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ABSTRACT

A matroid bandit is the online version of combinatorial optimization on a matroid, in which the
learner chooses K actions from a set of L actions that can form a matroid basis. Many real-world
applications such as recommendation systems can be modeled as matroid bandits. In such learning
problems, the revealed data may involve sensitive user information. Therefore, privacy considera-
tions are crucial. We propose two simple and practical differentially private algorithms for matroid
bandits built on the well-known Upper Confidence Bound algorithms and Thompson Sampling. The
key idea behind our first algorithm, Differentially Private Upper Confidence Bound for Matroid
Bandits (DPUCB-MAT), is to construct differentially private upper confidence bounds. The second
algorithm, Differentially Private Thompson Sampling for Matroid Bandits (DPTS-MAT), is based
on the idea of drawing random samples from differentially private posterior distributions. Both algo-
rithms achieve O (L ln(n)/∆+ LK ln(n)min {K, ln(n)} /ε) regret bounds, where ∆ denotes the
mean reward gap and ε is the required privacy parameter. Our derived regret bounds rely on novel
technical arguments that deeply explore the special structure of matroids. We show a novel way
to construct ordered pairs between the played actions and the optimal actions, which contributes to
decomposing a matroid bandit problem into K stochastic multi-armed bandit problems. Finally, we
conduct experiments to demonstrate the empirical performance of our proposed learning algorithms
on both a synthetic dataset and a real-world movie-recommendation dataset.

1 INTRODUCTION

We study the learning problem of stochastic matroid bandits first proposed by Kveton et al. (2014) with differential
privacy. In a stochastic matroid bandit problem, we have a matroid (E, I) and a stochastic environment ν(E), where
E is a set of L base arms and I is a set of independent sets. Each base arm e ∈ E is associated with a weight that
is independently drawn from a fixed but unknown probability distribution Pe collected by ν(E) = (Pe : e ∈ E).
As matroids generalize the notion of linear independence in vector spaces, we are interested in a basis of a matroid
which is a maximal independent set A ∈ I. All the bases of a matroid have the same size denoted by K. Each basis
can be viewed as a super arm which consists of exactly K base arms. An important problem for matroid bandits
is to learn the basis with the maximum total weight by interacting with environment ν(E) sequentially. In each
round t ∈ [n], the learner chooses a basis At and simultaneously, the environment generates a random weight vector
wt := (wt(e1), wt(e2), . . . , wt(eL)) for all the base arms ei ∈ E. At the end of round t, the learner observes each
individual weight wt(e) for all e ∈ At and obtains as return the sum of the weights associated with the played basis.
The goal of the learner is to choose bases sequentially to maximize the total return over a finite number of n rounds.

The application of recommending a set of diverse movies to users can be framed as a matroid bandit learning problem
(Kveton et al., 2014), where the learning algorithm recommends a set of carefully chosen movies to the users. In
this example, each movie can be characterized by a feature vector denoting the genres of that movie. In each round,
the set of recommended movies can be viewed as a super arm. Since we would like the recommended movies to
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represent diverse genres, the matroid structure ensures that the feature vectors of the recommended movies are linearly
independent, which further indicates that the recommended movies do not include movies with similar genres. At the
end of the round, based on the feedback from the users, the learning algorithm adjusts its future recommendations.

Since the learner only observes the weights associated with the played super arm, the central challenge that the learner
faces is the exploitation-versus-exploration dilemma. In each round, the learner needs to decide whether to choose a
super arm with the highest empirical return based on the past information (exploitation) or choose an under-explored
super arm to gain information about the unknown environment (exploration). Upper Confidence Bound (UCB)-based
(Auer et al., 2002; Garivier & Cappé, 2011) and Thompson Sampling-based learning algorithms (Kaufmann et al.,
2012; Agrawal & Goyal, 2017) are both successful in balancing exploitation-versus-exploration. In bandit problems,
the UCB-based algorithms are motivated by the principle of optimism in the face of uncertainty and can be justified
by well-known concentration inequalities. In the UCB-based algorithms, each arm maintains a UCB index, which
is an upper bound of the constructed confidence interval. Then, the learning algorithm makes a decision based on
UCB indices for all the arms. Different from the UCB-based algorithms that rely on the UCB indices to tackle the
exploitation-versus-exploration dilemma, Thompson Sampling-based algorithms maintain a posterior distribution for
each arm. For each arm, a random sample is drawn from the posterior distribution. Then, the learning algorithm makes
a decision based on the random samples for all the arms. If the learning algorithm knows the mean rewards of all the
arms, pulling the arm with the highest mean reward is always the best strategy to achieve the highest expected reward.
The performance of bandit algorithms is commonly measured by Regret, which represents the expected cumulative
performance gap between always choosing the arm with the highest expected reward (fixed but unknown) and the
learning algorithm’s actual pulled arms.

The example of recommending diverse movies highlights the necessity for preserving the privacy of users. The feed-
back information from users (e.g. movie ratings) also reveals their watch history or preferences towards the recom-
mended movies. Being users, we may wish to keep this information private. Take the Netflix Prize dataset for example.
As shown in Narayanan & Shmatikov (2008), just anonymizing the ratings is not enough for preserving privacy. In
this paper, we focus on the learning problem of matroid bandits with differential privacy. Differential privacy is the
most commonly-used notion of privacy for machine learning algorithms (Dwork et al., 2014). If a learning algorithm
is implemented in a differentially private manner, the information associated with an individual has almost no impact
on the output of the learning. In other words, private learning algorithms are not sensitive to information from a single
individual. In this work, we focus on ε-differential privacy, where ε is the privacy parameter. The parameter ε can be
viewed as the privacy budget that can be distributed among different components of the learning algorithm.

Now, we summarize the key contributions of this work.

1. In this work, we propose two sample efficient and computationally fast differentially private algorithms for
matroid bandits. Our first algorithm, DPUCB-MAT, is built upon the well-established UCB1 policy of Auer
et al. (2002). The regret bound of DPUCB-MAT is O (L ln(n)/∆+min {K, log(n)}LK ln(n)/ε), where ∆
is the mean reward gap and ε is the required privacy parameter. Our second algorithm, DPTS-MAT, is built
on Thompson Sampling which has demonstrated competitive practical performances (Chapelle & Li, 2011).
The regret bound of DPTS-MAT is O (L ln(n)/∆+min {K, log(n)}LK ln(n)/ε) +O (K ln(n)/∆).

2. Regarding the regret analysis, we propose a unified approach to decompose the regret of DPUCB-MAT and
DPTS-MAT. Our novel regret decomposition relies on the introduction of a round-dependent permutation on
the order of the base arms in the optimal super arm. The permutation contributes to decomposing the regret
of matroid bandits into K different stochastic bandit problems.

3. We conduct experiments to evaluate the empirical performance of our proposed algorithms by using both
synthetic and real-world movie-recommendation datasets. The experimental results demonstrate that our
proposed differentially private algorithms are efficient.

2 DIFFERENTIALLY PRIVATE MATROID BANDITS

In this section, we present our learning problem formally. We first introduce stochastic matroid bandits. Then, we
introduce the definition of differential privacy for matroid bandit learning algorithms.

2.1 MATROID BANDITS

A stochastic matroid bandit problem can be specified by ((E, I); ν(E)), where (E, I) defines a matroid and ν(E)
defines an environment that a learner interacts with. In a matroid bandit problem, E is a set of L items, also called
the set of base arms, and I is a family of subsets of E, also called the family of independent sets, defined by the
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following three properties. (1) ∅ ∈ I. (2) If X ⊂ Y and Y ∈ I, then X ∈ I. (3) If X,Y ∈ I such that
|X| = |Y | + 1, then there exists e ∈ X \ Y such that Y ∪ {e} ∈ I. Each base arm e ∈ E is associated with a
weight that is independently drawn from a fixed but unknown probability distribution Pe with mean w̄(e) collected by
ν(E) = (Pe : e ∈ E). As matroids generalize the notion of linear independence in vector spaces, we are interested in
a basis of a matroid which is a maximal independent set A ∈ I. Similar to vector spaces, all bases of a matroid have
the same cardinality denoted by K. Each basis A ⊂ E can be viewed as a super arm which consists of exactly K
base arms. An important problem for matroid bandits is to learn the basis with the maximum total weight, i.e., learn
the super arm A∗ = argmaxA∈I

∑
e∈A w̄(e). If we knew w̄(e) for all e ∈ E, the optimal basis A∗ would be found

greedily as shown in Algorithm 1.

In reality, we cannot assume we know w̄(e) in advance. Instead, the learner can interact with environment ν(E)
sequentially to learn w̄(e) with the following learning protocol. In each round t ∈ [n], the environment generates a
random weight vector wt = (wt(e1), . . . , wt(eL)) with each entry wt(ei) i.i.d over time according to Pei . Simultane-
ously, the learner selects a super arm At = {at1, . . . , atK}, a basis of the matroid. At the end of round t, the learner
observes the random weights {wt(e) : e ∈ At} and receives as return the sum of all the weights in At, i.e., the learner
obtains a return f(At, wt) =

∑
e∈At wt(e). The goal of the learner is to choose super arms sequentially over a finite

of n rounds to maximize the expected cumulative return.

We use (pseudo)-regret Rn to measure the quality of the learner’s strategy for deciding which super arms to choose,
which is defined as

Rn =

n∑
t=1

E
[
f(A∗, w̄)− f(At, w̄)

]
, (1)

where the expectation is over the randomness in the learner’s action selection strategy.1 Without loss of generality,
we assume w̄(a∗1) ≥ . . . ≥ w̄(a∗k) ≥ . . . ≥ w̄(a∗K) and let A∗ := {a∗1, . . . , a∗k, . . . , a∗K} be a descending ordered set
based on the means w̄(a∗k). For the regret bounds presentation, we also need the following notation. Let Ā∗ = E \A∗

denote the set of all sub-optimal base arms. Let ∆e,k = w̄(a∗k) − w̄(e) denote the mean reward gap between a base
arm e ∈ E and an optimal base arm a∗k ∈ A∗. Without loss of generality, we also assume ∆e,k > 0 for all e ∈ Ā∗ and
k ∈ [K]. For a sub-optimal base arm e ∈ Ā∗, let ∆e,min = mink∈[K] ∆e,k denote the minimum mean reward gap.

Algorithm 1 Greedy algorithm to find a maximum weight basis of a matroid (Kveton et al., 2014)

Input: Matroid (E, I) and weights w̄(e) for all e ∈ E; Output: A∗

1: Sort all weights in a descending order such that w̄(e1) ≥ . . . ≥ w̄(eL) for all ei ∈ E
2: Initialize A∗ = ∅
3: for i = 1, . . . ,K do
4: σ(A∗) = {e : e ∈ E \A∗, A∗ ∪ {e} ∈ I} ▷ The set of base arms that can be added to A∗

5: A∗ ← A∗ ∪ {ei}, where ei = argmax
e∈σ(A∗)

w̄(e). ▷ Add the base arm with the highest weight in σ(A∗) to A∗

6: end for

2.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) is the most commonly-used notion for preserving the privacy of individuals in machine
learning algorithms. It is based on the idea that the change of a single user’s data in the dataset cannot impact the
output of the learning algorithm too much. The insensitivity to a single user’s data guarantees that from the algorithm’s
output, an adversary cannot learn the existence or anything useful about that user. Since in online learning, reward
vectors are fed into learning algorithms in a streaming fashion and each reward vector can encode private information
associated with an individual, we focus on the framework of event-level privacy (Dwork et al., 2010) in this work.

Before presenting the definition of differential privacy, we define what the neighbouring datasets are in bandit prob-
lems. In a bandit learning problem, a dataset is a sequence of reward vectors. Let W1:t = (ws : s ∈ [t]) be the
original reward vectors fed into the learning algorithm up to round t. Two reward sequences W1:t and W′

1:t are called
neighboring if they differ in at most one round r ≤ t. That is, wr ̸= w′

r and ws = w′
s for all s ∈ [t] \ {r}. With the

definition of neighbouring reward sequences in mind, we now define differential privacy for matroid bandit algorithms.
Definition 1. (Differential privacy in matroid bandits). A matroid bandit algorithm B is ε-DP if, for all rounds t ∈ [n],
for every pair of neighboring datasets W1:t and W′

1:t, and for any set D of decisions, we have

P {B(W1:t) ∈ D} ≤ eε · P
{
B(W′

1:t) ∈ D
}
. (2)

1Note that w̄ is the mean reward vector accounting for all the base arms.
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The privacy parameter ε can be thought of as a privacy budget. It can be allocated among different components within
the algorithm. An important property of DP is that it is immune to post-processing, which states that the privacy
guarantee cannot get worse if we release a function of the output instead of the output itself (Smith & Ullman, 2021).

Fact 1. (Post-processing, (Dwork et al., 2014)). Let X ,Y,Z be arbitrary sets and n be a positive integer. Let
B : Xn → Y and B′ : Y → Z be randomized algorithms. If B is ε-DP, then the composition B′(B(·)) is also ε-DP.

3 RELATED WORKS

Kveton et al. (2014) initiated the study of learning the maximum weight basis for matroid bandits. They proposed
a UCB-based algorithm, Optimistic Matroid Maximization (OMM), that achieves the optimal O(L ln(n)/∆) regret
bound. The key idea in OMM is to construct upper confidence bounds based on UCB1 of Auer et al. (2002) for all
base arms. As OMM is built upon UCB1, OMM cannot be asymptotically optimal. Later, Talebi & Proutiere (2016)
proposed another UCB-based algorithm, Efficient Sampling for Matroids (KL-OSM), that achieves the asymptotically
optimal (1 + ϵ)L ln(n)∆/dKL(µ∗ − ∆, µ∗) + o(ln(n)) regret bound, where ϵ > 0 can be any value, µ∗ denotes the
mean reward of an optimal base arm and dKL(a, b) denotes the KL-divergence between two Bernoulli distributions
with parameters a, b ∈ (0, 1). The key idea to achieve asymptotic optimality is to construct upper confidence bounds
based on KL-UCB of Garivier & Cappé (2011). Other than the aforementioned UCB-based algorithms, Wang & Chen
(2018) proposed Combinatorial Thompson Sampling (CTS), a Thompson Sampling-based algorithm with Beta priors,
for combinatorial bandits. Combinatorial bandits generalize the setting of matroid bandits with the following key
features. In combinatorial bandits, the set of super arms does not have any special structure that we can utilize. Also,
the size of a super arm is at most K instead of exactly K. Since matroid bandits are special cases of combinatorial
bandits, by a refined regret analysis, CTS achieves an O(L ln(n)/∆) + Õ

(
L/∆4

)
regret for matroid bandits.

Mishra & Thakurta (2015) initiated the study of stochastic multi-armed bandits with differential privacy and pro-
posed both the UCB-based and Thompson Sampling-based learning algorithms. Their proposed algorithms rely on
the post-processing property of differential privacy (Fact 1). More specifically, they first guarantee that the inter-
nal learning algorithm computing the empirical means is ε-differentially private. Then, from post-processing, they
immediately conclude that the proposed bandit algorithms are ε-DP. However, their proposed learning algorithms
are very sub-optimal due to the usage of the Tree-based Mechanism (Chan et al., 2011; Dwork et al., 2010) to in-
ject noise to preserve privacy. Later, Chen et al. (2020) introduced differential privacy in combinatorial bandits and
proposed a UCB-based algorithm, Differentially Private Combinatorial UCB (CUCB-DP), for differentially private
combinatorial bandits. CUCB-DP achieves an O

(
LK ln2(n)/∆

)
+ Õ

(
LK ln3(n)/ε

)
regret upper bound and an

Ω (LK ln(n)/∆+ LK ln(n)/ε) regret lower bound.2

Recently, Hu et al. (2021); Azize & Basu (2022) devised optimal UCB-based algorithms and Hu & Hegde (2022)
devised an optimal Thompson Sampling-based algorithm with Beta priors for differentially private stochastic bandits.
These algorithms all achieve the optimal O (L ln(n)/∆+ L ln(n)/ε) regret bound. The key ideas to achieve optimal-
ity are the usage of “laziness” and “forgetfulness” along with the Laplace Mechanism (Dwork et al., 2014) to inject
noise to mask the true empirical means instead of using the Tree-based Mechanism. The idea of laziness is to update
the differentially private empirical mean of an arm in a delayed manner. We only update the DP empirical mean of
an arm when a certain number of observations are available from that arm. The idea of forgetfulness is to use fresh
observations to update the DP empirical mean. Once observations have been used, we abandon them. Since the change
of one reward vector only impacts the aggregated reward by one at most, from Laplace Mechanism, we can add a noise
drawn from Lap (1/ε) to the aggregated reward of each arm when updating the DP empirical mean.3.

Our proposed UCB-based algorithm DPUCB-MAT (Algorithm 2) can be viewed as a differentially private version
of OMM. When setting ε → ∞, i.e., in the non-private matroid bandit setting, the regret bound of DPUCB-MAT
(Theorem 2) recovers the regret bound of OMM. When setting a suitable privacy parameter ε, our regret bound
removes an extra log(n) factor as compared to the regret bound shown in Chen et al. (2020). Although our proposed
Thompson sampling-based algorithm DPTS-MAT (Algorithm 3) could be seen as a differentially private version of
CTS for matroid bandits, we use different proof techniques. Section 4.3 presents more detail. Table 1 summarizes the
regret bounds for matroid bandits in both non-private and private settings.

2The Õ(·) notation hides an extra log log T factor.
3The probability density function of a Laplace distribution Lap (b) centered at 0 with b as the scale parameter is hb(y) =

(1/2b)e−|y|/b with b > 0.
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Table 1: Regret upper bounds for UCB and TS-based algorithms for matroid bandits.

Algorithms Non-private results Private results (ours)

OMM (UCB1-based) O
(

L ln(n)
∆

)
(Kveton et al., 2014) O

(
L ln(n)

∆ + min{K,log(n)}LK ln(n)
ε

)
CTS (TS-based) Õ

(
L ln(n)

∆ + L
∆4

)
(Wang & Chen, 2018) O

(
L ln(n)

∆ + min{K,log(n)}LK ln(n)
ε

)

4 ALGORITHMS AND ANALYSIS

In this section, we present our proposed learning algorithms and their theoretical guarantees. First, we introduce some
notation used by Algorithm 2 and Algorithm 3. We denote by Te(t − 1) the “effective” number of observations used
to compute the empirical mean of a base arm e ∈ E by the end of round t − 1 and denote by ŵe,Te(t−1)(t − 1)
the empirical mean of a base arm e among these Te(t − 1) observations. To have a differentially private version of
ŵe,Te(t−1)(t − 1) with a small amount of noise, we still use the ideas of “laziness” and “forgetfulness” introduced in
Hu et al. (2021); Azize & Basu (2022); Hu & Hegde (2022). As the total privacy budget is ε and at the end of each
round t there are exactly K observations revealed, from the basic composition property (Dwork et al., 2014), we know
that each base arm has an ε/K privacy budget. Let ε0 := ε/K. Let w̃e,Te(t−1)(t− 1) = ŵe,Te(t−1)(t− 1)+ Lap(1/ε0)

Te(t−1)

denote the DP mean estimate of a base arm e. For each base arm e, we store the reward observations in the array Te,
and ΣTe denotes the sum of all the observations in Te.

4.1 DIFFERENTIALLY PRIVATE UCB FOR MATROID BANDITS

The UCB-based differentially private algorithm for matroid bandits DPUCB-MAT is shown in Algorithm 2. The
general idea is to construct differentially private upper confidence bound Ut(e) (Line 5) for each base arm e ∈ E. We
construct Ut(e) as

Ut(e) := w̃e,Te(t−1)(t− 1) +

√
3 ln(Kt)

Te(t− 1)
+

3 ln(Kt)

ε0 · Te(t− 1)
. (3)

With all these private upper confidence bounds Ut(e) in hand, DPUCB-MAT selects the best super arm At in a greedy
way, i.e., invoking Algorithm 1 with all Ut(e) as input and At as output. In other words, DPUCB-MAT plays At =
argmaxA∈I

∑
e∈A Ut(e). Then, the rewards wt(e) for e ∈ At are revealed. For each individual wt(e), we add it to

the corresponding Te (Line 9). If the number of observations of any base arm e hits 2se+1, then, it is the right time to
update the DP mean estimate w̃e,Te(t−1)(t− 1) using the 2se+1 observations stored in Te (Line 12). Since now all the
observations in Te have been processed, we increment the counter se by 1 and reset Te (Line 13).

Algorithm 2 DPUCB-MAT
1: Input: Matroid (E, I) and privacy budget ε
2: Observe w0(e) ∼ Pe, set Te ← 1, se ← 0, w̃e,Te

← w0(e) + Lap
(

1
ε0

)
, Te ← {}, where ε0 = ε

K ▷ Initialization
3: for t = 1, 2, . . . do
4: for e ∈ E do
5: Ut(e) := w̃e,Te +

√
3 ln(Kt)

Te
+ 3 ln(Kt)

ε0·Te

6: end for
7: Invoke Algorithm 1 with Ut(e) for all e ∈ E as input and At as output
8: Play super arm At

9: Observe wt(e) ∼ Pe and add wt(e) to Te, ∀e ∈ At

10: Find Bt =
{
e ∈ At : |Te| = 2se+1

}
▷ Find all the base arms with the number of observations hitting 2se+1

11: for e ∈ Bt do
12: Te ← 2se+1, w̃e,Te

= ΣTe+Lap(1/ε0)
Te

▷ ΣTe denotes the sum of all the observations in Te
13: se ← se + 1, Te ← {} ▷ Doubling the “effective” number of observations and reset Te
14: end for
15: end for

We now present theoretical guarantees for Algorithm 2.
Theorem 1. Algorithm 2 is ε-differentially private.
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Proof. Since the learner makes decisions based on the differentially private upper confidence bounds and constructing
differentially private upper confidence bounds (Lines 4 to 6) can be thought of as post-processing of the DP mean
estimates, it suffices to show that as long as the empirical mean computation (lines 9 to 14) is ε-DP, then the matroid
bandit learning algorithm itself is ε-DP. Now, we consider two neighboring reward vector sequences W and W′ which
differ in a reward vector in some round s, i.e., ws ̸= w′

s. Since the learner only observes the rewards associated with
the base arms in the played super arm, changing from ws to w′

s may only affect the DP mean estimates for all the
base arms in As. In other words, the DP mean estimates of at most K base arms may be impacted. Since the learning
algorithm uses fresh observations to update the DP mean estimates and for each base arm e ∈ As the aggregated
reward ΣTe changes by at most one when working over W and W′, from Laplace Mechanism, we know that adding
a noise random variable sampled from Lap(1/ε0) is enough to make the function computing the mean estimate of an
individual base arm ε0-DP. Since at most K base arms may be impacted, using the basic composition property of DP,
we know that the learning algorithm to compute the DP mean estimates for all the base arms is ε-DP.

Theorem 2. The regret of Algorithm 2 is

Rn ≤
∑

e∈Ā∗:∆e,min>0

O
(

ln(Kn)
∆e,min

+ min{K,log(Kn)}·ln(Kn)
ε/K

)
, (4)

where ∆e,min = min
k∈[K]:∆e,k>0

∆e,k.

Discussion Algorithm 2 can be viewed as a differentially private version of OMM of Kveton et al. (2014). When
setting ε → ∞, the differentially private matroid bandit problem boils down to the non-private matroid bandits. In
this special setting, the regret bound shown in Theorem 2 matches both the regret upper bound and regret lower bound
presented in Kveton et al. (2014). With a suitable privacy parameter ε, our regret bound improves the state-of-the-art
regret bound presented in Chen et al. (2020) by removing an extra log(n) factor. 4

Algorithm 3 DPTS-MAT
1: Input: Matroid M = (E, I) and privacy parameter ε
2: Observe w0(e) ∼ Pe, set Te ← 1, se ← 0, w̃e ← w0(e) + Lap

(
1
ε0

)
, Te ← {}, where ε0 = ε

K ▷ Initialization
3: for t = 1, 2, . . . do
4: for e ∈ E do
5: Set w′

e,Te
(t) := w̃e,Te

+ 3 ln(Kt)
ε0·Te

▷ Boost the parameters of the posterior distributions

6: Sample θe(t) ∼ N
(
w′

e,Te
(t), 1

Te

)
▷ Draw random samples from a Gaussian distribution

7: end for
8: Invoke Algorithm 1 with θe(t) for all e ∈ E as input and At as output
9: Play super arm At

10: Observe wt(e) ∼ Pe and add wt(e) to Te, ∀e ∈ At

11: Find Bt =
{
e ∈ At : |Te| = 2se+1

}
▷ Find all the base arms with the number of observations hitting 2se+1

12: for e ∈ Bt do
13: Te ← 2se+1, w̃e,Te = ΣTe+Lap(1/ε0)

Te
▷ ΣTe denotes the sum of all the observations in Te

14: se ← se + 1, Te ← {} ▷ Doubling the “effective” number of observations and reset Te
15: end for
16: end for

4.2 DIFFERENTIALLY PRIVATE THOMPSON SAMPLING FOR MATROID BANDITS

Different from the UCB-based algorithms where the exploration-exploitation trade-off is done by constructing confi-
dence intervals centered at the mean rewards, Thompson sampling-based algorithms maintain posterior distributions
that model the mean rewards of each base arm. As our goal is to design learning algorithms that have good regret
guarantees with a finite time horizon, we can use Gaussian priors.5

Our Thompson Sampling-based differentially private algorithm for matroid bandits DPTS-MAT is shown in Algorithm
3. The general idea is to boost the parameter of the posterior distribution from w̃e,Te(t−1)(t−1) to w′

e,Te(t−1)(t), where

4For the discussion, we already translate their regret bound (Theorem 8) from combinatorial bandits to matroid bandits.
5As proved in Agrawal & Goyal (2017), Thompson Sampling with Beta priors can be asymptotically optimal while Thompson

Sampling with Gaussian priors may not be asymptotically optimal.
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w′
e,Te(t−1)(t) = w̃e,Te(t−1)(t − 1) + 3 ln(Kt)/(ε0 · Te(t − 1)) for each base arm e ∈ E. Then, DPTS-MAT draws a

random sample θe(t) ∼ N
(
w′

e,Te(t−1)(t), 1/Te(t− 1)
)

for all e ∈ E. With all these differentially private posterior

samples θe(t) in hand, DPTS-MAT selects the best super arm At in a greedy way, i.e., invoking Algorithm 1 with all
θe(t) as input and At as output. That is also to say, DPTS-MAT plays At = argmaxA∈I

∑
e∈A θe(t). DPTS-MAT

uses the same way as Algorithm 2 to process the revealed observations, i.e., only update the DP mean estimate of a
base arm e ∈ At if the number of observations in Te hits 2se+1.

We now present theoretical guarantees for Algorithm 3.
Theorem 3. Algorithm 3 is ε-differentially private.

Proof. The proof is similar to the DP proof for Algorithm 2. It suffices to show that as long as the algorithm to
compute the empirical mean of each base arm is ε0-DP, then the learning algorithm is ε-DP. Note that lines 4 to 9
can be thought of as post-processing. Since Algorithm 3 and Algorithm 2 use the same way to process the obtained
observations, by using the same arguments as in the proof of Theorem 1, we can conclude the proof.

Theorem 4. The regret of Algorithm 3 is

Rn ≤
∑

e∈Ā∗:∆e,min>0

O
(

ln(Kn)
∆e,min

+ min{K,log(Kn)}·ln(Kn)
ε/K

)
+

∑
k∈[K]:∆min,k>0

O
(

ln(Kn)
∆min,k

)
, (5)

where ∆e,min = min
k∈[K]:∆e,k>0

∆e,k and ∆min,k = min
e∈Ā∗:∆e,k>0

∆e,k.

Discussion Different from Theorem 2 where the regret bound only has one term which is linear in the size of the
sub-optimal base arms, there are two terms in Theorem 4. The first term is the same as the regret bound shown in
Theorem 2 and it captures the regret for introducing differential privacy. This term characterizes the regret in all the
rounds when the posterior distributions of the sub-optimal base arms are not concentrated. It is not surprising why we
have the second non-private term which is linear in the size of the optimal base arm set. The second term upper bounds
the regret among all the rounds when the posterior distributions of the optimal base arms are not concentrated. As
will be shown in Section 4.3, the core of our regret decomposition is to decompose a matroid bandit problem into K
stochastic bandit problems. For each individual bandit problem, by slightly modifying the regret analysis in Agrawal
& Goyal (2017), when using Gaussian priors, an additive O (ln(n)/∆min) regret occurs among all the rounds when
the Gaussian posterior distributions of the optimal arm are not concentrated. In contrast, when using Beta priors, the
additive term can be Õ

(
1/∆4

min

)
, where Õ hides problem-dependent constants. Since the regret for a matroid bandit

is composed of K different stochastic bandit problems, we have the second term in Theorem 4.

4.3 REGRET DECOMPOSITION

In this section, we present a unified approach to decompose the regret of Algorithm 2 and Algorithm 3. The core is
to introduce a round-dependent permutation πt over the ordered set A∗. Then, we explore the special structures that
matroids have, which are all the bases of a matroid have the same size and matroids have certain properties described
in Section 2.1. After introducing πt, the regret for a matroid bandit problem can be decomposed to upper bound the
total regret of K different stochastic bandit problems. The construction of πt is inspired by Lemma 1 in Kveton et al.
(2014). Recall At = {at1, at2, . . . , atK} is a descending ordered set based on the differentially private upper confidence
bounds in Algorithm 2 (or the differentially private posterior samples in Algorithm 3) and A∗ = {a∗1, a∗2, . . . , a∗K} is
a descending ordered set based on the mean rewards. The purpose of introducing permutation πt : {1, . . . ,K} →
{1, . . . ,K} over the ordered set A∗ is to construct K ordered pairs between At and A∗ with certain properties. We
construct πt in a backward order as follows.

Fix BK =
{
at1, . . . , a

t
K−1

}
. If atK ∈ A∗, i.e., atK = a∗i for some i ∈ [K], we set πt(K) = i, i.e., we pair atK to

itself. If atK /∈ A∗, due to the augmentation property of matroids (Property (3) in Section 2.1), we can set πt(K) =
min {i : a∗i ∈ A∗ \BK , BK ∪ {a∗i } ∈ I}, i.e., we can pair atK with the optimal base arm with the smallest index that

can be added to BK to form a matroid basis. Now, fix BK−1 =
{
at1, . . . , a

t
K−2, a

∗
πt(K)

}
. If atK−1 = a∗i for some

i ∈ [K], we set πt(K−1) = i. If atK−1 /∈ A∗, we can set πt(K−1) = min {i : a∗i ∈ A∗ \BK−1, BK−1 ∪ {a∗i } ∈ I}.
The same idea is applied to all the remaining base arms atK−2, . . . , a

t
1 in At.

After applying πt, all the optimal base arms in A∗ will be ordered as A∗
πt

=
{
a∗πt(1)

, . . . , a∗πt(k)
, . . . , a∗πt(K)

}
. Still,

the order of all the base arms in At is {at1, . . . , atk, . . . , atK}. Now, we can construct the following ordered pairs

7
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(
at1, a

∗
πt(1)

)
, . . . ,

(
atk, a

∗
πt(k)

)
, . . . ,

(
atK , a∗πt(K)

)
. It is not hard to verify that each

(
atk, a

∗
πt(k)

)
has the following

two properties. First, if atk ∈ A∗, its pair is itself, i.e., ∆at
k,πt(k) = 0 (recall ∆e,k = w̄(a∗k) − w̄(e) for any two base

arms a∗k and e). If atk /∈ A∗, the differentially private upper confidence bound in Algorithm 2 (or the differentially
private posterior sample in Algorithm 3) of atk is no smaller than that of a∗πt(k)

. Second, given {at1, at2, . . . , atk−1},
both atk and its pair a∗πt(k)

can be added to the solution set without breaking the independence of the solution set. In
other words, both {at1, . . . , atk−1} ∪ {atk} ∈ I and {at1, . . . , atk−1} ∪ {a∗πt(k)

} ∈ I hold.

To permute A∗
πt

back to the original order {a∗1, . . . , a∗K}, we define π−1
t : {1, . . . ,K} → {1, . . . ,K}, the inverse

permutation of πt. That is, for each k ∈ [K], we have π−1
t (πt(k)) = k. We apply π−1

t to permute the ordered sets
A∗

πt
and At separately. Applying π−1

t over A∗
πt

gives us the original order, which is {a∗1, . . . , a∗K}. Applying π−1
t over

At gives
{
at
π−1
t (1)

, . . . , at
π−1
t (k)

, . . . , at
π−1
t (K)

}
. Based on the new order, we construct the following ordered pairs(

at
π−1
t (1)

, a∗1

)
, . . . ,

(
at
π−1
t (k)

, a∗k

)
, . . . ,

(
at
π−1
t (K)

, a∗K

)
. (6)

Since a single π−1
t is used to permute both the ordered sets, π−1

t can be viewed as a permutation that permutes(
at1, a

∗
πt(1)

)
, . . . ,

(
atk, a

∗
πt(k)

)
, . . . ,

(
atK , a∗πt(K)

)
to
(
at
π−1
t (1)

, a∗1

)
, . . . ,

(
at
π−1
t (k)

, a∗k

)
, . . . ,

(
at
π−1
t (K)

, a∗K

)
.

Now, we are ready to decompose the regret. Define {a↔ a∗} as an event that base arms a and a∗ form a pair. We
have

Rn =

n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

]
(a)
=

n∑
t=1

E

[
K∑

k=1

(
w̄(a∗k)− w̄

(
at
π−1
t (k)

))
·1
{
at
π−1
t (k)

↔ a∗k

}]

≤
K∑

k=1

n∑
t=1

E
[
∆at

π
−1
t (k)

,k · 1
{
∆at

π
−1
t (k)

,k > 0

}
·1
{
at
π−1
t (k)

↔ a∗k

}]

≤
K∑

k=1

∑
e∈Ā∗

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e
}
· 1 {∆e,k > 0}

]
·1 {e↔ a∗k} ·∆e,k

=

K∑
k=1

∑
e∈Ā∗:∆e,k>0

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e
}]
·1 {e↔ a∗k} ·∆e,k

︸ ︷︷ ︸
Ik

.

(7)

Equality (a) uses the ordered pairs shown in (6). Note that Ik can be viewed as the regret of a stochastic bandit
problem with a∗k as the optimal arm and

{
e ∈ Ā∗ : ∆e,k > 0

}
as the set of sub-optimal arms. The regret bounds for

both DPUCB-MAT (Theorem 2) and DPTS-MAT (Theorem 4) can be derived based on the regret decomposition shown
in (7). We defer the details of the proof to the appendix.

5 EXPERIMENTS

We perform experiments in two different settings. In Section 5.1, we evaluate our algorithms on a synthetic dataset
and in Section 5.2, we use a real-world movie-rating dataset with the purpose of recommending diverse and popular
movies to users in a differentially private manner. To measure the performance of our algorithms we use the expected
per-round return as suggested in Kveton et al. (2014). The expected per-round return in round s is computed as
1
s

∑s
t=1

∑
e∈At w̄(e). For DPUCB-MAT, we compare its empirical performance with two baselines. The first baseline

is the optimal return f(A∗, w̄) =
∑

e∈A∗ w̄(e) denoted as Optimal Policy in the plots. The second baseline is OMM in
Kveton et al. (2014), which is the non-private UCB1-based algorithm for matroid bandits. Similarly, for DPTS-MAT,
we compare its empirical performance with the optimal return and the non-private CTS in Wang & Chen (2018). To
have a fair empirical performance comparison, we have already adapted CTS to the matroid bandit setting. We also
show the performance of our algorithms with different values of ε ∈

{
105, 2, 10−4

}
.

8
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Table 2: Syntetic dataset.

Base arm e Mean reward w̄(e)

(1, 0, 0) 0.80
(0, 1, 0) 0.75
(0, 0, 1) 0.60
(1, 0, 1) 0.20
(0, 1, 1) 0.30
(2, 0, 0) 0.40
(0, 0, 0) 0.70
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Figure 1: DPUCB-MAT on synthetic dataset.
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(a) DPUCB-MAT
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(b) DPTS-MAT

Figure 2: Synthetic dataset. Figure 2a shows the performance of DPUCB-MAT (Algorithm 2) for different values of
ε on the synthetic dataset. We observe that the performance of DPUCB-MAT decreases as the value of ε decreases. We
also observe that as ε increases, we can be in the non-private regime and the performance of DPUCB-MAT does not
deteriorate by much. Figure 2b shows similar trends for DPTS-MAT (Algorithm 3).

5.1 SYNTHETIC DATASET

In this section, we report the experimental results of our proposed algorithms on a set of 3-dimensional vectors taken
from Neel & Neudauer (2009) with ε = 2. The base arm set is E = {e1, . . . , e7}, where each base arm is a
3-dimensional vector in the Euclidean space. Table 2 shows the mean rewards of all the base arms. As matroid
independence is defined by the linear independence of the vectors, we have |A∗| = |At| = 3 and A∗ = {e1, e2, e3}.
Since the total privacy budget is ε, the privacy budget for each e ∈ At is ε0 = ε/3 = 2/3. The reward wt(e) for each
e ∈ E is generated from a Bernoulli distribution with mean w̄(e). The total number of rounds is n = 10, 000. The
experimental results for DPUCB-MAT, OMM, and Optimal Policy are presented in Figure 1. From the results, we can
see that DPUCB-MAT and OMM have a similar growth rate in terms of the return and approach the optimal return. The
results for DPTS-MAT, CTS, and Optimal Policy also show similar trends. We defer this set of plots to the appendix.

Figure 2 shows the expected per-round return for different values of the privacy parameter ε ∈
{
105, 2, 10−4

}
. In

Figure 2a, we show the performance of DPUCB-MAT (Algorithm 2). We observe that when ε decreases, the perfor-
mance of DPUCB-MAT deteriorates, and when ε increases, the performance of DPUCB-MAT becomes better. This is
expected as a good differentially private learning algorithm should balance the privacy and regret guarantees. We also
observe that when the privacy parameter ε is large, i.e., in the non-private regime, the performance of DPUCB-MAT
approaches that of the non-private OMM. This is also expected as in the non-private regime, we do not pay any price
for preserving privacy. Similar trends can also be seen for DPTS-MAT (Algorithm 3) in Figure 2b.

9
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Table 3: Movies recommended by DPUCB-MAT that over-
lap with movies in A∗ after 20k rounds.

Movie e w̄(e) Genres
American Beauty 0.568 Comedy, Drama

Star Wars: Episode IV 0.496 Action, Adventure, Fantasy, Sci-Fi
Star Wars: Episode VI 0.478 Action, Adventure, Romance, Sci-Fi, War
Saving Private Ryan 0.440 Action, Drama, War

Men in Black 0.420 Action, Adventure, Comedy, Sci-Fi
L.A. Confidential 0.379 Crime, Film-Noir, Mystery, Thriller

Ghostbusters 0.361 Comedy, Horror
The Wizard of Oz 0.285 Animation, Children’s, Comedy, Musical

Figure 3: DPUCB-MAT on movie recommendation.

5.2 MOVIE RECOMMENDATION DATASET

In this experiment, we learn to recommend a set of diverse and popular movies from the MovieLens dataset (Harper
& Konstan, 2015) with differential privacy. The experiment design is adopted from Kveton et al. (2014). Still, we
report experimental results with the total privacy budget ε = 2. The total number of rounds is n = 20, 000.

The entire dataset contains 1 million ratings from 6040 users. The total number of movies is 3883 from 18 different
genres. To recommend popular movies, we select 100 movies that have received the most ratings. These 100 movies
constitute the base arm set E of a matroid. To construct the independent sets I of the matroid, we select a one-hot
feature vector ue for each movie e ∈ E, which denotes the genres of that movie. If the feature vectors ue for all
e ∈ A are linearly independent, all the movies collected in A form an independent set, which further indicates that
these movies are diverse. The expected reward w̄(e) for each movie e is given by the total number of ratings for e
divided by the total number of users in the dataset. The optimal solution A∗ is computed greedily with respect to w̄
using Algorithm 1. In each round, we recommend 17 movies, i.e., |A∗| = |At| = 17. The privacy budget for each
e ∈ At is ε0 = ε/17 = 2/17. The randomness comes from the fact that in each round t, a random user is selected.
For each movie e ∈ At, if e is rated by that selected random user, then the reward wt(e) is set to 1.

Figure 3 shows the results for DPUCB-MAT, OMM, and Optimal Policy. We observe that the expected per-round return
of DPUCB-MAT is comparable to that of the non-private baseline (OMM) and approaches the optimal policy. Table 3
lists the overlapping movies learned by DPUCB-MAT and Optimal Policy at the end of learning. We can see that the
movie genres of those movies appear to be diverse. Experimental results for DPTS-MAT are deferred to Appendix A.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have shown that learning the maximum weight basis for matroid bandits can be done efficiently in a
differentially private manner. We propose two simple differentially private algorithms DPUCB-MAT and DPTS-MAT
and conduct experiments to evaluate their practical performance on both synthetic and real-world datasets. There are
still some problems remaining for this work. So far, we only have an Ω (LK ln(n)/∆+ LK ln(n)/ε) regret lower
bound for differentially private combinatorial bandits (Chen et al., 2020). By modifying their proof for Theorem 9,
we conjecture that an improved Ω (L ln(n)/∆+ LK ln(n)/ε) regret lower bound for differentially private matroid
bandits is achievable. However, our Theorem 2 is still an extra min {K, ln(n)} factor far from this conjectured regret
lower bound. We are not sure yet whether our derived regret bound is not tight or whether a better regret lower bound
exists for differentially private matroid bandits.
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(a) Synthetic dataset
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(b) Movie-recommendation dataset

Figure 4: Performance of DPTS-MAT on synthetic and movie-recommendation datasets. Figure 4a shows the per-
formances of DPTS-MAT (Algorithm 3), non-private Combinatorial Thompson Sampling (CTS) with Gaussian priors,
and Optimal Policy on the synthetic dataset. Figure 4b shows the same algorithms on the movie-recommendation
dataset. For both the plots, we again set ε = 2.
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A ADDITIONAL EXPERIMENTS

In this section, we provide more experimental results. Figure 4 shows the performance of DPTS-MAT (Algorithm 3)
on both the synthetic datastet (Figure 4a) and the movie-recommendation dataset (Figure 4b) with ε = 2. We compare
DPTS-MAT against the non-private Combinatorial Thompson Sampling (CTS) with Gaussian priors and the Optimal
Policy. We observe that the expected per-round return of DPTS-MAT is comparable to that of the non-private baseline
and approaches the optimal policy for both datasets.

Figure 5a shows the accumulated regret Rn till round n over ln(n) for n = 1, 2, . . . , 106 rounds for both our private
algorithms DPUCB-MAT and DPTS-MAT on the synthetic dataset. The quantity lim

n→∞
Rn/ ln(n) characterizes the

asymptotic rate of growth of the regret (Lai & Robbins, 1985). If a learning algorithm has a smaller rate, it suffers less
regret. We observe that both DPUCB-MAT and DPTS-MAT converge but with different rates. In addition, we also ob-
serve that the Thompson Sampling-based algorithm, DPTS-MAT, empirically outperforms the UCB-based algorithm,
DPUCB-MAT. Figure 5b studies the relationship between the accumulated regret Rn and 1/ε for DPUCB-MAT and
DPTS-MAT on the synthetic dataset. The values of ε are 50 evenly spaced numbers between 0.5 and 50. We run our
algorithms for n = 10, 000 rounds for each value of ε and plot the accumulated regret. From the experimental results,
we can see that for both the algorithms the regret trend is linear in 1/ε and the Thompson Sampling-based algorithm
empirically outperforms the UCB-based one.

12
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(a) Asymptotic regret rate.
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(b) Regret versus 1/ε.

Figure 5: Regret of DPUCB-MAT and DPTS-MAT on the synthetic dataset. Figure 5a shows the accumulated regret
Rn till round n divided by ln(n) for n = 1, 2, . . . , 106 rounds for both DPUCB-MAT and DPTS-MAT. The expression
lim

n→∞
Rn/ ln(n) characterizes the asymptotic growth rate of the regret. Figure 5b shows the accumulated regret versus

1/ε for both DPUCB-MAT and DPTS-MAT.

B REGRET ANALYSIS OF ALGORITHM 2

Recall that the regret can be expressed as

Rn =

K∑
k=1

∑
e∈Ā∗:∆e,k>0

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

Ie,k

.
(8)

The indicator function 1
{
at
π−1
t (k)

= e, e↔ a∗k

}
will be 1 when the learner selects a sub-optimal base arm e instead

of the optimal base arm a∗k. This further implies the differentially private upper confidence bound of e is no smaller
than that of a∗k in that round.

Proof. Proof of Theorem 2: We first show the regret is at most∑
e∈Ā∗:∆e,min>0

O

(
ln(Kn)

∆e,min
+

K ln(Kn)

ε/K

)
. (9)

Then, we show the regret is also upper bounded by∑
e∈Ā∗:∆e,min>0

O

(
ln(Kn)

∆e,min
+

ln2(Kn)

ε/K

)
. (10)

Combining these two claims concludes the proof.

Recall ε0 = ε/K and let le,k = O
(

ln(Kn)
∆e,k·min{∆e,k,ε0}

)
, where the big-O notation only hides a universal constant.

We decompose Ie,k in (8) as

Ie,k =

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k, Te(t− 1) ≤ le,k

}]
︸ ︷︷ ︸

Γ1,k,e

∆e,k +

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k, Te(t− 1) > le,k

}]
∆e,k︸ ︷︷ ︸

Γ2,k,e

.

(11)

From Hu et al. (2021); Azize & Basu (2022), we know that Γ2,k,e = O(1/K2). Now, we use similar arguments as
the one shown in Kveton et al. (2014) to complete the proof. As for a fixed e ∈ Ā∗, we maintain a counter Te(t− 1)

13
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during the learning. The counter counts the number of observations that are used to compute the differentially private
empirical mean and the values of the counter double each time. For all the rounds when the values of the counter
are in the range of [0, le,1], the total regret among all these rounds is at most ∆e,1 · O(le,1). For all the rounds
when the values of the counter are in the range of [le,1 + 1, le,2], the total regret among all these rounds is upper
bounded by ∆e,2 · O (le,2 − le,1) + Γ2,1,e ≤ ∆e,2 · O (le,2 − le,1) + O(1/K). Finally, for all the rounds when
the values of the counter are in the range of [le,K−1 + 1, le,K ], the total regret among all these rounds is at most
∆e,K ·O (le,K − le,K−1)+

∑K−1
k=1 Γ2,k,e ≤ ∆e,K ·O (le,K − le,K−1)+O(1/K). For all the rounds after the counter

hits le,K , the total regret is at most
∑K

k=1 Γ2,k,e ≤ O(1/K).

By using Lemma 1, we have

∆e,1 ·O(le,1) +

K∑
k=2

∆e,k ·O (le,k − le,k−1) +

K+1∑
k=2

k−1∑
q=1

Γ2,q,e ≤ O

(
ln(Kn)

∆e,min
+

K ln(Kn)

ε0

)
, (12)

which yields the result in the first claim, i.e.,∑
e∈Ā∗:∆e,min>0

O

(
ln(Kn)

∆e,min
+

K ln(Kn)

ε/K

)
.

We can also use the well-known “doubling-trick” in the bandit literature to have an upper bound.

Let rmax,e := min
{
log
(

1
∆e,min

)
, log(Kn)

}
.

For any 1 ≤ r ≤ rmax,e, let Φr :=
{
k ∈ [K] : ∆e,k ∈

[
0.5r, 0.5r−1

)}
and le,r = O

(
ln(Kn)

0.5r·min{0.5r,ε0}

)
, where the

big-O notation only hides a universal constant.

Then, we take the following regret decomposition. We have

Rn =

K∑
k=1

∑
e∈Ā∗:∆e,k>0

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
·∆e,k

≤ 1 +
∑
e∈Ā∗

∑
k∈[K]:∆e,k≥ 1

Kn

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
·∆e,k

≤ 1 +
∑
e∈Ā∗

rmax,e∑
r=1

∑
k∈Φr

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
·∆e,k

≤ 1 +
∑
e∈Ā∗

rmax,e∑
r=1

∑
k∈Φr

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
· 0.5r

≤ 1 +
∑
e∈Ā∗

rmax,e∑
r=1

n∑
t=1

E
[
1

{
∃k ∈ Φr : at

π−1
t (k)

= e, e↔ a∗k

}]
· 0.5r︸ ︷︷ ︸

Ie,r

.

(13)

Let
{
at
π−1
t (r)

= e, e↔ r
}

denote the event that
{
∃k ∈ Φr : at

π−1
t (k)

= e, e↔ a∗k

}
.

Now, we decompose Ie,r as

Ie,r =

n∑
t=1

E
[
1

{
at
π−1
t (r)

= e, e↔ r, Te(t− 1) ≤ le,r

}]
︸ ︷︷ ︸

Γ1,r,e

·0.5r

+

n∑
t=1

E
[
1

{
at
π−1
t (r)

= e, e↔ r, Te(t− 1) > le,r

}]
· 0.5r︸ ︷︷ ︸

Γ2,r,e

.

(14)

14
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Similarly, we have Γ2,r,e ≤ O(1/K2) and the total regret is at most

∑
e∈Ā∗

(
0.50 ·O (le,1) +

rmax,e∑
r=2

0.5r−1 ·O (le,r − le,r−1) +O(1)

)
≤
∑

e∈Ā∗
O
(

ln(Kn)
∆e,min

+ ln2(Kn)
ε0

)
, (15)

where the inequality uses Lemma 2.

Lemma 1. Let ∆1 ≥ . . . ≥ ∆K be a sequence of reals in (0, 1]. For any ε0 > 0, we have

∆1
1

∆1 ·min {∆1, ε0}
+

K∑
k=2

∆k

(
1

∆k ·min {∆k, ε0}
− 1

∆k−1 ·min {∆k−1, ε0}

)
≤ 2

∆K
+

K

ε0
. (16)

Lemma 2. For any ε0 > 0, we have

0.50 · le,1 +
rmax,e∑
r=2

0.5r−1 · (le,r − le,r−1) ≤ O(ln(Kn)) ·
(

2

∆e,min
+

log(Kn)

ε0

)
. (17)

Lemma 3. (Kveton et al., 2014, Lemma 3). Let ∆1 ≥ . . . ≥ ∆K be a sequence of reals in (0, 1]. Then we have

∆1
1

∆2
1

+

K∑
k=2

∆k

(
1

∆2
k

− 1

∆2
k−1

)
≤ 2

∆K
. (18)

Proof. Proof of Lemma 1:

Case 1: When ε0 ≥ ∆1, we have

LHS of (16) = ∆1
1

∆2
1

+

K∑
k=2

∆k

(
1

∆2
k

− 1

∆2
k−1

)
≤ 2

∆K
≤ 2

∆K
+

K

ε0
, (19)

where the first inequality uses Lemma 3.

Case 2: When ∆K ≥ ε0, we have

LHS of (16) =
1

ε0
+

1

ε0

K∑
k=2

(
1− ∆k

∆k−1

)
≤ 1

ε0
+

1

ε0
· (K − 1) ≤ K

ε0
+

2

∆K
.

Case 3: When ∆1 ≥ . . .∆j ≥ ε0 ≥ ∆j+1 ≥ . . . ≥ ∆K for some j ∈ [K − 1]. We rewrite the LHS of (16) as

K−1∑
k=1

∆k −∆k+1

∆k ·min {∆k, ε0}
+

1

min {∆K , ε0}
=

j∑
k=1

∆k −∆k+1

∆k · ε0
+

K−1∑
k=j+1

∆k −∆k+1

∆2
k

+
1

∆K

≤
j∑

k=1

[
1

ε0
− ∆k+1

ε0∆k

]
+

K−1∑
k=j+1

∆k −∆k+1

∆k ·∆k+1
+

1

∆K

=

[
j

ε0
−

j∑
k=1

∆k+1

ε0∆k

]
+

[
1

∆K
− 1

∆j+1

]
+

1

∆K

≤ j

ε0
+

2

∆K

≤ K

ε0
+

2

∆K
,

(20)

which concludes the proof.
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Proof of Lemma 2. We have the LHS in (17) is

0.50 · le,1 +
rmax,e∑
r=2

0.5r−1 · (le,r − le,r−1)

= O(ln(Kn)) ·

(
0.50

1

0.50 ·min {0.50, ε0}
+

rmax,e∑
r=2

0.5r−1

(
1

0.5r−1 ·min {0.5r−1, ε0}
− 1

0.5r ·min {0.5r, ε0}

))
︸ ︷︷ ︸

I

≤ O(ln(Kn)) ·
(

2
∆e,min

+ log(Kn)
ε0

)
,

(21)
where the last step uses Lemma 1.

Note that 0.50 ≥ 0.51 ≥ . . . ≥ 0.5rmax,e and from rmax,e = min {log(1/∆e,min), log(Kn)}, we have 2rmax,e ≤
∆e,min and rmax,e ≤ log(Kn). Then, we have I ≤ 2

0.5rmax,e +
rmax,e

ε0
, which concludes the proof.
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C REGRET ANALYSIS OF ALGORITHM 3

Still, recall the regret can be expressed as

Rn =

K∑
k=1

∑
e∈Ā∗:∆e,k>0

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

Ie,k

.
(22)

The indicator function 1
{
at
π−1
t (k)

= e, e↔ a∗k

}
will be 1 when the learner selects a sub-optimal base arm e instead

of the optimal base arm a∗k. This implies that the posterior sample of e is no smaller than the posterior sample of a∗k in
that round. For a fixed k and e ∈ Ā∗, we define event Eθe,k(t) := {θe(t) ≤ ye,k} , where ye,k := w̄(a∗k) − 1

3∆e,k , to
decompose the regret. By introducing Eθe,k(t), the regret can be decomposed as

Rn =

K∑
k=1

∑
e∈Ā∗

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, e↔ a∗k

}]
·∆e,k

=

K∑
k=1

∑
e∈Ā∗

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

Ve,k︸ ︷︷ ︸
V

+

K∑
k=1

∑
e∈Ā∗

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

Ue,k︸ ︷︷ ︸
U

.

(23)

Bounding Ve,k and V : The analysis of this term is very similar to the regret analysis of Algorithm 2.

We first define two high probability events. Let Ce(t) :=
{
|ŵe,Te(t−1)(t− 1)− w̄(e)| ≤

√
3 ln(Kt)
Te(t−1)

}
be

the event that the mean reward of e ∈ E is within the confidence interval in round t and Ge(t) :={
|w̃e,Te(t−1)(t− 1)− ŵe,Te(t−1)(t− 1)| ≤ 3 ln(Kt)

ε0·Te(t−1)

}
be the event that the noise added is not too much in round t.

Let Ce(t) and Ge(t) denote the complements of events Ce(t) and Ge(t), respectively.

Let le,k := 72 ln(nK)

min{∆2
e,k,ε0·∆e,k} . Then, Ve,k can be further decomposed as

Ve,k =

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Te(t− 1) ≤ le,k, e↔ a∗k

}]
︸ ︷︷ ︸

Γ1,k,e

·∆e,k

+

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Te(t− 1) > le,k, e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

Γ2,k,e

.

(24)

We further decompose Γ2,k,e as

Γ2,k,e =
n∑

t=1
E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Te(t− 1) > le,k, e↔ a∗k

}]
·∆e,k

≤
n∑

t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), Te(t− 1) > le,k, e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

γ

+

n∑
t=1

E
[
1

{
Ce(t)

}]
+

n∑
t=1

E
[
1

{
Ge(t)

}]
︸ ︷︷ ︸

≤O( 1
K2n2 ) , Lemma 4

.

(25)

Let de,k := ⌈log (le,k)⌉. Let τs denote the round by the end of which there are exactly 2s fresh observations that will
be used to compute the differentially private empirical mean of a sub-optimal base arm e. Now, we upper bound γ.

17
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We have

γ =

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), e↔ a∗k, Te(t− 1) > le,k

}]
·∆e,k

≤
logn∑
s=de

E

[
τs+1∑

t=τs+1

1

{
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), e↔ a∗k, Te(t− 1) > le,k

}]
·∆e,k

≤
logn∑
s=de

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), e↔ a∗k, Te(t− 1) = 2s
}]
·∆e,k

=

logn∑
s=de

n∑
t=1

E
[
E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), e↔ a∗k, Te(t− 1) = 2s
}
| Ft−1

]]
·∆e,k

≤
logn∑
s=de

n∑
t=1

E

1 {Ce(t), Ge(t), Te(t− 1) = 2s}E
[
1

{
Eθe,k(t)

} ∣∣∣Ft−1

]
︸ ︷︷ ︸

λ


︸ ︷︷ ︸

Λ

·∆e,k .

(26)

To upper bound Λ, we divide all the instantiations Ft−1 of Ft−1 into two groups based on whether
1 {Ce(t), Ge(t), Te(t) = 2s} is 1 or 0.

Case 1: For the instantiation Ft−1 such that 1 {Ce(t), Ge(t), Te(t− 1) = 2s} = 0, we have Λ = 0.

Case 2: For the instantiation Ft−1 such that 1 {Ce(t), Ge(t), Te(t− 1) = 2s} = 1, we construct an upper bound for
λ. To do so, recall that θe(t) ∼ N

(
w′

e,Te(t−1)(t),
1

Te(t−1)

)
, where w′

e,Te(t−1)(t) = w̃e,Te(t−1)(t − 1) + 3 ln(Kt)
ε0·Te(t−1)

and N (µ, σ2) is a normal distribution with mean µ and variance σ2. We have

w′
e,Te(t−1)(t) = w̃e,Te(t−1)(t− 1) +

3 ln(Kt)

ε0 · Te(t− 1)

≤ ŵe,Te(t−1)(t− 1) +
6 ln(Kt)

ε0 · Te(t− 1)
(since 1 {Ge(t− 1)} = 1)

≤ w̄(e) +
6 ln(Kt)

ε0 · Te(t− 1)
+

√
3 ln(Kt)

Te(t− 1)
(since 1 {Ce(t− 1)} = 1)

= w̄(e) +
6 ln(Kt)

ε0 · 2s
+

√
3 ln(Kt)

2s
(since 1 {Te(t− 1) = 2s} = 1)

≤ w̄(e) +
∆e,k

12
+

∆e,k√
18

for s ≥

log 72 ln(nK)

min
{
∆2

e,k, ε0 ·∆e,k

}



≤ w̄(e) +
1

3
∆e,k .

From first-order stochastic dominance, we know aN
(
w′

e,Te(t−1)(t),
1

Te(t−1)

)
distributed random variable is stochas-

tically dominated by a N
(
w̄(e) + 1

3∆e,k,
1

Te(t−1)

)
distributed random variable. Next, we slightly abuse the notation

and use P
{
N (µ, σ2) > ye,k

}
to denote the probability that a N (µ, σ2) distributed random variable is drawn greater

than ye,k. Now, we construct an upper bound for E
[
1

{
Eθe,k(t)

} ∣∣∣Ft−1 = Ft−1

]
by using the first-order stochastic

18
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dominance between two Gaussian distributed random variables. We have

E
[
1

{
Eθe,k(t)

} ∣∣∣Ft−1 = Ft−1

]
= P

{
θe(t) > w̄(e) +

2

3
∆e,k

}
= P

{
N
(
w′

e,Te(t−1)(t),
1

Te(t− 1)

)
> w̄(e) +

2

3
∆e,k

}
≤ P

{
N
(
w̄(e) +

1

3
∆e,k,

1

Te(t− 1)

)
> w̄(e) +

2

3
∆e,k

}
= P

{
N
(
w̄(e),

1

Te(t− 1)

)
> w̄(e) +

1

3
∆e,k

}
(♣)

≤ exp

− 1

18
·∆2

e,k ·
72 ln(nK)

min
{
∆2

e,k, ε0 ·∆e,k

}


≤ O

(
1

(nK)4

)
,

(27)

where (♣) uses the concentration bounds for a normally distributed random variable (Fact 5) and the fact that Te(t−
1) = 2s ≥ 72 ln(nK)

min{∆2
e,k,ε0·∆e,k} .

Putting all the pieces together, we have Γ2,k,e ≤ O
(

1
K2

)
. Now, we use similar arguments that have been used for

the proofs of Theorem 2 to upper bound term V in (23). Recall that Te(t − 1) is a counter that counts the number of
fresh observations that has been used to compute the differentially private empirical mean of a sub-optimal base arm
e. For all the rounds when the counter is in the range of [0, le,1], the total regret among all these rounds is at most
∆e,1 · O (le,1). For all the rounds when the values of the counter are in the range of [le,1 + 1, le,2], the total regret
among all these rounds is upper bounded by ∆e,2 ·O (le,2 − le,1)+Γ2,1,e ≤ ∆e,2 ·O (le,2 − le,1)+O(1/K). Finally,
for all the rounds when the values of the counter are in the range of [le,K−1 + 1, le,K ], the total regret among all these
rounds is at most ∆e,K ·O (le,K − le,K−1)+

∑K−1
k=1 Γ2,k,e ≤ ∆e,K ·O (le,K − le,K−1)+O(1/K). For all the rounds

after the counter hits le,K , the total regret is at most
∑K

k=1 Γ2,k,e ≤ O(1/K).

By using Lemma 1, we have

V ≤
∑

e∈Ā∗

(
∆e,1 ·O (le,1) +

K∑
k=2

∆e,k ·O (le,k − le,k−1) +
K+1∑
k=2

k−1∑
q=1

Γ2,q,e

)
≤
∑

e∈Ā∗
O
(

ln(Kn)
∆e,min

+ K ln(Kn)
ε0

)
.

(28)
Similarly, by using Lemma 2, we have

V ≤
∑
e∈Ā∗

O(ln(Kn)) ·
(

2

∆e,K
+

log(Kn)

ε0

)
=
∑
e∈Ā∗

O

(
ln(Kn)

∆e,min
+

ln2(Kn)

ε0

)
. (29)

Combining (28) and (29), we have

V ≤
∑
e∈Ā∗

O(ln(Kn)) ·
(

2

∆e,K
+

log(Kn)

ε0

)
=
∑
e∈Ā∗

O

(
ln(Kn)

∆e,min
+

min {K, ln(Kn)} · ln(Kn)

ε0

)
. (30)

Bounding Ue,k and U : Recall

U =

K∑
k=1

∑
e∈Ā∗

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), e↔ a∗k

}]
·∆e,k︸ ︷︷ ︸

Ue,k

. (31)
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Let l∗e,k :=

⌈
288 ln(L2(n+e32))

∆2
e,k

⌉
and d∗e,k = log

(
l∗e,k

)
. We first decompose Ue,k as

Ue,k =

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), e↔ a∗k

}]
·∆e,k

≤
n∑

t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t), e↔ a∗k

}]
+

n∑
t=1

E
[
1

{
Ga∗

k
(t)
}]

︸ ︷︷ ︸
O( 1

K2 ), Lemma 4

=

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t), e↔ a∗k, Ta∗

k
(t− 1) ≤ l∗e,k

}]
︸ ︷︷ ︸

Γ1,k,e

·∆e,k

+

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t), e↔ a∗k, Ta∗

k
(t− 1) > l∗e,k

}]
·∆e,k +O

(
1

K2

)
︸ ︷︷ ︸

Γ2,k,e

.

(32)

Let Y θ
e,k(t) := P

{
θa∗

k
(t) > ye,k

∣∣Ft−1

}
. Then, we have

Γ1,k,e =

n∑
t=1

E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t), e↔ a∗k, Ta∗

k
(t− 1) ≤ l∗e,k

}]
=

n∑
t=1

E
[
E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t), e↔ a∗k, Ta∗

k
(t− 1) ≤ l∗e,k

} ∣∣∣Ft−1

]]
=

n∑
t=1

E
[
E
[
1

{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t), e↔ a∗k

}
· 1
{
Ta∗

k
(t− 1) ≤ l∗e,k

} ∣∣∣Ft−1

]]
=

n∑
t=1

E
[
1
{
Ta∗

k
(t− 1) ≤ l∗e,k, e↔ a∗k

}
· P
{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t)
∣∣∣Ft−1

}]
(a)

≤
n∑

t=1

E

[
1
{
Ta∗

k
(t− 1) ≤ l∗e,k, e↔ a∗k

}
·
1− Y θ

e,k(t)

Y θ
e,k(t)

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t), Ga∗
k
(t)
∣∣∣Ft−1

}]

≤
n∑

t=1

E

1{Ta∗
k
(t− 1) ≤ l∗e,k, e↔ a∗k

}
·
1− Y θ

e,k(t)

Y θ
e,k(t)

1

{
at
π−1
t (k)

= a∗k, Ga∗
k
(t)
}

︸ ︷︷ ︸
η

 ,

(33)

where inequality (a) uses Lemma 5.

We now reduce the proof to the non-private setting. First, we divide all the instantiations Ft−1 of Ft−1 into two groups
depending on whether 1

{
Ga∗

k
(t), Ta∗

k
(t− 1) ≤ l∗e,k

}
is 1 or 0.

Case 1: For Ft−1 such that 1
{
Ga∗

k
(t), Ta∗

k
(t− 1) ≤ l∗e,k

}
= 0, we have η = 0.

Case 2: For Ft−1 such that 1
{
Ga∗

k
(t), Ta∗

k
(t− 1) ≤ l∗e,k

}
= 1, we have w′

a∗
k,Ta∗

k
(t−1)(t) = w̃a∗

k,Ta∗
k
(t−1)(t− 1) +

3 ln(Kt)
ε0·Ta∗

k
(t−1) ≥ ŵa∗

k,Ta∗
k
(t−1)(t−1). Since a random variable drawn fromN (µ, σ2) first-order stochastically dominates

a random variable drawn from N (µ′, σ2) if µ ≥ µ′, we have

1− Y θ
e,k(t)

Y θ
e,k(t)

=
P
{
θa∗

k
(t) ≤ ye,k

∣∣Ft−1 = Ft−1

}
P
{
θa∗

k
(t) > ye,k

∣∣Ft−1 = Ft−1

} ≤ P
{
θ̂a∗

k
(t) ≤ ye,k

∣∣∣Ft−1 = Ft−1

}
P
{
θ̂a∗

k
(t) > ye,k

∣∣∣Ft−1 = Ft−1

} ,
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where θ̂a∗
k
(t) ∼ N

(
ŵa∗

k,Ta∗
k
(t−1)(t− 1), 1

Ta∗
k
(t−1)

)
.

From these two cases, for any Ft−1, we have

η ≤
P
{
θ̂a∗

k
(t) ≤ ye,k

∣∣∣Ft−1 = Ft−1

}
P
{
θ̂a∗

k
(t) > ye,k

∣∣∣Ft−1 = Ft−1

} 1

{
at
π−1
t (k)

= a∗k, Ga∗
k
(t)
}

. (34)

Now, the proof is reduced to the non-private setting. We divide all the n rounds depending on when the empirical
mean of a∗k changes, i.e., whether ŵa∗

k,Ta∗
k
(t−1)(t − 1) changes. Let τs denote the round by the end of which we use

fresh 2s observations to update the empirical mean of a∗k. Note that τs is random. Then, we have

(33) ≤
d∗
e,k∑

s=0
E
[

τs+1∑
t=τs+1

P
{
θ̂a∗

k
(t)≤ye,k

∣∣∣Ft−1=Ft−1

}
P
{
θ̂a∗

k
(t)>ye,k

∣∣∣Ft−1=Ft−1

} · 1{at
π−1
t (k)

= a∗k

}
· 1
{
Ga∗

k
(t)
}]

≤
d∗
e,k∑

s=0
E
[

τs+1∑
t=τs+1

P
{
θ̂a∗

k
(t)≤ye,k

∣∣∣Ft−1=Ft−1

}
P
{
θ̂a∗

k
(t)>ye,k

∣∣∣Ft−1=Ft−1

} · 1{at
π−1
t (k)

= a∗k

}]
≤

d∗
e,k∑

s=0
E
[
2s+1 ·

P
{
θ̂a∗

k
(τs+1)≤ye,k

∣∣∣Fτs=Fτs

}
P
{
θ̂a∗

k
(τs+1)>ye,k

∣∣∣Fτs=Fτs

} ]
≤ O

(
ln(Kn)
∆2

e,k

)
,

(35)

where the last inequality uses Fact 4.

Similarly, we will have

Γ2,k,e ≤
log(n)∑

s=d∗
e,k+1

E
[
2s+1 ·

P
{
θ̂a∗

k
(τs+1)≤ye,k

∣∣∣Fτs=Fτs

}
P
{
θ̂a∗

k
(τs+1)>ye,k

∣∣∣Fτs=Fτs

} ] ·∆e,k

≤ O
(

1
L2

)
.

(36)

We use the following arguments to complete the proof. Now, as we are tracking the number of observations of the
optimal base arm a∗k, i.e., we are tracking Ta∗

k
(t− 1). For a fixed k, we arrange all the mean reward gaps ∆e,k for all

e ∈ Ā∗ in a descending order ∆e1,k ≥ ∆e2,k ≥ . . . ≥ ∆eL−K ,k =: ∆emin,k.

For all the rounds when the counter is in the range of
[
0, l∗e1,k

]
, the total regret among all these rounds is at most ∆e1,k ·

O
(
l∗e1,k

)
. When the counter is in the range of

[
l∗e1,k + 1, l∗e2,k

]
, the total regret is at most ∆e2,k ·O

(
l∗e2,k − l∗e1,k

)
+

Γ2,k,e1 ≤ ∆e2,k ·O
(
l∗e2,k − l∗e1,k

)
+O(1/K). Finally, when the counter is in the range of

[
l∗eL−K−1,k

+ 1, l∗eL−K ,k

]
,

the total regret among all these rounds is at most ∆eL−K−1,k·O
(
l∗eL−K+1,k

− l∗eL−K ,k

)
+

L−K−1∑
q=1

Γ2,k,eq ≤ ∆eL−K−1,k·

O
(
l∗eL−K ,k − l∗eL−K−1,k

)
+ O(1/K). For all the rounds after the counter hits l∗eL−K ,k, the total regret is at most

K∑
k=1

O(1/L2) ≤ O(1/K).

By combining all these pieces together and using Lemma 3, we have

U ≤
K∑

k=1

O

(
ln(Kn)

∆k,min

)
. (37)

Lemma 4. We have
n∑

t=1

E
[
1

{
Ge(t)

}]
≤ O

(
1

K2n2

)
,

and
n∑

t=1

E
[
1

{
Ce(t)

}]
≤ O

(
1

K2n2

)
.
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Proof. Proof of Lemma 4:The proofs use concentration bounds of Laplace distributions and Hoeffding’s inequality.
We have

n∑
t=1

E
[
1

{
Ge(t)

}]
=

n∑
t=1

P
{
|w̃e,Te(t−1)(t− 1)− ŵe,Te(t−1)(t− 1)| > 3 ln(Kt)

ε0 · Te(t− 1)

}

≤
n∑

t=1

log(t−1)∑
s=0

P
{
|w̃e,2s(t− 1)− ŵe,2s(t− 1)| > 3 ln(Kt)

ε0 · 2s

}

≤
n∑

t=1

log(t−1)∑
s=0

P
{
|2s · w̃e,2s(t− 1)− 2s · ŵe,2s(t− 1)| > 3 ln(Kt)

ε0

}

=

n∑
t=1

log(t−1)∑
s=0

e−3 ln(Kt)

≤ O

(
1

K2n2

)
,

where the second Inequality used the concentration bound of a Laplace random variable (Fact 3).

Similarly, we have

n∑
t=1

E
[
1

{
Ce(t)

}]
=

n∑
t=1

P

{
|ŵe,Te(t−1)(t− 1)− w̄(e)| >

√
3 ln(Kt)

Te(t− 1)

}

≤
n∑

t=1

log(t−1)∑
s=0

P

{
|ŵe,2s(t− 1)− w̄(e)| >

√
3 ln(Kt)

2s

}

≤
n∑

t=1

log(t−1)∑
s=0

2e−2·2s· 3 ln(Kt)
2s

≤ O

(
1

K2n2

)
,

where the second inequality uses Hoeffding’s inequality (Fact 2).

Lemma 5. For all t and for any instantiation Ft−1 of Ft−1, we have

P
{
at
π−1
t (k)

= e, Eθe,k(t), Ga∗
k
(t)
∣∣∣Ft−1 = Ft−1

}
≤

1− Y θ
e,k(t)

Y θ
e,k(t)

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t), Ga∗
k
(t)
∣∣∣Ft−1 = Ft−1

}
.

(38)

Proof of Lemma 5. We start by noting that the event Ga∗
k
(t) is determined by the history Ft−1.

Case 1: If Ft−1 is the one such that Ga∗
k
(t) is false, then both sides of the inequality shown in (38) are zero, and the

inequality trivially holds.

Case 2: If Ft−1 is the one such that Ga∗
k
(t) is true, we can omit Ga∗

k
in both sides in (38). Let π−1

t (k) = i and
At

i−1 =
{
at1, . . . , a

t
i−1

}
be the set of the first i−1 base arms selected greedily by Algorithm 3. To complete the proof,

it suffices to show

P
{
at
π−1
t (k)

= e, Eθe,k(t)
∣∣∣Ft−1 = Ft−1, A

t
i−1

}
≤

1− Y θ
e,k(t)

Y θ
e,k(t)

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t)
∣∣∣Ft−1 = Ft−1, A

t
i−1

}
.

(39)
Let σ(At

i−1) =
{
e : e ∈ E \At

i−1, A
t
i−1 ∪ {e} ∈ I

}
be the set of base arms that can be added to the current solution

set At
i−1. Note that a∗k ∈ σ(At

i−1) and a∗k /∈ At
i−1.
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We first construct an upper bound for the LHS of (39). We have

P
{
at
π−1
t (k)

= e, Eθe,k(t)
∣∣∣Ft−1 = Ft−1, A

t
i−1

}
≤ P

{
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1)
∣∣Ft−1 = Ft−1, A

t
i−1

}
(♠)
= P

{
θa∗

k
(t) ≤ ye,k

∣∣At
i−1,Ft−1 = Ft−1

}
· P
{
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
∣∣Ft−1 = Ft−1, A

t
i−1

}
= P

{
θa∗

k
(t) ≤ ye,k

∣∣Ft−1 = Ft−1

}
· P
{
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
∣∣Ft−1 = Ft−1, A

t
i−1

}
= (1− Y θ

e,k(t)) · P
{
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
∣∣Ft−1 = Ft−1, A

t
i−1

}
,

(40)

where (♠) uses the fact that θa∗
k
(t) and all base arms in σ(At

i−1) are independent.

Similarly, the RHS of (39) is lower bounded by

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t)
∣∣∣Ft−1 = Ft−1, A

t
i−1

}
≥ P

{
θa∗

k
(t) > ye,k ≥ θj(t),∀j ∈ σ(At

i−1) \ {a∗k}
∣∣Ft−1 = Ft−1, A

t
i−1

}
= P

{
θa∗

k
(t) > ye,k

∣∣Ft−1 = Ft−1A
t
i−1

}
· P
{
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
∣∣Ft−1 = Ft−1, A

t
i−1

}
= Y θ

e,k(t) · P
{
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
∣∣Ft−1 = Ft−1, A

t
i−1

}
.

(41)

Combining (40) and (41) gives

P
{
at
π−1
t (k)

= e, Eθe,k(t)
∣∣∣Ft−1 = Ft−1, A

t
i−1

}
≤

1− Y θ
e,k(t)

Y θ
e,k(t)

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t)
∣∣∣Ft−1 = Ft−1, A

t
i−1

}
.

(42)
To get the stated result, we use law of total expectation and the fact that Y θ

e,k is determined by Ft−1. We have

P
{
at
π−1
t (k)

= e, Eθe,k(t)
∣∣∣Ft−1 = Ft−1

}
=E

[
1
{
at
π−1
t (k)

= e, Eθe,k(t)
} ∣∣∣Ft−1 = Ft−1

]
=E
[
P
{
at
π−1
t (k)

= e, Eθe,k(t)
∣∣∣At

i−1,Ft−1 = Ft−1

} ∣∣∣Ft−1 = Ft−1

]
≤E

[
1− Y θ

e,k(t)

Y θ
e,k(t)

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t)
∣∣∣At

i−1,Ft−1 = Ft−1

} ∣∣∣∣∣Ft−1 = Ft−1

]

=
1− Y θ

e,k(t)

Y θ
e,k(t)

P
{
at
π−1
t (k)

= a∗k, Eθe,k(t)
∣∣∣Ft−1 = Ft−1

}
,

(43)

where the only inequality uses (42).

Fact 2. (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables with each Xi ∈ [ai, bi]. Then, for
any ϵ > 0, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2n2ϵ2∑n

i=1(bi − ai)2

)
. (44)

Fact 3. ((Dwork et al., 2014, Fact 3.6); tail probability for Laplace distribution). If Y ∼ Lap(b), for any 0 < δ ≤ 1,
we have

P {|Y | ≥ b ln(1/δ)} = δ . (45)
Fact 4. (Agrawal & Goyal, 2017, Lemma 2.13). Let τs be the round by the end of which we use fresh 2s observations
to update the empirical mean of an optimal base arm a∗k. Then, we have

E

[
1− Y θ̂

r,k(τs + 1)

Y θ̂
r,k(τs + 1)

]
≤

{
O(1) ∀s ,
O
(

1
L2n

)
s ≥ log

(
l∗e,k

)
,

where l∗e,k :=

⌈
log

(
288 ln(L2(n+e32))

∆2
e,k

)⌉
.

Fact 5. (Gaussian tail bound). Let X be a Gaussian distributed random variable with mean E[X] and variance σ2,
then for any t we have

P {X − E[X] > t} ≤ e−
t2

2σ2 . (46)
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