
Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

MINIMAL VALUE-EQUIVALENT PARTIAL MODELS FOR
SCALABLE AND ROBUST PLANNING IN
LIFELONG REINFORCEMENT LEARNING

Safa Alver
Mila, McGill University
Montreal, QC, Canada
safa.alver@mail.mcgill.ca

Doina Precup
Mila, McGill University and Google DeepMind
Montreal, QC, Canada
dprecup@cs.mcgill.ca

ABSTRACT

Learning models of the environment from pure interaction is often considered an essential compo-
nent of building lifelong reinforcement learning agents. However, the common practice in model-
based reinforcement learning is to learn models that model every aspect of the agent’s environment,
regardless of whether they are important in coming up with optimal decisions or not. In this pa-
per, we argue that such models are not particularly well-suited for performing scalable and robust
planning in lifelong reinforcement learning scenarios and we propose new kinds of models that
only model the relevant aspects of the environment, which we call minimal value-equivalent par-
tial models. After providing a formal definition for these models, we provide theoretical results
demonstrating the scalability advantages of performing planning with such models and then per-
form experiments to empirically illustrate our theoretical results. Then, we provide some useful
heuristics on how to learn these kinds of models with deep learning architectures and empirically
demonstrate that models learned in such a way can allow for performing planning that is robust to
distribution shifts and compounding model errors. Overall, both our theoretical and empirical results
suggest that minimal value-equivalent partial models can provide significant benefits to performing
scalable and robust planning in lifelong reinforcement learning scenarios.

1 INTRODUCTION

It has long been argued that in order for reinforcement learning (RL) agents to perform well in lifelong RL (LRL)
scenarios, they should be able to learn a model of their environment, which allows for advanced computational abil-
ities such as counterfactual reasoning and fast re-planning (Sutton & Barto, 2018; Schaul et al., 2018; Sutton et al.,
2022). Even though this is a widely accepted view in the RL community, the question of what kinds of models would
better suite for performing LRL still remains unanswered. As LRL scenarios involve large environments with lots
of irrelevant aspects and environments with unexpected distribution shifts, directly applying the ideas developed in
the classical model-based RL literature (see e.g., Ch. 8 of Sutton & Barto, 2018) to these scenarios is likely to lead
to catastrophic results in building scalable and robust lifelong learning agents. Thus, there is a need to rethink some
of the ideas developed in the classical model-based RL literature while developing new concepts and algorithms for
performing model-based RL in LRL scenarios.

In this paper, we argue that one important idea to reconsider is whether if the agent’s model should model every aspect
of its environment. In classical model-based RL, the learned model is a model over every aspect of the environment.
However, due to the large state spaces of LRL environments, these types of models are likely to lead to serious
problems in performing scalable model-based RL, i.e., in quickly learning a model and in quickly performing planning
with the learned model to come up with an optimal or close-to-optimal policy. Also, due to the inherent non-stationarity
of LRL environments, these types of detailed models are likely to lead to models that overfit to the irrelevant aspects
of the environment and cause serious problems in performing robust model-based RL, i.e., learning & planning with
models that are robust to distributions shifts and compounding model errors.

To this end, we argue that models that only model the relevant aspects of the agent’s environment, which we call min-
imal value-equivalent partial models, would be better suited for performing model-based RL in LRL scenarios. We
first start by developing the theoretical underpinnings of how such models could be defined and studied in model-based
RL (Sec. 3). Then, we provide theoretical results demonstrating the scalability advantages, i.e., the value / planning
loss and computational / sample complexity advantages, of performing planning with minimal value-equivalent par-

1

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

tial models (Sec. 4) and then perform several experiments to empirically illustrate these theoretical results (Sec. 5.1).
Finally, we provide some useful heuristics on how to learn these kinds models with deep learning architectures and em-
pirically demonstrate that models learned in such a way can allow for performing planning that is robust to distribution
shifts and compounding model errors (Sec. 5.2). Overall, both our theoretical and empirical results suggest that min-
imal value-equivalent partial models can provide significant benefits to performing scalable and robust model-based
RL in LRL scenarios. We hope that our study will bring the RL community a step closer to building model-based RL
agents that are able to perform well in LRL scenarios.

2 BACKGROUND

In RL (Sutton & Barto, 2018), an agent interacts with its environment through a sequence of actions to maximize
its long-term cumulative reward. Here, the environment is usually described as a Markov decision process (MDP)
M ≡ (S,A, P,R, γ), where S andA are the (finite) set of states and actions, P : S ×A×S → [0, 1] is the transition
distribution, R : S × A → [0, Rmax] is the reward function, and γ ∈ [0, 1) is the discount factor. On the agent’s
side, through the use of a perfect state encoder ϕ∗ : S → F , every state s ∈ S can be represented, without any loss
of information, as an n-dimensional feature vector f = [f1, f2, . . . , fn]

⊤ ∈ F , which consists of n different features
F = {fi}ni=1 where each fi takes values from a finite set of values (also see Boutilier et al. (2000)). Note that as there is
no loss of information, F contains all the possible features that are relevant in describing the states of the environment.
Thus, from the agent’s side, the MDP M can losslessly be represented as another MDP m∗ = (F ,A, p∗, r∗, γ), where
F andA are the (finite) set of feature vectors and actions, p∗ : F×A×F → [0, 1] and r∗ : F×A → [0, Rmax] are the
transition distribution and reward function, and γ ∈ [0, 1) is the discount factor. For convenience, we take the agent’s
view and refer to the environment as m∗ throughout this study. The goal of the agent is to then learn a value estimator
Q : F×A → R that induces a policy π ∈ Π ≡ {π | π : F×A → [0, 1]}, maximizing Eπ,p∗ [

∑∞
t=0 γ

tr∗(Ft, At) | F0]
for all F0 ∈ F .

Model-Based RL. One of the prevalent ways of achieving this goal is through the use of model-based RL methods
in which there are two main phases: the learning and planning phases. In the learning phase, the gathered experience
is mainly used in learning an encoder ϕ : S → F and a model m ≡ (p, r) ∈ M ≡ {(p, r) | p : F × A × F →
[0, 1], r : F × A → [0, Rmax]}, and optionally, the experience may also be used in improving the value estimator.
In the planning phase, the learned model m is then used either for solving for the fixed point of a system of Bellman
equations (Bellman, 1957), or for simulating experience, either to be used alongside real experience in improving the
value estimator, or just to be used in selecting actions at decision time (Sutton & Barto, 2018; Alver & Precup, 2022).

Lifelong RL. Even though there has been various (informal or formal) descriptions of the LRL setup in the literature
(see e.g., Schaul et al., 2018; Sutton et al., 2022; Brunskill & Li, 2014; Isele et al., 2016), in this study, we mainly
focus on overcoming two of the main challenges that are present in this setup: (i) performing scalable planning in
large environments with lots of irrelevant aspects and (ii) performing robust planning in environments with inherent
distribution shifts.

Value-Equivalence. One of the recent trends in model-based RL is to learn models that are specifically useful for
value-based planning (see e.g., Silver et al., 2017; Schrittwieser et al., 2020), which has been recently formalized in
several different ways through the studies of Grimm et al. (2020; 2021). Inspired by Grimm et al. (2021), we define a
related form of value-equivalence as follows. Let V ¯̄π

m̄ ∈ R|F̄| be the value vector of a policy ¯̄π ∈ ¯̄Π ≡ {¯̄π | ¯̄π : ¯̄F ×
A → [0, 1]} evaluated in model m̄ ∈ M̄ ≡ {(p̄, r̄) | p̄ : F̄×A×F̄ → [0, 1], r̄ : F̄×A → [0, Rmax]}, whose elements
are defined ∀f̄ ∈ F̄ as V ¯̄π

m̄(f̄) ≡ E¯̄π,p̄

[∑∞
t=0 γ

tr̄(F̄t, At)|F̄0 = f̄
]
, and let V ∗

m̄ ∈ R|F̄| be the optimal value vector in
model m̄. Note that the value vector V ¯̄π

m̄ and the policy ¯̄π may not be defined over the same feature vector space, i.e.
F̄ and ¯̄F may not be the same. In these scenarios we assume access to a mapping φ : F̄ → ¯̄F of the agent so that ¯̄π
can be evaluated in m̄. We say that a model mVE ∈ ¯̄M≡ {(¯̄p, ¯̄r) | ¯̄p : ¯̄F ×A× ¯̄F → [0, 1], ¯̄r : ¯̄F ×A → [0, Rmax]}
is a value-equivalent (VE) model of the true environment m∗ ∈M if the following equality holds:

V
π∗
mVE

m∗ = V ∗
m∗ ∀π∗

mVE
∈ ¯̄Π, (1)

where π∗
mVE

is an optimal policy obtained as a result of planning with model mVE.

3 MINIMAL VALUE-EQUIVALENT PARTIAL MODELS

In classical model-based RL (Ch. 8 of Sutton & Barto, 2018), an agent learns a very detailed model of its environment
that models every aspect of it, regardless of whether these aspects are relevant in the process of coming up with

2

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

optimal decisions or not. However, in LRL scenarios, where the agent is “small” and the environment is “vast”
(Schaul et al., 2018), this approach is likely to be problematic as modeling every aspect of the environment becomes
quite impractical. Even if the agent overcomes its capacity limitations and manages to model every aspect, as we will
demonstrate, these kinds of detailed models can lead to large planning losses and dramatically slowdown both the
model-learning and planning processes. And, as we will further demonstrate, detailed models can also be fragile to
the distribution shifts in the environment and to the compounding model errors that happen during the unrollment of
the learned model. In order to overcome these challenges, we start by proposing new kinds of models that only model
certain aspects, either relevant or irrelevant, of the agent’s environment. For this, we first start by clarifying the notion
of “aspect”: in this study, by “aspect”, we mean a feature of the environment fi ∈ Fi that is learnable by the agent
(see Sec. 2). We are now ready to define partial models:
Definition 1 (Partial Models). Given a set of features F, let FP ⊂ F s.t. |FP| < |F|. Let FP be a space of feature
vectors in which the feature vectors consist the features in FP. We say that a model mP is a partial model of the
true environment m∗ ∈ M if it is defined over the feature vector space FP, i.e., mP ∈ MP ≡ {(pP, rP) | pP :
FP ×A×FP → [0, 1], rP : FP ×A → [0, Rmax]}.

According to Defn. 1, any model that only models certain features of the environment is a partial model of the envi-
ronment m∗ ∈ M. However, in order for a partial model to be useful, it should be able to model the relevant features
of the environment, which allow for achieving the task of interest. In order to separate out the relevant features from
the irrelevant ones, we define the relevant ones as follows:
Definition 2 (Relevant Features). Given a set of features F, let FR ⊂ F. Let FR be a space of feature vectors in which
the feature vectors consist of the features in FR. We say that the features fi ∈ FR are relevant features of the task of
interest if they are necessary and sufficient for defining a space of modelsMR ≡ {(pR, rR) | pR : FR × A × FR →
[0, 1], rR : FR ×A → [0, Rmax]} that contains value-equivalent models of the true environment m∗ ∈M.

Now that we have defined partial models and distinguished between the relevant and irrelevant features, we are ready
to define an important class of partial models that at the very least model the relevant aspects of the environment:
Definition 3 (VE Partial Models). Given a set of features F, let FVEP ⊂ F s.t. |FVEP| < |F| and FR ⊆ FVEP. Let FVEP
be a space of feature vectors in which the feature vectors consist of the features in FVEP. Let mVEP be a partial model
that is defined over the feature vector space FVEP, i.e., mVEP ∈ MVEP ≡ {(pVEP, rVEP) | pVEP : FVEP ×A× FVEP →
[0, 1], rVEP : FVEP ×A → [0, Rmax]}. We say that mVEP is a VE partial model of the true environment m∗ ∈ M if it
is a VE model of m∗, i.e.,

V
π∗
mVEP

m∗ = V ∗
m∗ ∀π∗

mVEP
∈ ΠVEP, (2)

where π∗
mVEP

is an optimal policy obtained as a result of planning with model mVEP and ΠVEP ≡ {π | π : FVEP×A →
[0, 1]}.

Although it is important to learn partial models that at the very least model the relevant aspects of the environment,
as we will theoretically and empirically demonstrate, partial models are mostly beneficial when they only model the
relevant aspects of the environment, i.e., when FVEP = FR. We refer to these models as minimal VE partial models.
Note that minimal VE partial models are a special class of VE partial models, and VE partial models are a special
class of partial models.

E

D

C

B

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1: The Squirrel’s World (SW) environment.

Illustrative Example. As an illustration of the
models defined above, let us start by considering
the Squirrel’s World (SW) environment depicted
in Fig. 1, in which the squirrel’s (the agent) job
is to navigate from cell E1 to cell E16 to pickup
the nut without getting caught by the hawk that
flies back and forth horizontally along row C. At
each time step, the squirrel receives as input an
5×16 image of the current state of the environment
and then, through the use of a pre-defined state en-
coder, transforms this image into a feature vector
that contains information regarding all aspects of
the current state of the environment, i.e., the feature vector contains information on the current position of the squirrel,
hawk and the cloud, the current direction of the hawk, the current wind direction in rows A and B and the current
weather condition. Based on this, the squirrel selects an action that either moves it to the left or right cell, or keeps it
position fixed. If the squirrel gets caught by the hawk or if it is out of time, it receives a reward of 0 and the episode
terminates, and if the squirrel successfully navigates to the nut, it gets a reward of +10 and the episode terminates.

3

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

In this environment, as the hawk moves 5x the speed of the squirrel, a straightforward policy of always moving to
the right will not get the squirrel to the nut. Thus, the squirrel has to come up with non-trivial policies that take into
account both the cells with bushes (see e.g., cells E2, E3), which allow for sheltering, and the position and direction
of the hawk.

In this environment, examples of partial models can be a model that only models the cloud position and the wind
direction for rows A and B, or a model that only models the weather condition and the hawk’s direction. However, for
a partial model to be VE or minimal VE, it has to model the relevant features for the tasks of interest which is reaching
the nut. In the SW environment, there are three relevant features: (i) the squirrel’s position, (ii) the hawk’s position,
and (iii) the hawk’s direction, as the squirrel would have to have access to all three of these features to come up with
optimal policies. Thus, an example of a VE partial model can be a model that models both the three relevant features
and the weather condition, and an example of a minimal VE partial model can be a model that only models the three
relevant features.

4 THEORETICAL RESULTS

In this section, we first analyze the value and planning losses (Sec. 4.1) of VE partial models and then derive formal
results demonstrating the computational and sample complexity benefits (Sec. 4.2) of using such models. We then
discuss scenarios in which the VE partial model is a minimal one.

4.1 VALUE AND PLANNING LOSS ANALYSES

We start our formal analysis by studying the value loss incurred due to planning with a VE partial model mVEP in place
of the true environment m∗:
Theorem 1. Let mVEP ∈MVEP be a VE partial model of the true environment m∗ ∈M. Then, the value loss between
an optimal policy in m∗, π∗, and an optimal policy in mVEP, π∗

mVEP
is given by:∥∥∥V ∗

m∗ − V
π∗
mVEP

m∗

∥∥∥
∞

= 0. (3)

Due to space constraints, we defer all the proofs to App. A. Theorem 1 implies that by planning with a (non-minimal
or minimal) VE partial model and obtaining an optimal policy within it, an agent would incur no value loss compared
to the optimal value of the environment itself.

Next, we study the planning loss (Jiang et al., 2015) incurred due to planning with an approximate VE partial model
m̃VEP ∈MVEP in place of the actual VE partial model mVEP ∈MVEP. Similar to Jiang et al. (2015), we also consider
the certainty-equivalence control setting in which the agent acts according to a policy that is optimal with respect to
its current approximate model.
Theorem 2. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M, and let m̃VEP ∈ MVEP be
model that comprises of the reward function of mVEP and a transition distribution that is estimated from n samples for
each (f, a) pair. Let ΠrVEP ≡ {π | ∃ pVEP s.t π is optimal in (pVEP, rVEP)}. Then, certainty-equivalence planning with
m̃VEP has planning loss: ∥∥∥V ∗

mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2Rmax

(1− γ)2

√
1

2n
log

2|FVEP||A||ΠrVEP |
δ

, (4)

with probability at least 1− δ.

Theorem 2, which is based on the results of Jiang et al. (2015), implies that given a fixed amount of data, the upper
bound of the planning loss of a VE partial model depends on both the size of its feature vector space, |FVEP|, and the
size of its policy class being searched over by planning, |ΠrVEP |.1 This in turn implies that, given a fixed amount of
data, compared to a regular model, a VE partial model is likely to have less planning loss and this loss is likely to be
minimized when the VE partial model is a minimal one.

4.2 COMPUTATIONAL AND SAMPLE COMPLEXITY BENEFITS

We now study the computational and sample complexity benefits of performing model-based RL with VE partial
models. Due to the well-established theoretical results around it, we choose to study these benefits in the context of

1Note that |FVEP| also affects |ΠrVEP |, i.e., as |FVEP| grows, |ΠrVEP | also grows.

4

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

(a) 8x8 BlueBalls-R (b) 8x8 RedBoxes-R (c) 8x8 NoObstacles-R (d) 16x16 RedBalls-R (e) 16x16 BlueBoxes-R

Figure 2: Variations of the regular 2RDO environment with grid sizes of 8x8 and 16x16. In these environments, there
are either no obstacles (c), or there are several obstacles (balls and boxes) with different colors (a, b, d, e).

value iteration (Bertsekas & Tsitsiklis, 1996). However, we note that the implications of our results would apply to a
wide variety of planning algorithms.

Starting with the computational complexity benefits, it is well-known that the computational complexity of performing
a single step of value iteration with an arbitrary model m ∈ M is O(|F|2|A|) (Agarwal et al., 2022). Thus, the
computational complexity of performing a single step of value iteration with a VE partial model mVEP ∈MVEP would
be O(|FVEP|2|A|). This implies that compared to planning with regular models, planning with VE partial models
would provide a significant computational complexity benefit and this benefit would be maximized when the model
used for planning is a minimal VE partial model.

Moving on to the sample complexity benefits, previous studies of Kearns & Singh (1998); Kakade (2003); Azar et al.
(2012) have shown that the sample complexity of obtaining an ε estimation of the optimal action value function through
the use of Q-value iteration (see Alg. 1) given access only to a generative model, a model that provides samples for
every given state-action pair, is in the order of the magnitude of the model’s state and action space. Building on top
of this result, we now study the sample complexity benefits of planning with approximate VE partial models that are
obtained as a result of sampling generative VE partial models:

Theorem 3. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M. Let m̃VEP ∈ MVEP be
the corresponding approximate VE partial model that has the same reward function as mVEP, but whose transition
distribution is estimated by m calls to the generative model mVEP, where

m = O
(
|FVEP||A|
(1− γ)4ε2

)
, (5)

and let Qk
m̃VEP

be the value returned by Q-value iteration at the kth epoch. Then, with probability greater than 1 − δ,
the following holds for all f ∈ FVEP and a ∈ A:∥∥Qk

m̃VEP
−Q∗

mVEP

∥∥
∞ ≤ ε, (6)

where k = log(ε(1−γ))
log γ and Q∗

mVEP
is the optimal action value function in mVEP.

Theorem 3, which is based on the results of Azar et al. (2012), implies that compared to a regular model, a VE partial
model is likely to require less samples in obtaining an ε estimation of the optimal action value function through the
use of Q-value iteration with a generative model, and the number of samples required is likely to be minimized when
the VE partial model is a minimal one.

5 EXPERIMENTAL RESULTS

We start this section by performing experiments to demonstrate the scalability advantages of minimal VE partial mod-
els, which are illustrations of the theoretical results derived in Sec. 4, and then we perform experiments to demonstrate
the robustness advantages of these models. The details of all of our experiments can be found in App. C.

Environments. We perform experiments (i) on the SW environment (see Fig. 1), (ii) on different versions of the Two
Rooms Dynamic Obstacles (2RDO) environment that are built on top of Minigrid (Chevalier-Boisvert et al., 2018)
(see Fig. 2 & C.1), and (iii) on several Procgen environments (Cobbe et al., 2020) (see Fig. C.2). We choose these
environments as the first two allow for designing controlled experiments that are helpful in answering the questions
of interest to this study and the Procgen environments are helpful in demonstrating the capabilities of the proposed
models in challenging domains. The details of the SW environment are already presented in Sec. 3 and we refer the
reader to App. C for more details. In the regular 2RDO environments, the agent (red triangle) spawns in top-left of
the top room and has to navigate to the green goal cell located in the bottom-right of the same room, regardless of the

5

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

m1 m2 m3 m4
Models

0

2

4

6
Va

lu
e

Lo
ss

Det-SW
Stoch-SW

(a) Value Loss

m4 m5 m6 m7
Models

0

2

4

6

8

10

Pl
an

ni
ng

 L
os

s

n = 3
n = 5
n = 10
n = 20

(b) Planning Loss

m4 m5 m6 m7
Models

0

5

10

15

20

Pl
an

ni
ng

 T
im

e
 (s

ec
on

ds
)

(c) Planning Time

10 20 30 40 50
Episodes

0

2

4

6

8

10

To
ta

l R
ew

ar
d

(d) Det-SW

10 20 30 40 50
Episodes

0

2

4

6

8

10

To
ta

l R
ew

ar
d

regular
min VEP

(e) Stoch-SW

Figure 3: (a, b, c) The (a) value losses, (b) planning losses, and (c) planning times of several models. Plot (a) was
obtained over a single run and plots (b) and (c) were obtained by averaging over 50 runs per model. (d, e) The total
reward obtained as a result of planning with models m4 and m7 on the (d) Det-SW and (e) Stoch-SW environments.
Shaded regions are standard errors over 50 runs.

gaseous motions of the obstacles in the bottom room. At each time step, the agent receives an image of the current state
of the grid and then, through the use of a learned state encoder, transforms this image into a feature vector. Based on
this, the agent selects an action that either turns it left or right, or moves it forward. If the agent successfully navigates
to the goal cell, it receives a reward of +1 and the episode terminates. More details on the different versions (regular
and versions with a key) of the 2DRO environments and the Procgen environments can be found in App. C.

5.1 SCALABILITY EXPERIMENTS

For our scalability experiments, we perform experiments with several non-VE (m1, m2, m3) and VE (m4, m5, m6)
partial models of both the deterministic and stochastic versions of the SW environment, referred to as Det-SW and
Stoch-SW, respectively. The details of these models can be found in Table C.1. For all of our experiments, we use
value iteration as our planning algorithm.

Question 1. Do minimal VE partial models allow for planning with no value loss?

In Sec. 4.1, we argued that by planning with a VE partial model, an agent would incur no value loss compared to
planning with the true environment itself. To empirically verify this, we present the agent with a set of non-VE partial
models m1, m2, m3 and a minimal VE partial model m4, and compare the value losses on both the Det-SW and
Stoch-SW environments. Results are shown in Fig. 3a. We can indeed see that while the VE partial model incurs no
value loss, the non-VE ones do incur serious value losses.

Question 2. Do minimal VE partial models allow for planning with less planning loss?

In Sec. 4.1, we argued that given a fixed amount of data, compared to a regular model, a VE partial model is likely
to incur less planning loss, and this loss is likely to be minimized when the VE partial model is a minimal one. For
empirical verification, we compare the planning losses of a minimal VE partial model m4, two (non-minimal) VE
partial models m5 and m6, and a regular model m7, across dataset sizes of 3, 5, 10 and 20, which corresponds to
the number of samples for each (f, a) pair, on the Stoch-SW environment. Results in Fig. 3b show that, as expected,
VE partial models indeed incur less planning losses than regular models, and the minimal VE partial model incurs the
least planning loss.

Question 3. Do minimal VE partial models provide computational complexity benefits?

In Sec. 4.2, we argued that compared to regular models, planning with VE partial models would provide a significant
computational complexity benefit and this benefit would be maximized when the model used for planning is a minimal
VE partial model. To empirically verify this, we present the agent with a minimal VE partial model m4, two VE partial
models m5 and m6, and a regular model m7 of the Det-SW environment, and compare the average time it takes to
perform a single step of value iteration for each of these models. Results are shown in Fig. 3c. As can be seen, planning
with VE partial models indeed provides significant computational complexity benefits, and this benefit is maximized
when the VE partial model is a minimal one.

Question 4. Do minimal VE partial models provide sample complexity benefits?

In Sec. 4.2, we argued that compared to regular models, planning with VE partial models is likely to provide a sample
complexity benefit and this benefit is likely to be maximized when the model that is used for planning is a minimal VE
partial model. For empirical verification, we present the agent with a minimal VE partial model m4 and with a regular
model m7 as generative models, and compare the sample efficiencies, as a result of performing Q-value iteration, on
the Det-SW and Stoch-SW environments. In these experiments, after every episodic interaction, the agent updates
its model with the collected trajectory, and then performs Q-value iteration until convergence. Results in Fig. 3d &

6

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

0.5 1.0 1.5 2.0
Time Steps (x106)

0

10

20

30

40

50

To
ta

l S
te

ps

REG
VES
VES+ME

(a) 8x8 BlueBalls-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

10

20

30

40

50

To
ta

l S
te

ps

(b) 8x8 NoObstacles-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(c) 16x16 BlueBalls-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(d) 16x16 NoObstacles-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

10

20

30

40

50

To
ta

l S
te

ps

(e) 8x8 RedBalls-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

10

20

30

40

50

To
ta

l S
te

ps

(f) 8x8 GreyBalls-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

10

20

30

40

50

To
ta

l S
te

ps

(g) 8x8 RedBoxes-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

10

20

30

40

50

To
ta

l S
te

ps

(h) 8x8 GreyBoxes-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(i) 16x16 RedBalls-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(j) 16x16 GreyBalls-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(k) 16x16 RedBoxes-R

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(l) 16x16 GreyBoxes-R

Figure 4: The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, c) BlueBalls-R, (b, d) NoObstacles-
R, (e, i) RedBalls-R, (f, j) GreyBalls-R, (g, k) RedBoxes-R and (h, l) GreyBoxes-R environments for the AREG,
AVES and AVES+ME agents. Black dashed lines indicate the performance of the optimal policy in the corresponding
environments. Shaded regions are standard errors over 25 runs.

3e show that, as expected, planning with minimal VE partial models indeed provides significant sample efficiency
benefits compared to planning with regular models.

5.2 ROBUSTNESS EXPERIMENTS

For our robustness experiments, we perform experiments on different versions of the 2RDO environment with grid
sizes of 8x8 and 16x16. For convenience, we will refer to these environments as follows: grid size, followed by their
obstacle type, followed by its version (regular or version with a key). For example, we will refer to the regular 8x8
2DRO environment with red balls as 8x8 RedBalls-R (see Fig. 2) and will refer to the 8x8 2DRO environment with
red balls and a key as 8x8 RedBalls-K (see Fig. C.1). We also perform experiments on several Procgen environments
(see Fig. C.2). For all of our experiments, we use the straightforward decision-time planning algorithm of Zhao et al.
(2021) (see Alg. 2), whose details can be found in App. C. We choose this algorithm as it is already tuned to work well
in the MiniGrid and Procgen environments, however, we note that the following results are expected to be independent
of the choice of the model-based RL algorithm that is being used. As this algorithm makes use of neural networks,
before moving on to the robustness experiments, we first try to answer the following question.

Question 5. How to learn minimal VE partial models with deep learning architectures?

So far, for illustration purposes, we have only performed experiments in which we had a direct control over the features
of the agent’s model (see the models in Table C.1). However, in realistic scenarios, the agent would have to come up
on its own with a set of features to build a model of the only relevant aspects of its environment. A very popular way
of letting the agent come up with its own features is to implement the agent’s encoder, value estimator and model
with neural networks, and then to train it end-to-end on the environment of interest. However, in order for the agent
to come up with only the relevant features, it has to be trained with the right inductive biases. Even though finding
the right inductive biases to train a model-free or model-based RL agent is still an open problem in the representation
learning literature (Bengio et al., 2013), in this study, we propose two inductive biases that are likely to guide the agent
in coming up with only the relevant features. The first one is to only let the value estimator shape the encoder and
prevent the model from doing so (see Fig. C.3). In this way, the agent can be guided in learning the features that are

7

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

R
VES
VES+ME

(a) 8x8 NoObstacles-K

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(b) 8x8 RedBalls-K

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

(c) 8x8 GreyBalls-K

0.5 1.0 1.5 2.0
Time Steps (x106)

0

100

200

300

400

To
ta

l S
te

ps

(d) 16x16 NoObstacles-K

0.5 1.0 1.5 2.0
Time Steps (x106)

0

100

200

300

400

To
ta

l S
te

ps

(e) 16x16 RedBalls-K

0.5 1.0 1.5 2.0
Time Steps (x106)

0

100

200

300

400

To
ta

l S
te

ps

(f) 16x16 GreyBalls-K

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

20
40
80

(g) The AREG agent

0.5 1.0 1.5 2.0
Time Steps (x106)

0

20

40

60

80

100

To
ta

l S
te

ps

20
40
80

(h) The AVES+ME agent

Figure 5: (a, b, c, d, e, f) The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, d) NoObstacles-K,
(b, e) RedBalls-K, (c, f) GreyBalls-K environments for the AREG, AVES and AVES+ME agents. For all of the plots the
agents were first trained on regular versions of the 2RDO environment and then on versions with a key. (g, h) The total
steps to reach the goal in the 16x16 BlueBalls-R environment for the (g) AREG and (h) AVES+ME agents with search
budgets of 20, 40 and 80. For all plots, the black dashed lines indicate the performance of the optimal policy in the
corresponding environments and the shaded regions are standard errors over 25 runs.

relevant for predicting the right values in the environment. And, the second one is to train the agent across a variety of
environments in which the irrelevant aspects keep changing and the relevant ones stay the same. In this way, the agent
can be guided in not learning the irrelevant aspects of the environment.

In order to test the usefulness of these two inductive biases in coming up with only the relevant features of the en-
vironment, we compare three different agents: (i) a regular agent, AREG, that was trained on the 8x8 BlueBalls-R
environment and whose encoder was jointly shaped by its value estimator and model, (ii) an agent, AVES, that was
again trained on the 8x8 BlueBalls-R environment, but whose encoder was only shaped by its value estimator, and (iii)
an agent, AVES+ME, that was trained on the 8x8 BlueBalls-R, GreenBalls-R, PurpleBalls-R and YellowBalls-R envi-
ronments and whose encoder was only shaped by its value estimator. We compare these agents on the 8x8 BlueBalls-R
and NoObstacles-R environments, as they get trained on their respective environments. If the agent is successful in
coming up with only the relevant features of the environment, which are the positions of the agent and the goal, and
not the positions and motions of the obstacles, we would expect it to perform similarly on the 8x8 BlueBalls-R and
8x8 NoObstacles-R environments. Results are shown in Fig. 4a & 4b. As can be seen, even though all of the agents
perform well on the 8x8 BlueBalls-R environment, the AREG agent completely fails on the 8x8 NoObstacles-R envi-
ronment, demonstrating that without the necessary inductive biases an agent is not capable of coming up with only the
relevant features itself. We can also see that the AVES agent achieves a better performance than the AREG agent and
that the AVES+ME agent achieves an even better performance than the AVES agent, demonstrating the usefulness of our
proposed inductive biases in inducing models that display the behavior of minimal VE partial models. In order to test
the scalability of our results, we have also performed the same experiments with 16x16 versions of the environments.
As can be seen in Fig. 4c & 4d, we obtain similar results.

Question 6. Can minimal VE partial models be useful in performing robust transfer?

Now that we have come up with a simple way to learn models that display the behavior of VE partial models, we
investigate the ability of these models in performing robust transfer. As minimal VE partial models only model the
relevant aspects of the environment, we would expect them to be robust to the distribution shifts happening in the
irrelevant aspects of the environment. In order to test this, we compare the zero-shot performances of the AREG, AVES
and AVES+ME agents on the 8x8 and 16x16 RedBalls-R, GreyBalls-R, RedBoxes-R and GreyBoxes-R environments,
as they get trained on their corresponding environments. Results are shown in Fig. 4e-4l. As can be seen, while the
AREG agent fails and the AVES agent only shows signs of robust transfer, the AVES+ME agent is able to perform robust
transfer without any problem. We also compare the performances of the three agents on several Procgen environments
(see App. D for the details). Results in Fig. 6 show that a similar zero-shot performance trend among the agents holds
as well, corroborating our conclusion with the 2RDO environments.

Also, as minimal VE partial models model fewer aspects, compared to regular models, we would expect them to be
able to quickly adapt to the distribution shifts happening in the relevant aspects of the environment. To test this, we

8

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

REG VES VES+ME
Agent

0

2

4

6

8

10
Sc

or
e

CoinRun (Easy)

Train
Test

(a) CoinRun (Easy)

REG VES VES+ME
Agent

0

2

4

6

8

10

Sc
or

e

CoinRun

(b) CoinRun

REG VES VES+ME
Agent

0

5

10

15

20

25

30

35

Sc
or

e

StarPilot (Easy)

(c) StarPilot (Easy)

REG VES VES+ME
Agent

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sc
or

e

StarPilot

(d) StarPilot

REG VES VES+ME
Agent

0

2

4

6

8

10

Sc
or

e

CaveFlyer (Easy)

(e) CaveFlyer (Easy)

REG VES VES+ME
Agent

0

2

4

6

8

10

Sc
or

e

CaveFlyer

(f) CaveFlyer

REG VES VES+ME
Agent

0

2

4

6

8

10

Sc
or

e

DodgeBall (Easy)

(g) DodgeBall (Easy)

REG VES VES+ME
Agent

0

2

4

6

8

10

Sc
or

e

DodgeBall

(h) DodgeBall

Figure 6: The training and test performance of the AREG, AVES and AVES+ME agents on the (a) CoinRun (Easy),
(b) CoinRun, (c) StarPilot (Easy), (d) StarPilot, (e) CaveFlyer (Easy), (f) CaveFlyer, (g) DodgeBall (Easy), and (h)
DodgeBall environments. Black dashed lines indicate the maximum achievable performance in the corresponding
environment. Plots without a dashed line do not have an upper bound in the maximum achievable score in their
corresponding environment. The means and the standard errors are computed over 25 independent runs of the trained
agents.

compare the adaptation speeds of the AREG, AVES and AVES+ME agents to the 8x8 and 16x16 RedBalls-K, NoObstacles-
K and GreyBalls-K environments after being trained in their corresponding environments (see Fig. C.1). Unlike the
regular 2RDO environments, in these environments the agent has to first pick up the key to obtain a reward upon
navigating to the goal cell (see App. C.2). Results are shown in Fig. 5a-5f. As can be seen, while the AREG agent
completely fails in adapting, the AVES agent only shows signs of quick adaptation. However, it is the AVES+ME agent
that is able to adapt the quickest. Together, these zero-shot transfer and adaptation results demonstrate the advantages
of minimal VE partial models in performing robust transfer.

Question 7. Are minimal VE partial models more robust to compounding model errors?

Again, as minimal VE partial models model fewer aspects of the environment, compared to regular models, we would
expect them to be less susceptible to compounding model errors that happen during planning. In order to test this, we
compare the performances of the AREG and AVES+ME agents with search budgets (the number of time steps to unroll
the model during planning) of 20, 40 and 80 on the 16x16 BlueBalls-R environment. Note that this environment has
been seen before by both of the agents. Results in Fig. 5g & 5h show that while the performance of AREG agent drops
significantly with the increase in the search budget, the performance of the AVES+ME agent stays close to optimal,
demonstrating the robustness of minimal VE partial models to compounding model errors.

6 RELATED WORK

Partial Models. In the context of RL, the initial studies of partial models can be dated back to the seminal study of
Talvitie & Singh (2008) which proposes to learn several models of an uncontrolled dynamical system that are partial
at the observation level. In contrast, we propose to learn a single and useful partial model of a controlled dynamical
system that is partial at the feature level, which provides several advantages such as eliminating the question of how to
combine the learned models, using them for control purposes, and making them compatible with function approxima-
tion. Our work also has a very close connection to the study of Zhao et al. (2021) which proposes a transformer-based
deep model-based agent that dynamically attends to relevant parts of its state representation during planning. However,
our work differs in that we propose the general concept of partial models for LRL that is independent of the agent’s
implementation details. Lastly, another related line of research is the studies of Khetarpal et al. (2020; 2021) on af-
fordances which focus on building models that are partial in the action space. Our study is complementary to these
studies in that they can still leverage (non-minimal or minimal) VE partial models to reduce the size of the feature
space and further increase the benefits of performing model-based RL with partial models.

9

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

In the curiosity-driven exploration literature there has also been studies that make use of models that only model certain
aspects of the environment (see e.g. Pathak et al. (2017)). However, these studies focus on the exploration problem
in the regular RL setting, whereas we focus on performing scalable and robust planning in the LRL setting. It is also
important to note that, opposed to these studies, our work also provides formal definitions of partial models.

Value-Equivalence. A recent trend in model-based RL is to learn models that are specifically useful for value-based
planning which has recently been studied under the name of the value-equivalence principle (see e.g. Silver et al.,
2017; Oh et al., 2017; Farquhar et al., 2017; Schrittwieser et al., 2020; Farahmand et al., 2017; Farahmand, 2018;
Grimm et al., 2020; 2021; Ayoub et al., 2020; Arumugam & Roy, 2022; Nair et al., 2020; Saleh et al., 2022). Similar
to all these studies, our work also advocates the idea that models should be useful in value-based planning, and not
in accurately modeling the details of the environment. However, our work differs in that we are also explicit in what
the model of the agent should model, and, more importantly, we demonstrate that this explicitness of the models can
provide significant scalability and robustness benefits when performing model-based RL in LRL scenarios.

7 CONCLUSION AND DISCUSSION

In conclusion, in this study, we have introduced special types of models, called minimal VE partial models, that only
model the relevant aspects of the environment and are particularly useful in LRL scenarios where the environment
involves lots of irrelevant aspects and unexpected distribution shifts. Our theoretical results suggest that these models
can provide significant advantages in the value and planning losses that are incurred during planning and in the com-
putational and sample complexity of planning. Our empirical results (i) validate our theoretical results and show that
these models can scale to large environments, that are typical in LRL, and (ii) show that these models can be robust to
distribution shifts and compounding model errors. Overall, our findings suggest that minimal VE partial models can
provide significant advantages in performing model-based RL in LRL scenarios.

One limitation of our work is that, rather than providing a principled method, we have only provided several heuristics
for training deep model-based RL agents so that they can come up with only the relevant features of the environment.
However, we note that this is mainly due to the lack of principled approaches in the representation learning literature,
and we believe that this limitation can be overcomed with more principled approaches being introduced to the litera-
ture. We hope to tackle this limitation in future work. Another important limitation is that as our main focus was to
perform illustrative and controlled experiments, we have only performed experiments in environments where there is
just a single task and no sequence of tasks that unfold over time. However, experiments with additional environments
that have this sequential task nature can be helpful in further validating the advantages of minimal VE partial models
in LRL scenarios, which we also hope to tackle in future work. Note that under these scenarios the agent would have to
gradually build a set of minimal VE partial models as it faces multiple tasks over its interaction with the environment.

ACKNOWLEDGMENTS

This project has been partly funded by an NSERC Discovery grant and the Canada-CIFAR AI Chair program. We
would like to thank Ahmed Touati for the help with the proof of Theorem 3 and the anonymous reviewers for providing
critical and constructive feedback.

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement Learning: Theory and Algorithms.
https://rltheorybook.github.io/, 2022.

Safa Alver and Doina Precup. A brief look at generalization in visual meta-reinforcement learning. In 4th Life-
long Machine Learning Workshop at ICML 2020, 2020. URL https://openreview.net/forum?id=
WrCFtzVEwn.

Safa Alver and Doina Precup. Understanding decision-time vs. background planning in model-based reinforcement
learning. arXiv preprint arXiv:2206.08442, 2022.

Dilip Arumugam and Benjamin Van Roy. Deciding what to model: Value-equivalent sampling for reinforcement
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://openreview.net/forum?id=fORXbIlTELP.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement learning with
value-targeted regression. In International Conference on Machine Learning, pp. 463–474. PMLR, 2020.

10

https://openreview.net/forum?id=WrCFtzVEwn
https://openreview.net/forum?id=WrCFtzVEwn
https://openreview.net/forum?id=fORXbIlTELP

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. On the sample complexity of reinforcement
learning with a generative model. In Proceedings of the 29th International Coference on International Conference
on Machine Learning, pp. 1707–1714, 2012.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic programming with factored represen-
tations. Artificial intelligence, 121(1-2):49–107, 2000.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning. In International
conference on machine learning, pp. 316–324. PMLR, 2014.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for openai gym.
https://github.com/maximecb/gym-minigrid, 2018.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark rein-
forcement learning. In International conference on machine learning, pp. 2048–2056. PMLR, 2020.

Amir-massoud Farahmand. Iterative value-aware model learning. Advances in Neural Information Processing Systems,
31, 2018.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function for model-based rein-
forcement learning. In Artificial Intelligence and Statistics, pp. 1486–1494. PMLR, 2017.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec: Differentiable tree-
structured models for deep reinforcement learning. arXiv preprint arXiv:1710.11417, 2017.

Christopher Grimm, Andre Barreto, Satinder Singh, and David Silver. The value equivalence princi-
ple for model-based reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5541–5552.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf.

Christopher Grimm, Andre Barreto, Gregory Farquhar, David Silver, and Satinder Singh. Proper value equivalence. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=aXbuWbta0V8.

David Isele, Mohammad Rostami, and Eric Eaton. Using task features for zero-shot knowledge transfer in lifelong
learning. In Ijcai, volume 16, pp. 1620–1626, 2016.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective planning horizon on model
accuracy. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp.
1181–1189. Citeseer, 2015.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of London, University
College London (United Kingdom), 2003.

Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indirect algorithms. Advances
in neural information processing systems, 11, 1998.

Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, David Abel, and Doina Precup. What can i do here? a
theory of affordances in reinforcement learning. In International Conference on Machine Learning, pp. 5243–5253.
PMLR, 2020.

Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, and Doina Precup. Temporally abstract partial models.
Advances in Neural Information Processing Systems, 34:1979–1991, 2021.

Suraj Nair, Silvio Savarese, and Chelsea Finn. Goal-aware prediction: Learning to model what matters. In Interna-
tional Conference on Machine Learning, pp. 7207–7219. PMLR, 2020.

11

https://github.com/maximecb/gym-minigrid
https://proceedings.neurips.cc/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://openreview.net/forum?id=aXbuWbta0V8

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural information processing
systems, 30, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised
prediction. In International conference on machine learning, pp. 2778–2787. PMLR, 2017.

Esra’ Saleh, John D Martin, Anna Koop, Arash Pourzarabi, and Michael Bowling. Should models be accurate? arXiv
preprint arXiv:2205.10736, 2022.

Tom Schaul, Hado van Hasselt, Joseph Modayil, Martha White, Adam White, Pierre-Luc Bacon, Jean Harb, Shibl
Mourad, Marc Bellemare, and Doina Precup. The barbados 2018 list of open issues in continual learning. arXiv
preprint arXiv:1811.07004, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604–609, 2020.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David
Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end learning and planning. In International
Conference on Machine Learning, pp. 3191–3199. PMLR, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Michael H Bowling, and Patrick M Pilarski. The alberta plan for ai research. arXiv preprint
arXiv:2208.11173, 2022.

Erik Talvitie and Satinder Singh. Simple local models for complex dynamical systems. Advances in Neural Informa-
tion Processing Systems, 21, 2008.

Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang, Doina Precup, and Yoshua Bengio. A consciousness-inspired
planning agent for model-based reinforcement learning. Advances in Neural Information Processing Systems, 34,
2021.

12

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

A PROOFS

Theorem 1. Let mVEP ∈MVEP be a VE partial model of the true environment m∗ ∈M. Then, the value loss between
an optimal policy in m∗, π∗, and an optimal policy in mVEP, π∗

mVEP
is given by:∥∥∥V ∗

m∗ − V
π∗
mVEP

m∗

∥∥∥
∞

= 0. (7)

Proof. This result directly follows from Defn. 3. Recall that, according to Defn. 3, we have:

V
π∗
mVEP

m∗ = V ∗
m∗ ∀π∗

mVEP
∈ ΠVEP, (8)

which implies: ∥∥∥V ∗
m∗ − V

π∗
mVEP

m∗

∥∥∥
∞

= 0 ∀π∗
mVEP

∈ ΠVEP. (9)

Theorem 2. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M, and let m̃VEP ∈ MVEP be
model that comprises of the reward function of mVEP and a transition distribution that is estimated from n samples for
each (f, a) pair. Let ΠrVEP ≡ {π | ∃ pVEP s.t π is optimal in (pVEP, rVEP)}. Then, certainty-equivalence planning with
m̃VEP has planning loss: ∥∥∥V ∗

mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2Rmax

(1− γ)2

√
1

2n
log

2|FVEP||A||ΠrVEP |
δ

, (10)

with probability at least 1− δ.

Proof. For the proof of this theorem, we follow similar steps to the proof of Theorem 2 in Jiang et al. (2015). Specif-
ically, we prove Theorem 2 with two lemmas: Lemma 1 translates planning loss to value error, and Lemma 2 relates
value error to a Bellman-residual-like quantity that has a uniform deviation bound which depends on |ΠrVEP |.

Lemma 1. For any m̃VEP = (p̃VEP, r̃VEP) with r̃VEP bounded by [0, Rmax],∥∥∥V ∗
mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2 max

π:F→A

∥∥V π
mVEP
− V π

m̃VEP

∥∥
∞ . (11)

In particular, if r̃VEP = rVEP, we have∥∥∥V ∗
mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2 max

π∈ΠrVEP

∥∥V π
mVEP
− V π

m̃VEP

∥∥
∞ . (12)

Proof. ∀f ∈ FVEP,

V
π∗
mVEP

mVEP (f)− V
π∗
m̃VEP

mVEP (f) =
(
V

π∗
mVEP

mVEP (f)− V
π∗
mVEP

m̃VEP
(f)

)
−

(
V

π∗
m̃VEP

mVEP (f)− V
π∗
m̃VEP

m̃VEP
(f)

)
(13)

+
(
V

π∗
mVEP

m̃VEP
(f)− V

π∗
m̃VEP

m̃VEP
(f)

)
≤

(
V

π∗
mVEP

mVEP (f)− V
π∗
mVEP

m̃VEP
(f)

)
−

(
V

π∗
m̃VEP

mVEP (f)− V
π∗
m̃VEP

m̃VEP
(f)

)
(14)

≤ 2 max
π∈

{
π∗
mVEP

,π∗
m̃VEP

} |V π
mVEP

(f)− V π
m̃VEP

(f)|. (15)

Eqn. 11 follows from taking the max over all feature vectors on both sides of the inequality and noticing that the set of
all policies is a trivial superset of

{
π∗
mVEP

, π∗
m̃VEP

}
. If r̃VEP = rVEP, the bound can be tightened since

{
π∗
mVEP

, π∗
m̃VEP

}
∈

ΠrVEP , and Eqn. 12 follows.

Lemma 2. For any m̃VEP = (p̃VEP, r̃VEP) with r̃VEP bounded by [0, Rmax], ∀π : FVEP → A,∥∥Qπ
mVEP
−Qπ

m̃VEP

∥∥
∞ ≤

1

1− γ
max

f∈FVEP,a∈A

∣∣r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩ −Qπ

mVEP
(f, a)

∣∣ . (16)

13

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Proof. Given any policy π, define action value functions such that Q0, Q1, . . . , Qn, . . . such that Q0 = Qπ
mVEP

, and

Qn(f, a) = r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), Vn−1⟩, (17)

where Vn−1(f) = Qn−1(f, π(f)). Notice that

∥Qn −Qn−1∥∞ = γ max
f∈FVEP,a∈A

|⟨p̃VEP(f, a, ·), (Vn−1 − Vn−2)⟩| (18)

≤ γ max
f∈FVEP,a∈A

||p̃VEP(f, a, ·)||1||Vn−1 − Vn−2||∞ (19)

= γ||Vn−1 − Vn−2||∞ (20)
≤ γ||Qn−1 −Qn−2||∞, (21)

so

||Qn −Q0||∞ ≤
n−1∑
k=0

||Qk+1 −Qk||∞ (22)

≤ ||Q1 −Q0||∞
n−1∑
k=0

γk−1. (23)

Taking the limit of n→∞, Qn → Qπ
m̃VEP

, and we have,∥∥Qπ
m̃VEP
−Q0

∥∥
∞ ≤

1

1− γ
||Q1 −Q0||∞. (24)

This completes the proof, noticing that Q0 = Qπ
mVEP

, V0 = V π
mVEP

, and Q1(f, a) = r̃VEP(f, a)+γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩.

From Eqn. 12 in Lemma 1 and Lemma 2, we have∥∥∥V ∗
mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2 max

π∈ΠrVEP

∥∥V π
mVEP
− V π

m̃VEP

∥∥
∞ (25)

≤ 2 max
π∈ΠrVEP

∥∥Qπ
mVEP
−Qπ

m̃VEP

∥∥
∞ (26)

= 2 max
f∈FVEP,a∈A,π∈ΠrVEP

∣∣Qπ
mVEP

(f, a)−Qπ
m̃VEP

(f, a)
∣∣
∞ (27)

≤ 2

1− γ
max

f∈FVEP,a∈A,π∈ΠrVEP

∣∣r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩ −Qπ

mVEP
(f, a)

∣∣ . (28)

For any particular f , a, π tuple, according to Hoeffding’s inequality, ∀t > 0,

p
(∣∣r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π

mVEP
⟩ −Qπ

mVEP
(f, a)

∣∣ > t
)
≤ 2 exp

(
− 2nt2

R2
max/(1− γ)2

)
, (29)

as r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩ is the average of i.i.d. samples bounded in [0, Rmax/(1 − γ)], with mean

Qπ
mVEP

(f, a). To obtain a uniform bound over all (f, a, π) tuples, we set the right-hand side of Eqn. 29 to
δ/|FVEP||A||ΠrVEP | and solve for t, and the theorem follows.

Theorem 3. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M. Let m̃VEP ∈ MVEP be
the corresponding approximate VE partial model that has the same reward function as mVEP, but whose transition
distribution is estimated by m calls to the generative model mVEP, where

m = O
(
|FVEP||A|
(1− γ)4ε2

)
, (30)

and let Qk
m̃VEP

be the value returned by Q-value iteration at the kth epoch. Then, with probability greater than 1 − δ,
the following holds for all f ∈ FVEP and a ∈ A:∥∥Qk

m̃VEP
−Q∗

mVEP

∥∥
∞ ≤ ε, (31)

where k = log(ε(1−γ))
log γ and Q∗

mVEP
is the optimal action value function in mVEP.

14

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Proof. Before starting the proof, let us first formally define generative models. A generative model, or a sampler, is
a model that can provide us with samples f ′ ∼ p(f, a, ·) for all f ∈ FVEP and a ∈ A. Now that we have defined
generative models, let us assume we have access to a generative model mVEP and suppose we call this model N times
at each (f, a) pair. Let p̂ be the transition distribution of our empirical model, defined as follows:

p̂(f, a, f ′) =
count(f, a, f ′)

N
=

∑N
i=1 If ′

i=f ′

N
, (32)

where fi ∼ p(f, a, ·), ∀i ∈ {1, . . . , N}, and count(f, a, f ′) is the number of times the pair (f, a) transitions to f ′.

Moving on the main proof, by adding and subtracting Q
π∗
m̃VEP

m̃VEP
, we can rewrite Qk

m̃VEP
−Q∗

mVEP
as follows:

Qk
m̃VEP
−Q∗

mVEP
= Qk

m̃VEP
−Q

π∗
m̃VEP

m̃VEP︸ ︷︷ ︸
(i)

+Q
π∗
m̃VEP

m̃VEP
−Q∗

mVEP︸ ︷︷ ︸
(ii)

(33)

Bounding Term (i):∥∥∥Qk
m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞

= max
f∈FVEP,a∈A

∣∣∣rVEP(f, a) + γp̃VEPV
k−1
m̃VEP

(f, a)−
(
rVEP(f, a) + γp̃VEPV

π∗
m̃VEP

m̃VEP
(f, a)

)∣∣∣ (34)

= max
f∈FVEP,a∈A

γ
∣∣∣p̃VEP

(
V k−1
m̃VEP
− V

π∗
m̃VEP

m̃VEP

)
(f, a)

∣∣∣ (35)

≤ γ
∥∥∥V k−1

m̃VEP
− V

π∗
m̃VEP

m̃VEP

∥∥∥
∞

(36)

≤ γ max
f∈FVEP

∣∣∣∣max
a∈A

Qk−1
m̃VEP

(f, a)−max
a∈A

Q
π∗
m̃VEP

m̃VEP
(f, a)

∣∣∣∣ (37)

≤ γ max
f∈FVEP,a∈A

∣∣∣Qk−1
m̃VEP

(f, a)−Q
π∗
m̃VEP

m̃VEP
(f, a)

∣∣∣ (38)

= γ
∥∥∥Qk−1

m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞

. (39)

Unrolling the last inequality k times, we obtain:∥∥∥Qk
m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞
≤ γk||Q0

m̃VEP
−Q

π∗
m̃VEP

m̃VEP
|| (40)

≤ γk

1− γ
. (41)

Bounding Term (ii):(
Q

π∗
m̃VEP

m̃VEP
−Q∗

mVEP

)
(f, a) = γp̃VEPV

π∗
m̃VEP

m̃VEP
(f, a)− γpVEPV

∗
mVEP

(f, a) (42)

= γ (p̃VEP − pVEP)V
∗
mVEP

(f, a) + γp̃VEP

(
V

π∗
m̃VEP

m̃VEP
− V ∗

mVEP

)
(f, a) (43)

= γ (p̃VEP − pVEP)V
∗
mVEP

(f, a) (44)

+ γ
∑
f ′∈F

p̃VEP(f, a, f
′)(max

a′∈A
Q

π∗
m̃VEP

m̃VEP
(f ′, a′)−max

a′∈A
Q∗

mVEP
(f ′, a′)).

Therefore, ∥∥∥Qπ∗
m̃VEP

m̃VEP
−Q∗

mVEP

∥∥∥
∞
≤ γ max

f∈FVEP,a∈A

∣∣(p̃VEP − pVEP)V
∗
mVEP

(f, a)
∣∣+ γ

∥∥∥Qπ∗
m̃VEP

m̃VEP
−Q∗

mVEP

∥∥∥
∞

(45)

≤ γ

1− γ

∥∥(p̃VEP − pVEP)V
∗
mVEP

∥∥
∞ . (46)

Fix a (f, a) pair:

(p̃VEP − pVEP)V
∗
mVEP

=
1

N

N∑
i=1

V ∗
mVEP

(f ′
i)− Ef ′∈pVEP(f,a,f ′)

[
V ∗
mVEP

(f ′)
]

(47)

15

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

=
1

N
(SN − E[SN]), (48)

where SN =
∑N

i=1 Xi and Xi = V ∗
mVEP

(f ′
i). Xi are random independent variables and |Xi| ≤ 1

1−γ . Applying
Hoeffding’s inequality, we obtain ∀t > 0:

p

(
1

N
(SN − E[SN]) ≥ t

)
≤ 2 exp

(
−N2t2

N/(1− γ)2

)
(49)

= 2 exp
(
−Nt2(1− γ)2

)
(50)

p

(
max

f∈FVEP,a∈A

∣∣(p̃VEP − pVEP)V
∗
mVEP

(f, a)
∣∣ ≥ t

)
= p

(
∃(f, a) s.t.

∣∣(p̃VEP − pVEP)V
∗
mVEP

(f, a)
∣∣ ≥ t

)
(51)

≤
∑

f∈F,a∈A

p
(∣∣(p̃VEP − pVEP)V

∗
mVEP

(f, a)
∣∣ ≥ t

)
(Union Bound)

= 2|FVEP||A| exp
(
−Nt2(1− γ)2

)
(52)

Let the failure probability δ > 0. Solve for t,

2|FVEP||A| exp
(
−Nt2(1− γ)2

)
= δ (53)

⇒ t =
1

1− γ

√
log(2|FVEP||A|/δ)

N
. (54)

With probability at least 1− δ,∥∥∥Qπ∗
m̃VEP

m̃VEP
−Q∗

mVEP

∥∥∥
∞
≤ γ

1− γ
max

f∈FVEP,a∈A

∥∥(p̃VEP − pVEP)V
∗
mVEP

∥∥
∞ (55)

≤ γ

(1− γ)2

√
log(2|FVEP||A|/δ)

N
. (56)

We conclude ∥∥Qk
m̃VEP
−Q∗

mVEP

∥∥
∞ ≤

∥∥∥Qk
m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞

+
∥∥∥Qπ∗

m̃VEP
m̃VEP

−Q∗
mVEP

∥∥∥
∞

(57)

≤ γk

(1− γ)
+

γ

(1− γ)2

√
log(2|FVEP||A|/δ)

N
. (58)

By choosing

k =
log(ε(1− γ)/2)

log γ

and

N =
4γ2

(1− γ)4ε2
log(2|FVEP||A|/δ),

we get
∥∥Qk

m̃VEP
−Q∗

mVEP

∥∥
∞ ≤ ε/2 + ε/2 = ε. Therefore, the total number of samples (calls to the generative model)

to get an ε estimation of the optimal Q-value is:

N |FVEP||A| = O
(
|FVEP||A|
(1− γ)4ε2

)
. (59)

16

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

B ALGORITHM PSEUDOCODES

Algorithm 1 Model-Based Q-Value Iteration

1: Initialize the parameters V 0 = 0 and Q0 = 0
2: for episode k = 1, . . . ,K do
3: for (f, a) ∈ F ×A do
4: Qk(f, a) = r(f, a) + γp̃V k−1(f, a)
5: V k(f) = maxa∈A Qk(f, a)
6: end for
7: end for
8: Return QK

Algorithm 2 The Straight-Forward Decision-Time Planning Algorithm of Zhao et al. (2021)

1: Initialize the parameters θ, η & ω of ϕθ : S → F , Qη : F ×A → R & mω = (pω, rω)
2: Initialize the replay buffer B ← {}
3: Nple ← number of episodes to perform planning and learning
4: Nrbt ← number of samples that the replay buffer must hold to perform planning and learning
5: ns ← number of time steps to perform search
6: nbs ← number of samples to sample from the replay buffer
7: h← search heuristic
8: T ← replay buffer sampling strategy
9: i← 0

10: while i < Nple do
11: S ← reset environment
12: while not done do
13: A← ϵ-greedy(tree search with bootstrapping(ϕθ(S),mω, Qη, ns, h))
14: R,S′, done← environment(A)
15: B ← B + {(S,A,R, S′, done)}
16: if |B| ≥ Nrbt then
17: D ← sample batch(B, nbs, T)
18: Update ϕθ, Qη & mω with D
19: end if
20: S ← S′

21: end while
22: i← i+ 1
23: end while
24: Return ϕθ, Qη & mω

Note that Alg. 22 does not employ the “bottleneck mechanism” introduced in Zhao et al. (2021).

C EXPERIMENTAL DETAILS

In this section, we provide the implementation details of the environments that are used in Sec. 5 together with the
details of the models that are used in the scalability experiments of Sec. 5.1. We also provide the implementation
details of the straightforward decision-time planning algorithm of Zhao et al. (2021) that was used in Sec. 5.2.

C.1 IMPLEMENTATION DETAILS OF THE SW ENVIRONMENT

As stated in Sec. 3, in the Squirrel’s World (SW) environment the squirrel’s job is to navigate from cell E1 (its initial
state) to cell E16 (the terminal state) to pickup the nut without getting caught by the hawk that flies back and forth
horizontally along row C. At each time step, the squirrel receives as input an 5×16 image of the current state of the
environment and then, through the use of a pre-defined state encoder, transforms this image into a feature vector that

2See https://github.com/mila-iqia/Conscious-Planning for the publicly available code.

17

https://github.com/mila-iqia/Conscious-Planning

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

(a) 8x8 BlueBalls-K (b) 8x8 RedBalls-K (c) 8x8 NoObstacles-K (d) 16x16 RedBalls-K (e) 16x16 NoObstacles-K

Figure C.1: Variations of the 8x8 2RDO environments with a key. In these environments, the agent only receives a
reward of +1 at the goal cell if it picks up the key along the way. Otherwise, navigating to the goal straightforwardly
does not result in a termination of the episode.

(a) CoinRun (b) StarPilot (c) CaveFlyer (d) DodgeBall

Figure C.2: The Procgen environments that are used in this study: (a) CoinRun, (b) StarPilot, (c) Cave-
Flyer and (d) DodgeBall. We refer the reader to the benchmark website (https://openai.com/blog/
procgen-benchmark/) for more visualizations.

contains information regarding all aspects of the current state of the environment, i.e., the feature vector contains
information on the current position of the squirrel and the cloud, the current wind direction in rows A and B, the
current position and direction of the hawk and the current weather condition. Based on this, the squirrel selects an
action that either moves it to the left or right cell, or keeps it position fixed (except if the agent is trying to move out
of the boundaries of the world in which case its position is kept constant). If the squirrel gets caught by the hawk or if
it is out of time, it receives a reward of 0 and the episode terminates, and if the squirrel successfully navigates to the
nut within the given time limit, it gets a reward of +10 and the episode terminates. The agent-environment interaction
lasts for 100 time steps, after which the agent receives a done signal, marking the end of the episode.

C.2 IMPLEMENTATION DETAILS OF THE 2RDO ENVIRONMENTS

Regular 2RDO Environments. In the 2RDO environments, the agent, depicted by the red triangle, spawns in top-left
of the top room and has to navigate to the green goal cell located in the bottom-right of the same room, regardless of
the gaseous motions of the obstacles in the bottom room. Here, at each time step, the obstacles move to one of its
neighboring cells (except if it is trying to move out of the boundaries of the world in which case its position is kept
constant). At each time step, the agent receives an image of the current state of the grid and then, through the use of a
learned state encoder, transforms this image into a feature vector. Based on this, the agent selects an action that either
turns it left or right, or moves it forward (except if the agent is trying to move out of the boundaries of the world in
which case its position is kept constant). If the agent successfully navigates to the goal cell within the given time limit,
it receives a reward of +1 and the episode terminates. The agent-environment interaction lasts for 50 time steps for
the 8x8 environments and 100 time steps for the 16x16 environments, after which the agent receives a done signal,
marking the end of the episode.

2RDO Environments with Keys. In the 2RDO environments with keys, the agent spawns again in top-left of the top
room and has to navigate to the green goal cell located in the bottom-right of the same room, regardless of the gaseous
motions of the obstacles in the bottom room. Here, at each time step, the obstacles move to one of its neighboring
cells. At each time step, the agent receives an image of the current state of the grid and then, through the use of a
learned state encoder, transforms this image into a feature vector. Based on this, the agent selects an action that either
turns it left or right, moves it forward, or picks up the object in front of it (note that, instead of three, there are now four
different actions). If the agent picks up the key and successfully navigates to the goal cell within the given time limit,
it receives a reward of +1 and the episode terminates. Otherwise, the agent receives a reward of 0 upon navigating to
the goal cell. The agent-environment interaction lasts for 100 time steps for the 8x8 environments and 400 time steps
for the 16x16 environments, after which the agent receives a done signal, marking the end of the episode.

18

https://openai.com/blog/procgen-benchmark/
https://openai.com/blog/procgen-benchmark/

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

C.3 IMPLEMENTATION DETAILS OF THE PROCGEN ENVIRONMENTS

In this study we have used the easy and regular versions of the CoinRun, StarPilot, CaveFlyer and DodgeBall environ-
ments (see Fig. C.2). We refer the reader to the study of Cobbe et al. (2020) to learn more about the details of these
environments.

C.4 DETAILS OF THE HAND-ENGINEERED MODELS

The details of what the models in Sec. 5.1 model can be found in Table C.1.
Table C.1: Several non-VE and VE partial models of the SW environment.

m1 squirrel position, cloud position
m2 squirrel position, cloud position, wind direction
m3 squirrel position, cloud position, wind direction, hawk position
m4 squirrel position, hawk position, hawk direction
m5 squirrel position, hawk position, hawk direction, cloud position
m6 squirrel position, hawk position, hawk direction, cloud position, wind direction
m7 squirrel position, hawk position, hawk direction, cloud position, wind direction, weather

C.5 DETAILS AND HYPERPARAMETERS OF THE DECISION-TIME PLANNING ALGORITHM

The details and hyperparameters of the straightforward decision-time of Zhao et al. (2021) that we have used can be
found in Table C.2 and C.3.

Table C.2: Details and hyperparameters of Alg. 2 for the 2RDO environments.
ϕθ A regular neural network feature extractor
Qη A regular neural network
mω A regular neural network
Nple 200k
Nrbt 50k
ns 20
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
ϵ linearly decays from 1.0 to 0.0 over the first 1M time steps

Table C.3: Details and hyperparameters of Alg. 2 for the Procgen environments.
ϕθ A convolutional neural network feature extractor
Qη A regular neural network
mω A regular neural network
Nple 2M
Nrbt 50k
ns 50
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
ϵ linearly decays from 1.0 to 0.0 over the first 1M time steps

For more details (such as the NN architectures, replay buffer sizes, learning rates, exact details of the tree search, . . .),
we refer the reader to the publicly available code and the supplementary material of Zhao et al. (2021).

C.6 DETAILS OF THE ENCODER SHAPING PROCEDURE DURING TRAINING

In Sec. 5.2, we argued that one of the important inductive biases that is likely to guide the agent in coming up with
only the relevant features of the environment is to only let the value estimator shape the encoder and to prevent the
model from doing so. This is pictorially depicted in Fig. C.3.

19

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Encoder

R
aw

 O
bs

er
va

tio
n

Fe
at

ur
e

Ve

ct
or

Va
lu

eValue
Estimator

Model

N
ex

t F
ea

tu
re

Ve
ct

or
R

ew
ar

d
Ep

is
od

e
Te

rm
in

at
io

n

Forward Pass

Backward Pass

Encoder

R
aw

 O
bs

er
va

tio
n

Fe
at

ur
e

Ve

ct
or

Value
Estimator

Model

N
ex

t F
ea

tu
re

Ve
ct

or
R

ew
ar

d
Ep

is
od

e
Te

rm
in

at
io

n

Forward Pass

Backward Pass

No Gradient Flow

Va
lu

e

Figure C.3: A pictorial representation of how the agent can be trained so that it can come up with relevant features of
the environment. (Right) The regular way of training, (Left) the way it can be done.

D ADDITIONAL EXPERIMENTAL RESULTS WITH PROCGEN ENVIRONMENTS

For our experiments with the Procgen environments, we again compare three different agents: (i) a regular agent AREG,
that was trained on 200 levels for the easy modes and 500 levels for the regular modes and whose encoder was jointly
shaped by its value estimator and model, (ii) an agent, AVES, that was again trained on 200 levels for the easy modes
and 500 levels for the regular modes, but whose encoder was only shaped by its value estimator, and (iii) an agent,
AVES+ME, that was trained on 100,000 levels for both the easy and regular modes and whose encoder was only shaped
by its value estimator. Note that we have used the recommended 200 and 500 levels for training the AREG and AVES
agents as training on a single environment for the Procgen benchmark is demonstrated to fail in all cases (Cobbe et al.,
2020). We have also used 100,000 levels for training the AVES+ME agent to demonstrate the effectiveness of training
on multiple environments on inducing models that dispaly the behavior of minimal VE partial models. Following
the protocol in Cobbe et al. (2020), we compare these agents on a full distribution of levels and report it as the test
performance. Finally, we have used the same bar plot in Alver & Precup (2020) for reporting the performances in Fig.
6.

20

	Introduction
	Background
	Minimal Value-Equivalent Partial Models
	Theoretical Results
	Value and Planning Loss Analyses
	Computational and Sample Complexity Benefits

	Experimental Results
	Scalability Experiments
	Robustness Experiments

	Related Work
	Conclusion and Discussion
	Proofs
	Algorithm Pseudocodes
	Experimental Details
	Implementation Details of the SW Environment
	Implementation Details of the 2RDO Environments
	Implementation Details of the Procgen Environments
	Details of the Hand-Engineered Models
	Details and Hyperparameters of the Decision-Time Planning Algorithm
	Details of the Encoder Shaping Procedure During Training

	Additional Experimental Results with Procgen Environments

