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In this supplementary material, we provide:1

1. the proof of theorems in Section 4.3;2

2. the experimental details that include the assets we used and the limitations of the paper;3

3. additional experiments.4

1 Proof of Theorem 4.3 in the main paper5

We begin by introducing the graph isomorphism. For a pair of graphs G1 = (V1, E1) and G2 =6

(V2, E2), if there exists a bijective mapping f : V1 → V2, so that for any edge (u1, v1) ∈ E1, it7

satisfies that (f(u1), f(v1)) = (u2, v2) ∈ E2, then G1 is isomorphic to G2, otherwise they are not8

isomorphic. Up to now, there is no polynomial algorithm for solving the graph isomorphism problem.9

One popular method is to use the k-order Weisfeiler-Leman [17] algorithm (k-WL). It is known that10

1-WL is as powerful as 2-WL, and for k ≥ 2, (k + 1)-WL is more powerful than k-WL.11

We then provide the theoretical results below:12

Theorem 1.1. CycleNet is strictly more powerful than 2-WL, and can distinguish graphs that are not13

distinguished by 3-WL.14

Proof. The pair of graphs that 3-WL cannot distinguish while CycleNet can. It is shown in [1]15

that 3-WL cannot differentiate the 4×4 Rook Graph and the Shrikhande Graph shown in Figure 1. We16

then compute the orthogonal projector of the cycle space of the Hodge Laplacian for each graph and17

denote them as Orook and Osh. We observe that each column of Orook contains 22 zeros, whereas18

each column of Osh contains 16 zeros. To differentiate between the two graphs, we can use the19

function |Orook−Osh|, which can be approximated using an invariant graph network (IGN) followed20

by a multilayer perceptron (MLP). Specifically, the 2-2 layer of the IGN can obtain the Orook and21

Osh, and the MLP can approximate the absolute function.22

More powerful than the 2-WL. Using models such as [18] to be the backbone GNNs can distinguish23

any pair of non-isomorphic graphs that 2-WL can distinguish. Since there exist graphs such as the 4x424

Rook Graph and the Shrikhande graph that 2-WL cannot distinguish, while CycleNet can. Therefore,25

CycleNet is more powerful than 2-WL.26

2 Proof of Theorem 4.6 in the main paper27

We restate the theorem as follows:28

Theorem 2.1. Using the length of shortest cycle basis as the edge structural embedding can distin-29

guish certain pair of graphs that are not distinguished by 3-WL, as well as pair of graphs that are not30

distinguished by 4-WL.31

Proof. The pair of graphs that 4-WL cannot distinguish. Consider the set of graphs called the32

Cai-Fürer-Immerman (CFI) graphs [4]. The sequence of graphs G(ℓ)
k , ℓ = 0, 1, . . . , k + 1 is defined33
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(a) (b)
Figure 1: (a) the 4x4 Rook Graph and (b) the Shrikhande Graph

as following,34

V
G

(ℓ)
k

=
{
ua,v⃗

∣∣∣a ∈ [k + 1], v⃗ ∈ {0, 1}k and v⃗ contains

an even number of 1’s, if a = 1, 2, . . . , k − ℓ+ 1,
an odd number of 1’s, if a = k − ℓ+ 2, . . . , k + 1.

} (1)

Edges exists between two nodes ua,v⃗ and ua′,v⃗′ of G(ℓ)
k if and only if there exists m ∈ [k] such that35

a′ mod (k + 1) = (a+m) mod (k + 1) and vm = v′k−m+1.36

Denote the two graphs G = G
(0)
4 and H = G

(1)
4 . It is shown in [21] that 4-WL cannot differentiate37

the pair of graphs.38

The SCB can distinguish them. We begin by presenting the computation of the shortest cycle basis.39

Let CT ∈ Rm×l denote the set of all tight cycles, where m is the number of edges and l is the number40

of tight cycles. The definition of tight cycles is described in Section 3.3 of the main paper. For a41

given cycle j, CT [i][j] is equal to 1 if edge i is in cycle j, and 0 otherwise. We define lowCT
(j) as42

the maximum row index i such that CT [i][j] = 1. To compute the shortest cycle basis, we use the43

matrix reduction algorithm, which is shown in Algorithm 1.44

Algorithm 1 Matrix Reduction

Input: the set of tight cycles CT

the shortest cycle basis SCB = {}
CT = SORT(CT )
for j = 1 to l do

while ∃k < j with lowCT
(k) = lowCT

(j) do
add column k to column j and

end while
if column j is not a zero vector then

add the original column j to SCB
end if

end for
Output: the shortest cycle basis SCB

In the given algorithm, the symbol “add" represents the modulo-2 sum of two binary vectors. It45

should be noted that Algorithm 1 may not be the fastest algorithm for computing the SCB, but most46

acceleration methods are based on it. The algorithm processes the cycles in CT in order of increasing47

length, with shorter cycles added to the shortest cycle basis before longer cycles. If any cycle can48
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(a) (b)
Figure 2: Graphs that the PEOI encoding of the cycle incidence matrix can differentiate, while the
number of cycles and the extended persistence diagrams cannot.

be represented as a sum of multiple cycles whose lengths are no more than k, then the length of the49

longest cycle in the shortest cycle basis will be k. We denote a cycle with length k as a k-cycle.50

We obtain a total of 40 nodes for G and H by traversing a from 1 to 5 according to Equation 1.51

For example, in G, node 1 denotes u1,{0,0,0,0}, and node 2 denotes u1,{0,0,1,1}. We then traverse52

these nodes to obtain the edges. For example, edge 1 denotes (1, 9) in G, which corresponds to53

node u1,{0,0,0,0} and node u2,{0,0,0,0}. It is observed that in H , a 4-cycle exists between edges54

{8, 9, 24, 25}. These edges correspond to four nodes: u1,{0,0,0,0}, u1,{0,0,1,1}, u4,{0,0,0,0}, and55

u4,{0,1,0,1}. The 4-cycle cannot be represented by the modulo-2 sum of 3-cycles since there is no56

3-cycle whose edge with the maximum index after matrix reduction borns earlier than edge 25, that57

is (u1,{0,0,1,1}, u4,{0,1,0,1}). Therefore the SCB of H contains 4-cycle.58

The same 4-cycle also exists in G, and it can be represented by 38 3-cycles: {12, 288, 8},59

{89, 94, 296}, {12, 148, 1}, {23, 215, 19}, {105, 108, 301}, {23, 282, 27}, {218, 282, 215},60

{195, 318, 199}, {195, 316, 198}, {103, 105, 267}, {9, 144, 1}, {115, 121, 217}, {115, 124, 220},61

{218, 313, 220}, {234, 314, 236}, {121, 124, 301}, {147, 318, 151}, {147, 316, 150},62

{146, 314, 149}, {146, 312, 148}, {170, 234, 165}, {170, 313, 172}, {192, 198, 296},63

{192, 199, 298}, {99, 108, 172}, {213, 267, 217}, {99, 101, 165}, {97, 103, 141}, {97, 109, 149},64

{213, 266, 216}, {81, 89, 144}, {81, 94, 150}, {19, 216, 25}, {266, 270, 298}, {101, 109, 236},65

{141, 270, 151}, {28, 312, 27}, {28, 288, 24}. The same situations exist for all other 4-cycles or66

cycles longer than 4. We also observe that there have been 281 3-cycles in the SCB. Considering that67

it is equal to the Betti number of G, the SCB does not contain any 4-cycle.68

The pair of graphs that 3-WL cannot distinguish while SCB can. There are 24 3-cycles and 969

4-cycles in the SCB of the 4× 4 Rook Graph, while there are 31 3-cycles and 2 4-cycles in the SCB70

of the Shrikhande Graph. Therefore the SCB can differentiate them.71

72

3 Proof of 4.4 in the main paper73

We restate the theorem as follows:74

Theorem 3.1. If choosing the same set of cycles. The PEOI encoding of the cycle incidence matrix is75

more powerful than using its number in terms of distinguishing non-isomorphic graphs.76

Proof. PEOI can extract the number of cycles. In Proposition 4.2 in the main paper, if we set ρ177

as a function that consistently produces “1", ρ2 as a function that ignores the X[i][k] element while78

being an identity function for the rest elements, and ρ3 as an identity function, we can obtain the79

number of cycles. Therefore, the PEOI encoding of the cycle incidence matrix is at least as powerful80

as the number of cycles.81
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Then we use the pair of graphs shown in Figure 2 as an example.82

The number of cycles cannot differentiate the pair of graphs. In these two graphs the number83

of cycles will remain the same. For example, if using all the cycles, there are both 3 cycles in84

Figure 2(a) and Figure 2(b). If using cycles of a certain length, there are both 2 3-cycles and 1 5-cycle85

in Figure 2(a) and Figure 2(b). Therefore, only using the number of cycles cannot differentiate the86

pair of graphs.87

The PEOI encoding of the cycle incidence matrix can differentiate the pair of88

graphs. The cycle incidence matrix of these two graphs is listed as follows:89 

γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 1 0
(u2, u5) 1 1 0
(u3, u6) 1 0 0
(u4, u5) 0 1 1
(u5, u6) 1 0 0
(u4, u7) 0 0 1
(u5, u7) 0 0 1





γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 1 0
(u2, u5) 1 1 0
(u3, u6) 1 0 0
(u4, u5) 0 1 0
(u5, u6) 1 0 1
(u5, u7) 0 0 1
(u6, u7) 0 0 1


90

For Proposition 4.2 in the main paper, we can define ρ1(X[i][k], X[j][k]) = 2X[i][k] + X[j][k],91

ρ2(X[i][k], Y ) = RELU(Y − 16), and ρ3 to be an identity function. Therefore, for the graph shown92

in Figure 2(a), the PEOI encoding is {4, 4, 2, 6, 4, 4, 4, 2, 2}; for the graph shown in Figure 2(b), the93

PEOI encoding is {4, 4, 2, 6, 4, 2, 6, 2, 2}. According to Proposition 4.1 in the main paper, we can94

differentiate the pair of graphs using CycleNet-PEOI.95

Therefore, the PEOI encoding of the cycle incidence matrix is more powerful than the number of96

cycles.97

98

4 Proof of Theorem 4.5 in the main paper99

The classic EPDs [5] can be used to measure the saliency of connected components and high-order100

topological structures such as voids. However, recent works [19, 20, 22] have mainly used the101

one-dimensional (1D) EPD as augmented topological features, particularly the features corresponding102

to cycles. Therefore, in this section, we mainly focus on comparing our encoding with the 1D EPDs103

corresponding to cycles. For ease of complexity, we will omit the terms “1D" and “that correspond104

to cycles" in the rest of this section, and only use “EPDs".105

Theorem 4.1. If choosing the same set of cycles. The PEOI encoding of the cycle incidence matrix106

can differentiate graphs that cannot be differentiated by the extended persistence diagram. If adding107

the filter function to the cycle incidence matrix, the PEOI encoding of the cycle incidence matrix is108

more powerful than using its extended persistence diagram in terms of distinguishing non-isomorphic109

graphs.110

Proof. The extended persistence diagram (EPD). Persistent homology [7, 8] captures topological111

structures such as connected components and cycles, and summarizes them in a point set called the112

persistence diagram (PD). It is found that the extended persistence diagrams (EPD) [5] is a variant of113

PD that encodes richer cycle information. Specifically, an EPD is a set of points in which every point114

represents the significance of a topological structure in terms of a scalar function known as the filter115

function. Recent studies have shown that the extended persistence point of a cycle is the combination116

of the maximum and minimum filter values of the point in the cycle [20]. Note that in this paper, we117

focus on the EPDs of cycles, and do not consider the EPDs of other structures.118

We illustrate the computation of the EPD for the graph in Figure 2(a), where the filter function is119

defined as the shortest path distance from a selected root node u1 to other nodes. This is a common120

filter function used in previous models [23, 19]. We plus one to the filter value in case of the zero121

value. Using this definition, we have: f(u1) = 1, f(u2) = f(u3) = 2, f(u4) = f(u5) = f(u6) = 3,122

and f(u7) = 4. The extended persistence point of the red cycle, the brown cycle, and the green cycle123

are (3, 1), (3, 2), and (4, 3), respectively. Therefore the EPD of Figure 2(a) is {(3, 1), (3, 2), (4, 3)}.124

4
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We can define similarly the filter value for Figure 2(b), and the extended persistence points of the125

three cycles are the same as the cycles in Figure 2(a). Therefore, the EPD of Figure 2(b) is also126

{(3, 1), (3, 2), (4, 3)}, and the EPD cannot differentiate the pair of graphs. Note that the PEOI127

encodings for these two graphs are different, as shown in the proof of Theorem 3.1.128

Add the filter function to CycleNet-PEOI. It is worth noting that the filter function, which plays a129

crucial role in constructing the EPD, is not explicitly contained in the cycle incidence matrix. As a130

result, encoding the original cycle incidence matrix using the proposed PEOI method is not sufficient131

to extract the EPD.132

However, we can incorporate the filter function into the proposed model by adding the filter function to133

the cycle incidence matrix. For example, we define the filter value of an edge as the minimum value of134

the nodes in the edge, and obtain the filter values of the edges in Figure 2(a) as {1, 1, 2, 2, 2, 3, 3, 3, 3}.135

Next, we compute the dot product between the filter values of edges and the cycle incidence matrix,136

which results in the so-called filter-enhanced cycle incidence matrix. Similarly, we can obtain137

the filter-enhanced cycle incidence matrix for Figure 2(b). The two matrices are listed below:138 

γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 2 0
(u2, u5) 2 2 0
(u3, u6) 2 0 0
(u4, u5) 0 3 3
(u5, u6) 3 0 0
(u4, u7) 0 0 3
(u5, u7) 0 0 3





γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 2 0
(u2, u5) 2 2 0
(u3, u6) 2 0 0
(u4, u5) 0 3 0
(u5, u6) 3 0 3
(u5, u7) 0 0 3
(u6, u7) 0 0 3


139

Define the PEOI encoding. We can use a 2-layer MLP to approximate the minimum function140

between two elements. The hidden layer contains 4 nodes, and the ReLU activation function is141

used. The weights from the input layer to the hidden layer are (1, 1), (1,−1), (−1, 1), and (−1,−1),142

respectively, and the biases are set to 0 for all nodes. The weights from the hidden layer to the output143

layer are 0.5, -0.5, -0.5, -0.5, respectively.144

In Proposition 4.2 in the main paper, We set ρ1 as the minimum function, which is approximated by145

the 2-layer MLP. ρ2 is defined as a function that ignores the X[i][k] element while being an identity146

function for another element. ρ3 is set as an identity function.147

The defined encoding can differentiate the graphs that EPD can also differentiate. Assume148

that there exists a pair of graphs G1 and G2 whose EPDs are different, we can assume that there149

exist a pair of cycles whose lowest filter values are different (the highest filter values can be treated150

similarly). Under this assumption, we can define the filter value for edges as the minimum value of151

the nodes in the edge. Using the PEOI encoding defined above, we can extract the lowest filter value152

of these two cycles. We then use an injective function on the multiset of cycle embeddings to produce153

different outputs for these two graphs. Therefore the defined encoding can differentiate G1 and G2.154

In conclusion, by incorporating the filter function, CycleNet-PEOI can differentiate all pairs of graphs155

that the EPDs can differentiate, and can distinguish graphs that EPDs cannot. Therefore, it is more156

powerful than EPDs in terms of distinguishing non-isomorphic graphs.157

158

5 Implementation details159

Encoding of CycleNet-PEOI. Based on Proposition 4.2 in the main paper, we provide a pytorch-like160

pseudo-code for the PEOI encoding in Figure 3.161

In certain situations where graphs are dense and large, the original PEOI encoding may bring extra162

computational and memory costs. In these situations, we can ignore the final X[i][k] element in163

Proposition 4.2 in the main paper, and then the memory cost will be no larger than O(m× g).164

Encoding of CycleNet. The full approximation power requires high-order tensors to be used for165

the IGN [15, 16, 10]. In practice, we follow the settings of [14] and restrict the tensor dimensions166

5
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PyTorch-like pseudo-code for PEOI encoding
class PEOI(nn.Module):

def __init__(self, D1, D2, D3):
self.rho1 = MLP(2, D1) # in dim=2, out dim=D1
self.rho2 = MLP(1+D1, D2) # in dim=1+D1, out dim=D2
self.rho3 = MLP(D2, D3) # in dim=D2, out dim=D3

def forward(self, x):
# x shape: m x g

m, g = x.shape
x1 = x.reshape(m, 1, 1, g).expand(−1, m, 1, −1) # m x m x 1 x g
x2 = x.reshape(1, m, 1, g).expand(m, −1, 1, −1) # m x m x 1 x g
w = self.rho1(cat((x1; x2), dim = 2)).sum(dim = 1) # m x m x 2 x g −> m x D1 x g
w = self.rho2(cat((x.reshape(m, 1, g); w), dim = 1)).sum(dim = 2) # m x (1+D1) x g −> m

x D2
w = self.rho3(w) # m x D2 −> m x D3

return w

Figure 3: PyTorch-like pseudo-code for PEOI encoding. Here “cat((x, y), dim = c)" denotes the
concatenation of two matrices on the c-th dimension. “sum(dim=c)" denotes the sum operation over
the c-th dimension.

for efficiency. This encoding, although losing certain theoretical power, shows strong empirical167

performance in [14].168

Experimental details. In the synthetic experiments in the main paper, we use a 5-layer GIN [18] as169

the backbone model. We set the hidden dimension to 128, batch size to 16, and learning rate to 1e-3170

with Adam as the optimizer. We use a ReduceLROnPlateau scheduler with the reduction factor set to171

0.7, the patience set to 10, and the minimum learning rate set to 1e-6. In the synthetic experiments172

related to cycles, we use a point cloud dataset sampled on small cycles whose centers are on a big173

cycle. The diameters of the large cycle and small cycle are set to 20 and 1, respectively. We randomly174

sample 20 points from the large cycle and 60 points from the small cycle. After obtaining the node175

set, we generate a k-nearest-neighbor graph with the parameter k set to 3. There is no input feature176

for the prediction of the Betti Number. As for the prediction of EPD, we use the position of the node177

as the filtration function of the EPD. The input node feature is therefore the coordinates of the nodes.178

For real-world benchmarks, we use SignNet or CWN as the backbone model on ZINC. Our settings179

follow exactly the settings of SignNet or CWN. For the superpixel classification and the trajectory180

classification benchmarks, we use SAT as the backbone model. Our settings follow exactly the181

settings of SAT. For the homology localization benchmark, we use Dist2cycle as the backbone model.182

Our settings follow exactly the settings of Dist2cycle. Notice that for backbone models that fill183

the cycles with 2-cells, the kernel space of the Hodge Laplacian may not contain any information.184

Therefore, we replace the kernel space encoding with the encoding based on the original Laplacians.185

All the experiments are implemented with two Intel Xeon Gold 5128 processors,192GB RAM, and186

10 NVIDIA 2080TI graphics cards.187

The assets we used. Our model is experimented on benchmarks from [6, 9, 11, 13, 3, 2] under the188

MIT license.189

Limitations of the paper. First, we have shown that the representation power of our model is190

bounded by high-order WLs in terms of distinguishing non-isomorphic graphs.191

Second, the proposed model may not perform well on benchmarks where cycle information is not192

relevant. For example, in high-order graphs where cycles are replaced by high-order structures like193

triangles or cells, the proposed CycleNet-PEOI model may not be suitable.194

6 Additional experiments195

We present additional evaluations on (1) the memory cost in terms of the number of trainable196

parameters; (2) the effectiveness of the introduced cycle-related embedding on a wider range of197

6
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Table 1: Additional experiments on ZINC

Framework test MAE Params

GIN 0.220 497394
+ CycleNet-Hodge 0.165 543876
+ CycleNet 0.153 543876
+ CycleNet-PEOI 0.153 512812
+ BasisNet 0.169 751810

GatedGCN 0.259 491597
+ CycleNet-Hodge 0.142 510539
+ CycleNet 0.137 510539
+ CycleNet-PEOI 0.188 504090
+BasisNet 0.139 716793

PNA 0.145 473681
+ CycleNet-Hodge 0.128 479081
+ CycleNet 0.089 479081
+ CycleNet-PEOI 0.111 483769
+ BasisNet 0.094 556323

SignNet 0.084 487082
+ CycleNet-Hodge 0.081 492482
+ CycleNet 0.077 492482
+ CycleNet-PEOI 0.082 497170

CWN 0.079 2435785

settings; and (3) the comparison between the original Hodge Laplacian and the cycle space of the198

Hodge Laplacian.199

To conduct the evaluation, we follow the settings of [14] and report the results in Table 1. Specifically,200

we name the framework CycleNet-Hodge, which replaces the orthogonal projector of the cycle space201

of the Hodge Laplacian with the original Hodge Laplacian. Notably, we follow the implementation202

of IGN in [14], which restricts the tensor dimensions for efficiency, leading to a slight theoretical203

limitation but strong empirical performance.204

We find from the table that the proposed cycle-related information improves the performance of all205

backbones while only adding a few extra learnable parameters. This provides empirical evidence that206

the proposed structural embedding is robust across different backbone models. Additionally, CycleNet207

outperforms CycleNet-Hodge across all backbones, indicating that the basis-invariant encoding of208

the cycle space is better at extracting useful cycle-related information. We also observe that BasisNet209

introduces too many additional parameters and performs worse than our model, demonstrating the210

trade-off between computational efficiency and theoretical representation power when generating211

a basis-invariant encoding for all eigenspaces. Furthermore, comparing CWN to CycleNet, CWN212

achieves comparable results with CycleNet and CycleNet-PEOI, indicating its strong representation213

power. However, CWN introduces too many trainable parameters, leading to high memory and214

computational costs.215
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