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ABSTRACT

We reveal an intriguing connection between adversarial attacks and cycle monotone maps, also known
as optimal transport maps. Based on this finding, we developed a novel method named source fiction
for semi-supervised optimal transport-based domain adaptation. We conduct experiments on various
datasets and show that our method can notably improve the performance of the optimal transport
solvers in domain adaptation.

1 INTRODUCTION

Optimal Transport (OT) is a powerful framework for solving mass-moving problems for probability distributions. It was
successfully applied in mathematics (Ferradans et al., 2014), economics (Reich, 2013), and machine learning (Arjovsky
et al., 2017; Mroueh, 2019; Solomon et al., 2015; Colombo et al., 2021), especially in domain adaptation (DA)
problem (Courty et al., 2015; Perrot et al., 2016; Rakotomamonjy et al., 2020). Usually, the domain adaptation problem
involves two domains: a fully labeled source domain denoted by Q and an unlabeled or partially labeled target domain
denoted by P. The goal is to make correct predictions on the unlabeled target domain samples while being trained on
the source domain samples.

In contrast to deep domain adaptation techniques (Ganin & Lempitsky, 2015; Long et al., 2018; Gretton et al., 2012;
Long et al., 2015; 2017), optimal transport methods are very fast, have low computational complexity, and offer
theoretical guarantees (Redko et al., 2017) in domain adaptation. But, in practice, simple OT-based methods are provide
lower domain adaptation accuracy. The goal of our paper is to provide simple techniques that can improve the accuracy
of OT solvers in the domain adaptation problem. To achieve this, we firstly ask the question: what is the main reason
for the inaccuracy of the OT solvers on empirical datasets?

It is known, that the main geometric property of the optimal transport maps is c-cyclical monotonicity (Villani, 2008,
M5). In the context of domain adaptation, this means that optimal transport match source samples to nearby target
samples in terms of the cost function. However, being close in terms of Euclidean cost doesn’t always mean that the
samples belong to the same class. This leads to inaccuracies in optimal transport for domain adaptation. Our method
addresses this issue.

The core of our method is the idea to modify the target dataset to ensure that samples with the same labels in source and
target are close in terms of Euclidean cost, satisfying cyclical monotonicity. To apply a such transformation we used
our finding that adversarial attacks (Goodfellow et al., 2014) with a small enough perturbation size ϵ value provides a
cyclically monotone map of the data.

More precisely, our approach incorporates several steps. Initially, we train the classifier fθ on samples from the
source domain. Then, we convert the labeled target samples into the correctly classified ones by using the inverted
adversarial attack on the classifier fθ. The inverted adversarial attack (Huang et al., 2021; Mao et al., 2021) is the
same as the original targeted adversarial attack 1, but the target class k is set to the true class of the sample. After
that, we use optimal transport Tγ to approximate these perturbations. Finally, we apply Tγ to the unlabeled target
samples to map them into the correctly classified by fθ.

In our experiments, we demonstrate that our approach enhances discrete optimal transports (Courty et al., 2015; Flamary
et al., 2021) solvers’ accuracy in a variety of domain adaptation tasks (M6.4).
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Contribution: We prove that the FSGD adversarial attacks with small parameter ϵ are c-cyclical monotone transfor-
mations of the dataset (M3) with quadratic cost. Using this property, we propose a new algorithm that improves the
performance of optimal transport solvers in a number of domain adaptation problems. (M6).

Societal Impact: Nowadays, the data is shared on separate devices and usually contains personal information, which
is inefficient for data transmission and may violate data privacy. The authors of the (Liang et al., 2020) address a
challenging domain adaptation setting without access to the source data for higher privacy. In our method, we adapt the
source classifier to the target domain without access to the source data, using only the source classifier, which can be
used in various scenarios to avoid privacy issues.

Structure: The paper is structured as follows: first, we give an explanation of the adversarial attack, optimal transport,
and domain adaptation (M2). We then prove that adversarial attacks are cyclical monotone mappings (M3). In (M4) we
propose our algorithm and give a description of why it works. Finally, in (M6) we show the results of our experiments
and summarize them in (M7).

2 BACKGROUND

2.1 ADVERSARIAL ATTACKS

Adversarial examples are samples that are similar to the true samples D(x,x′) ≤ ϵ, but “fool” a selected classifier
and tend it to make incorrect predictions argmax p(k | x′) ̸= ktrue (Szegedy et al., 2014). A large body of work
on adversarial attacks exists (Papernot et al., 2017; Yuan et al., 2019; Schott et al., 2019; Xie et al., 2017), and the
phenomenon of the vulnerability of machine learning models to adversarial attacks breeds a great deal of concern in
learning scenarios.

In our paper, we consider one of the simplest adversarial attacks: Fast Sign Gradient Descent (FSGD) (Goodfellow
et al., 2014). The iterative version of the targeted FSGD can be presented as:

x′
0 = x, x′

i+1 = clipx,ϵ {x′
i − α sign (∇xL (θ,x′

i,k))} (1)

With sample x, class label k, and classifier fθ, we can obtain adversarial examples using gradient descent perturbations,
minimizing the loss L on a sample x with respect to some perturbation size ϵ.

2.2 OPTIMAL TRANSPORT FOR DOMAIN ADAPTATION

Optimal transport. Optimal transport (OT) is a simple framework for solving mass-moving problems for probability
distributions (Ferradans et al., 2014; Reich, 2013; Arjovsky et al., 2017; Mroueh, 2019; Solomon et al., 2015; Colombo
et al., 2021).

Formally optimal transport aims at finding a cost-effective mapping T : X → Y of the two probability measures
P =

∑n
i=1 aixi and Q =

∑m
j=1 bjyj with respect to the cost function c : X×Y → R+, where ai and bi are the values

of the Dirac function at xi and yj correspondingly.

Monge’s problem was the first example of the optimal transport problem (Villani, 2008, M3) and can be formally
expressed as follows:

inf
T#P=Q

∫
ΩP

c(x, T (x))P(x)dx (2)

Monge’s formulation of optimal transport aims at finding a map T where T#P = Q represents the mass preserving
push forward operator. In Monge’s formulation, for two given measures P and Q, the existence of a transport map T is
not only non-trivial but it also may not exist (Villani, 2008, M5.1).

Kantorovich proposed the relaxation of Monge’s problem2 and presented the formulation in which a solution always
exists (Villani, 2008, M5.1). The Kantorovich problem aims to find a joint distribution over the P and the Q that
determines how the mass is allocated. To find an optimal solution, it is necessary to build the cost matrix for all x ∈ X
and y ∈ Y samples:

MXY
def
= [c (xi,yj)

p
]ij (3)

Having the cost matrix MXY , the optimization goal is to find the optimal coupling γ, that minimizes the displacement
cost between two probability measures P and Q

W p
p (P,Q) = min

γ∈U(a,b)
⟨γ,MXY ⟩ (4)
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(a) Label transfer for domain adaptation. (A) Match labeled
source samples Q with unlabeled target samples P by opti-
mal transport Tγ . (B) Train or fine-tune a classifier fθ on
target samples P labeled by the Tγ map.

(b) Classifier domain adaptation. (A) Train classifier on the
labeled source domain Q. (B) Transform unlabeled target
domain samples P into the source domain samples Q, to
increase the accuracy of fθ on target domain P.

with the constraints to the coupling γ ∈ U(a, b) such that:

U(a, b)
def
=

{
γ ∈ Rn×m+ | γ1m = a, γ⊤1n = b

}
(5)

The infimum of this optimization problem induces the Wasserstein distance, and coupling γ gives us a non-bijective
map between probability measures P and Q.

For differentiable optimal transport, the Sinkhorn algorithm (Cuturi, 2013) was proposed. The Sinkhorn is based
on the matrix-vector multiplication operations and can be combined with various regularizations like group lasso
regularization (L1L2) and Laplacian regularization (L1LP) (Courty et al., 2015).

To make the optimal transport applicable to the out-of-sample mapping, a linear optimal transport mapping estimator
(OTLin) was proposed (Perrot et al., 2016). OTLin jointly computes the Kantorovich coupling γ equation 4 and maps
T linked to the original Monge problem equation 2.

Labels Transfer. Optimal transport can be a simple solution for the domain adaptation problem (Courty et al., 2015;
Perrot et al., 2016; Rakotomamonjy et al., 2020). Usually, optimal transport is used to map labeled source samples in Q
to the unlabeled or partly labeled samples in the target P. We can name this process labels transfer, see Figure 1a.

In this setting, optimal transport provides a match between the labeled source samples and the unlabeled ones in the
target. After matching, we set the target samples’ labels equal to the source samples’ corresponding labels.

To solve domain adaptation in this setting, linear programming-based solvers (Nash, 2000) are usually used. For
example, the Earth Mover’s Distance (EMD) solver is actively used in various domain adaptation scenarios (Courty
et al., 2015; Flamary et al., 2021).

Classifier Domain Adaptation. Alternately, domain adaptation can be solved by adapting the source classifier fθ to
the target domain P (Ben-David et al., 2010a;b; Germain et al., 2013). In this scenario, a mapping function transforms
the target domain P samples to ”look like” the source domain Q samples after a classifier is trained on the labeled
source samples (Ben-David et al., 2010a;b; Germain et al., 2013), see Figure 1b.

Deep distance-based algorithms (Gretton et al., 2012; Long et al., 2015; 2017) or adversarial-based algorithms (Ganin
& Lempitsky, 2015; Long et al., 2018) are common solutions to this problem. With the help of these techniques, a
feature extractor is learning to bring target domain samples closer to the source domain samples in the latent space.
These techniques exhibit high accuracy but require time-consuming computations and changes to the source classifier’s
architecture.
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2.2.1 CYCLICAL MONOTONICITY

The main geometric property of the optimal transport maps is c-cyclical monotonicity. Formally the map is c-cyclical
monotone if for all points x0 . . .xn, y0 . . .yn, n ∈ N, and every permutation σ holds:

N∑
n=1

c (xn,yn) ≤
N∑
n=1

c
(
xn,yσ(n)

)
(6)

The term ”cyclical” refers to the fact that it suffices to test this property for cyclical permutations
∑N
n=1 c (xn,yn) ≤∑N

n=1 c (xn,yn+1), because every permutation σ is a composition of disjoint cycles.

A c-cyclical monotone map cannot be improved in terms of the cost function c (Villani, 2008, M5). Recently was showed
that a generalization of c-cyclical monotonicity from the Monge-Kantorovich problem with two marginals gives rise to
a sufficient condition for optimality also in the multi-marginal version of that problem (Griessler, 2018).

Let’s consider the domain adaptation problem with optimal transport. Suppose we have two domains with samples
x0 . . .xn and y0 . . .yn correspondingly. Then, following Eq. 6, optimal transport will match the xn samples to the yn
samples that are close to each other in terms of the cost c. But closeness in terms of the cost c, doesn’t always mean that
these samples are from the same class (Li et al., 2019). This leads to the inaccuracy of optimal transport for domain
adaptation.

3 ADVERSARIAL ATTACKS ARE CYCLICAL MONOTONE MAPS

In our paper, we consider the FSGD (Goodfellow et al., 2014) 1 attack. With mild assumptions, we prove that it is a
cyclical monotone transformation of the data w.r.t. the quadratic cost c(x,y) = 1

2∥x− y∥2.

Lemma 3.1 (cyclical monotonicity of small perturbations of a dataset.). Let x1, . . . ,xN ∈ RD be a dataset of N
distinct samples. Let x′

1, . . . ,x
′
N be its ≤ ϵ-perturbation, i.e. ∥xn − x′

n∥ ≤ ϵ for all n = 1, 2, . . . , N . Assume that
ϵ ≤ 1

2 min
n1,n2

∥xn1 − xn2∥, i.e. the perturbation does not exceed 1
2 of the minimal pairwise distance between samples.

Then for all K and N it holds:
K∑
k=1

1

2
∥xnk

− x′
nk
∥2 ≤

K∑
k=1

1

2
∥xnk

− x′
nk+1
∥2 (7)

i.e. set (x1,x
′
1), . . . , (xN ,x

′
N ) or, equivalently, the map xk 7→ xk′ is cyclical monotone.

Proof. Due to triangle inequality for ∥ · ∥, we have

∥xnk
− x′

nk+1
∥ ≥ ∥xnk

− xnk+1
∥︸ ︷︷ ︸

≥2ϵ

−∥xnk+1
− x′

nk+1
∥︸ ︷︷ ︸

≤ϵ

= ϵ. (8)

Taking the square of both sides and summing equation 8 for k = 1, 2, . . . ,K yields
K∑
k=1

∥xnk
− x′

nk+1
∥2 ≥

K∑
k=1

ϵ2 = Kϵ2. (9)

Due to the assumptions of the lemma, the following inequality holds true:
K∑
k=1

∥xnk
− x′

nk
∥2 ≤

K∑
k=1

ϵ2 ≤ Kϵ2. (10)

We combine equation 9 and equation 10 to obtain
K∑
k=1

∥xnk
− x′

nk
∥2 ≤

K∑
k=1

∥xnk
− x′

nk+1
∥2,

which is equivalent to:
K∑
k=1

c(xnk
,x′
nk
) ≤

K∑
k=1

c(xnk
,x′
nk+1

), (11)

and yield c-cyclical monotone w.r.t. quadratic cost c(x,y) = 1
2∥x− y∥2.
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Figure 2: An illustration of the proposed pipeline. Our method takes three steps: (A) Pretrain a source classifier fθ on
the source data Q. (B) Attack the source classifier with labeled target samples P to generate examples that classifiers
correctly with high confidence P′. (C) Use optimal transport Tγ to align the unlabeled target samples and label them
using fθ.

Adversarial attacks are small ϵ perturbations of the dataset samples, we immediately obtain:

Corollary 3.2. Let x1, . . . , xN ∈ RD be a dataset of N distinct samples. Then any adversarial attack xn 7→ x′
n on the

dataset with ϵ ≤ 1
2 min
n1,n2

∥xn1 − xn2∥ is c-cyclical monotone.

Corollary 3.2 suggests that FSGD attacks with a small parameter ϵ are c-cyclical monotone maps, i.e., optimal transport.
In the next section, we present our algorithm that connects optimal transport and adversarial attacks for domain
adaptation.

4 PROPOSED METHOD

In this section, we propose a new algorithm that generates a new domain by the inverse adversarial attack. Before
introducing the algorithm, we outline the motivation for using an adversarial attack to generate a source fiction domain.

4.1 MOTIVATION

While optimal transport maps are c-cyclical monotone, i.e., exhibit a specific structure of the map, thus, transportation
X → Y via optimal transport maps with euclidean cost might not be applied to some problems (Li et al., 2019;
Asadulaev et al., 2022), see (Courty et al., 2015, Figure 3) for counter-examples. Optimal transport applications for
mass moving assume closeness of target P and source Q distributions (Lee et al., 2019). A cyclical monotone map with
quadratic cost may not accurately capture the class-wise structure between domains.

For instance, in classifier adaptation settings (Figure 1b), samples from different domains but with the same labels are
not always the closest if cost c is Euclidean (Li et al., 2019). As a result, the optimal transport aims to find a map that
transforms the target sample into the incorrect class in the source domain. Actually, the label transfer setting has the
same issue 1a.

However, if all samples xn and yn from the two domains are cyclically monotone with respect to quadratic cost and, at
the same time, their labels are equal for each n 6, then optimal transport can accurately map between these domains and
preserve a class-wise structure. Based on this, we can conclude that it would be the best possible scenario to have a
source domain, where for each target sample xn, we have the closest sample yn from the same class.

4.2 ALGORITHM
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Algorithm 1 Algorithm for domain adaptation with source fiction
Input: Classifier fθ, optimal transport Tγ , source samples Y , labeled Xl and unlabeled target samples X , perturba-
tions size ϵ
Initialize: ϵ ≤ 1

2 min
n1,n2

∥xn1
− xn2

∥ for xn in labeled Xl

Pretrain classifier fθ on the source samples Y .
Y ← ∅
for x,k ∈ Xl do
x′ ← x
for some iterations do
x′ ← clipx,ϵ {x′

n − α sign (∇xL (θ,x′,ktrue))}
end for
Add x′ to the dataset X ′

end for
Find a map Tγ using Xl → X ′.
Apply the map Tγ for X → X ′.
Apply the classifier fθ to the output of the Tγ to label all target samples X .
return Labeled target samples.

To correctly capture the class-wise structure during domain adaptation via optimal transport, we present a novel
algorithm that maps the target to the domain named source fiction. The source fiction domain differs from the original
source, but the source classifier fθ correctly classified it. Simultaneously, mapping from the target to the source fiction
by optimal transport with Euclidean cost maintains the class-wise structure.

To generate the source fiction, we propose to use the cyclical monotone transformation of the target domain. Because if
we transform the target using a cyclical monotone map, then the corresponding sample in the source fiction will have
the same label.

As we proved, adversarial attacks are c-cyclical monotone transformations over the dataset 3.2. With minor changes, the
adversarial attack can turn any sample into an accurately classified one in the same way as it fools the classifier (Huang
et al., 2021; Mao et al., 2021). To generate correctly classified target samples, we use the inverted FSGD adversarial
attack equation 1 on the source classifier fθ, with the target label equal to the true class of the given target sample. Such
an attack adds to the image features of the class it really belongs to (Ilyas et al., 2019).

By inverse adversarial attack we obtain a new domain P′ with samples X ⊂ RD. Following the corollary 3.2, to obtain
cyclical monotonicity, we set the size of the perturbation ϵ ≤ 1

2 min
n1,n2

∥xn1 − xn2∥ for all xn in target distribution. As a

result, for each labeled sample xn in the target distribution, we receive a corresponding sample x′
n. While the new

domain P′ is a cyclical monotone transformation of the P, we have a low quadratic cost between each target sample xn
and its corresponding sample x′

n in the new domain. As a result, we can apply optimal transport Tγ to approximate this
transformation and save a class-wise structure.

So, instead of using the source domain, we create a new domain using the gradients of the source classifier over the
labeled target samples. To use an inverse adversarial attack, some labeled samples must be in the target domain. We
can therefore describe our method as semi-supervised.

Finally, we apply the map Tγ to all unlabeled target samples to adapt a source classifier fθ to the target data or train a
new classifier fϕ on the labeled target domain samples. In Figure 2 and Algorithm 1, we displayed the pipeline for the
domain adaptation using the source fiction P′ domain.

5 RELATED WORK

5.1 ADVERSARIAL ATTACKS

Previously, the various properties of adversarial examples were studied (Petrov & Hospedales, 2019; Papernot et al.,
2016; Ilyas et al., 2019). Applications of adversarial examples for model accuracy improvements were also proposed (Xie
et al., 2019; Yang et al., 2020). The connection between optimal transport and adversarial examples was studied in the
context of robustness problems (Pydi & Jog, 2020; Bouniot et al., 2021; Song et al., 2018).

Formerly, the connection between optimal transport and adversarial examples was studied in the context of robustness
problems (Pydi & Jog, 2020; Bouniot et al., 2021). The authors (Wong et al., 2019) suggested the Wasserstein
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Method M / S S / M M / U M / MM
EMD 21.2 ±3 68.7±3 79.2±2 56.1±3
EMD(sf ) 23.0±3 86.3±3 83.1±2 62.7±2
OTLin 21.8±4 69.9±4 84.1±7 62.3±1
OTLin(sf ) 25.5±4 88.4±4 89.3±6 64.5±3
Sinkh 21.8±4 68.8±2 82.1±7 55.7±12
Sinkh(sf ) 25.5±4 86.2±4 83.8±6 62.9±4
SinkhLp 21.8±4 68.8±6 84.8±16 55.7±19
SinkhLp(sf ) 25.5±4 86.3±7 88.3±19 63.0±27
SinkhL2 21.8±4 68.8±4 84.8±2 55.7±4
SinkhL2(sf ) 25.5±4 86.3±2 88.3±2 63.0±2

(a) Digits dataset domains.

Method A / S S/ A A / W W / A S / W W/ S
EMD 38.4±3 9.3±5 45.2±3 45.6±5 13.6±3 36.7±3
EMD(sf ) 56.8±3 29.7±4 64.9±3 73.9±4 40.1±3 60.1±2
OTLin 37.1±3 11.0±3 38.7±3 47.5±3 6.2±3 39.6±4
OTLin(sf ) 58.5±3 29.8±3 65.2±3 74.4±3 40.1±3 63.1±5
Sinkh 38.0±3 10.1±4 44.7±6 45.5±3 13.1±7 37.2±3
Sinkh(sf ) 57.0±3 31.0±4 65.2±7 73.9±3 39.9±4 60.0±2
SinkhLp 38.1±6 10.4±8 45.2±7 45.3±5 13.1±7 37.2±3
SinkhLp(sf ) 57.2±6 31.0±11 65.2±8 74.0±5 40.1±5 60.1±4
SinkhL2 38.1±4 10.4±7 45.0±4 45.3±6 13.1±6 37.2±3
SinkhL2(sf ) 57.2±4 31.0±7 65.2±4 74.0±6 40.1±5 60.1±4

(b) Modern Office-31 dataset domains.

Table 1: Accuracy↑ of the different optimal transport-based domain adaptation algorithms in the latent space of
ResNet50 model

adversarial attack with Sinkhorn iterations. This algorithm allows one to find adversarial perturbations with respect to
the Wasserstein ball. To the best of our knowledge, we propose the first method that connects adversarial attacks and
optimal transport for domain adaptation.

5.2 DOMAIN ADAPTATION

Another method of preserving the class-wise structure during mapping with optimal transport is to use a cost function c
that is suitable for the problem at hand. The problem is that the cost is often unknown. Inverse optimal transport (Li
et al., 2019; Liu et al., 2019) algorithms were proposed as a solution to this issue. It was shown that the cost function
that preserves the underlying data structure during mapping can be reconstructed using the given mapping between data
distributions.

For example, it was shown that the cost function could be approximated by the neural network (Liu et al., 2019). To
train the cost function, it is necessary to solve the transport problem using the Sinkhorn algorithm (Cuturi, 2013) at
every optimization step (Liu et al., 2019). Inverse optimal transport methods are hardly scalable and have not yet been
applied to solve domain adaptation problems.

The connection between optimal transport and deep networks was proposed for unsupervised DA (Damodaran et al.,
2018) and transfer learning (Li et al., 2020). In domain adaptation with label and target shift problems, optimal transport
methods align probability distributions between a few domains (Redko et al., 2019; Rakotomamonjy et al., 2020).

We suggest a new problem setting for domain adaptation with optimal transport in contrast to all of these approaches.
In general, all varieties of optimal transport solvers can be connected to our method. In our evaluations, we demonstrate
that our method enhances the performance of a number of transport solvers.

6 EXPERIMENTS

In this section, we test our method on two types of datasets (M6.1). The goal of our experiments is to demonstrate that
our method improves the performance of fundamental discrete optimal transport algorithms. Besides, we compare
different deep domain adaptation baselines (M6.2). A discussion on empirical complexity is presented in (M6.4).

Additionally, we conduct an ablation study on the ϵ parameter to show the stability of our method in different settings
of the inverse adversarial attack(M6.5). The code is written in PyTorch framework and will be made public. We give
more experiments with different backbone networks and additional domains in Appendix.

6.1 DATASETS

Digits: We evaluated our method on Digits datasets MNIST (LeCun & Cortes, 2010), USPS (Hull, 1994), SVNH (Netzer
et al., 2011), and MNIST-M (Ganin & Lempitsky, 2015). Each dataset consists of 10 classes of digit images with
different numbers of train and test samples. As a pre-processing step, we resized the images to the (32× 32) pixel size.
No augmentation was used. Modern Office-31: Besides the Digits dataset that consists of only ten classes in each
domain, we tested our method on the Modern Office-31 dataset (Ringwald & Stiefelhagen, 2021) with 31 classes per
domain. The Modern Office-31 dataset is one of the most extensive and diverse datasets for DA. The dataset consists
of three domains: Amazon (A), Synthetic (S), and Webcam (W). In comparison to the Digits and original Office-31
dataset (Saenko et al., 2010), this dataset includes synthetic→ real tasks, which is problematic. No augmentation was
used. Additionally, we included the DLSR (D) domain from the original Office-31 to estimate our algorithm properly,
see the results in Appendix
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6.2 BASELINES

Discrete Optimal Transport: We tested several optimal transport solvers in semi-supervised domain adaptation
settings: EMD (Courty et al., 2015), Sinkhorn (Cuturi, 2013) (Sinkh in figures) (Cuturi, 2013), SinkhornL2, SinkhornLp,
and OTLin (Perrot et al., 2016).

Most of these algorithms are presented in the POT framework (Flamary et al., 2021), which provides state-of-the-art
optimal transport solvers for domain adaptation. For experiments, we used quadratic cost c(x,y) = 1

2∥x− y∥2 for
each algorithm. Regularization size equals 4.0 for Sinkhorn, SinkhLp, SinkhL2, and OTLin; all other hyperparameters
are equal to the default, presented in POT.

6.3 SETTINGS

For the source domain classifier, we trained ResNet50 (He et al., 2016) to achieve 90+ accuracy on the test set of each
domain in Digits and Modern Office-31. The classifier was trained using Adam (Ruder, 2016) optimizer with a 1e− 3
learning rate. The size of latent space before the output layer was equal to 2048.

After training, we applied domain adaptation by moving mass in the latent space of the source classifier. For
discrete optimal transport baselines, the available labels were used as a penalty to the transport plan by building a cost
matrix M with M(i, j) = 0 when xi and yj labels are equal and +∞ if not (Courty et al., 2016; Yan et al., 2018)

To create a source fiction, we used 50 steps FSGD with ϵ equal to 0.45. We found that this value allows us to achieve
strong perturbations and, at the same time, satisfies the proposed bound on all domains. The results with 10 labeled
samples in target domain are presented in Table 1a, 1b. All values in the tables are averaged over the 10 runs with
randomly chosen sets of labeled samples in the target domain. By bold we denote highest accuracy in all tables. By
(sf) we denote a source fiction.

6.4 RESULTS

Discussion Our method demonstrates improvement for all adaptation tasks. The simplest EMD method is less accurate
than other methods, and OTLin accuracy is slightly higher for all domains. The Sinkhorn algorithm with group lasso
and Laplacian regularizations did not provide notable improvements over standard Sinkhorn, see Tables 1a and 1b. The
results with only three known labels in class are presented in Appendix.

In our settings, optimal transport can find a map between a target and a source and, at the same time, save discriminability,
i.e., class-wise structure. In our pipeline, optimal transport maps the unlabeled samples to the perturbed samples from
the same class in the source fiction.

In practice, discrete optimal transport techniques are susceptible to regularization terms (Courty et al., 2015; Dessein
et al., 2018; Paty & Cuturi, 2020) and require special scaling (Meng et al., 2021), but our method demonstrates stability
in all domains and tested solvers. We present the adaptation results in the appendix with only three labels per class.

Empirical Complexity Our method improves the accuracy of discrete optimal transport methods. It is a significant
accomplishment because discrete optimal transport methods are simple and fast technique for domain adaptation in
comparison to deep neural network-based approaches. Often, deep domain adaptation methods typically solve the

Figure 3: The amount of time (in minutes) required to achieve high accuracy for various DA methods. Our method was
used in conjunction with the EMD and Sinkh methods.

difficult min-max optimization problem. (Ganin & Lempitsky, 2015; Long et al., 2018; 2015; 2017; Gretton et al.,
2012), which require hours of training.

In practice, discrete optimal transport methods like EMD, Sinkhorn, and OTLin take a few minutes to solve domain
adaptation on GPU GeForce GTX-1080 (12 GB). The creation of the source fiction domain also takes less than a minute.
Total time required for domain adaptation using our method and DANN (Ganin & Lempitsky, 2015), DeepJDOT (Courty
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et al., 2017) and JAN (Long et al., 2017) methods is presented in Figure 3. In the appendix, we present the additional
comparison with deep adaptation methods, see Tables 6 5.

6.5 ABLATION STUDY ON PERTURBATION SIZE

(a) MNIST → MMNIST (b) SVHN → MNIST (c) USPS → MNIST

Figure 4: Results of ablation on ϵ parameter for MNIST→MNIST-M (left) and SVHN→MNIST (right) datasets.
FSGD denotes how accurately the source domain model classifies source fiction samples obtained with the corresponding
parameter ϵ. The accuracy is higher than in 1a because, for these experiments, we used 100 labeled samples in the target
domain classes.

In this section, we show the FSGD algorithm adaptation results with various ϵ values. We evaluated several transportation
tasks: USPS→MNIST, MNIST→MNIST-M, and SVHN→MNIST.

For each task, we tested different values of ϵ (from 0.01 to 3) to create a source fiction samples and then fit optimal
transport to find a map between target and constructed source fiction. With larger perturbations, the prediction of the
classifier on perturbed samples becomes more accurate (see FSGD(red) curve in Figure 4).

Our results show that our method is not significantly sensitive to the size of perturbation; see Figure 4. The adaptation
achieves the highest accuracy with a small value of ϵ. With perturbations a bit larger than the ϵ bound, most of the
samples in source fiction are still c-cyclical monotone to the target, and the method still works.

The bound value of 1
2 min
n1,n2

∥xn1 − xn2∥ is different for various datasets. For SVHN, this value is 0.74; for MNIST, it

is 0.29; for USPS, it is equal to 0.85. These values were computed in the latent space of the ResNet50 classifier trained
on the corresponding domain. When the ϵ value becomes larger than 1

2 min distance between samples, the accuracy of
adaptation decreases because the transformation becomes less cyclical monotone.

7 CONCLUSION

We demonstrated that adversarial attacks are optimal transport maps over datasets and proposed an algorithm that
modifies domain adaptation settings with optimal transport to bring target data closer to the perturbed target sample.

We conducted various experiments on multiple datasets and showed that our method improves various optimal transport
baselines. Adaptation with source fiction improved accuracy by more than 10% in some domains for discrete optimal
transport methods. Our method has a wide range of straightforward applications. For example, we plan to adapt our
method to neural transport solvers in order to make it resistant to out-of-sample estimation. While optimal transport can
solve domain adaptation problems with target shift and unbalanced classes (Redko et al., 2019; Rakotomamonjy et al.,
2020), using source fiction is promising.

The main limitation of our approach is that it is necessary to have access to the labels in the target domain. To avoid the
limitation of labels availability, we plan to use self-labeled techniques (Triguero et al., 2015). We expect our research
to contribute to the development of less complicated domain adaptation techniques and open doors for the future
application of cyclical monotonicity of adversarial attacks.
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Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain adaptation. CoRR,
abs/1507.00504, 2015. URL http://arxiv.org/abs/1507.00504.
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Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas Courty. Deepjdot: Deep
joint distribution optimal transport for unsupervised domain adaptation. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 447–463, 2018.

Arnaud Dessein, Nicolas Papadakis, and Jean-Luc Rouas. Regularized optimal transport and the rot mover’s distance.
The Journal of Machine Learning Research, 19(1):590–642, 2018.

Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Scalable computations of wasserstein barycenter via input
convex neural networks. CoRR, abs/2007.04462, 2020. URL https://arxiv.org/abs/2007.04462.
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Alain Rakotomamonjy, Rémi Flamary, Gilles Gasso, Mokhtar Z Alaya, Maxime Berar, and Nicolas Courty. Optimal
transport for conditional domain matching and label shift. arXiv preprint arXiv:2006.08161, 2020.

12

http://proceedings.mlr.press/v70/long17a.html
https://proceedings.neurips.cc/paper/2018/hash/ab88b15733f543179858600245108dd8-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ab88b15733f543179858600245108dd8-Abstract.html
http://proceedings.mlr.press/v119/makkuva20a.html
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
https://doi.org/10.1145/3052973.3053009
https://proceedings.neurips.cc/paper/2016/hash/26f5bd4aa64fdadf96152ca6e6408068-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/26f5bd4aa64fdadf96152ca6e6408068-Abstract.html
http://arxiv.org/abs/1907.06291


Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with optimal transport.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 737–753. Springer,
2017.
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Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and
Leonidas Guibas. Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM
Transactions on Graphics (TOG), 34(4):1–11, 2015.

Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Improving the generalization of adversarial training with
domain adaptation. arXiv preprint arXiv:1810.00740, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun (eds.), 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
URL http://arxiv.org/abs/1312.6199.

Amirhossein Taghvaei and Amin Jalali. 2-wasserstein approximation via restricted convex potentials with application
to improved training for gans. CoRR, abs/1902.07197, 2019. URL http://arxiv.org/abs/1902.07197.

Anne-Marie Tousch and Christophe Renaudin. (yet) another domain adaptation library, 2020. URL https://
github.com/criteo-research/pytorch-ada.

Isaac Triguero, Salvador Garcı́a, and Francisco Herrera. Self-labeled techniques for semi-supervised learning: taxonomy,
software and empirical study. Knowledge and Information systems, 42(2):245–284, 2015.

C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer Berlin
Heidelberg, 2008. ISBN 9783540710509. URL https://books.google.ru/books?id=hV8o5R7_5tkC.

Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via projected sinkhorn iterations.
In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, pp. 6808–6817, 2019. URL http://proceedings.mlr.press/v97/wong19a.html.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial examples for
semantic segmentation and object detection. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1369–1378, 2017.

13

http://arxiv.org/abs/1609.04747
https://www.math.u-psud.fr/~filippo/OTAM-cvgmt.pdf
https://openreview.net/forum?id=S1EHOsC9tX
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1902.07197
https://github.com/criteo-research/pytorch-ada
https://github.com/criteo-research/pytorch-ada
https://books.google.ru/books?id=hV8o5R7_5tkC
http://proceedings.mlr.press/v97/wong19a.html


Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le. Adversarial examples improve
image recognition. CoRR, abs/1911.09665, 2019. URL http://arxiv.org/abs/1911.09665.

Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao Wu. Semi-supervised optimal transport
for heterogeneous domain adaptation. In IJCAI, volume 7, pp. 2969–2975, 2018.

Jihan Yang, Ruijia Xu, Ruiyu Li, Xiaojuan Qi, Xiaoyong Shen, Guanbin Li, and Liang Lin. An adversarial perturbation
oriented domain adaptation approach for semantic segmentation. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pp. 12613–12620. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/
AAAI/article/view/6952.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and defenses for deep learning.
IEEE Trans. Neural Netw. Learning Syst., 30(9):2805–2824, 2019. doi: 10.1109/TNNLS.2018.2886017. URL
https://doi.org/10.1109/TNNLS.2018.2886017.

A APPENDIX

A.1 ADDITIONAL BACKGROUND ON OT

OT aims at finding a solution to transfer mass from one distribution to another with the least effort. Monge’s problem
was the first example of the OT problem and can be formally expressed as follows:

inf
T#P=Q

∫
ΩP

c(x, T (x))P(x)dx (12)

The Monge’s formulation of OT aims at finding a mapping T : ΩP → ΩQ of the two probability measures P and Q
and a cost function c : ΩP × ΩQ → R+, where T#Ps = Qt represents the mass preserving push forward operator. In
Monge’s formulation, T cannot split the mass from a single point. The problem is that the mapping T may not even
exist with such constraints.

To avoid this, Kantorovitch proposed a relaxation (Villani, 2008). Instead of obtaining a mapping, the goal is to seek a
joint distribution over the source and the target that determines how the mass is allocated. For a given cost function
c : ΩP × ΩQ → R+, the primal Kantorovitch formulation can be expressed as the following problem:

min
γ∈γ(P,Q)

{∫
ΩP×ΩQ

c(x,y)dγ(x,y) = E(x,y)∼γ [c(x,y)]

}
(13)

In primal Kantorovitch formulation, we look for a joint distribution γ with P and P as marginals that minimize the
expected transportation cost. If the independent distribution γ(x,y) = P(x)Q(y) respects the constraints, linear
program is convex and always has a solution for a semi-continuous c:

γ ∈ P (ΩP,ΩQ) :

∫
γ(x,y)dy = P(x),

∫
γ(x,y)dx = Q(y) (14)

The primal Kantorovitch formulation can also be presented in dual form as stated by the Rockafellar—Fenchel
theorem (Villani, 2008):

max
ϕ∈C(ΩP),ψ∈C(ΩQ)

{∫
ϕdP+

∫
ψdQ | ϕ(x) + ψ(y) ≤ c(x,y)

}
(15)

After finding a solution to the transport problem, OT measures dissimilarity between the two distributions. This
similarity is also called the Wasserstein distance (Villani, 2008):

Wp (P,Q) = min
γ∈γ(P,Q)

{∫
ΩP×ΩQ

c(x,y)dγ(x,y)

} 1
p

(16)

14
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https://doi.org/10.1109/TNNLS.2018.2886017
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where c(x,y) = ∥x − y∥p and p > 1. The Wasserstein distance encodes the geometry of the space through the
optimization problem and can be used on any distribution of mass.

Recently, there has been a solid push to incorporate Input Convex Neural Networks (ICNNs) (Amos et al., 2017) in OT
problems. According to Rockafellar’s Theorem (Rockafellar, 1966), every cyclically monotone mapping g is contained
in a sub-gradient of some convex function f : X → R. Furthermore, according to Brenier’s Theorem (Theorem 1.22
of (Santambrogio, 2015)), these gradients uniquely solve the Monge problem equation 2. Following these theorems, a
range of approaches explored ICNNs as parameterized convex potentials in dual Kantorovich problem (Taghvaei &
Jalali, 2019; Makkuva et al., 2020).

Further development of this approach enabled the construction of the non-minimax Wasserstein-2 generative frame-
work (Korotin et al., 2019) that can solve DA and Wasserstein-2 Barycenters estimation (Fan et al., 2020; Korotin et al.,
2021b). Compared to discrete OT, neural methods provide generalized OT methods that can ensure out-of-sample
estimates.

A.2 ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments using the source fiction domain for discrete OT solvers. In tables,
bold denotes the results of discrete solvers with source fiction if this improves its accuracy compared to the standard
settings.

We considered the range of fundamental gradient-based domain adaptation techniques. First of all, we compared our
method to the prominent adversarial-based approach DANN (Ganin & Lempitsky, 2015), CDAN, CDAN-E (Long
et al., 2018). We also tested the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) based domain adaptation
techniques like DAN (Long et al., 2015) and JAN (Long et al., 2017). Additionally, we considered the Wasserstein
distance-based method WDGRL (Shen et al., 2018). We used implementation for these methods proposed in ADA
framework (Tousch & Renaudin, 2020). Digits dataset results with 3 (Table 2) known labels per class in target domain
using ResNet50 classifier.

Following the benchmark results of the neural optimal transport algorithms benchmark (Korotin et al., 2021a), we
choose the MM:R (Nhan Dam et al., 2019; Korotin et al., 2021a) method to apply domain adaptation.

We used Feed forward networks with three hidden layers [64, 64, 32] as potential ϕ and transport map T in for MM:R
neural optimal transport methods. Potentials are trained using Adam (Ruder, 2016) optimizer with lr equal to 1e-4. In
total, generator was trained 300 epochs with Adam optimizer and lr equal to 1e− 3.

Method MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

EMD 21.3 72.5 66.1 67.8 44.5
EMD(sf ) 23.1 83.5 82.6 86.5 54.7
OTLin 21.8 73.4 67.4 68.8 45.0
OTLin(sf ) 23.9 85.3 86.3 86.9 55.1
Sinkh 21.7 73.0 67.3 68.7 44.6
Sinkh(sf ) 23.7 85.0 82.6 86.8 54.8
SinkhLp 21.7 73.4 67.3 68.8 45.0
SinkhLp(sf ) 23.7 85.2 86.3 86.9 54.9
SinkhL2 21.7 73.4 67.3 68.8 45.0
SinkhL(sf ) 23.8 85.2 86.3 86.9 54.9

Table 2: Accuracy of domain adaptation by optimal transport in the latent space of ResNet50 model with only 3 known
labels for each class in the target domain on Digits datasets. The top part of the table represents semi-supervised settings
for discrete OT methods, settings the bottom part presents results using source fiction.

Modern-Office dataset results with additional domain DLSR (D) (Table 3), with 10 known labels.

Additionally we tested our algorithm on the complicated CIFAR10-STL10 adaptation task. See results with ResNet18
source classifier in (Table 5).
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Method A D A S A W D S D W S W
D A S A W A S D W D W S

EMD 50.7 46.2 38.4 9.3 45.2 45.6 32.7 16.4 62.6 67.1 13.6 36.7
EMD(sf ) 70.9 72.5 56.8 29.7 64.9 73.9 56.6 47.3 75.7 75.1 40.1 60.1
OTLin 45.8 48.0 37.1 11.0 38.7 47.5 36.5 4.1 60.9 61.8 6.2 39.6
OTLin(sf ) 71.3 73.6 58.5 29.8 65.2 74.4 59.8 47.3 76.6 75.1 40.1 63.1
Sinkh 51.1 46.3 38.0 10.1 44.7 45.5 32.9 16.5 63.5 67.1 13.1 37.2
Sinkh(sf ) 70.6 72.7 57.0 31.0 65.2 73.9 56.7 47.3 77.4 74.8 39.9 60.0
SinkhLp 51.1 46.7 38.1 10.4 45.2 45.3 33.0 16.5 63.8 68.3 13.1 37.2
SinkhLp(sf ) 70.6 72.8 57.2 31.0 65.2 74.0 56.8 47.3 77.4 75.5 40.1 60.1
SinkhL2 51.1 46.7 38.1 10.4 45.0 45.3 33.0 16.5 63.8 68.3 13.1 37.2
SinkhL2(sf ) 70.6 72.8 57.2 31.0 65.2 74.0 56.8 47.3 77.4 75.5 40.1 60.1

Table 3: Results of domain adaptation in the latent space of ResNet50 classifier on the Modern Office-31 dataset with
the the additional DLSA(D) domain. 10 labels are known for each class in the target domain.

Method MNIST SVHN MNIST MNIST
SVHN MNIST USPS M-MNIST

DANN 19.5 61.7 93.8 37.5
C-DAN 11.5 79.0 90.7 68.4
DAN 16.7 54.8 95.0 47.0
JAN 11.5 57.9 89.5 52.9
WDGRL 13.8 59.5 85.7 52.0
MM:R 20.3 80.2 78.0 63.8
MM:R(sf ) 21.5 77.1 79.0 70.3

Table 4: Accuracy↑ of the deep DA methods and OT based neural method MM:R in the latent space of source classifier
on Digits datasets with 10 known labels. We connected our source fiction method with the MM:R in this experiments

Method CIFAR→STL SLT → CIFAR
EMD 48.0 75.0
EMD(sf ) 51.0 76.2
OTlin 48.1 74.1
OTlin(sf ) 51.0 76.2
Sinkh 48.1 74.1
Sinkh(sf ) 51.0 76.2
SinkhLp 48.0 74.1
SinkhLp(sf ) 51.0 76.2
SinkhL2 48.0 74.1
SinkhL2(sf ) 51.0 76.2

Table 5: Accuracy↑ on domain adaptation between CIFAR-10 and STL datasets with 10 known labels.

Method Accuracy Time (Minutes)
EMD(sf ) 0.846 3.33
Sinkh(sf ) 0.874 3.38
DeepJDOT 0.862 13.0
DANN 0.950 35.4
JAN 0.913 87.5

(a) MNIST to USPS.

Method Accuracy Time (Minutes)
EMD(sf ) 0.83 6.23
Sinkh(sf ) 0.82 9.41
DeepJDOT 0.93 17.08
DANN 0.72 51.31
JAN 0.54 120.98

(b) SVHN to MNIST.

Table 6: Accuracy↑ and required time for the different optimal transport-based domain adaptation algorithms
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