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Abstract
The paper aims to explore the untapped potential of hypergraphs by leveraging
attribute-rich and multi-layered structures. The primary objective is to develop an
innovative learning framework, Hypergraph Learning Enriched with Attributes
and Layers (HEAL), capable of effectively harnessing the complex relation-
ships and information present in such data representations. Hypergraphs offer
a more expressive and versatile way to model intricate relationships in real-
world systems, accommodating entities with multiple interactions and diverse
attributes. However, existing learning methods often overlook these unique
features, especially cross-layer interactions, hindering their full potential. The
motivation behind this research is to bridge this gap by creating HEAL, a novel
learning approach that capitalises on attribute-rich and multi-layered hypergraphs
to achieve superior performance across various applications. HEAL adopts a
feature smoothing strategy to propagate attributes over the hypergraph structure,
enabling the decoupling of feature propagation and transformation steps. This
innovative methodology allows HEAL to capture the intricacies of multi-layer
interactions while efficiently handling attribute-rich data. Moreover, the paper
presents a detailed analysis of HEAL’s design and performance, showcasing
its effectiveness in handling complex real-world datasets. The implications of
HEAL are far-reaching and promising. By unlocking the potential of learning
on hypergraphs enriched with attributes and layers, our work opens up new
possibilities in various domains. This research contributes to the advancement
of graph-based learning methods, paving the way for more sophisticated and
efficient approaches in real-world applications.

1 Introduction
Network representation learning (NRL) is an active area of research focused on learning vertex
representations in a low-dimensional space while preserving the input network properties. NRL
techniques have been developed for a wide range of network types, including signed graphs, multi-
layer graphs, and multi-networks. Although effective, existing NRL techniques on these structures are
limited to handling pairwise relationships. Real-world datasets, such as movie databases, academic
data, social networks, and product review data, present a higher level of complexity, where vertex
relationships extend beyond pairwise associations and can be more appropriately modelled using
hypergraphs. For instance, hypergraphs allow us to capture all movies involving a cast member in
movie databases, e.g., actor, director, or all documents co-authored by an author in academic datasets.
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Figure 1: (Best seen in colour) Movie (left) and academic multi-layer hypergraphs (right). Within
the movie database, the vertices represent movies, with 6 movies showcased in this specific example.
Hyperedges connect movies sharing a common cast member (e.g., actor). Layers represent different
cast members such as directors and actors. Cross-layer relationships represent actor-cum-director
relationships (e.g., Tom Hanks). Attributes represent movie content such as plot key words and
movie title. In the academic image, also containing six vertices representing documents, hyperedges
represent authors. Cross-layer relationships represent the same author appearing as a lead author in
certain documents and as a non-lead co-author in others. Attributes are obtained through the contents
such as title and abstract. Please see Section 1 for details.

Furthermore, real-world data exhibits multi-layered 2 relationships. Previous studies have explored
higher-order and multi-layer relationships independently. In contrast, our paper proposes a novel
joint modelling of these intricate relationships (higher-order and multi-layer) in real-world data using
a multi-layer hypergraph. The incorporation of joint modelling not only extends the applicability of
existing structures but also reveals new types of relationships, such as cross inter-layer connections,
in real-world data. These relationships mirror factual occurrences, for instance, the same cast member
appearing as an actor in one set of movies and as a director in a potentially different set of movies in
movie databases. In academic datasets, the same author may undertake lead authorship in certain
documents and non-lead co-authorship in others. Figure 1 illustrates these examples.

While existing NRL techniques can leverage higher-order and multi-layer relationships, their adapta-
tion to accommodate these novel relationship types in multi-layer hypergraphs remains unclear. Our
contributions aim to bridge these gaps and can be summarised as follows:

1. We formally define the novel problem of learning representations on an attributed multi-layer
hypergraph, which offers a generic and powerful representation for real-world networks. In
particular, it generalises attributed graph, hypergraph, and multi-layer network representation
learning problems. The first technical innovation is that our work introduces a novel way
to represent real world networks, capturing attribute-rich information as well as higher-order,
multi-layer, and, most significantly, cross-layer interactions. This representation enables more
informative representations for vertices and hyperedges.

2. We propose and develop HEAL (Hypergraph Learning Enriched with Attributes and Layers),
employing an advanced attribute smoothing strategy to effectively propagate attributes across
the multi-layer hypergraph structure. The second technical innovation is the integration of
cross 3 higher-order inter-layer connections in the proposed smoothing strategy.

3. The experimental findings provide strong evidence of HEAL’s effectiveness in successfully
addressing vertex classification and hyperedge prediction tasks. In our rigorous evaluation, we
benchmarked HEAL against several representative models from four distinct domains: graph,
hypergraph, multi-layer graph, and heterogeneous graph models.

2When we use the term ’layer,’ we are referring to the layers within the dataset context, rather than the
conventional hidden layers in a neural network.

3In multi-layer networks, a cross connection connects vertex i of layer l1 to any vertex j in layer l2. Here, i
and j need not be the same.
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2 Related Work
In this section, we set the context for our research and conduct a review of the relevant literature
to frame our study. We categorise the relevant literature into distinct groups, recognising that the
categories may intersect, to offer readers a systematic review.

Network Representation Learning (NRL) is a field of machine learning that aims to learn low-
dimensional vector representations of network vertices that capture their structural and semantic
features. Some of the most popular NRL methods include DeepWalk [1], Node2Vec [2], LINE [3],
and SDNE [4]. NRL techniques have been applied to a wide range of information-rich structures,
including but not limited to signed networks [5], directed networks [6, 7], attributed networks [8],
multi-networks [9], and dynamic networks [10]. Some of the most recent areas of focus in NRL
include quantum embeddings [11], scalability for large dynamic networks [12], and out-of-distribution
generalisation in directed networks [13].

Graph Neural Networks (GNNs) belong to a class of deep neural networks specialised in handling
irregular graph data. Popular GNNs include GCN [14], GAT [15], GraphSAGE [16], and GIN [17].
Books [18–21] and detailed surveys [22–24] provide a comprehensive account of the significant
advancements in the areas of GNNs and NRL. Decoupled Graph Neural Networks have proven to be
effective models in Graph Machine Learning tasks, where the feature propagation mechanism and
feature transformation mechanism are separated [25–32]. The compelling evidence from decoupled
GNNs and simpler models, such as SGC on homophilic data [33], along with its heterophilic variant
[34], and spectral variant [35], highlights the significance of feature smoothing as a crucial mechanism.
For these reasons, we focus on devising a feature-smoothing-based approach in our work. Advanced
coupled deep learning-based methods are left for future investigation.

Embedding Multiplex Networks. Traditionally, multiplexity in networks has been employed
to capture diverse aspects of social relationships among users [36], communication frequencies in
distinct brain regions [37], and various modes of transportation among cities [38]. In the realm of
multiplex network embedding, researchers have taken inspiration from traditional NRL techniques to
represent the intricate relationships between vertices across different layers [39, 40]. Several recent
studies emphasise the use of semi-supervised learning (and self-supervised learning) techniques to
extract vertex embeddings without external supervision, maximising mutual information between
vertex embeddings and graph summaries [41–43]. Several deep learning approaches have been
introduced, employing/extending GCNs for vertex representations in multiplex networks [44–46].
In contrast to prior research on multiplex networks, we introduce a novel feature-smoothing-based
methodology for learning on multi-layer hypergraphs.

Learning on Hypergraphs. The weighted clique expansion, first introduced in a seminal work
[47], has emerged as a widely studied technique for approximating hypergraphs as graphs [48, 49].
Novel developments in the area of non-uniform hypergraphs have emerged, leading to more effective
exploitation of the hypergraph structure through non-linear models [50–54]. The essence of HGNN
[55] lies in its transformation of the hypergraph into a weighted clique and its utilisation of message
passing strategies akin to GCNs. By using a non-linear Laplacian, HyperGCN [56] establishes
connections only between the most discrepant vertices and extends the connections to mediator
vertices in each hyperedge. In recent times, akin to the trend observed in GNNs, attention models have
gained popularity within the hypergraph learning domain [57–63]. G-MPNN [64] is a generalised
message passing neural network for multi-relational hypergraphs which works best for vertices
appearing in a fixed order in each hyperedge. The prevailing trends in this line of research comprise
set-based methods [65], equivariant models [66, 67], and energy functionals [68]. Very recently,
there has been growing attention towards the topic of topological deep learning [69, 70], focusing on
topological domains that encompass hypergraphs, as well structures like simplicial complexes and
cell complexes.

Increasing the complexity of a hypergraph to a multi-layer network can be achieved by introducing
multiple layers and inter-layer edges, where vertices in these edges correspond to the same real-world
entity. Surprisingly, none of the existing studies in both the hypergraph and multi-layer network
literature consider the presence of inter-layer variable vertex hyperedges, e.g., actor-cum-director
relationships in movie databases and lead-coauthor relationships in academic data as shown in Figure
1. This paper addresses this critical limitation in prior research and sheds light on the significance of
such inter-layer hyperedges in real-world relational data in the context of representation learning.
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Table 1: Example methods on networks. Please see Section 2 for details. L-wise: Layer-wise.
Recent methods Input data Multi-layer Hypergraph Cross relations L-wise attributes

GCN [14], SGC [33], GAT [15] Undirected graph × × × ×
HGNN [55], HyperGCN [56], AllSet [65], UniGNN [60], ED-HNN [66] hypergraph × ✓ × ×
SSDCM [43], HDMI [42] DMGI [41] Multi-layer graph ✓ × × ×
HEAL (this paper) Multi-layer hypergraph ✓ ✓ ✓ ✓

Deep Learning on Heterogeneous Graphs. Due to the prevalence of multi-typed real-world
objects and interactions, recent investigations, summarised in surveys [71–73], have examined the
extension of deep learning methods on graphs to cater to the needs of heterogeneous graphs. The
core concept behind these methods is to utilise vertex types, edge types, and meta-path semantics for
effective projection and aggregation through attention mechanisms [74–78]. Another closely related
research area focuses on multi-relational graphs, such as knowledge graphs, with a primary emphasis
on effectively managing numerous relation types [79–83].

While heterogeneous graphs provide a feasible approach to model all the real-world datasets examined
in this paper, we present an alternative approach of modeling the datasets as multi-layer hypergraphs.
This approach renders some of the novel ideas explored in the paper much more natural and evident,
because of grouping relationships of hyperedges and cross-layer variable vertex interactions.

3 Technical Challenges and Novel Problem Definition
The challenges involved in the work are as follows:

1. Topology Definition: Defining the topological structure for cross higher-order inter-layer connec-
tions can be complex, particularly when the network has diverse relationships and attribute-rich
data. Ensuring the connections are meaningful and relevant to the problem at hand is crucial.

2. Data Complexity: Representing real-world networks with attribute-rich information, higher-
order relationships, and multi-layer structures can lead to increased data complexity. Handling
and processing such data efficiently require innovative techniques.

3. Efficient Integration of Cross-Layer Interactions: Capturing cross-layer interactions in multi-
layer hypergraphs presents challenges in defining appropriate connections between different
layers and handling attributes of variable dimensions across layers. Integrating cross higher-order
inter-layer connections requires efficient algorithms.

Within this section, we introduce various network types relevant to our study and tackle challenge 1
by formulating a novel problem of learning representations on a multi-layer hypergraph framework.
Challenges 2 and 3 are then addressed in the subsequent section.

Definition 1 (Directed hypergraph [84]). An ordered pair H = (V,E), where V is a vertex set, and

E =
{
(t1, h1), · · · , (tm, hm)

}
∈ 2V × 2V is a set of directed hyperedges. Each e ∈ E is of form

(t, h), t ⊆ V is a tail and h ⊆ V is a head hyperedge with t ̸= ∅ and h ̸= ∅.

Definition 2 (Multi-layer graph [85]). A triple (V,E, L) where V is a set of n vertices, L is a set of

layers, and E =
{
(u,w, l, ℓ) : u,w ∈ V, and l, ℓ ∈ L

}
⊆ V × V × L × L is a set of multi-layer

edges.

Here, (u,w, l, ℓ) encodes an edge from a vertex u of layer l to a vertex v of layer ℓ. The multi-layer
graph is undirected whenever (u,w, l, ℓ) ∈ E =⇒ (w, u, , ℓ, l) ∈ E for each (u,w, l, ℓ) ∈ E;
otherwise it is directed.

Definition 3 (Attributed graph). A triple (V,E,X) where V is a set of n vertices, E is a set of

edges, and the set X =
{
xv ∈ Rd : v ∈ V

}
is a set of d-dimensional attributes for the vertices.

Each v ∈ V is associated with a d-dimensional vector xv ∈ Rd. X is represented by an n× d matrix.
We now define the network type that we study in this paper.
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Definition 4 Attributed Multi-layer hypergraph.
A quadruple H = (V,E,X,L) where V is a set of n vertices, L is a set of layers,

E = {(t, h, l, ℓ) : t, h ⊆ V, and l, ℓ ∈ L} ⊆ 2V × 2V × L× L (1)

is set of multi-layer directed hyperedges. X =
{
X(l) = {x(l)

v ∈ Rdl : v ∈ V }
}
l∈L

is a set
of layer-specific attributes for the vertices v ∈ V . We can also write X as a set of |L| matrices,
X = {X(1), · · · , X(|L|)}, X(l) ∈ Rn×dl for l = 1, · · · , |L|.

For a movie database with actor-cum-director relationships, we assume (t, h, l, ℓ) ∈ E =⇒
(h, t, ℓ, l) ∈ E for all e ∈ E.. A similar assumption is made for lead-cum-non-lead authors in
academic datasets. The assumptions made are analogous to those in undirected graphs, where edges
are bidirectional and symmetric in nature. However, directed hypergraphs provide a unique approach
to indicate the presence of pairwise relationships between hyperedges.

By adopting directed hyperedges, we can effectively encode asymmetrical relationships present in
cross-layer connections, enhancing the flexibility of our modelling approach. For example, directions
could indicate the existence of an asymmetrical relationship from actors to directors or lead authors
to co-authors. We leave exploration of asymmetrical relationships for future investigation.

We note that H is quite generic as it generalises

• Attributed directed hypergraph if |L| =1.
• Attributed directed multi-layer graph if |t| = |h| = 1, l = ℓ for (t, h, l, ℓ) ∈ E

• Attributed directed graph if |t| = |h| = 1 for (t, h, l, ℓ) ∈ E and L is singleton.

Problem 1 Attributed Multi-layer hypergraph Representation Learning.
Given H = (V,E,X,L), the problem is to produce a unified low-dimensional space embedding of
each vertex v ∈ V on every layer l ∈ L. The goal is to find a function fΘ : V → Rr with parameters
Θ to learn meaningful vertex representation vectors where r ≪ n.

4 HEAL: Hypergraph Learning Enriched with Attributes and Layers
In this section, we present HEAL to compute vertex representations within multi-layer hypergraphs.

4.1 Intuition

Within our multi-layer hypergraph structure, proposed in Definition 4, three fundamental building
blocks come into play: multiple layers, hyperedges, and inter-layer connections that interlink pairs
of hyperedges from (possibly) different layers. The essence of our approach hinges on the intricate
propagation of features across hyperedges and inter-layer connections, culminating in the fusion of
representations from multiple layers into a singe vertex representation.

Our innovative approach inherently incorporates three distinct modules, designed to handle the three
building blocks. A key insight shaping our approach is that a directed hypergraph can be conceptu-
alised as a fusion of two structures: a hypergraph representing vertex relationships superimposed
with a secondary graph structure of pairwise relationships between hyperedges.

4.2 Motivation

A logical design strategy involves picking appropriate methodologies for the hypergraph structure,
like utilising a neural network on hypergraphs, and for the secondary graph structure concerning hy-
peredges, like utilising a graph neural network. Recent studies have highlighted that the effectiveness
of neural networks on most real-world relational structures can be attributed to a decoupled process
of feature smoothing [25–32].

One significant benefit of employing feature smoothing compared to intricate coupled neural networks
lies in its adaptability to the specific vertex under consideration. For instance, vertices possessing
weaker neighborhood structures can gain advantages from an extended range of smoothing. The
subsequent subsections delve into the mechanics of propagating features throughout the attributed
multi-layer hypergraph structure. A model diagram is visually presented in Figure 3, a vertex’s
perspective in Figure 4, and an algorithm is presented in Algorithm 1.
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4.3 Handling Inter-layer Relationships

An inter-layer relationship takes the form of a quadruple denoted as (t, h, l, ℓ). To facilitate the feature
propagation process, we initiate the process by assigning one-hot attributes to all vertex sets t and h, to
encode the respective layer details l and ℓ. We call the resulting attribute matrix Xe ∈ Rm×|L| where
m = |E|. Assuming that the adjacency with self-loops connecting the hyperedges is A ∈ Rm×m, we
use a Graph Feature Propagator (GFP) on the adjacecny A and Xe, i.e., X̃e = GFP(A,Xe).

4.4 Handling the Hypergraph Structures

A hypergraph can be fully encoded using a rectangular binary matrix of incidence, indicating the
presence or absence of vertices in each hyperedge. We define the incidence matrices that encode
the hypergraph structures for all layers as I(l), where l ranges from 1 to |L|. We propose a novel
hypergraph feature propagator, HFP, to propagate attributes over the hypergraph structures. The
updated vertex representations can be summarised as X̃(l)

v = HFP
(
I(l), X

(l)
v , X̃e

)
.

Details of HFP. In the present landscape of hypergraph methodologies, a prominent trend involves
tightly coupled approaches on the hypergraph star expansion [58, 60, 63, 65, 66, 68]. Motivated by
this, we propose to propagate vertex and hyperedge features over the hypergraph star expansion.

Our initial step involves bringing X
(l)
v and X̃e into a shared vector space via zero padding. To be

precise, considering the total dimensionality as dl + |L|, we append zero vectors of size |L| to row
vectors in X

(l)
v and append row vectors in X̃e to zero vectors of size dl. The matrices obtained

are denoted as X̄(l)
v and X̄

(l)
e correspondingly, emphasising that the introduction of dl zeroes has

transformed the initially layer-independent Xe into a layer-dependent matrix.

Following this, the subsequent phase of HFP encompasses an iterative process of smoothing vertices
and hyperedges in a mutual manner. To provide an instance of a smoothing method, take the case of
degree-based averaging, depicted as Xv = D−1

v IX̄e and Xe = D−1
e IT X̄v .

Advantages. A distinctive benefit of feature smoothing, as opposed to tightly coupled neural
networks, lies in its ability to accommodate vastly distinct iterations of smoothing for vertices and
hyperedges. This adaptability is governed by a dataset-specific smoothing parameter denoted as τ .
The number of HFP iterations is chosen to ensure that the smoothed features x̃ closely approximate
the original features x̄, so that min{iv : ||x̃ − x̄||2 ≤ τ} for all vertices. Here iv is the number of
smoothing iterations for vertex v. Please see Algorithm 1 for details.

The issue of oversmoothing is prevalent in tightly coupled neural networks on hypergraphs [60, 66],
as these networks, limited by a fixed number of hidden layers , are constrained to gather information
from an equal number of hops around each vertex. In order to get around concerns of oversmoothing,
we conduct comparisons with the top-performing baseline models. The examination of oversmoothing
under different iterations of smoothing is an interesting topic to explore in future.

4.5 Fusing Multiple Layers

After acquiring smoothed features X̃(l)
v through HFP, where l ranges from 1 to |L|, our aim in this

subsection is to merge them into a unified representation for subsequent tasks. Since the dimension of
layer l is dl + |L|, our proposal presents |L| feed-forward neural networks (multi-layer perceptrons)
with a shared hidden representation space. In other words, if H(l)

v is the hidden representation of
vertex v, we obtain H

(l)
v = MLPl(X̃

(l)
v ) for l = 1, · · · , |L| and all v ∈ V and then use an attention

mechanism to fuse H
(l)
v , l = 1, · · · |L| to get the hidden representation for a vertex.

4.6 Training

To perform multi-class vertex classification involving c classes, we employ a linear layer to map Hv

onto a softmax output layer, and the model is trained using cross-entropy loss. To conduct multi-label
vertex classification encompassing c labels, we utilize sigmoid activation on each dimension of the
linear layer’s output and the training process involves the use of binary cross-entropy loss. For
hyperedge prediction (more details in the appendix), we use a ranking objective.
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Table 2: Vertex classification on movie datasets. Please see Section 5.1 for details.

Model Type Method IMDB-MC IMDB-ML

Macro-F1 Micro-F1 Macro-F1 Micro-F1

Graph Agnostic MLP 59.97±0.72 60.47±0.42 46.93±1.02 50.03±0.87

Graph

GCN [14] 64.84±0.82 64.21±0.47 47.93±1.33 50.82±0.64
SGC [33] 64.74±0.54 64.98±0.27 45.83±0.24 50.74±0.05
GAT [15] 65.94±0.87 65.79±0.58 47.32±1.26 52.86±0.63

Hypergraph

HGNN [55] 64.84±0.88 65.11±0.49 46.02±1.34 50.13±0.93
HyperGCN [56] 64.98±1.62 64.21±0.97 45.97±2.65 50.22±1.15
UniGNN [60] 64.94±0.58 65.00±0.39 50.53±1.35 54.22±1.03

AllSet [65] 65.13±0.73 64.93±0.41 48.91±0.96 53.16±0.65
ED-HNN [66] 64.99±0.81 65.76±0.63 47.98±1.42 52.49±0.93

Multi-layer Graph
DMGI [41] 65.76±0.92 65.56±0.43 49.21±1.29 52.76±0.49
HDMI [42] 65.39±0.86 64.96±0.50 49.47±1.21 53.68±0.44

SSDCM [43] 67.79±0.73 67.83±0.45 52.04±1.19 55.21±0.79

Heterogeneous Graph
RGCN [83] 66.02±0.59 66.17±0.41 49.98±1.26 53.75±0.73

MAGNN [76] 66.67±0.99 66.45±0.62 50.22±1.35 53.98±0.58
SHGN [74] 67.54±0.82 67.39±0.58 51.76±1.12 55.62±0.68

Proposed Model HEAL 69.14±0.87 69.46±0.54 53.59±1.18 57.88±0.62

4.7 Computational Complexity Analysis

Let R be the maximum number of smoothing iteration of HFP of all the vertices v ∈ V . Let M be
the maximum number of vertex-hyperedge pairs in hypergraphs across all layers and m = |E|. The
time complexity of smoothing is O(R(M +m)d) where d is the maximum number of input features
across all layers. The time complexity of training and inference is O(nd2) time where n = |V | is the
number of vertices in G, assuming the number of hyperedges is linear in the number of vertices.

5 Experiments
In this section, we provide a thorough analysis of experiments that confirm the efficacy of HEAL.

Overview. We present a baseline comparison for node classification in both Table 2 and Table 4,
along with an analysis of hyperedge prediction performance outlined in Table 5. We systematically
analyse the components of HEAL through an ablation study in Table 3. We visualise embeddings of
HEAL and competitive baselines in Figure 2. To further showcase the effectiveness of HEAL, we
conduct supplementary experiments, encompassing variations in train split proportions as depicted in
Table 11, random splits as detailed in Table 6, hyperparameter analyses in Section E, running time
tradeoffs in Figure 9, and exploration of potential FP candidates as elaborated in Table 12.

Datasets. Two movie database datasets and two academic datasets are employed in our vertex
classification tasks. Additionally, in the appendix specifically in Table 5, we evaluate hyperedge
prediction performance on three more datasets. Please see Section F for details.

Training and Inference Details. For vertex classification, we utilize both Micro and Macro
averaged F1 scores as our evaluation metrics. For hyperedge prediction, we report the ROC-AUC,
Average Precision, and Precision@K. For HEAL’s configuration, please refer to Section E.

5.1 Baseline Comparison

To ensure a comprehensive evaluation, we consider baselines from four separate research directions,
namely graph, hypergraph, multi-layer graph, and heterogeneous graph. We then select representative
methods from each category as baselines for comparison. Please see Section G for a detailed
description of baselines.
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Table 3: Ablation study on movie datasets. Please see Section 5.2 for details.

Method IMDB-MC IMDB-ML

Macro-F1 Micro-F1 Macro-F1 Micro-F1

MLP on Vertex Features 59.97±0.72 60.47±0.42 46.93±1.02 50.03±0.87

Without GFP and HFP 61.12±0.64 61.98±0.40 48.04±1.08 51.11±0.84
Without HFP 61.60±0.69 62.45±0.49 48.23±0.97 51.47±0.74
Without GFP 68.06±1.01 68.20±0.73 51.87±1.11 55.37±0.82

HEAL with All Layers Unified 67.95±0.81 67.98±0.41 52.04±1.23 56.36±0.59

HEAL 69.14±0.87 69.46±0.54 53.59±1.18 57.88±0.62

Observations. Table 2 and Table 4 present vertex classification results on the movie datasets and
authorship datasets respectively. In a general sense, our suggested HEAL consistently outperforms all
baseline methods across commonly used metrics. The superior performance of HEAL can be ascribed
to its proficiency in capturing advanced higher-order interactions and inter-layer connections.

5.2 Ablation Study

Within this section, we provide a breakdown of the ablation analysis performed on HEAL in order
to assess the effects of its individual components. HEAL comprises three primary phases: firstly,
handling inter-layer connections via the graph feature propagator (GFP); secondly, handling the
hypergraph structures using the hypergraph feature propagator (HFP); and finally, fusing the layers.

In this context, we have identified the following four ablated baselines for HEAL:

• Without GFP and HFP: This is a graph-agnostic approach that preserves the component assigning
an MLP to each layer, utilising a common representation for every vertex.

• Without HFP: This baseline exclusively relies on inter-layer pairwise connections, disregarding
the hypergraph structures present within each layer.

• Without GFP: In this baseline, the inter-layer connections are disregarded, and the reliance is on
harnessing the hypergraph structures across all layers.

• HEAL with All Layers Unified: In this baseline, the element that assigns an MLP to each
hypergraph layer is excluded. Additionally, the baseline takes the unioin of all hyperedges from
every layer. This is essentially applying HEAL to a single-layer hypergraph.

Observations. Table 3 presents the findings of the ablation study performed on movie datasets.
From the table, it is evident that the hypergraph feature propagator (HFP) component stands out as
the most crucial aspect of HEAL. Furthermore, the table illustrates that the performance of HEAL
relies on the collective contribution of all its components.

5.3 Embedding Visualisation

Figure 2 shows the t-SNE visualisations of HEAL (leftmost) and five competitive baselines. The
color code indicates the vertex classes in the CoraLCA dataset. We selected the vertex embeddings
that yielded the highest node classification scores across all competing methods. It is evident that all
methods produce interpretable visualisations, demonstrating distinct inter-class separation. HEAL
achieves compact, well-separated clusters with the same class labels, exhibiting improved separation.

Figure 2: t-SNE viusalisation on CoraLCA. Please see Section 5.3 for details
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Table 4: Node classification on author datasets. Please see Section 5.1 for details.

Model Type Method CoraLCA DBLP-LCA

Macro-F1 Micro-F1 Macro-F1 Micro-F1

Graph Agnostic MLP 58.14±0.81 61.36±0.78 63.48±0.74 67.28±0.76

Graph

GCN [14] 67.98±0.57 72.17±0.64 72.03±0.72 76.14±0.69
SGC [33] 66.53±0.25 70.96±0.21 70.63±0.19 74.03±0.35
GAT [15] 67.47±0.65 72.04±0.68 72.09±0.76 75.83±0.68

Hypergraph

HGNN [55] 66.93±0.65 70.85±0.63 70.61±0.77 75.04±0.88
HyperGCN [56] 66.79±1.26 70.91±1.46 70.65±1.03 74.27±0.83
UniGNN [60] 67.03±0.65 71.03±0.49 70.87±0.65 74.70±0.72

AllSet [65] 66.76±0.61 71.01±0.56 70.49±0.82 74.86±0.63
ED-HNN [66] 66.60±0.86 70.79±0.60 70.62±0.66 74.72±0.86

Multi-layer Graph
DMGI [41] 67.44±0.61 70.97±0.65 70.57±0.64 74.19±0.74
HDMI [42] 67.28±0.73 71.13±0.63 70.40±0.67 74.62±0.60

SSDCM [43] 68.62±0.67 72.04±0.58 72.16±0.60 76.55±0.71

Heterogeneous Graph
RGCN [83] 66.59±0.67 70.83±0.54 70.71±0.89 74.92±0.77

MAGNN [76] 66.11±1.03 70.24±0.82 69.39±0.75 72.80±0.72
SHGN [74] 68.73±0.64 72.58±0.62 72.59±0.69 76.98±0.65

Proposed Model HEAL 69.81±0.62 73.34±0.59 73.79±0.71 78.47±0.68

6 Future Work and Concluding Remarks
There are numerous possibilities for extending and enhancing our work including:

Theoretical Exploration of Propagation Mechanisms. Future research can delve into utilizing
tools from Markov Processes and Spectral Graph Theory to set an upper bound on the number of
propagation iterations in HFP. This approach, informed by factors such as node degree and the
second eigenvalue of the normalized adjacency matrix, offers promising directions for theoretical
analysis. Our paper, while empirically focused on multi-layer hypergraph layers, suggests the need
for theoretical investigations into feature propagation mechanisms like HFP and GFP.

Overlapping Hyperedges. Exploring the connection of overlapping hyperedges, especially when
sharing a single vertex or multiple vertices, offers intriguing research potential. While not addressed
in this study, this area could enhance our understanding of complex network structures.

Neural Network Architectures. Our method’s core feature smoothing strategy can be integrated
into GCN-style architectures, enhancing neural network models. Incorporating text encoding along-
side relational data modeling, especially in multi-layer hypergraphs, is a promising avenue, exempli-
fied by recent work [86] and a promising future research direction.

Networks with Sensitive or No Attributes. Exploring scenarios with missing or sensitive attributes,
like users hiding certain information in social networks, remains underexplored beyond traditional
graph data. Addressing these complexities not only benefits multi-layer hypergraphs but also extends
to other domains.

Scalability. Adapting our approach to large datasets presents challenges due to memory limitations,
especially when identifying layered hyperedges and cross-layer connections. Identifying datasets
with diverse entity interactions and group relationships can assist, although scaling neural networks
on multi-layer hypergraphs might face significant memory constraints.

Conclusion
We present an innovative approach to model real-world networks, encompassing not only attribute-rich
data but also higher-order structures, multi-layer relationships, and notably, cross-layer interactions.
A distinctive contribution of our work lies in the incorporation of cross higher-order inter-layer
connections within the proposed smoothing strategy. Through this novel framework, we aim to
advance the field of network analysis and foster new avenues of research into the intricate interplay
of attributes and interactions within diverse systems.
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The appendix contains the following sections:

A Model Diagram and Algorithm:

We provide comprehensive visual representations of the model architecture along with
a detailed algorithmic description. We elucidate the key components and their interconnections,
offering a clear understanding of the structural and operational aspects of the proposed model.

B Experiments on Hyperedge Prediction:

We outline the specific experiments conducted to evaluate the model’s performance in
hyperedge prediction. We include details on the experimental setup, metrics used for assessment,
and results obtained, contributing valuable insights into the model’s efficacy in handling
hypergraph structures.

C Case Study:

We present a comprehensive case study focused on a specific subject or problem. Through this
case study, readers gain a deeper understanding of the real-world application and implications.

D Ablation Analysis of Attention:

Through systematic experimentation, the section provides valuable insights into the
functioning of the attention mechanism, shedding light on critical aspects that influence the
model’s performance.

E Details and Analyses of Hyperparameters:

Here, we delve into the hyperparameters employed in the model and provide a thor-
ough analysis of their sensitivity impact on performance.

F Dataset Construction Details:

This part elucidates the procedures and methodologies involved in constructing the
dataset used for training and evaluation. It covers data sources, preprocessing steps, and any
specific considerations taken to ensure the dataset relevance of the datasets.

G Details of Baselines:

We discuss the baseline models against which HEAL is compared.

H Experiments on Different Train Splits:

We explore the impact of varying training splits on the performance of the HEAL.

I Analysis of Different HFP Candidates

We discuss two candidates for feature propagation.
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Figure 3: Visual Representation of the Three Stages in the HEAL Method. The diagram illustrates a
three-layer hypergraph with six vertices. In the initial stage, inter-layer dependencies are handled
using a graph feature propagator. Subsequently, the hyperedges within each layer are handled through
a hypergraph feature propagator. Finally, a fusion of information across layers is achieved using
Multi-Layer Perceptrons (MLPs) equipped with a common hidden space for each vertex.

A Model Diagram and Algorithm

Algorithm 1 HEAL

Require: H = (V,E,X,L): Input Multi-layer Hypergraph, a dataset-specific parameter τ
Ensure: Hv, ∀v ∈ V : Hidden vertex representations

1: function GFP(H) ▷ Handling Inter-layer Dependencies
2: Initialise attribute matrix Xe ∈ Rm×|L| ▷ m = |E| is the number of directed hyperedges
3: for (t, h, l, ℓ) ∈ E do
4: Assign one-hot encoding of l to Xt and that of ℓ to Xh

X̃e = Ã2Xe ▷ Ã is the normalised adjacency with self-loops
5: return X̃e

6: function HFP(I(l), X(l)
v , X̃e) ▷ Handling the Hypergraph Structures

7: Obtain zero padded X̄
(l)
v by appending zero vectors of size |L| to row vectors in X

(l)
v

8: Obtain zero padded X̄
(l)
e by appending X̃e to zero vectors of size dl

9: for u ∈ V do
10: Initialise X̃

(l)
v = X̄

(l)
v

11: Initialise X̃
(l)
e = X̄

(l)
e

12: while ||X̃(l)
v,u − X̄

(l)
v,u||2 > τ do

13: X̃v
(l)

= D−1
v IX̃

(l)
e

14: X̃
(l)
e = D−1

e IT X̃
(l)
v

15: Let χ(l)
u = X̃

(l)
v,u

16: return X̃
(l)
v consisting of χ(l)

u as row vectors for u ∈ V

17: function FUSION(X̃ l
v, v ∈ V, l ∈ L) ▷ Fusing Multiple Layers

18: for (v, l) ∈ V × L do
19: H

(l)
v = MLPl(X̃

(l)
v )

20: for v ∈ V do
21: Hv = Attention({H l

v}l∈L)

22: return Hv, v ∈ V
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Figure 4: (Best seen in colour) Visual representation of the three stages in the HEAL method from
the perspective of a vertex at a layer. Consider vertex 3 (coloured green) at layer 3 (i.e., L3). (1) In
the first stage (Handling Inter-layer Dependencies), hyperedges at layer Li are represented by one-hot
encodings (of size 3 in this example) with a one at the ith position and zeroes elsewhere. Then
the graph feature propagator (GFP) propagates the encodings along the edges given by inter-layer
dependencies. In the figure hyperedges that propagate among them are coloured in purple. The one
hyperedge that does not participate is dotted. (2) In the second stage, a hypergraph feature propagator
(HFP) is used to propagate features from hyperedges to vertices and then to co-vertices (i.e., those in
the same hyperedge). Through this process, the vertex 3 receives features of layers and other vertices
via its incident hyperedges. From the perspective of vertex 3 coloured green, it receives propagated
from its two incident hyperedges coloured purple. (3) In the third stage, we use an MLP from each
layer followed by attention to fuse features from all layers. In the example, the green coloured link
represents the fact that features from vertex 3 are fed as input to an attention layer to compute the
final vertex representation of vertex 3.

B Experiments on Hyperedge Prediction
In order to assess the effectiveness of our proposed HEAL for hyperedge prediction, we conducted a
series of experiments on real-world networks.

Real-world Example. Let us take the scenario of predicting hyperedges within academic networks
as an illustration (for instance, predicting author collaborations). In this context, we can conceptualise
each year of document publication as a distinct layer. Here, authors are depicted as vertices, documents
as hyperedges, and citations between documents as inter-layer connections. To illustrate this, please
see a toy example provided in Figure 5.

B.1 Notation

Let EU :=
{
(t, l) : (t, h, l, ℓ) ∈ E

}
∪
{
(h, ℓ) : (t, h, l, ℓ) ∈ E

}
.

The set of hyperedges at layer l is

El
U :=

{
e : (e, l) ∈ EU

}
. (2)

B.2 Interaction function

We discuss how higher-order composite interactions in El
U , l ∈ L, in Equation 2, are preserved in

the embedding space without a limit on the hyperedge size. We design a novel interaction function,

Ie : 2V → [0, 1], which given e ⊆ V , takes the form Ie = σ

(
W · g

({
zv
}
v∈e

)
+ b

)
, W is a

parameter of dimension 1× r, σ is the sigmoid function. The score, Ie, of e, is to be higher than that
of any vertex set that is not a hyperedge in H. Inspired by non-linear Laplacians [52]:
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Figure 5: (Best seen in colour) An example of an attributed multi-layer hypergraph. Vertices
represent authors (6 here). Layers represent years (2019 and 2017). Colours are used to just
distinguish different hyperedges in a layer. Intra-layer hyperedges represent documents (3 in 2019
and 2 in 2017). Inter-layer directed hyperedges represent citations (2 citations here). Attributes
represent author interests (bag of word features). Attributes are shown for one author (green coloured)
in 2019 and 2017.

Table 5: Results of baselines and HEAL.

DBLP-HP Twitter Amazon
Model ROC-AUC Avg. P P@K ROC-AUC Avg. P P@K ROC-AUC Avg. P P@K
GCN [14] 55.36 62.27 57.85 58.61 57.90 57.73 70.04 69.57 69.81
GAT [15] 55.67 62.24 57.74 58.84 57.93 58.01 70.12 69.54 69.88
HGNN [55] 57.88 63.36 58.17 67.25 67.08 64.74 74.02 74.95 74.26
HyperGCN [56] 57.93 63.25 58.19 67.14 67.32 64.89 73.99 74.52 74.38
HHNE [54] 61.24 70.19 59.76 69.11 69.02 66.78 75.13 76.72 75.02
Hyper-SAGNN [62] 61.04 70.03 59.83 70.35 69.47 67.14 75.01 76.96 75.21
DMGI [41] 58.57 64.92 58.14 67.98 68.97 66.57 74.05 73.38 73.98
HDMI [42] 60.45 67.96 60.03 68.59 68.93 66.47 74.86 74.72 74.33
RGCN [62] 60.87 69.44 59.37 69.96 69.54 66.86 74.32 75.98 74.45
SHGN [62] 60.96 70.08 59.39 70.18 69.29 66.8 74.57 76.11 75.04
HEAL (proposed) 66.36 73.71 64.19 71.72 70.43 68.19 76.48 78.57 75.34

Ie := σ

(
1

|e|
W · med

{
zv

}
v∈e

+ b

)
. (3)

where, given a set of r-dimensional vectors z1, · · · , zm,

med
{
z1, · · · , zm

}
=

((
max
s∈[m]

zsk − min
i∈[k]

zik

)2
+

m∑
j=1

(
max
s∈[m]

zsk − zjk

)2
+

m∑
j=1

(
zjk − min

i∈[m]
zik

)2

)
k=1,··· ,r

.

here k = 1, · · · , r is an index used to represent each of the r components in the vectors. s denotes
supremum, i infimum, and med the mediator Laplacian [52].

B.3 Objective function

In our work, unknown interactions denoted by F l
U , l ∈ L are sampled from 2V − El

U , l ∈ L. The
loss function is based on ranking [87]:

L =

|L|∑
l=1

1

|El
U |
∑
e∈El

U

Λ

(
1

|F l
U |
∑
ē∈F l

U

Iē − Ie

)
. (4)

Λ(x) is a non-decreasing function such as the logistic function Λ(x) = log(1 + ex). L maximises
the number of hyperedge scores higher than the average score of the sampled sets (we ensure the
sizes are the same, i.e., |F l

U | = |El
U | in experiments).

B.4 Training Details

To sample unknown sets of vertices from 2V − El
U , we use the following: For each hyperedge

e ∈ El
U , l ∈ L, we create a corresponding ē ∈ 2V − El

U by having half of the vertices, i.e., |e|
2

sampled from e, the remaining half from V − e and then adding ē to F l
U . To avoid bias in the sizes,

we ensure that each hyperedge e has a "corresponding" vertex set ē of the same size.
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We hide 20% of the known hyperedges (equally distributed in all layers) during training and use 80%
of the known hyperedges and sampled non-interacting vertex sets to train all the models. Of the 20%
hidden hyperedges, we use 10% for model selection for all methods. The remaining 10% of the data
are held out and used for testing.

B.5 Metrics for Evaluation

We use commonly used evaluation criteria, i.e., the area under ROC curve (ROC-AUC), Average
precision (Avg. P), and Precision@K (P@K) where K is the number of missing (test) hyperedges.
Test interaction scores were sorted in decreasing order to compute Avg.P and P@K.

Table 6: Comparison on DBLP-HP, Amazon, and Twitter over 10 random splits.
DBLP-HP Amazon Twitter

Model ROC-AUC Avg. P P@K ROC-AUC Avg. P P@K ROC-AUC Avg. P P@K
HDMI [42] 60.52± 0.6 68.01± 0.3 59.99± 0.4 68.67± 0.4 68.57± 0.5 66.68± 0.5 74.32± 0.5 74.95± 0.6 74.19± 0.3
HHNE [54] 60.97± 0.5 70.04± 0.6 59.64± 0.2 69.03± 0.6 68.93± 0.3 66.53± 0.4 74.77± 0.4 76.86± 0.6 74.93± 0.3
HEAL 65.92± 0.6 73.63± 0.5 64.26± 0.6 71.34± 0.5 70.53± 0.2 68.32± 0.4 76.32± 0.3 78.47± 0.2 75.30± 0.5

B.6 Results and Discussion

The results of hyperedge prediction experiments are shown in Table 5. In a general sense, our
suggested HEAL consistently outperforms all baseline methods across commonly used metrics for
hyperedge prediction. The superior performance of HEAL can be ascribed to its proficiency in
capturing advanced higher-order interactions through the utilisation of both the hypergraph feature
propagator module and the innovative interaction function proposed in this study.

Table 6 shows performance of HEAL and the two most competitive baselines for 10 random train-test
splits. HEAL produces statistically significant outcomes, as confirmed by the Welch t-test. The
highest p-value observed across all datasets remains under 0.001.

C Case Study

We investigated a case study of HEAL on the IMDB movie dataset.

In the dataset the following are the components of the multi-layer hypergraph:

• Vertices: Movies

• Vertex features: Movie plot

• Hyperedges: Common cast member

• Layers: Actors, Directors

• Cross-layer Interactions: A cast member (e.g., Tom Hanks) who has acted in some movies and
directed in some movies

HEAL utilises cross-layer interactions by propagating layer information across hyperedges. This
propagated information is then merged with movie plot details and further disseminated to movie
vertices. By leveraging the comprehensive information within the multi-layer hypergraph, HEAL
precisely matches movie genres, as demonstrated with movies like ’Road To Perdition,’ where Tom
Hanks serves as an actor

Ground-truth: ’Drama’, ’Thriller’, ’Crime’ HEAL: ’Drama’, ’Thriller’, ’Crime’ Best that any Baseline
could do: ’Drama’, ’Thriller’, ’Action’, ’Crime’

D Ablation Study of Attention

In this section we conduct an ablation of the the fusion across different layers which is one of the key
components of HEAL. Table 7 and Table 8 show the comparisons of HEAL (with attention layer)
against mean pooling and max pooling baselines in which the attention layer was removed.
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Table 7: Ablation Study of Attention on Hyperedge Prediction.

DBLP-HP
Model ROC-AUC Avg. P P@K
Mean Pooling 60.31± 0.5 69.55± 0.6 59.27± 0.2
Max Pooling 61.37± 0.4 71.01± 0.5 60.12± 0.5
HEAL 65.92± 0.6 73.63± 0.5 64.26± 0.6

Table 8: Ablation study of attention layer on the IMDB node classification datasets.

Method IMDB-MC IMDB-ML

Macro-F1 Micro-F1 Macro-F1 Micro-F1

Mean Pooling 68.11±1.07 68.26±0.68 51.95±1.18 55.42±0.90
Max Pooling 67.91±0.85 68.04±0.36 52.08±1.19 56.29±0.65

HEAL 69.14±0.87 69.46±0.54 53.59±1.18 57.88±0.62

E Details and Analyses of Hyperparameters

In this section, we describe the hyperparameter settings and perform sensitivity analyses of key
hyperparameters.

E.1 Hyperparameter Settings

The hidden representation size of MLPs in the proposed fusion component is selected through grid
search in the range {32, 64, 128, 256}. We use the Adam optimiser with a learning rate of 0.001
to train for a maximum of 1000 epochs. The dropout rate is 0.5. The threshold for the number of
smoothing iterations of HFP, i.e., τ , is selected in the range τ ∈ {0.05, 0.075, 0.1, 0.125, 0.15}.

E.2 Sensitivity Analysis

We study the effect of varying the hidden size and threshold τ

Hidden Size. The effect of varying hidden sizes on HEAL’s performance is depicted in Figure 6.

(a) Macro-F1 (b) Micro-F1

Figure 6: Hidden size sensitivity. Macro-F1 and Micro-F1 scores on the CoraLCA dataset.

The findings suggest that HEAL is capable of capturing and leveraging meaningful information from
the graph structure across a range of hidden sizes. This flexibility in accommodating different hidden
sizes enhances the adaptability and robustness of HEAL to changes in hidden sizes.
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E.3 Analyses of Threshold

Sensitivity Analysis. The effect of varying embedding sizes on HEAL is depicted in Figure 7. The
findings suggest that HEAL is capable of capturing and leveraging meaningful information from the
hypergraph structure across a range of threshold values. The choice of an optimal threshold value is
essential for improving the resilience of models.

(a) Macro-F1 (b) Micro-F1

Figure 7: Threshold sensitivity. Macro-F1 and Micro-F1 scores on the CoraLCA dataset.

Smoothing Iterations for a given Threshold as a Function of Vertices. In this paragraph, we
delve into the threshold τ used to control the number of smoothing iterations. In Figure 8a, we
examine the relationship between the vertex degree and the average smoothing iterations, averaged
across all nodes with a particular degree. Figure 8b delves into the interplay between the number
of smoothing iterations and the size of the 2-hop neighbourhood. The number of vertices in the
2-hope neighbourhood offers insights into the density of connectivity in the vicinity of each node.
The observations corroborate our intuition, indicating that well-connected vertices typically require
smaller number of iterations, while vertices with limited connectivity benefit from a greater number
of hops of smoothing iterations.

(a) 1-hop neighbourhoods (b) 2-hop neighbourhoods

Figure 8: Smoothing Iterations as a Function of Vertex Connectivity

E.4 Training Time, Test Performance Tradeoff

In this section, we explore the relationship between training time and Macro-F1, examining the
tradeoff between the two factors. The findings in Figure 9, providing insights into the relationship
between training time and test performance. The proposed smoothing strategy, generally is faster and
achieves impressive F1 scores.
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Figure 9: Visualising the relative training times and Macro-F1 tradeoff of the proposed method
(green) and baselines (blue) on DBLP-LCA.

F Dataset Construction Details
Our experimentation covered four node classification datasets and three hyperedge prediction datasets.
Details pertaining to the construction of each of the seven datasets are elaborated upon in this section.

F.1 Movie Datasets: IMDB-MC and IMDB-ML

In this paper, IMDB-MC is a multi-class dataset and IMDB-ML is a multi-label dataset. We assembled
the IMDB dataset by following a step-by-step procedure as follows:

• Download the data from the github code page 4 of a prior research work [76]
• Depict the movies as vertices and utilise movie titles and plot keywords to construct vertex

features using the bag-of-words representation.
• Build multi-layer hyperedges using movie cast data. This involves organizing actors into one

layer, directors into another, so on, and establishing inter-layer connections for cast members
with multiple roles across different movies.

• Represent movie genres as output vertex labels in the context of multi-label classification
(IMDB-ML) and output vertex classes for multi-class classification (IMDB-MC).

IMDB-MC involves forming a 4-class dataset by selecting movies belonging to ’Drama’, ’Action’,
’Comedy’, and ’Others’ genres, which collectively cover all other movie genres. In the context of
IMDB-ML, we keep all the movie genres.

F.2 Lead Co-Authorship Datasets: CoraLCA and DBLP-LCA

We employed similar approaches to construct the lead co-authorship datasets for vertex classification.

4https://raw.githubusercontent.com/cynricfu/MAGNN/master/data/raw/IMDB/movie_metadata.csv
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• Download the data from the sources of Cora 5 and DBLP 6

• Depict the documents as vertices and utilise document titles and document abstracts to construct
vertex features using the bag-of-words representation.

• Build multi-layer hyperedges using authorship data. This involves organising lead authors into
one layer, non-lead co-authors into another, and establishing inter-layer connections for authors
with lead authors in some documents and co-authors in others across different documents.

• Represent document categories as output vertex classes for multi-class classification.

Dataset #Nodes #Features # Layer 1 # Layer 2 Inter-layer Task

IMDB 5425 8851 6256 163 2399 5 (MC), 29 (ML)
CoraLCA 2708 1433 1659 1037 578 7-class classification
DBLP-LCA 43891 1092 32589 22981 984 6-class classification

Table 9: Statistics of the node classification datasets

F.3 DBLP-HP

This dataset is a hyperedge prediction (HP) dataset. THe difference between this dataset and the node
classification dataset lies in how the mutli-layer hypergraph is constructed. The details are as follows:

• Extract the data from aminer and consider documents from AI, ML, Data Mining Conferences

• Depict the authors as vertices and utilise document titles and document abstracts to construct
vertex features using the bag-of-words representation. We take the average bag-of-word features
of all the documents co-authored by an author to construct author features (i.e., vertex features)

• Build a multi-layer hypergraph with years of publication as layers, colloborations (i.e., docu-
ments) as hyperedges, and citations between documents as inter-layer connections. Figure 5
shows a toy example

We use 5% of each vertex classification dataset for training, 25% for model selection, and the
remaining 70% for testing all the methods.

F.4 Twitter

This dataset 7 is about tweets related to the discovery of Higgs boson between 1st and 7th, July 2012.
It is made up of four directional relationships betwen more than 450, 000 Twitter users. The layers
are re-tweet, mention, and friendship / follower between Twitter users.

F.5 Amazon

This is a 2-layer hypergraph of co-purchase and co-view relationships 8. Items represent vertices
and items purchased together are layer one hyperedges and items viewed together are layer two
hyperedges. Items purchased and viewed by the same customer form inter-layer connections. We use
only the product metadata of Electronics category.The attribtes include the price, sales- rank, brand,
and category.

Table 10: Layer-wise statistics of DBLP-HP dataset. Number of features used by baselines is 5395

layer number L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
# hyperedges (collaborations) 1393 2443 2472 3508 4043 4763 4823 5396 6958 1703
# features (bag-of-word) 947 1585 1555 1986 2260 2499 2525 2795 3240 1324

5https://people.cs.umass.edu/ mccallum/data.html
6https://www.aminer.org/DBLP_Citation
7https://snap.stanford.edu/data/higgs-twitter.html
8http://jmcauley.ucsd.edu/data/amazon/links.html
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G Details of Baselines
In this section, we provide an overview of the baselines, categorised by their types, which are used
for the purpose of comparison.

Graph Models are executed on an input graph, where edges are established between two vertices if
they co-appear in a hyperedge on any layer. The edge weight corresponds to the number of times the
two vertices co-appear across hyperedges and layers. Cross-layer hyperedges are not integrated into
these methods, as it is not obvious how to effectively combine them with pairwise interactions.

• GCN [14] originated as a highly efficient convolutional approach for semi-supervised classifica-
tion on graph-structured data. Its effectiveness and adaptability have led to its widespread use
across various domains.

• SGC [33] simplifies the process of graph-based learning by discarding non-linearities in GCN
and merging weight matrices between consecutive layers.

• GAT [15] employs softmax attention layers to grant specific weights to nodes within a neighbor-
hood, facilitating enhanced learning of node representations.

Hypergraph Models operate on an input hypergraph where the set of hyperedges is formed by taking
the union of all hyperedges existing in all layers. The current state-of-the-art in this research domain
relies on different techniques (e.g., attention) on the star expansion of hypergraphs. To include
cross-layer hyperedges in these methods, we add an edge between two hyperedge vertices in the star
expansion if there is a cross-layer interaction between the two hyperedges.

• HGNN [55] technique involves enlarging the input hypergraph through clique expansion and
then utilising GCN on this expanded hypergraph

• HyperGCN [56] employs non-linear Laplacians to facilitate the propagation of embeddings
along pairs of nodes within hyperedges. We choose the top-performing model, which is the one
incorporating mediators in the non-linear Laplacian.

• UniGNN [60] puts forth permutation-invariant functions for aggregating messages from vertices
and hyperedges. We select UniGCN due to its superior performance on our datasets.

• AllSet [65] involves the composition of two multiset functions: one that maps vertices to
hyperedges and another that performs the reverse mapping. AllSetTransformer stands out as our
selection because of its outstanding performance on our datasets.

• ED-HNN [66] is a recent equivariant-based approach on the star expansion.

• Hyper-SAGNN [62] is a self-attention-based approach on hypergraphs designed for hyperedge
prediction.

Multi-layer Graph Models process an input multi-layer graph, maintaining the layer structure while
converting all hyperedges within each layer into pairwise edges. Within each layer, the edge weight
is determined by the frequency of co-occurrence between two vertices across hyperedges in that
specific layer.

The baselines propose a regularisation term that can easily be extended to accommodate pairwise
cross-layer dependencies, represented as cross-layer edges. The assumed pairwise dependency is
that a vertex in one layer is connected to a cross-layer vertex if the former appears in a cross-layer
hyperedge with the latter.

• DMGI [41] introduces an approach that maximizes mutual information and employs a consensus
regularization framework to reduce disparities among node embeddings specific to different
relation types.

• HDMI [42] broadens the scope of mutual information maximisation to encompass mutual
dependence between node embeddings and node attributes. Additionally, it introduces an
attention-based fusion module designed to merge node embeddings from various layers of the
multiplex network.

• SSDCM [43] combines local patch representations at the node level with globally structured
graph representations that are correlated with labels. This strategy is designed to effectively
model node and cluster representations throughout the layers of a multiplex network.
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Heterogeneous Graph Models work with a heterogeneous graph representation where vertices and
layered hyperedges are all represented using typed vertices and typed edges. Cross-layer dependencies,
which are unexplored in the literature, are modelled by additional typed edges connecting two
hyperedge vertices if they are involved in a cross-layer interaction.

• RGCN [83] expands upon the Graph Convolutional Network (GCN) to accommodate relational
graphs with multiple edge types. The convolution process in RGCN can be understood as a
weighted combination of standard graph convolutions applied to distinct edge types.

• MAGNN[76] introduces meta-path encoders that capture information along the entire meta path
• SHGN[74] proposes learnable edge-type embedding with residual connections for embedding

heterogeneous networks.

H Experiments on Different Train Splits
To gauge how HEAL responds to fluctuations in training set sizes, we modified the sizes of the
training set within the IMDB-ML dataset. The results are shown in Figure 11.

Table 11: F-1 scores on held-out test sets of representative baselines and our approach on the IMDB
multi-label movie genre prediction task.

5% 10% 20% 30%

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

MLP 46.56 50.08 48.67 51.96 51.18 55.92 54.04 57.89
NDLS 49.03 51.57 53.28 56.90 55.73 59.02 56.96 60.13
AllSet 48.95 53.28 53.99 57.17 56.15 59.97 57.36 61.09

SSDCM 52.19 55.17 53.91 57.21 56.04 59.87 57.26 61.22
SHGN 51.59 55.77 53.39 57.14 56.13 59.99 57.44 61.63

HEAL 53.54 57.95 54.55 58.34 56.64 60.53 58.25 62.74

I Analysis of Different HFP Candidates

Table 12: Performance Comparison of Candidates for HFP in HEAL.

Hypergraph Feature Propagator (HFP) in HEAL IMDB-MC IMDB-ML

Macro-F1 Micro-F1 Macro-F1 Micro-F1

SGC 68.19±1.08 68.33±0.74 51.93±1.04 55.42±0.86
S2GC 68.24±0.98 68.42±0.47 52.01±1.05 55.76±0.63

Proposed 69.14±0.87 69.46±0.54 53.59±1.18 57.88±0.62

Table 12 shows the performance of potential candidates considered for the hypergraph feature
propagator (HFP) module within HEAL. The introduced HFP effectively tackles the balance between
undersmoothing due to insufficient baseline layers and oversmoothing resulting from excessive
baseline layers. This is achieved by adapting to varying numbers of smoothing iterations for nodes.
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