
Cycle Invariant Positional Encoding for Graph Representation
Learning

Zuoyu Yan
Wangxuan Institute of Computer Technology

Peking University
yanzuoyu3@pku.edu.cn

Tengfei Ma
Department of Biomedical Informatics

Stony Brook University
Tengfei.Ma@stonybrook.edu

Liangcai Gao∗
Wangxuan Institute of Computer Technology

Peking University
glc@pku.edu.cn

Zhi Tang
Wangxuan Institute of Computer Technology

Peking University
tangzhi@pku.edu.cn

Chao Chen∗

Department of Biomedical Informatics
Stony Brook University

chao.chen.1@stonybrook.edu

Yusu Wang∗
Halıcıoğlu Data Science Institute

University of California
yusuwang@ucsd.edu

Abstract
Cycles are fundamental elements in graph-structured data and have demonstrated
their effectiveness in enhancing graph learning models. To encode such infor-
mation into a graph learning framework, prior works often extract a summary
quantity, ranging from the number of cycles to the more sophisticated persistence
diagram summaries. However, more detailed information, such as which edges
are encoded in a cycle, has not yet been used in graph neural networks. In this
paper, we make one step towards addressing this gap, and propose a structure
encoding module, called CycleNet, that encodes cycle information via edge
structure encoding in a permutation invariant manner. To efficiently encode the
space of all cycles, we start with a cycle basis (i.e., a minimal set of cycles gen-
erating the cycle space) which we compute via the kernel of the 1-dimensional
Hodge Laplacian of the input graph. To guarantee the encoding is invariant w.r.t.
the choice of cycle basis, we encode the cycle information via the orthogonal
projector of the cycle basis, which is inspired by BasisNet proposed by Lim et al.
We also develop a more efficient variant which however requires that the input
graph has a unique shortest cycle basis. To demonstrate the effectiveness of the
proposed module, we provide some theoretical understandings of its expressive
power. Moreover, we show via a range of experiments that networks enhanced by
our CycleNet module perform better in various benchmarks compared to several
existing SOTA models.

1 Introduction
The incorporation of structural information has been shown beneficial to graph representation
learning [64, 52]. In recent years, message passing neural networks (MPNNs) have become a popular
architecture for graph learning tasks. It has been shown [53, 44] that in terms of differentiating graphs,
MPNNs have the same power as the well-known Weisfeiler-Lehman (WL) graph isomorphism test.
WL-tests in fact take as inputs two graphs with node features (called “colors" or “labels" in the
literature). As the initial node features become more representative, the power of WL-tests also

∗Correspondence to Yusu Wang, Chao Chen, and Liangcai Gao

, Cycle Invariant Positional Encoding for Graph Representation Learning. Proceedings of the Second Learning
on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30, 2023.

Cycle Invariant Positional Encoding for Graph Representation Learning

increases. If initial node features are simple summaries that can be computed from the one-ring
neighborhood of each point (e.g., the degree of each node), then it is known that the resulting MPNNs
cannot detect structures such as cycles which could be important for application domains such as
biology [32], chemistry [13, 28] (e.g., rings), and sociology [32] (e.g., the triadic closure property).

Several pieces of work have been developed to enhance GNNs’ ability in encoding cycle-like
structures. These approaches can be loosely divided into two categories: (1) methods that extract
a summary quantity, ranging from the number of cycles [8] to the more sophisticated persistence
diagram summaries [23, 55] to improve graph representation learning; (2) methods that perform
message passing among high-order cycle/topology-related structures [7, 6]. However, these methods
often suffer from high computational costs, and more detailed information, such as which edges
are encoded in a cycle, is not yet contained in these models, which may limit their representation
power. For example, just using simple summaries, such as the number and lengths of cycles, is not
sufficient to differentiate a well-known pair of strongly regular graphs: the 4× 4 Rook Graph and the
Shrikhande Graph. In contrast, as shown by the proof of Theorem 4.2 in the appendix, our CycleNet
can differentiate them.

The high level goal of this paper is to develop efficient and effective ways to encode more detailed
cycle information. In particular, much like using Laplacian eigenfunctions to provide positional
encoding for nodes in a graph, we wish to develop edge structure encoding which intuitively
provides the position of each edge in terms of the entire cycle space for a graph. In particular, we
propose CycleNet which do so via (the kernel space of) the 1-dimensional Hodge Laplace operator
∆1 of the graph. Indeed, from Hodge theory [27, 38], we know that the space of 1-chains (in real
coefficients) can be decomposed into two subspaces: the cycle space, which is the kernel space
of the 1-Hodge Laplacian ∆1, and the gradient space, which stores the distinction between node
signals. We will use an orthonormal cycle basis Γ computed from the kernel of ∆1 to represent the
cycle space (note, a cycle basis is simply a minimal set of cycles spanning the cycle space). The
CycleNet will compute an edge structure encoding vector for each graph edge based on Γ. Note
that we require the CycleNet to be both (1) equivariant w.r.t. the permutation of edge orders, and
(2) invariant to the choice of cycle basis we use (i.e., for different cycle bases of the same cycle
space, the model should produce the same output). To this end, we leverage the idea from [37] and
encode the cycle information via the orthogonal projector of the cycle basis, which allows a universal
approximation for functions satisfying the above two conditions. By combining CycleNet with graph
learning models, we can effectively encode the cycle information into graph learning models.

To further improve efficiency, as well as to make the edge encoding more intuitive, we also propose
CycleNet-PEOI, a variant of CycleNet that assumes the input graph to have a unique shortest cycle
basis (SCB). An SCB is a cycle basis whose total length/weight of all cycles in a basis is minimal.
Instead of basis invariance, here we fix the basis to be the shortest cycle basis (in Z2 coefficients),
and hence we only need to guarantee order invariance, that is, the output should be invariant to the
permutation order of these basis cycles. This allows us to have a simpler architecture to represent
such functions. The assumption of a unique SCB is strong, but seems reasonable for certain datasets,
such as molecular graphs where cycles correspond to chemical substructures like Benzene rings or
weighted graphs where the weights of cycles are different (see Section G in the appendix).

The contributions of our work are summarized as follows:

• In Section 4, we propose a novel edge structure encoding module, CycleNet, which encodes,
for each edge, its “position” in the cycle spaces of the graph. The module encodes the cycle
information in a permutation invariant and basis invariant manner.

• We also propose CycleNet-PEOI, a variant of CycleNet based on the theory of algebraic topology.
The encoding only requires order invariance, making it significantly more efficient.

• We provide theoretical analyses to establish the expressive power of the proposed modules.
Additionally, we conduct comprehensive empirical evaluations on diverse benchmarks, encom-
passing both synthetic and real-world datasets. Through these experiments, we showcase the
remarkable representation capabilities and algorithmic efficiency of our proposed modules.

2 Related Works
Cycle-related Graph Representation Learning. Existing works encode cycle-related information
mainly from two perspectives. The first one is to encode a summary quantity. These works include [8,

2

Cycle Invariant Positional Encoding for Graph Representation Learning

57], which use the number of substructures as augmented node features, [54, 61], which extract
the semantic information of cycles, and [23, 25, 62, 11, 63, 55, 24, 56] that introduce the persistent
homology [19, 12], a summary of cycle information as augmented features. Most of these do not
look at detailed cycle compositions and edges’ relation to them.

The second category is to enhance the message passing function with high-order cycle-related
structures. For example, [6, 7] propose a new type of message passing function based on the
simplicial/cell complexes. [22, 30] extend the framework to more downstream tasks. We note that if
the input is a graph G = (V,E) without higher-order simplices/cells information, often a choice has
to be made regarding how to construct high-dimensional cells/simplices. For example, one can take
cliques in the input graph to form high-dimensional simplices, or use a set of cycles as the boundary
of 2-cells. However, the choice for the latter often may not be canonical (i.e., even for the same graph
different choices can be made).

Positional Encodings on Graphs. To leverage the spectral properties of graphs, many works [15,
37, 16, 33, 43] introduce the eigenvectors of the graph Laplacian as augmented node features. Other
approaches introduce positional encodings such as random walks [36], diffusion kernels [21], shortest
path distance [58], and unsupervised node embedding methods [50]. Our work can be viewed as an
structural encoding for edges in a graph via their “position" in the cycle space.

Hodge Laplacians and Graph Neural Networks. Previously, Hodge Laplacian has been widely
used in signal processing, such as flow denoising [47], flow sampling [26], and topology infer-
ence [4, 5]. Recent works have combined it with GNNs to tackle flow interpolation [46] and mesh
representation learning [48]. However, these methods only encode the Hodge Laplacians as aug-
mented structural features, and seldom focus on the information of cycles. In this paper, we propose
novel ways to encode the cycle space of the Hodge Laplacians. Theoretical and empirical results
demonstrate the effectiveness of our proposed framework.

3 Preliminaries
Hodge Theory. We present a brief overview of Hodge decomposition in the context of simple graphs
and refer interested readers to [38, 27] for further details.

Let G = (V,E) be a simple graph with node set V = {1, . . . , n} and edge set E = {e1, . . . , em}.
The adjacency matrix of G is denoted by A ∈ Rn×n, where Aij = 1 if (i, j) ∈ E and Aij = 0
otherwise. m denotes the number of edges and n denotes the number of nodes. The incidence matrix
of G is denoted by B ∈ Rn×m and defined as follows:

Bij =

−1 if ej = (i, k) for some k ∈ V,

1 if ej = (k, i) for some k ∈ V,

0 otherwise.
(1)

For undirected graphs, the choice of direction for an edge in the incidence matrix is arbitrary and
does not affect subsequent definitions. Using topological language, B essentially is the boundary
matrix from the 1-chain group to the 0-chain group.

There exist various techniques to extract node-level information from graphs. One widely adopted
approach is to utilize the eigenvectors of the graph Laplacian ∆0. It is defined as ∆0 = D − A,
where D is the diagonal matrix of node degrees and A is the adjacency matrix. Alternatively, ∆0 can
also be computed as ∆0 = BBT .

The Hodge Laplacian is a high-order generalization of the graph Laplacian, and serves as a graph
shift operator defined on edges, specifically ∆1 = BTB ∈ Rm×m2. Unlike the graph Laplacian,
which can be used for signal processing for functions defined on graph nodes, ∆ is an operator for
functions defined on graph edges (note that a real valued function on the set of edges can be viewed
as a vector in Rm). ∆1 intuitively measures the conservatism of edges [4]. Edges can be classified
into two types: conservative and non-conservative. Conservative edges are referred to as gradient,
as they are induced by measuring the distinction of nodes. Conversely, non-conservative edges are
defined as divergence-free or harmonic3, as they are naturally composed of cycles.

2This definition is specific for simple graphs, not for general simplicial complexes.
3They are different in graphs that contain high-order simplices/cells, but are the same in simple graphs.

3

Cycle Invariant Positional Encoding for Graph Representation Learning

v1 v2

v3 v4

v5
v1 v2

v3 v4

v5
GNN

Input Graph

Extract Shortest Cycle Basis (SCB)

GNN Encoding

e1

e2 e3

e4

e5

e6

𝛾𝛾1 𝛾𝛾2

e1

e2 e3

e4

e5

e6

𝑰𝑰𝑮𝑮𝑮𝑮(𝚪𝚪𝚪𝚪𝐓𝐓)

𝑷𝑷𝑷𝑷𝑷𝑷𝑰𝑰(𝑺𝑺𝑺𝑺𝑺𝑺)

Hodge Laplacian Kernel Space Encoding

Edge Weight
𝑤𝑤12

𝑤𝑤13 𝑤𝑤24
𝑤𝑤34

𝑤𝑤25

𝑤𝑤45

SCB encoding

CycleNet-PEOI

CycleNet

Figure 1: The framework of CycleNet. We either adopt the upper branch (CycleNet) or the lower
branch (CycleNet-PEOI) as the framework.

In the context of simple graphs (viewed as a 1-dimensional simplicial complex), there is an orthogonal
direct sum decomposition of Rm according to the Hodge Decomposition theory:

Rm = ker(∆1)
⊕

Im(BT) (2)

Here, ker(∆1) = ker(B) denotes the kernel space of the Hodge Laplacian ∆1, and it turns out that it
is in fact isomorphic to the 1-dimensional cycle space of G (viewed as a 1-D simplicial complex)
w.r.t. real coefficients [38]. Im(BT) represents the image space of the incidence matrix BT , which
reflects the distinction of node information. It is worth noting that the Hodge Decomposition can
be more generally defined on graphs that contain high-order simplices/cells, whereas we focus on
simple graphs that only consist of nodes and edges.

Shortest Cycle Basis. We provide a brief overview of the theory of shortest cycle basis, and refer
the readers to [45, 14, 19] for a more comprehensive understanding. Let G = (V,E) be an input
graph. In this paper, a cycle is defined as a subgraph of G in which each vertex has a degree of 2.
We can describe a cycle using an incidence vector C indexed on E. The e-th index of C is 1 if e is
an edge of the cycle, and 0 otherwise. The incidence vectors of all cycles form a vector space ZG

over Z2, which is called the cycle space of G. The dimension of the cycle space is g = m− n+ 1,
where g is the Betti number. The cycle basis is a set of linearly independent cycles that span the cycle
space, i.e., any cycle in ZG can be expressed as the modulo-2 sum of cycles in the basis. A cycle
basis {γ1, γ2, . . . , γg} can be described by a cycle incidence matrix X ∈ Rm×g , which is formed by
combining of the incidence vector of cycles in the cycle basis. Specifically, the i-th column vector Xi

of X corresponds to the incidence vector of the i-th cycle γi.

We define the weight of a cycle as the number of edges it contains, and the weight of the cycle basis
as the sum of the weights of its constituent cycles. The shortest cycle basis (SCB) is defined as a
cycle basis of the minimum weight.

4 CycleNet
In this section, we present the framework of our proposed module. We begin by describing the
framework, and then introduce how to compute functions that conform to the symmetries of the cycle
space. We also provide some theoretical findings on the expressive power of the module.

4.1 CycleNet

The proposed module, which is illustrated in Figure 1, encodes the cycle information via edge
structure encoding. Let ht

i denote the embedding for node i in the t-th iteration. At the start of the

4

Cycle Invariant Positional Encoding for Graph Representation Learning

process (i.e., t = 0), the embedding is initialized with the intrinsic attributes of the nodes. In each
subsequent iteration (t+ 1), it is updated as:

ht+1
i = W t

1(h
t
i,

∑
j∈N(i)

W t
2(h

t
i, h

t
j , eij , sij)) (3)

where W t
1 and W t

2 are two trainable matrices, N(i) = {j ∈ V |(i, j) ∈ E} denotes the neighborhood
of i, and sij is the structural embedding of edge (i, j) to capture informaiton about the cycle space.
We will introduce its computation in the next section. The following proposition states that CycleNet
can differentiate any pair of graphs with different edge structural encoding.
Proposition 4.1. Denote the set of edge structural embedding as S ∈ Rm×d, where se ∈ Rd

represents the edge structural embedding for edge e. If a pair of non-isomorphic graphs have
distinct S, then there exists a CycleNet that utilizes S as the edge structural embedding, capable of
distinguishing between them.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), let Fs denote the set of all bijective mappings
from E1 to E2. If they have different S, then for each fs ∈ Fs, there must exist at least one edge
e1 = (u1, v1) ∈ E1 and its paired edge fs(e1) = e2 = (u2, v2) ∈ E2 such that se1 ̸= se2 . If
Equation 3 satisfies that (1) W t

1 and W t
2 are injective functions; (2) the graph-level readout function

is injective to the multiset of node features, then CycleNet can differentiate G1 and G2 following
the proof of Theorem 3 from [53]. Notice that the proof is based on the assumption that the node
features and the edge features are from a countable set.

4.2 Encoding the cycle space

Recall that the goal of the paper is to devise efficient and effective frameworks to encode detailed
cycle information. In this section, we investigate edge structure encoding approaches that enable the
determination of the location of each edge with respect to the entire cycle space.

4.2.1 Basis invariant functions of the cycle space

We present a framework for computing functions that respect the basis variance of the cycle space
of the Hodge Laplacian. Specifically, for the input graph, we extract the eigenvectors Γ ∈ Rm×g of
the kernel space of the Hodge Laplacian, where m is the number of edges and g is the Betti Number.
According to the theory of Hodge decomposition, the eigenvectors form an orthonormal cycle basis
that spans the cycle space. The structure encoding f should be invariant to the right multiplication by
any orthogonal matrix Q. Additionally, it should be equivariant to permutations along the row axis.
Formally, we require that f(ΓQ) = f(Γ) for any Q ∈ O(g), where O(g) denotes the set of g × g
orthogonal matrices, and f(PΓ) = Pf(Γ) for any P ∈ Π[m], where Π[m] denotes the set of m×m
permutation matrices.

Such “left permutation equivariance" and “right basis invariance" requirements are exactly the setup
of Basisnet proposed in [37]. Specifically, BasisNet universally approximates all basis invariant
functions on the eigenspace. Following [37], we map the eigenvectors to the orthogonal projector of
its column space: Γ → ΓΓT , which is O(d) invariant and retains all the information. To preserve the
permutation equivariance along the row axis, the proposed model fbasis : Rm×m → Rm×d should
satisfy fbasis(PΓΓTPT) = Pfbasis(ΓΓ

T) for any permutation matrix P . We use the invariant graph
network (IGN) [41], a graph learning model capable of encoding permutation equivariant operations,
to parameterize this mapping. The final model is presented below:

h(Γ) = IGN(ΓΓT) (4)

IGN(ΓΓT) universally approximates any left permutation equivariant and right basis invariant func-
tions over Γ, requiring the use of high order tensors (with order depending on m) [39, 42, 29]. This is
rather expensive. In practice, we follow the practice of [37] and only use 2-IGN. We also note that in
BasisNet of [37], each eigenspace spanned by eigenvectors corresponding to the same eigenvalue of
a linear operator (which is taken as the 0-th Laplacian ∆0 in their paper) requires a separate IGN of
the form as in Eqn (4); that is, an IGN needs to be constructed for every eigenvalue. In practice, one
has to take the union of the eigenspace w.r.t. a range (interval) of eigenvalues to use a shared IGN
(as otherwise, there will be an infinite number of IGNs needed theoretically). Our setting is much

5

Cycle Invariant Positional Encoding for Graph Representation Learning

simpler as we only need to consider the kernel space, which is the space spanned by all eigenvectors
of ∆1 corresponding to eigenvalue 0.

We then abuse notation slightly and use CycleNet to also refer to the instantiation of Eqn (3) where
the edge structural encoding for the ith edge is taken as IGN(ΓΓT)[i]; see the top row in Figure 1.

4.2.2 Permutation equivariant and order invariant (PEOI) functions of the cycle basis

The encoding based on the Hodge Laplacian, although powerful, presents two issues. First, IGN(ΓΓT)
takes a m×m matrix ΓΓT as input, where m is the number of edges in the input graph, and is thus
expensive. Furthermore, as the cycle basis passes through the basis invariant encoding, it becomes
hard to decipher which cycles are being parameterized and contribute to graph representation learning.
To this end, we develop an invariant of the aforementioned CycleNet, which we call CycleNet-PEOI
(lower row in Figure 1), using the so-called SCB of the input graph. In real-world benchmarks, the
SCB often contains essential components such as ternary relationships and benzene rings. We will
also theoretically show that it contains valuable structural information in Section 4.3.

More specifically, given a graph G = (V,E), let {γ1, . . . , γg} be a SCB (see Section 3) of G. We
assume that the SCB of the input graph is unique – this does not hold for general graphs. Nevertheless,
for many real-world graphs (e.g., those representing chemical compounds), important structures such
as ternary relationships and benzene rings seldom overlap with other cycles. In addition, in weighted
graphs, the different weights of cycles guarantee a unique SCB.

Remark. As we will see below, our module can be defined and used even when SCB is not unique –
in such case, for the same graph, we might obtain different edge structural encoding depending on
the choice of SCBs. Note that another way to encode the SCB is to fill these cycles with 2-cells and
apply the cellular message passing network of [6]. The same issue exists for this approach as well.

Now given the SCB {γ1, . . . , γg}, consider its corresponding cycle incidence matrix: X ∈ Rm×g

defined such that the ith column Xi of X is a m-D 0/1 vector where Xi[j] = X[i][j] = 1 if and only
if edge j is in the cycle γi; that is, Xi indicates the set of edges in cycle γi. Our goal is to compute a
(edge-encoding) function f : Rm×g → Rm×d, which is permutation equivariant along the row axis,
while being order invariant to the permutation of columns – the latter is because our edge encoding
should not depend on the order (permutation) of the cycles in a SCB. We refer to this symmetry as
permutation equivariant and order invariant (PEOI), which exists if and only if the following two
conditions hold:

• For any m×m permutation matrix P1 ∈ Π[m], we have P1f(X) = f(P1X).
• For any g × g permutation matrix P2 ∈ Π[g], we have f(X) = f(XP2).

The function that satisfies the PEOI. Note that we do not have universal approximation results
for PEOI functions – even if the universal approximation holds, it is likely that the latent dimension
might depend on m (similar to the universal approximation of DeepSet for permutation invariant
functions [59]). Denote the function F : Rm×g → Rm×d. For the i-th row of F (X), there exists
functions, ρ1, ρ2, and ρ3 that satisfies:

F (X)[i] = ρ3(
∑
k∈[g]

ρ2(X[i][k],
∑

j∈[m],j ̸=i

ρ1(X[i][k], X[j][k]]))) (5)

In particular, the continuous functions ρ1 : R2 → Ra, ρ2 : Ra+1 → Rb and ρ3 : Rb → Rd above
will be approximated by parametrized MLPs MLP1, MLP2, and MLP3. We note that compared to
the CycleNet embedding using IGN, if we choose constant latent dimension a and b, and assuming
the complexity of each MLP is bounded by a constant, then the total model complexity is bounded by
a constant and the computation is only linear in m. Nevertheless, in practice, as a, b and each of the
MLPi, i ∈ {1, 2, 3} is of bounded size, this model is much more efficient than IGN (which is Ω(m2)
due to its input is a matrix of size m×m).

4.3 Theoretical analysis

Expressiveness of CycleNet. We assess the expressiveness of the proposed model by evaluating its
ability to differentiate between structurally distinct graphs, or non-isomorphic graphs. The definition
of isomorphism and the proofs of the theorems are provided in the appendix.

6

Cycle Invariant Positional Encoding for Graph Representation Learning

Theorem 4.2. CycleNet is strictly more powerful than 2-WL, and can distinguish certain pairs graphs
that are not distinguished by 3-WL.

This denotes that the basis invariant function boost the representation power of CycleNet.

Comparison with existing works. The two theorems below demonstrate that the proposed PEOI
encoding of the cycle incidence matrix is capable of extracting more informative features compared
to models [8] using the length of cycles or models [56, 63] that use the extended persistence diagrams
(EPDs) [12] as augmented features. The “EPD" here denotes the 1D EPD corresponding to cycles.
Theorem 4.3. If choosing the same set of cycles. The PEOI encoding of the cycle incidence matrix is
more powerful than using its number in terms of distinguishing non-isomorphic graphs.
Theorem 4.4. If choosing the same set of cycles. The PEOI encoding of the cycle incidence matrix
can differentiate graphs that cannot be differentiated by the extended persistence diagram. If adding
the filter function to the cycle incidence matrix, the PEOI encoding is more powerful than the extended
persistence diagram in terms of distinguishing non-isomorphic graphs.

Choice of the cycle incidence matrix. We demonstrate that the SCB contains valuable structural
information in terms of differentiating non-isomorphic graphs. It is worth noting that most existing
works compare their frameworks with 2-WL and 3-WL, whereas the SCB can distinguish graphs that
4-WL cannot distinguish.
Theorem 4.5. Using the length of shortest cycle basis as the edge structural embedding can distin-
guish certain pair of graphs that are not distinguished by 3-WL, as well as pair of graphs that are not
distinguished by 4-WL.

5 Experiments
In this section, we evaluate the proposed framework from two perspectives: (1) In Section 5.1, we
assess whether the framework can extract the cycle information effectively and preserve the expressive
power; (2) in Section 5.2, we examine whether the incorporation of cycle information contributes to
the improvement of the downstream tasks. The code is available at https://github.com/pkuyzy/
CycleNet.

Baselines. We adopt various GNN models as baselines to evaluate the effectiveness of our proposed
framework. These models include GIN [53], GCN [31] and GAT [49], which are MPNN models;
PPGN [40], a high-order GNN which is as powerful as the 3-WL; SCN [17], SCCONV [9], CWN [6],
SAT [22], and Dist2Cycle [30], which introduce the cycle information using the simplicial complex
or the cell complex; SignNet and BasisNet [37], which introduces encodings that respect the sign
variance or the basis variance of the eigenspaces. We combine our CycleNet and CycleNet-PEOI
modules with backbone models (named “backbone+CycleNet") and report the results. Note that
frameworks [17, 9, 6, 22, 30] that fill cycles with 2-cells cannot be combined with CycleNet-PEOI
since there is no cycle in the corresponding simplicial/cell complexes.

5.1 Synthetic benchmarks

Datasets. To evaluate the expressiveness of the proposed module, we use the strongly regular (SR)
graph dataset from [7] as the benchmark, which contains 227 graphs with different isomorphic types
and cannot be distinguished by 3-WL test. Following the settings of [6], we use the cosine distance
between the extracted embeddings of a pair of graphs to determine whether they are isomorphic or
not. Additionally, we generate the Cai-Fürer-Immerman (CFI) graphs [10] based on the proof of
Theorem 4.5, consisting of 200 graphs. They are generated from two isomorphism types by randomly
permuting the node sequence. We categorize the graphs into two classes based on their isomorphism
types and use classification accuracy as the evaluation metric. Moreover, we measure the running
time (both training and inference) per epoch to evaluate the algorithmic efficiency of the model.

To evaluate the effectiveness of the proposed model in terms of extracting cycle information, we
generate a point cloud dataset, which is sampled from several small cycles whose centers are on a
large cycle. The task is to predict the Betti number and the extended persistence diagrams (EPDs) [12]
of these nontrivial cycles. These attributes are theoretically significant in the context of computational
topology [14, 19], in which the Betti number denotes the dimension of the cycle space, and the EPD
is a topological summary of the cycles. We use the Mean Absolute Error (MAE) for the Betti number,
and the Mean Square Error (MSE) for the EPD as the evaluation metric.

7

https://github.com/pkuyzy/CycleNet
https://github.com/pkuyzy/CycleNet

Cycle Invariant Positional Encoding for Graph Representation Learning

Table 1: Experiments on expressiveness, Accuracy and Seconds per epoch

3-CFI 4-CFI SR
Method Acc Sec/epo Acc Sec/epo Acc Sec/epo

GIN 0.50 0.29 0.64 0.46 0.50 0.64
SignNet 0.50 1.11 1 5.43 1 2.59
PPGN 0.50 0.36 0.50 0.57 0.50 1.67
CWN 1 4.28 0.50 4.94 1 19.71

GIN+CycleNet 1 0.56 0.50 1.41 1 2.12
GIN+CycleNet-PEOI 1 0.45 1 1.11 1 2.08

Table 2: Experiments on approximating the Betti Number and the extended persistence diagram,
Regression Error and Seconds per epoch

Betti Num EPD
Method Error Sec/epo Error Sec/epo

GIN 0.273±0.059 1.22 0.214±0.004 1.33
SignNet 0.112±0.009 22.31 0.182±0.010 23.66
CWN 0.077±0.025 6.90 0.202±0.023 7.27

GIN+CycleNet 0.036±0.005 1.91 0.176±0.010 5.51
GIN+CycleNet-PEOI 0.062±0.015 1.47 0.141±0.004 2.02

Results. The results are presented in Table 1 and Table 2. In terms of expressiveness, the proposed
model can differentiate the CFI graphs and the strongly regular graphs, which is consistent with our
theoretical findings. In addition, the proposed model outperforms the baselines in terms of predicting
the Betti number and the EPDs. It empirically justifies that CycleNet can extract useful cycle
information. We are surprised to observe that SignNet can differentiate the 4-CFI graphs, although it
fails to distinguish the 3-CFI graphs. However, this result is not convincing since SignNet violates
the basis variance property, i.e., different eigenvectors from the same eigenspace must produce the
same output, which is not guaranteed by SignNet’s approach.

Regarding algorithmic efficiency, our proposed model, CycleNet, exhibits a slightly slower per-
formance compared to the GIN backbone model, while outperforming other baseline models by a
significant margin. This result indicates that the proposed framework achieves a desirable balance
between its expressiveness and computational efficiency.

5.2 Existing benchmarks

We evaluate CycleNet on a variety of benchmarks from works that are closely related to the Hodge
Laplacian and algebraic topology. These benchmarks include the graph regression benchmark used
in [37, 7], the homology localization benchmark introduced in [30], the superpixel classification and
trajectory classification benchmark introduced in [22].

Graph Regression. We evaluate CycleNet on ZINC [15], a large-scale molecular dataset consisting
of 12k graphs for drug-constrained solubility prediction. The evaluation metric is the MAE between
the ground truth and the prediction. Table 4 presents the results, indicating that the proposed model,
particularly the basis invariant encoding, outperforms all baseline models, showcasing its strong
representational capacity. Notably, despite being theoretically stronger, the basis invariant encoding
from BasisNet underperforms the sign invariant encoding from SignNet, demonstrating that balancing
computational efficiency, algorithmic robustness, and theoretical representational power among all
eigenspaces may pose serious challenges for the former encoding.

Homology Localization. We evaluate CycleNet on a dataset consisting of Alpha complexes [18]
that arise from "snapshots" of filtrations [19] on a point cloud data sampled from tori manifolds. The
dataset comprises 400 point cloud graphs with the number of holes ranging from 1 to 5. The task is to
predict the distance from each edge to its nearest cycle, and the mean squared error (MSE) is adopted
as the evaluation metric. We add the basis-invariant encoding on the backbone model, adopt the
default 6 families of datasets and report the results in Table 3. We observe that CycleNet successfully
prevents large-scale error and reaches the best performance on most benchmarks. This demonstrates
the strong representation power of the basis-invariant embedding.

8

Cycle Invariant Positional Encoding for Graph Representation Learning

Table 3: Experiments on Homology Localization, MSE

Family 1 2 3 4 5 6 Mean

Dist2Cycle 0.203 0.105 0.093 0.524 0.110 0.108 0.190
Dist2Cycle+CycleNet 0.284 0.091 0.117 0.076 0.071 0.091 0.122

Superpixel Classification. Following the settings of [22], we construct a superpixel graph dataset
from MNIST [35], an image classification dataset that contains handwritten digits from 0 to 9, using
the Simple Linear Iterative Clustering (SLIC) algorithm [1]. In this dataset, pixels are grouped into
nodes representing perceptually meaningful regions, and the resulting graph contains high-order
structures such as triangles. We add the basis-invariant encoding to the backbone model SAT and
report the classification accuracy as the evaluation metric. The results, presented in Table 5, show that
CycleNet outperforms all baseline methods, demonstrating that the added cycle information can not
only enhance the performance on simple graphs but also contribute to graphs that contain high-order
structures. It is worth noting that since these superpixel graphs are built upon simplicial complexes,
CWN with cell complex-based representation works the same as simplicial graph networks.

Trajectory classification. In accordance with the experimental setup of [22], we present the trajectory
classification dataset, which is a dense point cloud dataset containing 1000 points. Trajectories are
formed by randomly selecting a starting point from a specified corner and an endpoint from another
corner, each with different orientations, and the goal is to classify the type of trajectory. Table 5 shows
that CycleNet surpasses all baseline methods, demonstrating the strong power of the basis-invariant
encoding on high-order graphs.

Discussion on the choice of cycle information. In summary, we find that CycleNet-PEOI is a more
efficient and comparable alternative to CycleNet for many synthetic and real-world benchmarks.
However, for high-order graphs, high-order structures such as triangles and cells replace the presence
of cycles, leading to a loss of essential information when only encoding cycles. Thus, CycleNet-PEOI
may not be suitable in such situations. In addition, we include an ablation study in the appendix,
where we replace the encoding of the cycle space of the Hodge Laplacian with the original Hodge
Laplacian. Our experiments show that the cycle space of the Hodge Laplacian contributes more to
graph representation learning.

Table 4: Evaluation on ZINC (MAE).

Method MAE

GIN 0.220
PNA 0.145
BasisNet 0.094
SignNet 0.084
CWN 0.079

SignNet+CycleNet 0.078
SignNet+CycleNet-PEOI 0.082
CWN+CycleNet 0.068

Table 5: Evaluation on superpixel classification and trajec-
tory classification (Classification Accuracy).

Method Super Traj

GCN 63.65±1.82 -
GAT 88.95±0.99 -
SCN 84.16±1.23 52.80±3.11
SCCONV 89.06±0.47 62.30± 3.97
SAT 92.99±0.71 93.80±1.33

SAT+CycleNet 93.97±0.57 95.60±2.64

6 Conclusion

To effectively incorporate the cycle information to graph learning models, we propose CycleNet,
a framework that encodes the cycle space of the Hodge Laplacian in a basis-invariant manner. To
improve efficiency and intuitiveness, we also present a permutation equivariant and order invariant
encoding based on the theory of algebraic topology. We theoretically analyze the expressiveness
of the model in terms of distinguishing non-isomorphic graphs, and empirically evaluate the model
using various tasks and benchmarks. The results demonstrate that CycleNet achieves a satisfying
representation power while maintaining high algorithmic efficiency.

9

Cycle Invariant Positional Encoding for Graph Representation Learning

Acknowledgement
We thank anonymous reviewers for their efforts in reviewing our paper, and their valuable suggestions.
The work of Zuoyu Yan, Liangcao Gao, and Zhi Tang is supported by National Key R&D Program of
China (No. 2021ZD0113301) and National Science Foundation of China (62376012). The work of
Yusu Wang is supported by NSF under grants CCF-2112665, CCF-2217033, and CCF-2310411.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine

Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions
on pattern analysis and machine intelligence, 34(11):2274–2282, 2012. 9

[2] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System
Sciences, 113:42–59, 2020. 14

[3] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and
Paul Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pages 599–608. PMLR, 2021. 19

[4] Sergio Barbarossa and Stefania Sardellitti. Topological signal processing over simplicial
complexes. IEEE Transactions on Signal Processing, 68:2992–3007, 2020. 3

[5] Sergio Barbarossa, Stefania Sardellitti, and Elena Ceci. Learning from signals defined over
simplicial complexes. In 2018 IEEE Data Science Workshop (DSW), pages 51–55. IEEE, 2018.
3

[6] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021. 2, 3, 6, 7, 19

[7] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pages 1026–1037. PMLR, 2021.
2, 3, 7, 8

[8] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022. 2, 3, 7

[9] Eric Bunch, Qian You, Glenn Fung, and Vikas Singh. Simplicial 2-complex convolutional
neural nets. NeurIPS 2020 Workshop on Topological Data Analysis and Beyond, 2020. 7

[10] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992. 7, 14

[11] Yuzhou Chen, Baris Coskunuzer, and Yulia Gel. Topological relational learning on graphs.
Advances in Neural Information Processing Systems, 34:27029–27042, 2021. 3

[12] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
poincaré and lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.
3, 7, 17

[13] Mukund Deshpande, Michihiro Kuramochi, and George Karypis. Automated approaches for
classifying structures. Technical report, MINNESOTA UNIV MINNEAPOLIS DEPT OF
COMPUTER SCIENCE, 2002. 2

[14] Tamal Krishna Dey and Yusu Wang. Computational topology for data analysis. Cambridge
University Press, 2022. 4, 7

[15] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020. 3, 8,
19

[16] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022. 3

10

Cycle Invariant Positional Encoding for Graph Representation Learning

[17] Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural networks. NeurIPS
2020 Workshop on Topological Data Analysis and Beyond, 2020. 7

[18] Herbert Edelsbrunner. Alpha shapes-a survey. In Tessellations in the Sciences: Virtues,
Techniques and Applications of Geometric Tilings. 2011. 8

[19] Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. American
Mathematical Society, 2022. 3, 4, 7, 8, 17

[20] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000. 17

[21] Or Feldman, Amit Boyarski, Shai Feldman, Dani Kogan, Avi Mendelson, and Chaim Baskin.
Weisfeiler and leman go infinite: Spectral and combinatorial pre-colorings. In ICLR 2022
Workshop on Geometrical and Topological Representation Learning, 2022. 3

[22] Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial attention networks. In
ICLR 2022 Workshop on Geometrical and Topological Representation Learning, 2022. 3, 7, 8,
9, 19

[23] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with
topological signatures. Advances in neural information processing systems, 30, 2017. 2, 3

[24] Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten
Borgwardt. Topological graph neural networks. arXiv preprint arXiv:2102.07835, 2021. 3

[25] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. Advances in neural information processing systems, 32, 2019. 3

[26] Junteng Jia, Michael T Schaub, Santiago Segarra, and Austin R Benson. Graph-based semi-
supervised & active learning for edge flows. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 761–771, 2019. 3

[27] Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye. Statistical ranking and combinatorial
hodge theory. Mathematical Programming, 127(1):203–244, 2011. 2, 3

[28] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018. 2

[29] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019. 5, 18

[30] Alexandros D Keros, Vidit Nanda, and Kartic Subr. Dist2cycle: A simplicial neural network
for homology localization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 7133–7142, 2022. 3, 7, 8, 19

[31] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. 7

[32] Mehmet Koyutürk, Ananth Grama, and Wojciech Szpankowski. An efficient algorithm for
detecting frequent subgraphs in biological networks. Bioinformatics, 20(suppl_1):i200–i207,
2004. 2

[33] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618–21629, 2021. 3

[34] P. Langley. Crafting papers on machine learning. In Pat Langley, editor, Proceedings of the
17th International Conference on Machine Learning (ICML 2000), pages 1207–1216, Stanford,
CA, 2000. Morgan Kaufmann.

[35] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. 9, 19

[36] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020. 3

11

Cycle Invariant Positional Encoding for Graph Representation Learning

[37] Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
In ICLR 2022 Workshop on Geometrical and Topological Representation Learning, 2022. 2, 3,
5, 7, 8, 18, 19

[38] Lek-Heng Lim. Hodge laplacians on graphs. Siam Review, 62(3):685–715, 2020. 2, 3, 4

[39] Takanori Maehara and Hoang NT. A simple proof of the universality of invariant/equivariant
graph neural networks. arXiv preprint arXiv:1910.03802, 2019. 5, 18

[40] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019. 7

[41] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations, 2018. 5

[42] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pages 4363–4371. PMLR, 2019. 5,
18

[43] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021. 3

[44] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019. 1

[45] James R Munkres. Elements of algebraic topology. CRC press, 2018. 4

[46] T Mitchell Roddenberry and Santiago Segarra. Hodgenet: Graph neural networks for edge data.
In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 220–224. IEEE,
2019. 3

[47] Michael T Schaub and Santiago Segarra. Flow smoothing and denoising: Graph signal process-
ing in the edge-space. In 2018 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 735–739. IEEE, 2018. 3

[48] Dmitriy Smirnov and Justin Solomon. Hodgenet: Learning spectral geometry on triangle
meshes. ACM Transactions on Graphics (TOG), 40(4):1–11, 2021. 3

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 7

[50] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional
encoding for more powerful graph neural networks. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
3

[51] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968. 14

[52] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 1

[53] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018. 1, 5, 7, 14, 18

[54] Zuoyu Yan, Tengfei Ma, and Chao Chen. Cycle representation learning for inductive relation
prediction. In International Conference on Machine Learning, 2022. 3

[55] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with
persistent homology: An interactive view. In International Conference on Machine Learning,
pages 11659–11669. PMLR, 2021. 2, 3, 17

[56] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, and Chao Chen. Neural
approximation of graph topological features. In Advances in Neural Information Processing
Systems, 2022. 3, 7, 17

12

Cycle Invariant Positional Encoding for Graph Representation Learning

[57] Zuoyu Yan, Junru Zhou, Liangcai Gao, Zhi Tang, and Muhan Zhang. Efficiently count-
ing substructures by subgraph gnns without running gnn on subgraphs. arXiv preprint
arXiv:2303.10576, 2023. 3, 15

[58] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
Neural Information Processing Systems, 34:28877–28888, 2021. 3

[59] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 6

[60] Simon Zhang, Soham Mukherjee, and Tamal K Dey. Gefl: Extended filtration learning for
graph classification. In Learning on Graphs Conference, pages 16–1. PMLR, 2022. 17

[61] Simon Zhang, Soham Mukherjee, and Tamal K Dey. Gefl: Extended filtration learning for
graph classification. In The First Learning on Graphs Conference, 2023. 3

[62] Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications
for graph classification. Advances in Neural Information Processing Systems, 32, 2019. 3

[63] Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
International Conference on Artificial Intelligence and Statistics, pages 2896–2906. PMLR,
2020. 3, 7, 17

[64] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020. 1

13

Cycle Invariant Positional Encoding for Graph Representation Learning

(a) (b)
Figure 2: (a) the 4x4 Rook Graph and (b) the Shrikhande Graph

Appendix

A Proof of Theorem 4.2 in the main paper
We begin by introducing the graph isomorphism. For a pair of graphs G1 = (V1, E1) and G2 =
(V2, E2), if there exists a bijective mapping f : V1 → V2, so that for any edge (u1, v1) ∈ E1, it
satisfies that (f(u1), f(v1)) = (u2, v2) ∈ E2, then G1 is isomorphic to G2, otherwise they are not
isomorphic. Up to now, there is no polynomial algorithm for solving the graph isomorphism problem.
One popular method is to use the k-order Weisfeiler-Leman [51] algorithm (k-WL). It is known that
1-WL is as powerful as 2-WL, and for k ≥ 2, (k + 1)-WL is more powerful than k-WL.

We then provide the theoretical results below:
Theorem 4.2. CycleNet is strictly more powerful than 2-WL, and can distinguish graphs that are not
distinguished by 3-WL.

Proof. The pair of graphs that 3-WL cannot distinguish while CycleNet can. It is shown in [2]
that 3-WL cannot differentiate the 4×4 Rook Graph and the Shrikhande Graph shown in Figure 2. We
then compute the orthogonal projector of the cycle space of the Hodge Laplacian for each graph and
denote them as Orook and Osh. We observe that each column of Orook contains 22 zeros, whereas
each column of Osh contains 16 zeros. To differentiate between the two graphs, we can use the
function |Orook−Osh|, which can be approximated using an invariant graph network (IGN) followed
by a multilayer perceptron (MLP). Specifically, the 2-2 layer of the IGN can obtain the Orook and
Osh, and the MLP can approximate the absolute function.

More powerful than the 2-WL. Using models such as [53] to be the backbone GNNs can distinguish
any pair of non-isomorphic graphs that 2-WL can distinguish. Since there exist graphs such as the 4x4
Rook Graph and the Shrikhande graph that 2-WL cannot distinguish, while CycleNet can. Therefore,
CycleNet is more powerful than 2-WL.

B Proof of Theorem 4.5 in the main paper
We restate the theorem as follows:
Theorem 4.5. Using the length of shortest cycle basis as the edge structural embedding can distin-
guish certain pair of graphs that are not distinguished by 3-WL, as well as pair of graphs that are not
distinguished by 4-WL.

Proof. The pair of graphs that 4-WL cannot distinguish. Consider the set of graphs called the
Cai-Fürer-Immerman (CFI) graphs [10]. The sequence of graphs G(ℓ)

k , ℓ = 0, 1, . . . , k + 1 is defined

14

Cycle Invariant Positional Encoding for Graph Representation Learning

as following,

V
G

(ℓ)
k

=
{
ua,v⃗

∣∣∣a ∈ [k + 1], v⃗ ∈ {0, 1}k and v⃗ contains

an even number of 1’s, if a = 1, 2, . . . , k − ℓ+ 1,
an odd number of 1’s, if a = k − ℓ+ 2, . . . , k + 1.

} (6)

Edges exists between two nodes ua,v⃗ and ua′,v⃗′ of G(ℓ)
k if and only if there exists m ∈ [k] such that

a′ mod (k + 1) = (a+m) mod (k + 1) and vm = v′k−m+1.

Denote the two graphs G = G
(0)
4 and H = G

(1)
4 . It is shown in [57] that 4-WL cannot differentiate

the pair of graphs.

The SCB can distinguish them. We begin by presenting the computation of the shortest cycle basis.
Let CT ∈ Rm×l denote the set of all tight cycles, where m is the number of edges and l is the number
of tight cycles. The definition of tight cycles is described in Section 3.3 of the main paper. For a
given cycle j, CT [i][j] is equal to 1 if edge i is in cycle j, and 0 otherwise. We define lowCT

(j) as
the maximum row index i such that CT [i][j] = 1. To compute the shortest cycle basis, we use the
matrix reduction algorithm, which is shown in Algorithm 1.

Algorithm 1 Matrix Reduction

Input: the set of tight cycles CT

the shortest cycle basis SCB = {}
CT = SORT(CT)
for j = 1 to l do

while ∃k < j with lowCT
(k) = lowCT

(j) do
add column k to column j and

end while
if column j is not a zero vector then

add the original column j to SCB
end if

end for
Output: the shortest cycle basis SCB

In the given algorithm, the symbol “add" represents the modulo-2 sum of two binary vectors. It
should be noted that Algorithm 1 may not be the fastest algorithm for computing the SCB, but most
acceleration methods are based on it. The algorithm processes the cycles in CT in order of increasing
length, with shorter cycles added to the shortest cycle basis before longer cycles. If any cycle can
be represented as a sum of multiple cycles whose lengths are no more than k, then the length of the
longest cycle in the shortest cycle basis will be k. We denote a cycle with length k as a k-cycle.

We obtain a total of 40 nodes for G and H by traversing a from 1 to 5 according to Equation 6.
For example, in G, node 1 denotes u1,{0,0,0,0}, and node 2 denotes u1,{0,0,1,1}. We then traverse
these nodes to obtain the edges. For example, edge 1 denotes (1, 9) in G, which corresponds to
node u1,{0,0,0,0} and node u2,{0,0,0,0}. It is observed that in H , a 4-cycle exists between edges
{8, 9, 24, 25}. These edges correspond to four nodes: u1,{0,0,0,0}, u1,{0,0,1,1}, u4,{0,0,0,0}, and
u4,{0,1,0,1}. The 4-cycle cannot be represented by the modulo-2 sum of 3-cycles since there is no
3-cycle whose edge with the maximum index after matrix reduction borns earlier than edge 25, that
is (u1,{0,0,1,1}, u4,{0,1,0,1}). Therefore the SCB of H contains 4-cycle.

The same 4-cycle also exists in G, and it can be represented by 38 3-cycles: {12, 288, 8},
{89, 94, 296}, {12, 148, 1}, {23, 215, 19}, {105, 108, 301}, {23, 282, 27}, {218, 282, 215},
{195, 318, 199}, {195, 316, 198}, {103, 105, 267}, {9, 144, 1}, {115, 121, 217}, {115, 124, 220},
{218, 313, 220}, {234, 314, 236}, {121, 124, 301}, {147, 318, 151}, {147, 316, 150},
{146, 314, 149}, {146, 312, 148}, {170, 234, 165}, {170, 313, 172}, {192, 198, 296},
{192, 199, 298}, {99, 108, 172}, {213, 267, 217}, {99, 101, 165}, {97, 103, 141}, {97, 109, 149},
{213, 266, 216}, {81, 89, 144}, {81, 94, 150}, {19, 216, 25}, {266, 270, 298}, {101, 109, 236},
{141, 270, 151}, {28, 312, 27}, {28, 288, 24}. The same situations exist for all other 4-cycles or
cycles longer than 4. We also observe that there have been 281 3-cycles in the SCB. Considering that
it is equal to the Betti number of G, the SCB does not contain any 4-cycle.

15

Cycle Invariant Positional Encoding for Graph Representation Learning

(a) (b)
Figure 3: Graphs that the PEOI encoding of the cycle incidence matrix can differentiate, while the
number of cycles and the extended persistence diagrams cannot.

The pair of graphs that 3-WL cannot distinguish while SCB can. There are 24 3-cycles and 9
4-cycles in the SCB of the 4× 4 Rook Graph, while there are 31 3-cycles and 2 4-cycles in the SCB
of the Shrikhande Graph. Therefore the SCB can differentiate them.

C Proof of Theorem 4.3 in the main paper

We restate the theorem as follows:
Theorem 4.3. If choosing the same set of cycles. The PEOI encoding of the cycle incidence matrix is
more powerful than using its number in terms of distinguishing non-isomorphic graphs.

Proof. PEOI can extract the number of cycles. In Proposition 4.2 in the main paper, if we set ρ1
as a function that consistently produces “1", ρ2 as a function that ignores the X[i][k] element while
being an identity function for the rest elements, and ρ3 as an identity function, we can obtain the
number of cycles. Therefore, the PEOI encoding of the cycle incidence matrix is at least as powerful
as the number of cycles.

Then we use the pair of graphs shown in Figure 3 as an example.

The number of cycles cannot differentiate the pair of graphs. In these two graphs the number
of cycles will remain the same. For example, if using all the cycles, there are both 3 cycles in
Figure 3(a) and Figure 3(b). If using cycles of a certain length, there are both 2 3-cycles and 1 5-cycle
in Figure 3(a) and Figure 3(b). Therefore, only using the number of cycles cannot differentiate the
pair of graphs.

The PEOI encoding of the cycle incidence matrix can differentiate the pair of
graphs. The cycle incidence matrix of these two graphs is listed as follows:

γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 1 0
(u2, u5) 1 1 0
(u3, u6) 1 0 0
(u4, u5) 0 1 1
(u5, u6) 1 0 0
(u4, u7) 0 0 1
(u5, u7) 0 0 1

γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 1 0
(u2, u5) 1 1 0
(u3, u6) 1 0 0
(u4, u5) 0 1 0
(u5, u6) 1 0 1
(u5, u7) 0 0 1
(u6, u7) 0 0 1

16

Cycle Invariant Positional Encoding for Graph Representation Learning

For Proposition 4.2 in the main paper, we can define ρ1(X[i][k], X[j][k]) = 2X[i][k] + X[j][k],
ρ2(X[i][k], Y) = RELU(Y − 16), and ρ3 to be an identity function. Therefore, for the graph shown
in Figure 3(a), the PEOI encoding is {4, 4, 2, 6, 4, 4, 4, 2, 2}; for the graph shown in Figure 3(b), the
PEOI encoding is {4, 4, 2, 6, 4, 2, 6, 2, 2}. According to Proposition 4.1 in the main paper, we can
differentiate the pair of graphs using CycleNet-PEOI.

Therefore, the PEOI encoding of the cycle incidence matrix is more powerful than the number of
cycles.

D Proof of Theorem 4.5 in the main paper

The classic EPDs [12] can be used to measure the saliency of connected components and high-order
topological structures such as voids. However, recent works [55, 56, 60] have mainly used the
one-dimensional (1D) EPD as augmented topological features, particularly the features corresponding
to cycles. Therefore, in this section, we mainly focus on comparing our encoding with the 1D EPDs
corresponding to cycles. For ease of complexity, we will omit the terms “1D" and “that correspond
to cycles" in the rest of this section, and only use “EPDs".

Theorem 4.4. If choosing the same set of cycles. The PEOI encoding of the cycle incidence matrix
can differentiate graphs that cannot be differentiated by the extended persistence diagram. If adding
the filter function to the cycle incidence matrix, the PEOI encoding of the cycle incidence matrix is
more powerful than using its extended persistence diagram in terms of distinguishing non-isomorphic
graphs.

Proof. The extended persistence diagram (EPD). Persistent homology [19, 20] captures topological
structures such as connected components and cycles, and summarizes them in a point set called the
persistence diagram (PD). It is found that the extended persistence diagrams (EPD) [12] is a variant
of PD that encodes richer cycle information. Specifically, an EPD is a set of points in which every
point represents the significance of a topological structure in terms of a scalar function known as
the filter function. Recent studies have shown that the extended persistence point of a cycle is the
combination of the maximum and minimum filter values of the point in the cycle [56]. Note that in
this paper, we focus on the EPDs of cycles, and do not consider the EPDs of other structures.

We illustrate the computation of the EPD for the graph in Figure 3(a), where the filter function is
defined as the shortest path distance from a selected root node u1 to other nodes. This is a common
filter function used in previous models [63, 55]. We plus one to the filter value in case of the zero
value. Using this definition, we have: f(u1) = 1, f(u2) = f(u3) = 2, f(u4) = f(u5) = f(u6) = 3,
and f(u7) = 4. The extended persistence point of the red cycle, the brown cycle, and the green cycle
are (3, 1), (3, 2), and (4, 3), respectively. Therefore the EPD of Figure 3(a) is {(3, 1), (3, 2), (4, 3)}.
We can define similarly the filter value for Figure 3(b), and the extended persistence points of the
three cycles are the same as the cycles in Figure 3(a). Therefore, the EPD of Figure 3(b) is also
{(3, 1), (3, 2), (4, 3)}, and the EPD cannot differentiate the pair of graphs. Note that the PEOI
encodings for these two graphs are different, as shown in the proof of Theorem 4.3.

Add the filter function to CycleNet-PEOI. It is worth noting that the filter function, which plays a
crucial role in constructing the EPD, is not explicitly contained in the cycle incidence matrix. As a
result, encoding the original cycle incidence matrix using the proposed PEOI method is not sufficient
to extract the EPD.

However, we can incorporate the filter function into the proposed model by adding the filter function to
the cycle incidence matrix. For example, we define the filter value of an edge as the minimum value of
the nodes in the edge, and obtain the filter values of the edges in Figure 3(a) as {1, 1, 2, 2, 2, 3, 3, 3, 3}.
Next, we compute the dot product between the filter values of edges and the cycle incidence matrix,
which results in the so-called filter-enhanced cycle incidence matrix. Similarly, we can obtain

17

Cycle Invariant Positional Encoding for Graph Representation Learning

the filter-enhanced cycle incidence matrix for Figure 3(b). The two matrices are listed below:

γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 2 0
(u2, u5) 2 2 0
(u3, u6) 2 0 0
(u4, u5) 0 3 3
(u5, u6) 3 0 0
(u4, u7) 0 0 3
(u5, u7) 0 0 3

γg γb γr
(u1, u2) 1 0 0
(u1, u3) 1 0 0
(u2, u4) 0 2 0
(u2, u5) 2 2 0
(u3, u6) 2 0 0
(u4, u5) 0 3 0
(u5, u6) 3 0 3
(u5, u7) 0 0 3
(u6, u7) 0 0 3

Define the PEOI encoding. We can use a 2-layer MLP to approximate the minimum function
between two elements. The hidden layer contains 4 nodes, and the ReLU activation function is
used. The weights from the input layer to the hidden layer are (1, 1), (1,−1), (−1, 1), and (−1,−1),
respectively, and the biases are set to 0 for all nodes. The weights from the hidden layer to the output
layer are 0.5, -0.5, -0.5, -0.5, respectively.

In Proposition 4.2 in the main paper, We set ρ1 as the minimum function, which is approximated by
the 2-layer MLP. ρ2 is defined as a function that ignores the X[i][k] element while being an identity
function for another element. ρ3 is set as an identity function.

The defined encoding can differentiate the graphs that EPD can also differentiate. Assume
that there exists a pair of graphs G1 and G2 whose EPDs are different, we can assume that there
exist a pair of cycles whose lowest filter values are different (the highest filter values can be treated
similarly). Under this assumption, we can define the filter value for edges as the minimum value of
the nodes in the edge. Using the PEOI encoding defined above, we can extract the lowest filter value
of these two cycles. We then use an injective function on the multiset of cycle embeddings to produce
different outputs for these two graphs. Therefore the defined encoding can differentiate G1 and G2.

In conclusion, by incorporating the filter function, CycleNet-PEOI can differentiate all pairs of graphs
that the EPDs can differentiate, and can distinguish graphs that EPDs cannot. Therefore, it is more
powerful than EPDs in terms of distinguishing non-isomorphic graphs.

E Implementation details

Encoding of CycleNet-PEOI. Based on Proposition 4.2 in the main paper, we provide a pytorch-like
pseudo-code for the PEOI encoding in Figure 4.

In certain situations where graphs are dense and large, the original PEOI encoding may bring extra
computational and memory costs. In these situations, we can ignore the final X[i][k] element in
Proposition 4.2 in the main paper, and then the memory cost will be no larger than O(m× g).

Encoding of CycleNet. The full approximation power requires high-order tensors to be used for
the IGN [39, 42, 29]. In practice, we follow the settings of [37] and restrict the tensor dimensions
for efficiency. This encoding, although losing certain theoretical power, shows strong empirical
performance in [37].

Experimental details. In the synthetic experiments in the main paper, we use a 5-layer GIN [53] as
the backbone model. We set the hidden dimension to 128, batch size to 16, and learning rate to 1e-3
with Adam as the optimizer. We use a ReduceLROnPlateau scheduler with the reduction factor set to
0.7, the patience set to 10, and the minimum learning rate set to 1e-6. In the synthetic experiments
related to cycles, we use a point cloud dataset sampled on small cycles whose centers are on a big
cycle. The diameters of the large cycle and small cycle are set to 20 and 1, respectively. We randomly
sample 20 points from the large cycle and 60 points from the small cycle. After obtaining the node
set, we generate a k-nearest-neighbor graph with the parameter k set to 3. There is no input feature
for the prediction of the Betti Number. As for the prediction of EPD, we use the position of the node
as the filtration function of the EPD. The input node feature is therefore the coordinates of the nodes.

For real-world benchmarks, we use SignNet or CWN as the backbone model on ZINC. However,
models such as CWN will build the cell complex (or simplicial complex) on cycles. Therefore using

18

Cycle Invariant Positional Encoding for Graph Representation Learning

PyTorch-like pseudo-code for PEOI encoding
class PEOI(nn.Module):

def __init__(self, D1, D2, D3):
self.rho1 = MLP(2, D1) # in dim=2, out dim=D1
self.rho2 = MLP(1+D1, D2) # in dim=1+D1, out dim=D2
self.rho3 = MLP(D2, D3) # in dim=D2, out dim=D3

def forward(self, x):
x shape: m x g

m, g = x.shape
x1 = x.reshape(m, 1, 1, g).expand(−1, m, 1, −1) # m x m x 1 x g
x2 = x.reshape(1, m, 1, g).expand(m, −1, 1, −1) # m x m x 1 x g
w = self.rho1(cat((x1; x2), dim = 2)).sum(dim = 1) # m x m x 2 x g −> m x D1 x g
w = self.rho2(cat((x.reshape(m, 1, g); w), dim = 1)).sum(dim = 2) # m x (1+D1) x g −> m

x D2
w = self.rho3(w) # m x D2 −> m x D3

return w

Figure 4: PyTorch-like pseudo-code for PEOI encoding. Here “cat((x, y), dim = c)" denotes the
concatenation of two matrices on the c-th dimension. “sum(dim=c)" denotes the sum operation over
the c-th dimension.

the proposed cycle-invariant structural encoding is not a good choice since many of these features
are already filled with the cells. Instead, we use the original Hodge Laplacian as the input of 2-IGN,
which is also cycle-invariant. Our settings follow exactly the settings of SignNet or CWN. For the
superpixel classification and the trajectory classification benchmarks, we use SAT as the backbone
model. Our settings follow exactly the settings of SAT. For the homology localization benchmark, we
use Dist2cycle as the backbone model. Our settings follow exactly the settings of Dist2cycle. Notice
that for backbone models that fill the cycles with 2-cells, the kernel space of the Hodge Laplacian
may not contain any information. Therefore, we replace the kernel space encoding with the encoding
based on the original Laplacians. All the experiments are implemented with two Intel Xeon Gold
5128 processors,192GB RAM, and 10 NVIDIA 2080TI graphics cards.

The assets we used. Our model is experimented on benchmarks from [15, 22, 30, 35, 6, 3] under the
MIT license.

Limitations of the paper. First, we have shown that the representation power of our model is
bounded by high-order WLs in terms of distinguishing non-isomorphic graphs.

Second, the proposed model may not perform well on benchmarks where cycle information is not
relevant. For example, in high-order graphs where cycles are replaced by high-order structures like
triangles or cells, the proposed CycleNet-PEOI model may not be suitable.

F Additional experiments
F.1 Ablation study on ZINC

We present additional evaluations on (1) the memory cost in terms of the number of trainable
parameters; (2) the effectiveness of the introduced cycle-related embedding on a wider range of
settings; and (3) the comparison between the original Hodge Laplacian and the cycle space of the
Hodge Laplacian.

To conduct the evaluation, we follow the settings of [37] and report the results in Table 6. Specifically,
we name the framework CycleNet-Hodge, which replaces the orthogonal projector of the cycle space
of the Hodge Laplacian with the original Hodge Laplacian. Notably, we follow the implementation
of IGN in [37], which restricts the tensor dimensions for efficiency, leading to a slight theoretical
limitation but strong empirical performance.

We find from the table that the proposed cycle-related information improves the performance of all
backbones while only adding a few extra learnable parameters. This provides empirical evidence

19

Cycle Invariant Positional Encoding for Graph Representation Learning

Table 6: Additional experiments on ZINC

Framework test MAE Params

GIN 0.220 497394
+ CycleNet-Hodge 0.165 543876
+ CycleNet 0.153 543876
+ CycleNet-PEOI 0.153 512812
+ BasisNet 0.169 751810

GatedGCN 0.259 491597
+ CycleNet-Hodge 0.142 510539
+ CycleNet 0.137 510539
+ CycleNet-PEOI 0.188 504090
+BasisNet 0.139 716793

PNA 0.145 473681
+ CycleNet-Hodge 0.128 479081
+ CycleNet 0.089 479081
+ CycleNet-PEOI 0.111 483769
+ BasisNet 0.094 556323

SignNet 0.084 487082
+ CycleNet-Hodge 0.081 492482
+ CycleNet 0.077 492482
+ CycleNet-PEOI 0.082 497170

Table 7: Time Evaluation on computing the Hodge Laplacian

ZINC Avg. Nodes Avg. Degree Original Basis
Train 23.17 2.15 7.04e-4 1.49e-3
Val 23.08 2.15 7.09e-4 1.40e-3
Test 23.12 2.15 7.01e-4 1.40e-3

Homology Avg. Nodes Avg. Degree Original Basis
Train 80 1.17 1.25e-3 4.08e-3
Test 80 1.17 1.24e-3 4.05e-3

that the proposed structural embedding is robust across different backbone models. Additionally,
CycleNet outperforms CycleNet-Hodge across all backbones, indicating that the basis-invariant
encoding of the cycle space is better at extracting useful cycle-related information. This is potentially
because 2-IGN cannot effectively model the matrix multiplication or rank computation of 2D matrices.
While the original Hodge Laplacian encodes the information of the cycle space, 2-IGN may fail to
extract the information. We also observe that BasisNet introduces too many additional parameters
and performs worse than our model, demonstrating the trade-off between computational efficiency
and theoretical representation power when generating a basis-invariant encoding for all eigenspaces.
Furthermore, comparing CWN to CycleNet, CWN achieves comparable results with CycleNet and
CycleNet-PEOI, indicating its strong representation power. However, CWN introduces too many
trainable parameters, leading to high memory and computational costs.

F.2 The time to compute the eigenvectors of the Hodge Laplacian

In Table 7, we report the statistics of ZINC and the synthetic homology dataset, including average
node count and degree distribution. In addition, we report the average time (seconds) to generate
the original Hodge Laplacian ("Original") and the orthogonal projector of the cycle space ("Basis")
which serves as input to the basis-invariant model. Across both datasets, we find the processing step
to be efficient, generating the necessary features for existing benchmark graphs in a reasonable time.
The experiments are done on 64 Intel(R) Xeon(R) Gold 5218 CPUs.

20

Cycle Invariant Positional Encoding for Graph Representation Learning

G Discussion on the uniqueness of SCB.
We first report the prevalence of unique SCBs in real-world data, showing that it is reasonable to
assume the uniqueness of SCBs in specific molecule graphs. Since no existing algorithm can detect
whether a graph has a unique SCB, we visualize the first 100 graphs from the ZINC-12k dataset, and
manually observe that all these graphs exhibit a unique SCB. This serves as empirical evidence that it
is reasonable to assume a unique SCB for sparse molecule graphs.

In situations where the SCB of a graph is non-unique, the resulting feature encoding, CycleNet-PEOI,
will not constitute a canonical representation. However, we can still use the encoding to capture the
cycle information even if the SCB is not unique.

21

	1 Introduction
	2 Related Works
	3 Preliminaries
	4 CycleNet
	4.1 CycleNet
	4.2 Encoding the cycle space
	4.2.1 Basis invariant functions of the cycle space
	4.2.2 Permutation equivariant and order invariant (PEOI) functions of the cycle basis

	4.3 Theoretical analysis

	5 Experiments
	5.1 Synthetic benchmarks
	5.2 Existing benchmarks

	6 Conclusion
	A Proof of Theorem 4.2 in the main paper
	B Proof of Theorem 4.5 in the main paper
	C Proof of Theorem 4.3 in the main paper
	D Proof of Theorem 4.5 in the main paper
	E Implementation details
	F Additional experiments
	F.1 Ablation study on ZINC
	F.2 The time to compute the eigenvectors of the Hodge Laplacian

	G Discussion on the uniqueness of SCB.

