However, this
assumption proves to be erroneous, as illustrated by the following counterexample. Take the two
non-isomorphic directed graphs illustrated in Fig. 8. Surprisingly, these two directed graphs share an
identical representation as an undirected relational graph, as depicted in Fig. 8.

Kollias et al. [52] showed that it is however possible to equivalently represent a directed graph with
an undirected graph having two nodes for each node in the original graph, representing the source
and destination role of the node respectively.

F MPNN with Binary Edge Features
A possible alternative approach to address directed graphs involves using an MPNN [9] combined
with binary edge features. In this case, the original directed graph is augmented with inverse edges,
which are assigned a distinct binary feature compared to the original ones. Given the original directed
graph G = (V,E), we define the augmented graph as Ga = (V,Ea) with Ea = {((i, j), [0 1]) :
(i, j) ∈ E} ∪ {((j, i), [1 0]) : (i, j) ∈ E}.

An MPNN with edge features can be defined as:

m
(k)
i = AGG(k)

(
{{(x(k)

i ,x
(k)
j , eij) : (i, j) ∈ E}}

)
x
(k)
i = COM(k)

(
x
(k−1)
i ,m

(k)
i

)
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DATASET # NODES # EDGES # FEAT. # C UNIDIRECTIONAL EDGES EDGE HOM.

CITESEER-FULL 4,230 5,358 602 6 99.61% 0.949
CORA-ML 2,995 8,416 2,879 7 96.84% 0.792
OGBN-ARXIV 169,343 1,166,243 128 40 99.27% 0.655
CHAMELEON 2,277 36,101 2,325 5 85.01% 0.235
SQUIRREL 5,201 217,073 2,089 5 90.60% 0.223
ARXIV-YEAR 169,343 1,166,243 128 40 99.27% 0.221
SNAP-PATENTS 2,923,922 13,975,791 269 5 99.98% 0.218
ROMAN-EMPIRE 22,662 44,363 300 18 65.24% 0.050

Table 7: Statistics of the datasets used in this paper.

DATASET MODEL_TYPE LR # HIDDEN_DIM # NUM_LAYERS JK NORM DROPOUT α

CHAMELEON DIR-GCN 0.005 128 5 MAX TRUE 0 1.
SQUIRREL DIR-GCN 0.01 128 4 MAX TRUE 0 1.
ARXIV-YEAR DIR-GCN 0.005 256 6 CAT FALSE 0 0.5
SNAP-PATENTS DIR-GCN 0.01 32 5 MAX TRUE 0 0.5
ROMAN-EMPIRE DIR-SAGE 0.01 256 5 CAT FALSE 0.2 0.5

Table 8: Best hyperparameters for each dataset, determined through grid search, for our model.

However, since messages do not depend only on the source nodes but also on the destination
node (through the edge features), this approach necessitates the materialization of explicit edge
messages [58]. Given that there are m such messages (one per edge) with dimension d, the memory
complexity amounts to O(m× d). This is significantly higher than the O(n× d) memory complexity
achieved by instantiations of Dir-GNN such as Dir-GCN or Dir-SAGE, and could lead to out-of-
memory issues for even moderately sized datasets. Therefore, while having the same expressivity,
our model has better memory complexity.

G Relation with Existing Methods for Directed Graphs

DGCN [25] directly employs A⊤A and AA⊤ for spectral convolution, alongside Au. They observe
that these 2-hop matrices enhance feature and label smoothness, a finding that aligns with our
observations in Sec. 3. However, DGCN limits its experiments to homophilic datasets, thereby
limiting the applicability of their insights. Furthermore, the model encounters several limitations: it
does not provide access to directed 1-hop edges (A and A⊤); it is constrained to the 2-hop, without
the capability to access higher hops—contrastingly, our model consistently benefits from utilizing 5
or 6 layers (see Tab. 8); it is limited to a specific, GCN-like architecture, rather than a more general
framework; and it lacks scalability due to the explicit computation of A⊤A and AA⊤.

H Experimental Details

H.1 Effective Homophily of Synthetic Graphs

For the results in Fig. 2a, we generate directed synthetic graphs with various homophily levels
using a modified preferential attachment process [59], inspired by Zhu et al. [12]. New nodes are
incrementally added to the graphs until the desired number of nodes is achieved. Each node is
assigned a class label, chosen uniformly at random among C classes, and forms out-edges with
exactly m pre-existing nodes, where m is a parameter of the process. The m out-neighbors are
sampled without replacement from a distribution that is proportional to both their in-degree and the
class compatibility of the two nodes. Consequently, nodes with higher in-degree are more likely to
receive new edges, leading to a "rich get richer" effect where a small number of highly connected
"hub" nodes emerge. This results in the in-degree distribution of the generated graphs following
a power-law, with heterophily controlled by the class compatibility matrix H. In our experiments,
we generate graphs comprising 1000 nodes and set C = 5, m = 2. Note that by construction, the
generated graphs will not have any bidirectional edge.
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H.2 Synthetic Experiment

For the results in Fig. 2b, we construct an Erdos-Renyi graph with 5000 nodes and edge probability
of 0.001, where each node has a scalar feature sampled uniformly at random from [−1, 1]. The label
of a node is set to 1 if the mean of the features of their in-neighbors is greater than the mean of the
features of their out-neighbors, or zero otherwise.

H.3 Experimental Setup

Real-World datasets statistics are reported in table 7. All experiments are conducted on a GCP
machine with 1 NVIDIA V100 GPU with 16GB of memory, apart from experiments on snap-patents
which have been performed on a machine with 1 NVIDIA A100 GPU with 40GB of memory. The
total GPU time required to conduct all the experiments presented in this paper is approximately
two weeks. In all experiments, we use the Adam optimizer and train the model for 10000 epochs,
using early stopping on the validation accuracy with a patience of 200 for all datasets apart from
Chameleon and Squirrel, for which we use a patience of 400. We do not use regularization as it did
not help on heterophilic datasets. For Citeseer-Full and Cora-ML we use random 50/25/25 splits, for
OGBN-Arxiv we use the fixed split provided by OGB [43], for Chameleon and Squirrel we use the
fixed GEOM-GCN splits [44], for Arxiv-Year and Snap-Patents we use the splits provided in Lim
et al., while for Roman-Empire we use the splits from Platonov et al. [45]. We report the mean and
standard deviation of the test accuracy, computed over 10 runs in all experiments.

H.4 Directionality Ablation Hyperparameters

For the ablation study in Sec. 6.2, we use the same hyperparameters for all models and datasets:
learning_rate = 0.001, hidden_dimension = 64, num_layers = 3, norm = True, jk = max.
norm refers to applying L2 normalization after each convolutional layer, which we found to be
generally useful, while jk refers to the type of jumping knowledge [60] used.

H.5 Comparison with State-of-the-Art Results

To obtain the results for Dir-GNN in Tab. 3, we perform a grid search over the following hyperpa-
rameters: model_type ∈ {Dir-GCN, Dir-SAGE}, learning_rate ∈ {0.01, 0.005, 0.001, 0.0005},
hidden_dimension ∈ {32, 64, 128, 256, 512}, num_layers ∈ {2, 3, 4, 5, 6}, jk ∈
{max, cat, none}, norm ∈ {True, False}, dropout ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} and α ∈
{0, 0.5, 1}. The best hyperparameters for each dataset are reported in table 8.

H.6 Baseline Results

GNNs for Heterophily. Results for H2GCN, GPR-GNN and LINKX were taken from Lim et al..
Results for Gradient Gating are taken from their paper [46]. Results for FSGNN are taken from their
paper [40] for Actor, Squirrel and Chameleon, whereas we re-implement it to generate results on
Arxiv-year and Snap-Patents, performing the same gridsearch outlined in Appendix H.5. Results
for GloGNN as well as MLP and GCN are taken from Li et al.. Results on Roman-Empire are
taken from Platonov et al. [45] for GCN, H2GCN, GPR-GNN, FSGNN and GloGNN whereas we
re-implement and generate results for MLP, LINKX, ACM-GCN and Gradient Gating performing the
same gridsearch outlined in Appendix H.5.

Directed GNNs. For DiGCN and MagNet, we used the classes provided by PyTorch
Geometric Signed Directed library [61]. For MagNet, we tuned the learning_rate ∈
{0.01, 0.005, 0.001, 0.0005}, the hidden_dim ∈ {32, 64, 128, 256, 512}, the num_layers ∈
{2, 3, 4, 5, 6}, the K parameter for its chebyshev convolution to ∈ {1, 2}, and its q hyperparameter ∈
{0, 0.05, 0.10, 0.15, 0.20}. For DiGCN, we tune the learning_rate ∈ {0.01, 0.005, 0.001, 0.0005},
the hidden_dim ∈ {32, 64, 128, 256, 512}, the num_layers ∈ {2, 3, 4, 5, 6}, and the α ∈
{0.05, 0.10, 0.15, 0.20}.

24



Edge Directionality Improves Learning on Heterophilic Graphs

IN_DEGREE OUT_DEGREE TOTAL_DEGREE

CORA_ML 41.70% 11.65% 0.00%
CITESEER_FULL 63.45% 21.35% 0.00%
OGBN-ARXIV 36.62% 10.30% 0.00%
CHAMELEON 62.06% 0.00% 0.00%
SQUIRREL 57.60% 0.00% 0.00%
ARXIV-YEAR 36.62% 10.30% 0.00%
SNAP-PATENTS 23.38% 30.16% 6.09%
DIRECTED-ROMAN-EMPIRE 0.00% 0.00% 0.00%

Table 9: Percentage of nodes with either in-, out- or total-degree equal to zero.

CITESEER_FULL CORA_ML OGBN-ARXIV CHAMELEON SQUIRREL ARXIV-YEAR SNAP-PATENTS ROMAN-EMPIRE
HOM. 0.949 0.792 0.655 0.235 0.223 0.221 0.218 0.050

GCN 93.37±0.22 84.37±1.52 68.39±0.01 71.12±2.28 62.71±2.27 46.28±0.39 51.02±0.07 56.23±0.37
DIR-GCN(α=0.0) 93.21±0.41 84.45±1.69 23.70±0.20 29.78±1.27 33.03±0.78 50.51±0.45 51.71±0.06 42.69±0.41
DIR-GCN(α=1.0) 93.44±0.59 83.81±1.44 62.93±0.21 78.77±1.72 74.43±0.74 50.52±0.09 62.24±0.04 45.52±0.14
DIR-GCN(α=0.5) 92.97±0.31 84.21±2.48 66.66±0.02 72.37±1.50 67.82±1.73 59.56±0.16 71.32±0.06 74.54±0.71
SAGE 94.15±0.61 86.01±1.56 67.78±0.07 61.14±2.00 42.64±1.72 44.05±0.02 52.55±0.10 72.05±0.41
DIR-SAGE(α=0.0) 94.05±0.25 85.84±2.09 52.08±0.17 48.33±2.40 35.31±0.52 47.45±0.32 52.53±0.03 76.47±0.14
DIR-SAGE(α=1.0) 93.97±0.67 85.73±0.35 65.14±0.03 64.47±2.27 46.05±1.16 50.37±0.09 61.59±0.05 68.81±0.48
DIR-SAGE(α=0.5) 94.14±0.65 85.81±1.18 65.06±0.28 60.22±1.16 43.29±1.04 55.76±0.10 70.26±0.14 79.10±0.19
GAT 94.53±0.48 86.44±1.45 69.60±0.01 66.82±2.56 56.49±1.73 45.30±0.23 OOM 49.18±1.35
DIR-GAT(α=0.0) 94.48±0.52 86.13±1.58 52.57±0.05 40.44±3.11 28.28±1.02 46.01±0.06 OOM 53.58±2.51
DIR-GAT(α=1.0) 94.08±0.69 86.21±1.40 66.50±0.16 71.40±1.63 67.53±1.04 51.58±0.19 OOM 56.24±0.41
DIR-GAT(α=0.5) 94.12±0.49 86.05±1.71 66.44±0.41 55.57±1.02 37.75±1.24 54.47±0.14 OOM 72.25±0.04

Table 10: Ablation study comparing base MPNNs on the undirected graph versus their Dir-GNN
extensions on the directed graph. We conducted experiments with α = 0 (only in-edges), α = 1 (only
out-edges), and α = 0.5 (both in- and out-edges, but with different weight matrices). For homophilic
datasets (to the left of the dashed line), incorporating directionality does not significantly enhance or
may slightly impair performance. However, for heterophilic datasets (to the right of the dashed line),
the inclusion of directionality substantially improves accuracy.
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Figure 9: Validation accuracy (solid lines) and training accuracy (dashed lines) of GCN (left) and
GAT (right), as well as their respective extensions using our Dir-GNN framework, on a synthetic task
which requires directionality information in order to be solved.

I Additional Results

I.1 Synthetic Experiment

We also evaluate GCN and GAT (and their Dir-GNN extensions) on the synthetic task outlined
in Appendix H.2. Similarly to what observed for GraphSage (Fig. 2b), the Dir-GNN variant using
both directions (α = 0.5) significantly outperforms the other configurations, despite not reaching
100% accuracy. The undirected models are akin to a random classifier, whereas the models using
only one directions obtain between 70% and 75% of accuracy.
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Figure 10: Performance of GCN (on the undirected version of the graph) and Dir-GCN on Arxiv-Year
when using only one layer. Remarkably, directionality yields significant benefits, even in the absence
of access to the homophilic directed 2-hop. This is largely attributable to the harmless heterophily
exhibited by the directed graph.
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Figure 11: Dir-GNN test accuracy on Arxiv-Year for different values of the hyperparameter α.

I.2 Ablation Study on Using Directionality

Table 10 compares using the undirected graph vs using the directed graph with our framework with
different α. We observe that only on Chameleon and Squirrel, using only one direction of the edges,
in particular the out direction, performs better than using both direction. Moreover, for these two
datasets, the gap between the two directions (α = 0 vs α = 1) is extremely large (more than 40%
absolute accuracy). We find that this is likely due to the high number of nodes with zero in neighbors,
as reported in Table 9. Chameleon and Squirrel have respectively about 62% and 57% of nodes with
no in-edges: when propagating only over in edges, these nodes would get zero features. We observe
a similar trend for other datasets, where α = 1 performs generally better than α = 0, in line with the
fact that all these datasets have more nodes with zero in edges than out edges (Table 9). In general,
using both in- and out- edges is the preferred solution.

I.3 Ablation Study on Using a Single Layer

In Sec. 3 we discuss how Arxiv-Year and Snap-Patents exhibit harmless heterophily when treating as
directed. This suggest that even a 1-layer Dir-GNN model should be able to perform much better of
its undirected counterpart, despite not being able to access the much more homophilic 2-hop. We
verify this empirically by comparing a 1-layer GCN (on the undirected version of the graph) with
a 1-layer Dir-GCN on Arxiv-Year. Fig. 10 presents the results, showing that Dir-GCN does indeed
significantly outperform GCN.
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Figure 12: Validation Accuracy of Dir-Sage and Sage, displayed as a function of time (seconds).

I.4 Ablation Study on Different Values of α

We train Dir-GNN models on Arxiv-Year with varying values of α, using the hyperparameters
outlined in Appendix H.4. Fig. 11 presents the results: while a large drop is observed for α = 0
and α = 1, i.e. propagating messages only along one direction, the results for other values of α are
largely similar.

I.5 Runtime Analysis

We assess the runtime of Dir-GNN by comparing it with its undirected counterpart. Specifically,
in Fig. 12, we illustrate a comparison between the validation accuracies of Dir-Sage and Sage over
time, measured in seconds. Both models were executed on a single NVIDIA V100 GPU with
16GB of memory. Notably, despite employing two separate weight matrices—which enhances its
performance—Dir-Sage exhibits only a marginal increase in runtime. The respective runtimes per
epoch are 0.71± 0.59 seconds for Dir-Sage and 0.57± 0.48 seconds for Sage.
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