
Supplementary Materials

Anonymous Author(s)
Affiliation
Address
email

A Proof of Theorem 2, Proposition 3 and Corollary 41

A.1 Proof of Theorem 22

We first restate Theorem 2 here.3

Theorem 2. Given two graphs G = (VG, EG), H = (VH , EH), and let u = (u1, ..., uk) ∈4

Vk
G,v = (v1, ..., vk) ∈ Vk

H where k is a fixed value to be the target tuples we want to learn5

from G and H respectively. Then, the following statements are equivalent for any i, j satisfying6

i ≥ 0, j > 0,i+ j = k:7

• A i-j-NLE model gives u and v the same representation.8

• (u, G) ≃ (v, H).9

Proof. To prove the theorem, we need to first use the following fact about higher-order GNNs:10

Lemma A.1. A k-GNN with most expressive GNNs distinguishes any non-isomorphic k-tuples, and11

assigns isomorphic k-tuples with the same representation.12

With Lemma A.1 we are now able to prove Theorem 2.13

1→ 2: Suppose a i-j-NLE gives u and v the same representation. From Lemma A.1 it is obvious14

that we have15 (
u(i+1):, G(u:i)

)
≃

(
v(i+1):, H(v:j)

)
.

From the definition of node labeling, we know that there exists an isomorphism π from G to H16

satisfying17

π(ui) = vi for all i ∈ {i+ 1, ..., k}, L(w | u:i, G) = L(π(w) | v:i, H) for all w ∈ VG.
Since L(π(w) | v:i, H) for all w ∈ VG ⇒ π(u:i) = v:i, we have18 (

u(i+1):, G(u:i)

)
≃

(
v(i+1):, H(v:j)

)
⇒ ∃ an isomorphism π : VG → VH , π(u:i) = (v:i), π(u(i+1):) = (v(i+1):)

⇒ ∃ an isomorphism π : VG → VH , π(u) = (v)

⇒ (u, G) ≃ (v, H).

2→ 1: With Lemma A.1 we can deduce19

(u, G) ≃ (v, H)

=⇒ ∃ an isomorphism π : VG → VH , π(u:i) = v:i

=⇒ ∀w ∈ VG, L(w | u:i, G) = L(w | v:i, H)

=⇒
(
u(i+1):, G(u:i)

)
≃

(
v(i+1):, H(v:j)

)
=⇒ i-j-NLE gives u and v the same representation.

Since the above equations hold for all i ≥ 0, j > 0, i+ j = k, Theorem 2 is proved.20

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Figure 1: Example of non-isomorphic tuples.

A.2 Proof of Proposition 321

We first restate Proposition 3 here.22

Proposition 3. Suppose i, p ≥ 0, j, q > 0 are integers. A p-q-NLE can distinguish any non-23

isomorphic node tuples that a i-j-NLE can distinguish, if and only if p+ q ≥ i+ j.24

Proof. The proof is straightforward. Since the discriminative power of i-j-NLE is strictly captured25

by the (i+ j)-order isomorphism, the proof is also built on this fact.26

2→1: We first prove that p+ q ≥ i+ j ⇒ p-q-NLE distinguishes any non-isomorphic node tuples27

that a i-j-NLE distinguishes. Given G = (VG, EG), H = (VH , EH) and u = (u1, ..., uk) ∈ Vk
G,v =28

(v1, ..., vk) ∈ Vk
H), we first prove the situation where p+ q = i+ j + 1.29

• if k = i + j: Suppose u and v get different representations by i-j-NLE. By pooling the30

representations, p-q-NLE computes the representation of u as
{{

h(u1,...,uk,w) | w ∈ V
}}

G
.31

Then,32

u and v get different representations by i-j-NLE

=⇒ (u, G) ≇ (v, H)

=⇒ ∀w1 ∈ VG, w2 ∈ VH , ((u1, ..., uk, w1), G ≇ (v1, ..., vk, w2))

=⇒ ∀w1 ∈ VG, w2 ∈ VH ,h(u1,...,uk,w1) ̸= h(u1,...,uk,w2)

=⇒
{{
h(u1,...,uk,w) | w ∈ VG

}}
̸=

{{
h(v1,...,vk,w) | w ∈ VH

}}
=⇒ p-q-NLE distinguishes u,v.

• if k ̸= i + j: From the above deduction we can see that for any pair of (i + j)-tuples, if33

i-j-NLE assigns different representations for them, then so does p-q-NLE. Obviously, this34

leads to the fact that p-q-NLE is always more expressive than i-j-NLE.35

Note that when p+ q = i+ j the result naturally holds. Then by proof by induction we have proved36

all situations for p+ q ≥ i+ j.37

¬2→ ¬1: Similar as before, we first assume p+ q = i+ j−1. We build graphs G = (VG, EG), H =38

(VH , EH) and u ∈ Vk
G,v ∈ Vk

H such that i-j-NLE assigns different representations for u,v. p-39

q-NLE also computes the representation of u by aggregation as
(
h(u1,...,uk−1),h(u2,...,uk)

)
. The40

graphs are constructed as in Figure 1. It is easy to see that ((u1, ..., uk−1), G) ≃ ((v1, ..., vk−1), H)41

and ((u2, ..., uk), G) ≃ ((v2, ..., vk), H) but clearly (u, G) and (v, H) are not isomorphic.42

With proof by induction, the direction ¬2→ ¬1 is proved.43

A.3 Proof of Corollary 444

We first restate Corollary 4 here.45

2

Corollary 4. Given the conditions in Theorem 2 hold. Then, we have46

G(u) ≃ H(v) ⇐⇒ (u, G) ≃ (v, H),

where G(u), H(v) are node labeling induced graphs by labeling u and v respectively.47

Proof. Corollary 4 is a special situation of the proof step 1→2 in the proof of Theorem 2.48

G(u) ≃ H(v)

⇐⇒ ∃ isomorphism π,∀w ∈ VG : L(w | u, G) = L(π(w) | v, H)

⇐⇒ ∃ isomorphism π(u) = v

⇐⇒ (u, G) ≃ (v, H).

49

A.4 Proof of Lemma A.150

Proof. Proving Lemma A.1 is equivalent to showing that for any graphs G,H , the target tuples u,v51

and Gk, Hk, (u, G) ≃ (v, H) ⇐⇒ (u, Gk) ≃ (v, Hk).52

1→2: There exists an isomorphism π from G to H , such that π(u) = v. We assume a k-order53

permutation πk which satisfies πk(w1, ..., wk) = (π(w1), ..., π(wk)). Then we prove that πk is a54

valid isomorphism from Gk to Hk. For all w ∈ Vk
G, we have55

πk(N (w))

=
{{
(πk(i, ..., wk), ..., π

k(w1, ..., i)) | i ∈ VG
}}

= {{((π(i), ..., π(wk)), ..., (π(w1), ..., π(i))) | i ∈ VG}}
=N (π(w)).

Note that π is structure-preserving: this indicates that for all (w1, ..., wk), the label of the cor-56

responding (π(w1), ..., π(wk)) must also be the same. Since we also have π(u) = v, we have57

(u, Gk) ≃ (v, Hk).58

2→1:59

(u, Gk) ≃ (v, Hk)

=⇒ ∃πk : Vk
G → Vk

H ,∀w ∈ Vk
G : πk(u) = v, πk(N (w)) = N (πk(w)).

From πk(N (w)) = N (πk(w)) we can further deduce60

πk(N (w)) = N (πk(w))

=⇒
{{
(πk(i, ..., wk), ..., π

k(w1, ..., i)) | i ∈ VG
}}

={{(
(j, πk(w)2, ..., π

k(w)k), ..., (π
k(w)1, ...j)

)
| j ∈ VH

}}
.

Now we show that πk must can be expressed by another π : VG → VH such that61

πk(w1, ..., wk) = (π(w1), ..., π(wk)). First from the above equation we can directly62

observe that πk(w1, ..., wk−1, i):k−1 = πk(w1, ..., wk−1, wk):k−1 for all w1, ..., wk, i ∈63

VG. This directly indicates that we can break πk into two parts: πk(w1, ..., wk) =64

(πk−1(w1, ..., wk−1), πk(wk)) where πk : VG → VH . The same way, by substituting the re-65

sult into πk(w1, ..., i, wk):k−2 = πk(w1, ..., wk−1, wk):k−2 and continuing we can finally obtain66

πk(w1, ..., wk) = (π1(w1), ..., πk(wk)). Next, we need to show that π1, ..., πk are all equivalent. By67

substituting into πk(N (w)) = N (πk(w)) we have68 {{
(πk(i, ..., wk), ..., π

k(w1, ..., i)) | i ∈ VG
}}

={{(
(j, πk(w)2, ..., π

k(w)k), ..., (π
k(w)1, ...j)

)
| j ∈ VH

}}
=⇒ {{((π1(i), ..., πk(wk)), ..., (π1(w1), ..., πk(i))) | i ∈ VG}} =

{{((j, ..., πk(wk)), ..., (π1(w1), ..., j)) | j ∈ VH}} .

Therefore, for all i ∈ VG, there must exists a corresponding j ∈ VH such that π1(i) = π2(i) =69

... = πk(i) = j. As a result, we proved that there exists π : VG → VH such that πk(w1, ..., wk) =70

3

(π(w1), ..., π(wk)). Next we need to show that π is an isomorphism from G to H . This is easily done71

by noticing that for allw1, ..., wk ∈ VG, the structures betweenw1, ..., wk and π(w1), ..., π(wk) must72

be the same, otherwise (w1, ..., wk) and (π(w1), ..., π(wk)) would have different labels. Therefore,73

for any w1, w2 we have (w1, w2) ∈ EG ⇐⇒ (π(w1), π(w2)) ∈ EH , and π is an isomorphism from74

G to H . Together, we have (u, G) ≃ (v, H).75

B Proof of Theorem 5 and Proposition 6, 7, 876

B.1 Proof of Theorem 577

We first restate Theorem 5 here.78

Theorem 5. Given two graphs G = (VG, EG), H = (VH , EH), and let u = (u1, ..., uk) ∈79

Vk
G,v = (v1, ..., vk) ∈ Vk

H where k is a fixed value to be the target tuples we want to learn from G80

and H respectively. Then, for any i, j satisfying i > 0, j > 0, i + j = k, the expressive power of81

(i− 1)-(j + 1)-NLMP is strictly higher than i-j-NLMP, that is:82

• There is a i-j-NLMP that distinguishes u and v =⇒ There is a (i− 1)-(j + 1)-NLMP that83

distinguishes u and v.84

• There exists G,H,u,v such that a (i − 1)-(j + 1)-NLMP distinguishes u and v but i-j-85

NLMP cannot.86

Proof. We prove the two results separately. To prove the first result, we first recall the procedure of87

0-k-NLMP (or k-FWL). Given G = (V, E), at each layer it evaluates88

Col(l+1)(u1, ..., uk) = Hash
(
Col(l)(u1, ..., uk),{{(

Col(l)(v, u2, ..., uk),Col
(l)(u1, v, ..., uk), ...,Col

(l)(u1, ..., uk−1, v)
)
| v ∈ V

}})
.

If we consider a fragment of the above procedure where we replace the first i colors in each neighbor89

with the initial colors90

Col(l+1)(u1, ..., uk) = Hash
(
Col(l)(u1, ..., uk),{{(

Col(0)(v, u2, ..., uk), ...,Col
(0)(u1, ..., ui−1, v, ui+1, ..., uk),

Col(l)(u1, ..., ui, v, ui+2, ..., uk), ...,Col
(l)(u1, ..., uk−1, v)

)
| v ∈ VG

}})
.

Clearly, this variant is less expressive than the original one. We can rewrite this variant to make it91

strictly corresponded to i-(k − i)-NLMP. First, note that the first i variables in Col(l) and Col(l+1)
92

are the same. This inspires that we can rewrite the equations when we fix the first i variables u1, ..., ui93

as94

f (l+1)(ui+1, ..., uk) = ϕ
(
f (l)(ui+1, ..., uk),

{{(
f (l)(v, ..., uk), ..., f

(l)(ui+1, ..., v)
)
| v ∈ V

}})
,

where we initialize f (0) as f (0)(ui+1, ..., uk) = Col(0)(u1, ..., uk). The computation of f (l) is95

exactly the same as i-(k − i)-NLMP when we apply node labeling on u1, ..., uk. Since i-j-NLMP96

is clearly corresponded to a more “small” fragment of the above equations compared with (i− 1)-97

(j + 1)-NLMP, we have proved the first result.98

To prove the second result, we need to utilize the results from Grohe and Otto [3]. Cai et al. [1]99

designed a construction of a series of pairs of non-isomorphic graph CFI(k) such that (k − 1)-FWL100

fails to distinguish them. Further more, Grohe and Otto [3] proposed a variant of CFI graphs and101

showed that there are graphs such that (k − 1)-FWL cannot distinguish them but k-FWL can. Our102

proof is based on this result. Suppose G,H are non-isomorphic graphs than cannot by distinguished103

by j-FWL but are distinguished by (j + 1)-FWL. We first obtain the following property of FWL104

Lemma B.1. If two graphs G1 = (VG1 , EG1), H1 = (VH1 , EH1) are not distinguished by k-FWL,105

G2 = (VG2 , EG2), H2 = (VH2 , EH2) are also not distinguished by k-FWL, then we letG = (VG, EG)106

where VG = VG1
∪ VG2

, EG = EG1
∪ EG2

and H = (VH , EH) where VH = VH1
∪ VH2

, EH =107

EH1
∪ EH2

. G and H are still not distinguished by k-FWL.108

4

It is easy to prove Lemma B.1 by induction. Suppose φ is a FOCk+1 formula. Then,109

• If φ is of the form φ := C, i.e. node colors or edges, then obviously φ produces the same110

results on G,H .111

• If φ := φ′ ∧ φ′′ and φ′, φ′′ produce the same results on G,H , then obviously φ also112

produces the same results on G,H .113

• if φ := ¬φ′, the situation is the same as before.114

• if φ := ∃N φ′, and φ′ produces the same results on G,H . We let m,n to be the number of115

distinct groundings of φ′ on G1, G2 respectively. Then, the number of distinct groundings116

of φ′ on H1, H2 are also m,n. (otherwise a formula φ′′ = (∃mφ′)∧¬(∃m+1φ′) differs on117

G1, H1 or φ′′ = (∃nφ′) ∧ ¬(∃n+1φ′) differs on G2, H2.) Therefore, on both G,H φ still118

produces the same results.119

Therefore, any FOCk+1 formula, if produces the same results on G1, H1 and G2, H2, also produces120

the same results on G,H . As a result k-FWL cannot distinguishes G,H .121

With Lemma B.1 we can construct counterexamples for i-j-NLMP and (i − 1)-(j + 1)-NLMP.122

Suppose G,H cannot be distinguished by j-FWL but are distinguished by (j + 1)-FWL. We add123

k isolated nodes u1, ...uk to G and v1, ...vk to H , obtaining G′, H ′. Furthermore, the labels of124

u1, ..., uk are distinct and different from the rest of the nodes, and we let the label of vl to be the same125

with ul for l ∈ [k]. We then apply i-j-NLMP and (i−1)-(j+1)-NLMP to learn the representation of126

u = (u1, ..., uk) ∈ Vk
G and v = (v1, ..., vk) ∈ Vk

H . Apparently from Lemma B.1 we know that i-j-127

NLMP cannot distinguish them. Since a (j + 1)-FWL can distinguish G and H , it also distinguishes128

G′ and H ′. This indicates that there is a FOCj+1 formula φ such that G′ ⊨ φ and H ′ ⊭ φ. By letting129

ψ(x1, ..., xj) := φ() we can see that ψ(ui+1, ..., uk) ̸= ψ(vi+1, ..., vk). Therefore, the j + 1-FWL130

also assign different colors to (ui+1, ..., uk) and (vi+1, ..., vk). As a result (i − 1)-(j + 1)-NLMP131

distinguishes them.132

B.2 Proof of Proposition 6133

To prove Proposition 6 is to construct a counterexample for i-j-NLMP and p-q-NLMP. Specially,134

from the proof of Theorem 5 we know that we only need to construct a counterexample for k-1-NLMP135

and 0-k-NLMP for any k. We first introduce a series of graph pairs proposed by Grohe and Otto [3].136

Let K = (V, E) be the complete graph on k nodes. We further assume the nodes in K are v1, ..., vk.137

We define the construction of a structure X (K), which is the CFI-companions of K, as follows. It is138

convenient to call the nodes from X (K) vertices, to distinguish them from the nodes of K.139

For every v ∈ V , the graph X (K) has a vertex vS , where S is a subset of E(v) of even cardinality. We140

use E(v) to denote the edges connected with v. For every edge e ∈ E , the graph X has two vertices141

e0, e1. Vertices of the form vS are called node vertices and vertices ei edge vertices. Formally, the142

set of vertices in X (K) is143

{vS | v ∈ V, S ⊆ E(v) such that |S| ≡ 0 mod 2} ∪ {e0, e1 | e ∈ E}. (1)

The edges of X (K) link node vertices and edge vertices according to144

(vS , ei) is an edge if
{
i = 1 and e ∈ S
i = 0 and e /∈ S (2)

In X (K), the vertices of the form vS are colored Cv, and the vertices of the form ei are colored145

Ce. After defining X (K), we also define its variant X̂ (K) whose node set and edge set are the same146

except that for the node v1 we take nodes vS1 from the subsets of E(v1) of odd cardinality. It is proved147

by Grohe and Otto [3] that X (K), X̂ (K) are distinguished by (k − 1)-FWL but not (k − 2)-FWL.148

Before we proceed, we would like to provide a k = 3 example to illustrate X (K) and X̂ (K) in Figure149

2. The graphs X (K) and X̂ (K) are distinguished by 2-FWL but not 1-WL.150

Now we proceed to prove Proposition 6. We first restate it here.151

5

Proposition 6. Suppose i, p ≥ 0, j, q > 0 are integers. There is a p-q-NLMP that distinguishes152

any non-isomorphic node tuples that a i-j-NLMP can distinguish if and only if p+ q ≥ i+ j and153

q ≥ j. Otherwise, there exists non-isomorphic node tuples that a p-q-NLMP cannot distinguish but a154

i-j-NLMP can distinguish.155

Proof. We first show that there are graphs distinguished by (k−2)-1-NLMP but not 0-(k−2)-NLMP.156

We construct CFI graphs X (K) and X̂ (K). From Grohe and Otto [3] we know that X (K) and X̂ (K)157

cannot be distinguished by 0-(k − 2)-NLMP, whose expressive power is bounded by (k − 2)-FWL.158

Next we show that X (K) and X̂ (K) can be distinguished by a (k − 2)-1-NLMP. To do so we need159

to introduce the concept of pebble games[3, 1]. The readers are welcome to check [3] for a more160

detailed introduction. Given two structuresA,B, the bijective k-pebble game is played by two players161

by placing k pairs of pebbles on a pair of structures A,B. The rounds of the game are as follows.162

Player I picks up one of his pebbles, and player II picks up her corresponding pebble. Then player163

II chooses a bijection f between A and B (if no such bijection exists player II immediately loses).164

Then player I places his pebble on an element a of A, and player II places her pebble on f(a). After165

each round there is a subset p ⊆ A× B consisting of the at most k pairs of elements corresponding166

to the pebbles placed. Player II wins a play if every position p is a local isomorphism.167

Theorem B.2. (Cai et al. [1])A ≡k
C B if and only if player II has a winning strategy for the bijective168

k-pebble game on A,B.169

Theorem B.2 indicates that (k − 1)-FWL can distinguish A,B if and only if player II has a winning170

strategy for the bijective k-pebble game on A,B. However, although it justifies (k − 1)-FWL, it has171

nothing to do with the (k − 2)-1-NLMP here. We propose a variant of the bijective k-pebble game,172

namely restricted bijective k-i-pebble game, described as follows. Given two structures A,B, the173

restricted bijective k-i-pebble game is also played by two players by placing k pairs of pebbles on a174

pair of structures A,B. The rounds of the game are as follows. Player I picks up one of his pebbles,175

and player II picks up her corresponding pebble. Then player II chooses a bijection f between A176

and B (if no such bijection exists player II immediately loses). Then player I places his pebble on an177

element a of A, and player II places her pebble on f(a). The difference is, i pairs of the pebbles are178

static, as when the players place these pebbles on the elements of A,B, they can no longer pick and179

replace them on other elements. Then, we have180

Theorem B.3. There is a (k − 2)-1-NLMP that distinguishes the (k − 2)-tuples u,v from A,B if181

and only if player II has a winning strategy for the restricted bijective k-(k-2)-pebble game on A,B182

which initially places (k − 2) static pebbles on u,v, if A,B are connected graphs.183

Theorem B.3 is proved in the next section. With Theorem B.3 we can now prove that the graphs184

X (K) and X̂ (K) can be distinguished by (k − 2)-1-NLMP. The prove steps are exactly the same as185

in [3], as the steps in [3] naturally follow the constraints of the bijective k-(k − 2)-pebble game.186

We give a winning strategy for player I in the bijective k-(k − 2)-pebble game. In the first k − 1187

rounds of the game, player I picks his k − 1 pebbles on v∅2 , ..., v
∅
k and suppose p(v∅i) = vSi

i is the188

corresponding position for some sets Si. That is,189

p = {v∅2v
S2
2 , ..., v∅kv

Sk

k }.

We now assume that the pebbles at v∅3 , ..., v
∅
k are static. Therefore v∅3 , ..., v

∅
k compose all k − 2 static190

pebbles and the pebble at v∅2 is still movable. In the next round of the game player I starts by selecting191

this pebble, and places it on e012. In the next round, player I starts by selecting the pebble on e012 and192

places it on v∅1 . It is proved by Grohe and Otto [3] that player I wins at this time.193

194

B.3 Proof of Proposition 7195

We first restate Proposition 7 here.196

6

Figure 2: Example of non-isomorphic graphs.

Proposition 7. For any k-tuples u,v and i + j = k: There is a i-j-NLMP that distinguishes u197

and v ⇐⇒ There is a FOCk+1,i formula that distinguishes u and v.198

Proof. To prove Proposition 7 we can first use the results from [1].199

Theorem B.4. (Cai et al. [1]) Let G,H be a pair of colored graphs and let u ∈ Vk
G,v ∈ Vk

H be200

k-tuples. The following are equivalent:201

• k-FWL assigns the same color for u,v.202

• All FOCk+1 produce the same result for u,v.203

The above equivalence can be extend to node labeling situations. Formally, given G = (V, E) and204

u = (u1, ..., u+ k) ∈ Vk, and let i+ j = k. Then, applying a i-j-NLMP is essentially first assigning205

additional predicates IsTargetl(·) for l ∈ [i]. Further more, we have IsTargetl(v) = 1v=ul
. Then, it206

applies a j-MPNN on the augmented graph G(u:i) whose expressive power is bounded by j-FWL,207

and thus is be described by FOCj+1.208

Now we need to prove the equivalence between FOCj+1 on the augment graphsG(u:i) and FOCk+1,i209

on the original graph G. Specially, we want to prove210

1. Given any FOCj+1 formula φ on G(u:i), there is a corresponding FOCk+1,i formula ψ on211

G that expresses φ.212

2. Given any FOCk+1,i formula ψ on G, there exists u such that a FOCj+1 formula φ on213

G(u:i) expresses ψ.214

1. It is simple to create the corresponding ψ. We only need to replace all unary predicates C(v) with215

an invented one C ′(x1, x2, ..., xi, v), and replace all binary predicates E′(v, w) with an invented one216

E′(x1, x2, ..., xi, v, w). We define217

C ′(x1, x2, ..., xi, v) :=

{
1xl=v, if C(v) := IsTargetl(v),

C(v), else.

E′(x1, x2, ..., xi, v, w) := E(v, w).

Therefore, we effectively remove all emergence of the additional predicates IsTargetl(·).218

2. Suppose the target tuple is fixed u. This indicates that all predicates in ψ share the same first219

i variables u:i. The same way, we replace predicates in ψ with our invented ones. Note that a220

predicate P (u1, ..., uk) is defined by any permutation-invariant functions over the subgraph induced221

by u1, ..., uk. Therefore we initialize P ′(ui+1, ..., uk) = P (u1, ..., uk) for all P . Since all predicates222

in ψ share the same first i variables u:i, we can replace all emergence of predicates in ψ and eliminate223

the first i variables in this way. We have constructed the corresponding FOCj+1 formula φ on224

Gu:i
.225

7

B.4 Proof of Proposition 8226

We first restate Proposition 8 here.227

Proposition 8 Given a graph G = (VG, EG), we run 1-WL to assign node colors for G, denoted as228

Col(·). The color of a path P = (w1, ..., wd) is obtained by hashing the corresponding node color229

sequence Col(P) = Hash(Col(w1), ...,Col(wd)). Then, the correlation between two nodes (u, v),230

as discussed above, is expressed by all paths between u, v,231

Corr(u, v) = Hash ({{Col(P) | P ∈ Paths(u, v)}}) .

Given two connected graphs G = (VG, EG) and H = (VH , EH). Let u = (u1, ..., uk) ∈ Vk
G,v =232

(v1, ..., vk) ∈ Vk
H be the target node tuples. If there exists 1 ≤ p, q ≤ k such that Corr(up, uq) ̸=233

Corr(vp, vq), then any i-j-NLMP with i+ j ≥ k with sufficient injective layers always distinguishes234

u and v.235

Proof. Since the weakest i-j-NLMP variant given fixed k = i+ j is the (k − 1)-1-NLMP, we only236

prove the result for (k − 1)-1-NLMP.237

Suppose Corr(up, uq) ̸= Corr(vp, vq). Without loss of generality we may assume that up, vp are238

with node labeling. By the definition of Corr we know that there are at least one type of color of239

paths C = Hash(C1, ..., Cd) such that the number of C-colored paths between (up, uq) are different240

from that between (vp, vq). We manually construct a i-j-NLMP model that distinguishes uq, vq from241

G(u), H(v). First, we add sufficient injective layers to the model, but these layers are not aware of the242

additional node labels. In other words, we compute the 1-WL color Col in this way. Then, we let the243

next layers to detect the paths as244

Layer(1)(x) = (Col(x),1(x is the p-th node labeling) · 1(Col(x) = C1)) ,

where 1 is the indicator function. Similarly, we define the l layer for l ≤ d as245

ColLayer(l)(x) = Layer(l−1)(x)[0] = Col(x),

PathLayer(l)(x) = Layer(l−1)(x)[1],

Layer(l)(x) =

ColLayer(l)(x),1
(
ColLayer(l)(x) = Cl

)
·

∑
y∈N (x)

(
PathLayer(l)(x)

) .

Therefore, Layer(d)(x) counts the number of C-colored paths between x and up or vp. Thus246

Layer(d)(uq) ̸= Layer(d)(vq). If q = k, then this directly indicates that our (k − 1)-1-NLMP247

distinguishes them. If q < k, then we further add sufficient identical layers as follows.248

IdLayer(0)(x) = 1(x is the q-th node labeling)⊙ Layer(d)(x)[1],

and249

IdLayer(l)(x) = max
y∈V(x)

IdLayer(l−1)(y).

After sufficient layers, IdLayer gives different results on uk and vk.250

B.5 Proof of Theorem B.3251

Proof. Let G,H be a pair of connected graphs and let u,v be the target k-tuples. Let G(u), H(v) be252

the corresponding node labeling induced graphs. Since G,H are connected, we need to show the253

following statements are equivalent.254

1. 1-WL cannot distinguish G(u), H(v)255

2. 2-WL cannot distinguish G(u), H(v)256

3. No FOC2 formula distinguishes G(u), H(v)257

4. Player II has a winning strategy for the (k + 2)-k pebble game on G,H which initially258

places the k pairs of static pebbles on u,v.259

8

1 ⇐⇒ 2 ⇐⇒ 3: 2 ⇐⇒ 3 is proved as a special case in Cai et al. [1]. Since G,H are connected,260

1⇐⇒ 2 also holds.261

2⇒4: Suppose after r iterations the 2-WL still assigns the same color to G(u), H(v). We instead262

prove the following statement:263

• After r + k iterations 2-WL gives (x1, y1) ∈ V2
G(u)

and (x2, y2) ∈ V2
H(v)

the same color264

=⇒ Player II has a winning strategy for the (k + 2)-k pebble game on G,H which initially265

places the k pairs of static pebbles on u,v and place the other 2 pairs of static pebbles on266

(x1, y1) and (x2, y2) in r moves.267

We assume W r to be the color assignment of 2-WL at iteration r + k. Clearly player I can only268

chooses one of the pebbles on x1, y1. Without loss of generality suppose he picks up x1. The player269

II answers with the bijective mapping that maps node pairs with the same W r−1 color, that is,270

f(t1) ∈ {t2 |W r−1(t1, y1) =W r−1(t2, y2)}. Note that such mapping must exist because271

W r(x, y) = Hash
(
W r−1(x, y),

{{
W r−1(x, z) | z ∈ VG

}}
,
{{
W r−1(z, y) | z ∈ VG

}})
is the same for (x1, y1) and (x2, y2). No matter which node player I places his pebble on, player II272

places her pebble on the corresponding node. Player II has not yet lost: the structure between (t1, y1)273

and (t2, y2) must be the same, otherwise they have different W r−1 colors. The structure between274

(t1,u) and (t2,v) are also the same: This is because that at the start we added unique labels to the275

k-tuples u and v. Therefore, after the first k rounds of 2-WL iterations if the subgraphs induced by276

t1, y1,u from G(u) and t2, y2,v from H(v) are different, (t1, y1) and (t2, y2) will also have different277

2-WL colors. Now, since (t1, y1) and (t2, y2) have the same W r−1 colors, by induction on r we278

proved the above statement.279

By further induction on r in the statement, we can prove 2⇒4 because we have showed that for any280

node pairs the results of 2-WL and the pebble game are always consistent.281

¬3⇒ ¬4: Suppose for some FOC2 formula φ, G(u) ⊨ φ and H(v) ⊭ φ. If φ is a conjunction282

then G(u), H(v) must differs on at least one of the conjuncts, so we may assume φ is of the form283

∃Nxψ. Without loss of generality we assume the quantifier depth of φ is r. Note that there are total 2284

free pairs of pebbles that can be placed to nodes, which exactly corresponds to the number of free285

variables in FOC2 formula. Player I takes a pebble, corresponding to the variable x in φ. Player286

II must respond with a bijective mapping f . Since G(u) ⊨ φ and H(v) ⊭ φ, we know that there287

are at least N nodes satisfying ψ in G(u) but less than N nodes satisfying ψ in H(v). Player I then288

picks the node w in G(u) such that ψ(w) is true but ψ(f(w)) is false. By induction we can see that at289

quantifier depth 0 player II loses the game.290

C The algorithm complexities of i-j-NLMP291

In this section we derive the algorithm complexities of i-j-NLMP.292

C.1 The case of j ≥ 2293

We first study the situation where we assume j ≥ 2. Suppose we are given a graph G = (V, E) with294

N nodes and M edges. Our model is a i-j-NLMP, and we let k = i+ j. Suppose we want to evaluate295

every k-tuple u ∈ Vk.296

Obviously there are total Nk target tuples in the graph. For learning one tuple u ∈ Vk, we need to297

first assign node labeling to u:i, then apply a j-MPNN on G(u:i). The numbers of nodes and edges in298

G(u:i) are still N,M respectively. Since we assume the j-MPNN simulate the j-FWL, applying the299

j-MPNN on G(u:i) and simultaneously learning representations all j-tuples requires O(N j) space300

and O(N j+1) time. After this procedure, we actually learns all k-tuples with the same first i nodes301

u:i, so we only need to apply this procedure for N i times to learn all representations for all k-tuples.302

Therefore, we need O(N j) space and O(N i+j+1) time.303

9

C.2 The case of j = 1304

When j = 1 the time and space complexities of MPNN areO(M) andO(N) respectively. Therefore,305

the total process for computing all k-tuple takes O(N) space and O(MN i+j−1) time. As a result,306

the conclusion in Section 4.1 still holds.307

D The Weisfeiler-Lehman Algorithms308

In this section we briefly introduce the k-FWL graph isomorphism tests.309

D.1 1-WL310

The 1-WL test is also known as color refinement and shares similar message passing process with311

node-level GNNs. To begin with, each node v is assigned with a color cv . The 1-WL test can then be312

summarized as follows:313

Algorithm 1 1-WL test
Input: G = (V, E): the input graph; cv for v ∈ V: initial colors;
Output: the final colors;

1: c0v ← cv for all v ∈ V;
2: repeat
3: ∀v ∈ V, cl+1

v ← hash(clv,
{{
clw | w ∈ N(v)

}}
);

4: until ∀v ∈ V, cl+1
v = clv;

5: return clv for every v ∈ V;

Here, N(v) is the set of the neighbors of v in G. The critical part is the hash function hash. It needs314

to be injective in order to fully express the discriminative power of the 1-WL test.315

D.2 k-FWL316

The k-FWL test is summarized as follows.317

Algorithm 2 k-FWL test
Input: G = (V, E): the input graph; cu for u ∈ Vk: initial colors;
Output: the final colors;

1: c0u ← cu for all u ∈ Vk;
2: repeat
3: ∀u ∈ Vk, cl+1

u ← hash(clu,
{{
clv | v ∈ N(u)

}}
);

4: until ∀u ∈ V, cl+1
u = clv;

5: return clu for every u ∈ Vk;

The difference between the k-FWL test and the 1-WL is that we now assign a color for each node318

tuple u instead of a single node. Generally, the k-FWL test follows the same computation procedure319

with the 1-WL, but we need to redefine the neighbors, i.e. N(u), of a node tuple u. In the k-FWL320

test, we set each node pair u to have |V| neighbors, with the i-th neighbor being321

((i, u2, ..., uk), (u1, i, u3, ..., uk), ..., (u1, ..., uk−1, i)).

E Different node labeling methods322

In this section we discuss about different node labeling methods. Generally, the methods we discuss323

here all follows the constraints in Section 2:324

1. L(u | v, G) = L(π(u) | w, H) holds for all u ∈ VG ⇒ π(v) = w,325

2. π is an isomorphism from (v, G) to (w, H)⇒ ∀u ∈ VG, L(u | v, G) = L(π(u) | w, H).326

10

E.1 0-1 node labeling327

We first introduce the basic 0-1 node labeling method introduced in SEAL. We modify the original328

0-1 node labeling for node tuples here.329

Given a graph G = (V, E) and suppose u = (u1, ..., uk) ∈ Vk be the target tuple. We define the330

node labeling mechanism L to be331

L(v | u, G) = Hash(1v=u1
,1v=u2

, ...,1v=uk
),

where 1 is the indicator function. For example in the graph G in Figure 1, we can assign labels332

1, 2, ..., k to the nodes u1, u2, ..., uk respectively and assign label 0 to the rest of the nodes.333

Now we show that the above 0-1 node labeling satisfies the constraints. Given G = (VG, EG), H =334

(VH , EH) and v ∈ Vk
G,w ∈ Vk

H ,335

1. We have336
L(u | v, G) = L(π(u) | w, H) holds for all u ∈ VG

=⇒ L(π(vi) | w, H) = L(π(wi) | w, H) holds for all i ∈ [k]

=⇒ π(v) = w.

2. Suppose π is an isomorphism and π(v) = w, then for any u ∈ VG, if u is not in v,337

obviously π(u) is also not in w (because π(v) = w)). Therefore, both u and π(u) are338

assigned with label 0. If u is in v, without loss of generality we suppose u = vi. Then339

π(v) = w⇒ π(vi) = wi. Note that L(vi | v, G) = L(wi |w, G) for any i ∈ [k], therefore340

∀u ∈ VG, L(u | v, G) = L(π(u) | w, H).341

E.2 0-1 induced node labeling342

There are also some node labeling method that can be induced by the 0-1 node labeling with message343

passing. In this section we take Distance Encoding (DE) [4] and Double Radius Node Labeling344

(DRNL) [7] as examples and show how they are induced by 0-1 node labeling with message passing.345

A generalized version We introduce a k-tuple version of DRNL and DE. It’s labeling function is346

L(v | u, G) = Hash(d(v, u1), d(v, u2), ..., d(v, uk)),

where d(x, y) is the shortest distance between x and y. Clearly, DRNL can be computed by MPNNs347

with 0-1 node labeling. We only need to set h(0)
v = [Ind(v, u1), ..., Ind(v, uk)] where Ind(v, ui) = 0348

if v = ui and∞ otherwise. Therefore it a valid 0-1 node labeling. We let349

h(l+1)
v = min

(
h(l)
v ,min

{
h(l)
u + 1 | u ∈ N (v)

})
,

where min is element-wise. This corresponds to the multi-source shortest path and directly corre-350

sponds to the above labeling function L.351

F Additional experiments352

F.1 Verifying the expressive power of i-j-NLMP353

We consider popular variants including 1-1-NLMP, 2-1-NLMP and 0-2-NLMP. To eliminate unrelated354

factors we assume these models have sufficient injective layers. We test whether they are able to355

distinguish:356

• Cut edges357

• Cut vertices.358

• Rook’s 4×4 graph and Shrikhande graph359

These tasks are with increasing difficulties. The problem of detecting cut vertices is shown to be360

more complex than detecting cut edges [6]. Note that the problem of detecting cut edges in this361

paper is more difficult than [6]: they assume that target nodes must be adjacent while we do not.362

Distinguishing Rook’s 4×4 graph and Shrikhande graph is even more complex: it cannot be done by363

the 2-FWL test. Table 1 lists the results. We can see that the results are consistent with our theoretical364

findings.365

11

Graph type MPNN 1-1-NLMP 0-2-NLMP 2-1-NLMP

Cut edges × ✓ ✓ ✓
Cut vertices × × ✓ ✓

Rook’s vs. Shrikhande × × × ✓
Table 1: Results of detecting different graph patterns.

F.2 Experiment configurations366

The experiment configurations follow the settings in Chamberlain et al. [2]. Results are taken from367

[2]. For all tasks we use negative sampling to generate negative targets. At training time the message368

passing links are equal to the supervision links, while at test time disjoint sets of links are held out that369

are never seen at training time. We random generate 70-10-20 percent train-val-test splits which is370

the same as [2]. The number of the max hops of the paths is 5. We search for hyperparameters using371

the valid dataset and set learning rate to be 0.0001, dropout 0.5, feature propagation layer 2, weight372

decay 0. The code is implemented in PyTorch [5] and based on the implementation of Chamberlain373

et al. [2]. The experiments were either run on V100 or CPU. The predictor of the model is designed374

as p(u, v) = MLP(hu ⊙ hv ⊙ huv) where hu,hv are node representations of u, v respectively and375

huv is the representations of the paths between u, v.376

G The problems related to higher-order representations377

The problems of learning higher-order representations with GNNs have been extensively studied.378

However, in fact these methods should be divided into two parts: learning higher-order represen-379

tations for predicting node-tuple properties and designing higher-order GNNs for learning graph380

representations. Although they both learn higher-order representations, they actually study different381

problems which requires different techniques and solutions.382

The goal of the first approaches is to overcome GNNs’ inherent weakness on predicting node tuples.383

This includes the well-known automorphism problem, such as Figure 1. u1, uk, v1, vk always share384

the same node representation, so it is impossible to distinguish between them using a vanilla GNN.385

Therefore, we need to design more powerful GNN variants to give GNNs new abilities to consider386

the correlation between u1, uk and v1, vk.387

The goal of the second approaches is to improve GNNs’ expressive power on graph classification388

and node classification. Therefore, learning higher-order representations is nothing but a method for389

strengthening GNNs. In other words, if there are better methods for learning node-level or graph-level390

representations, higher-order GNNs are not required for this goal.391

The difference between the two goals is that, suppose we have a powerful GNN that is able to392

distinguishes any non-isomorphic nodes (or graphs). Then, the second goal is accomplished: we393

already reached the upper bound of the expressive power. However, the first goal is far from being394

accomplished: the automorphism problem still remains. As a result, although higher-order GNNs395

play an important role in both two problems, the ultimate target and solutions are much different.396

12

References397

[1] J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for398

graph identification. Combinatorica, 12:389–410, 1989.399

[2] B. P. Chamberlain, S. Shirobokov, E. Rossi, F. Frasca, T. Markovich, N. Y. Hammerla, M. Bron-400

stein, and M. Hansmire. Graph neural networks for link prediction with subgraph sketching. In401

ICLR, 2023.402

[3] M. Grohe and M. Otto. Pebble games and linear equations. The Journal of Symbolic Logic, 80:403

797 – 844, 2012.404

[4] P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design provably more powerful405

neural networks for graph representation learning. In NeurIPS, 2020.406

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,407

L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,408

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep409

learning library. ArXiv, abs/1912.01703, 2019.410

[6] B. Zhang, S. Luo, L. Wang, and D. He. Rethinking the expressive power of gnns via graph411

biconnectivity. ArXiv, abs/2301.09505, 2023.412

[7] M. Zhang and Y. Chen. Link prediction based on graph neural networks. In NeurIPS, 2018.413

13

	Proof of Theorem 2, Proposition 3 and Corollary 4
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Corollary 4
	Proof of Lemma A.1

	Proof of Theorem 5 and Proposition 6, 7, 8
	Proof of Theorem 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Theorem B.3

	The algorithm complexities of i-j-NLMP
	The case of j2
	The case of j=1

	The Weisfeiler-Lehman Algorithms
	1-WL
	k-FWL

	Different node labeling methods
	0-1 node labeling
	0-1 induced node labeling

	Additional experiments
	Verifying the expressive power of i-j-NLMP
	Experiment configurations

	The problems related to higher-order representations

