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ABSTRACT

We propose an efficient online approximate Bayesian inference algorithm for estimating the param-
eters of a nonlinear function from a potentially non-stationary data stream. The method is based
on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of
the posterior precision matrix, which gives a cost per step which is linear in the number of model
parameters. In contrast to methods based on stochastic variational inference, our method is fully
deterministic, and does not require step-size tuning. We show experimentally that this results in
much faster (more sample efficient) learning, which results in more rapid adaptation to changing
distributions, and faster accumulation of reward when used as part of a contextual bandit algorithm.

1 INTRODUCTION

Suppose we observe a stream of labeled observations, Dt = {(xn
t ,y

n
t ) ∼ pt(x,y) : n = 1:Nt}, where xn

t ∈ X =
RD, yn

t ∈ Y = RC , and Nt is the number of examples at step t. (In this paper, we assume Nt = 1, since we are
interested in rapid learning from individual data samples.) Our goal is to fit a prediction model yt = h(xt,θ) in
an online fashion, where θ ∈ RP are the parameters of the model. (We focus on the case where h is a deep neural
network (DNN), although in principle our methods can also be applied to other (differentiable) parametric models.) In
particular, we want to recursively estimate the posterior over the parameters

p(θ|D1:t) ∝ p(yt|xt,θ)p(θ|D1:t−1) (1)

without having to store all the past data. Here p(θ|D1:t−1) is the posterior belief state from the previous step, and
p(yt|xt,θ) is the likelihood function given by

p(yt|xt,θ) =

{
N (yt|h(xt,θ),Rt) regression
Cat(yt|h(xt,θ)) classification

(2)

For regression, we assume h(xt,θ) ∈ RC returns the mean of the output, and Rt = RIC is the observation covariance,
which we view as a hyper-parameter. For classification, h(xt,θ) returns a C-dimensional vector of class probabilities,
which is the mean parameter of the categorical distribution.

In many problem settings (e.g., recommender systems (Huang et al., 2015), robotics (Wołczyk et al., 2021; Lesort
et al., 2020), and sensor networks (Ditzler et al., 2015)), the data distribution pt(x,y) may change over time (Gomes
et al., 2019). Hence we allow the model parameters θt to change over time, according to a simple Gaussian dynamics
model:1

pt(θt|θt−1) = N (θt|γtθt−1,Qt). (3)

where we usually take Qt = qI and γt = γ, where q ≥ 0 and 0 ≤ γ ≤ 1. Using q > 0 injects some noise at
each time step, and ensures that the model does not lose “plasticity”, so it can continue to adapt to changes (cf. Kurle
et al., 2020; Ash & Adams, 2020; Dohare et al., 2021), and using γ < 1 ensures the variance of the unconditional
stochastic process does not blow up. If we set q = 0 and γ = 1, this corresponds to a deterministic model in which
the parameters do not change, i.e.,

pt(θt|θt−1) = δ(θt − θt−1) (4)

1We do not assume access to any information about if and when the distribution shifts (sometimes called a “task boundary”),
since such information is not usually available. Furthermore, the shifts may be gradual, which makes the concept of task boundary
ill-defined.
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This is a useful special case for when we want to estimate the parameters from a stream of data coming from a static
distribution. (In practice we find this approach can also work well for the non-stationary setting.)

Recursively computing eq. (1) corresponds to Bayesian inference (filtering) in a state space model, where the dynamics
model in eq. (3) is linear Gaussian, but the observation model in eq. (2) is non-linear and possibly non-Gaussian. Many
approximate algorithms have been proposed for this task (see e.g. Sarkka, 2013; Murphy, 2023), but in this paper, we
focus on Gaussian approximations to the posterior, q(θt|D1:t) = N (θt|µt,Σt), since they strike a good balance
between efficiency and expressivity. In particular, we build on the extended Kalman filter (EKF), which linearizes the
observation model at each step, and then computes a closed form Gaussian update. The EKF has been used for online
training of neural networks in many papers (see e.g., Singhal & Wu, 1989; Watanabe & Tzafestas, 1990; Puskorius &
Feldkamp, 1991; Iiguni et al., 1992; Ruck et al., 1992; Haykin, 2001). It can be thought of as an approximate Bayesian
inference method, or as a natural gradient method for MAP parameter estimation (Ollivier, 2018), which leverages the
posterior covariance as a preconditioning matrix for fast Newton-like updates (Alessandri et al., 2007). The EKF was
extended to exponential family likelihoods in (Ollivier, 2018; Tronarp et al., 2018), which is necessary when fitting
classification models.

The main drawback of the EKF is that it takes O(P 3) time per step, where P = |θt| is the number of parame-
ters in the hidden state vector, because we need to invert the posterior covariance matrix. It is possible to derive
diagonal approximations to the posterior covariance or precision, by either minimizing DKL (p(θt|D1:t) ∥ q(θt)) or
DKL (q(θt) ∥ p(θt|D1:t)), as discussed in (Puskorius & Feldkamp, 1991; Chang et al., 2022; Jones et al., 2023). These
methods take O(P ) time per step, but can be much less statistically efficient than full-covariance methods, since they
ignore joint uncertainty between the parameters. This makes the method slower to learn, and slower to adapt to changes
in the data distribution, as we show in section 4.

In this paper, we propose an efficient and deterministic method to recursively minimize
DKL (N (θt|µt,Σt) ∥ p(θt|D1:t)), where we assume that the precision matrix is diagonal plus low-rank,
Σ−1

t = Υt + WtW
⊺
t , where Υt is diagonal and Wt ∈ RP×L for some memory limit L. The key insight is

that, if we linearize the observation model at each step, as in the EKF, we can use the resulting gradient vector or
Jacobian as “pseudo-observation(s)” that we append to Wt−1, and then we can perform an efficient online SVD
approximation to obtain Wt. We therefore call our method LO-FI, which is short for low-rank extended Kalman
filter. Our code is available at https://github.com/probml/rebayes.

We use the posterior approximation p(θt|D1:t) in two ways. First, under Bayesian updating the covariance matrix
Σt acts as a preconditioning matrix to yield a deterministic second-order Newton-like update for the posterior mean
(MAP estimate). This update does not have any step-size hyperparameters, in contrast to SGD. Second, the posterior
uncertainty in the parameters can be propagated into the uncertainty of the predictive distribution for observations,
which is crucial for online decision-making tasks, such as active learning (Holzmüller et al., 2022), Bayesian opti-
mization (Garnett, 2023), contextual bandits (Duran-Martin et al., 2022), and reinforcement learning (Khetarpal et al.,
2022; Wang et al., 2021).

In summary, our main contribution is a novel algorithm for efficiently (and deterministically) recursively updating
a diagonal plus low-rank (DLR) approximation to the precision matrix of a Gaussian posterior for a special kind
of state space model, namely an SSM with an arbitrary non-linear (and possibly non-Gaussian) observation model,
but with a simple linear Gaussian dynamics. This model family is ideally suited to online parameter learning for
DNNs in potentially non-stationary environments (but the restricted form of the dynamics model excludes some other
applications of SSMs). We show experimentally that our approach works better (in terms of accuracy for a given
compute budget) than a variety of baseline algorithms — including online gradient descent, online Laplace, diagonal
approximations to the EKF, and a stochastic DLR VI method called L-RVGA — on a variety of stationary and non-
stationary classification and regression problems, as well as a simple contextual bandit problem.

2 RELATED WORK

Since exact Bayesian inference is intractable in our model family, it is natural to compute an approximate posterior at
step t using recursive variational inference (VI), in which the prior for step t is the approximate posterior from step
t − 1 (Opper, 1998; Broderick et al., 2013). That is, at each step we minimize the ELBO (evidence lower bound),
which is equal (up to a constant) to the reverse KL, given by

L(µt,Σt) = DKL
(
N (θt|µt,Σt) ∥ Ztp(yt|xt,θt)qt|t−1(θt|D1:t−1)

)
(5)

where Zt is a normalization constant and qt = N (θt|µt,Σt) is the variational posterior which results from minimizing
this expression. The main challenge is how to efficiently optimize this objective.
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One common approach is to assume the variational family consists of a diagonal Gaussian. By linearizing the like-
lihood, we can solve the VI objective in closed form, as shown in (Chang et al., 2022); this is called the “varia-
tional diagonal EKF” (VD-EKF). They also propose a diagonal approximation which minimizes the forwards KL,
DKL (p(θt|D1:t) ∥ q(θt)), and show that this is equivalent to the “fully decoupled EKF” (FD-EKF) method of (Pusko-
rius & Feldkamp, 1991). Both of these methods are fully deterministic, which avoids the high variance that often
plagues stochastic VI methods (Wu et al., 2019; Haußmann et al., 2020).

It is also possible to derive diagonal approximations without linearizing the observation model. In (Kurle et al., 2020;
Zeno et al., 2018) they propose a diagonal approximation to minimize the reverse KL, DKL (q(θt) ∥ p(θt|D1:t)); this
requires a Monte Carlo approximation to the ELBO. In (Ghosh et al., 2016; Wagner et al., 2022), they propose a
diagonal approximation to minimize the forwards KL, DKL (p(θt|D1:t) ∥ q(θt)); this requires approximating the first
and second moments of the hidden units at every layer of the model using numerical integration.

(Farquhar et al., 2020) claims that, if one makes the model deep enough, one can get good performance using a
diagonal approximation; however, this has not been our experience. This motivates the need to go beyond a diagonal
approximation.

One approach is to combine diagonal Gaussian approximations with memory buffers, such as the variational continual
learning methd of (Nguyen et al., 2018) and other works (see e.g., (Kurle et al., 2020; Khan & Swaroop, 2021)).
However, we seek to find a richer approximation to the posterior that does not rely on memory buffers, which can be
problematic in the non-stationary setting.

(Zeno et al., 2021) proposes the FOO-VB method, which uses a Kronecker block structured approximation to the
posterior covariance. However, this method requires 2 SVD decompositions of the Kronecker factors for every layer
of the model, in addition to a large number of Monte Carlo samples, at each time step. In (Ong et al., 2018) they
compute a diagonal plus low-rank (DLR) approximation to the posterior covariance matrix using stochastic gradient
applied to the ELBO. In (Tomczak et al., 2020) they develop a version of the local reparameterization trick for the
DLR posterior covariance, to reduce the variance of the stochastic gradient estimate.

In this paper we use a diagonal plus low-rank (DLR) approximation to the posterior precision. The same form of ap-
proximation has been used in several prior papers. In (Mishkin et al., 2018) they propose a technique called “SLANG”
(stochastic low-rank approximate natural-gradient), which uses a stochastic estimate of the natural gradient of the
ELBO to update the posterior precision, combined with a randomized eigenvalue solver to compute a DLR approx-
imation. Their NGD approximation enables the variational updates to be calculated solely from the loss gradients,
whereas our approach requires the network Jacobian. On the other hand, our EKF approach allows the posterior
precision and the DLR approximation to be efficiently computed in closed form.

In (Lambert et al., 2021a), they propose a technique called “L-RVGA” (low-rank recursive variational Gaussian ap-
proximation), which uses stochastic EM to optimize the ELBO using a DLR approximation to the posterior precision.
Their method is a one-pass online method, like ours, and also avoids the need to tune the learning rate. However,
it is much slower, since it involves generating multiple samples from the posterior and multiple iterations of the EM
algorithm (see fig. 7 for an experimental comparison of running time).

The GGT method of (Agarwal et al., 2019) also computes a DLR approximation to the posterior precision, which they
use as a preconditioner for computing the MAP estimate. However, they bound the rank by simply using the most
recent L observations, whereas LO-FI uses SVD to combine the past data in a more efficient way.

The ORFit method of (Min et al., 2022) is also an online low-rank MAP estimation method. They use orthogonal
projection to efficiently compute a low rank representation of the precision at each step. However, it is restricted to
regression problems with 1d, noiseless outputs (i.e., they assume the likelihood has the degenerate form p(yt|xt,θt) =
N (h(xt,θt), 0).)

The online Laplace method of (Ritter et al., 2018; Daxberger et al., 2021) also computes a Gaussian approximation
to the posterior, but makes different approximations. In particular, for “task” t, it computes the MAP estimate θt =
argmaxθ log p(Dt|θ)+ logN (θ|µt−1,Σt−1), where Σt−1 = Λ−1

t−1 is the approximate posterior covariance from the
previous task. (This optimization problem is solved using SGD applied to a replay buffer.) This precision matrix is
usually approximated as a block diagonal matrix, with one block per layer, and the terms within each block may be
additionally approximated by a Kronecker product form, as in KFAC (Martens & Grosse, 2015). By contrast, LO-FI
computes a posterior, not just a point estimate, and approximates the precision as diagonal plus low rank. In the
appendix, we show experimentally that LO-FI outperforms online Laplace in terms of NLPD on various classification
and regression tasks.
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It is possible to go beyond Gaussian approximations by using particle filtering (see e.g., (Yang et al., 2023)). However,
we focus on faster deterministic inference methods, since speed is important for many real time online decision making
tasks (Ghunaim et al., 2023).

There are many papers on continual learning, which is related to online learning. However the CL literature usually
assumes the task boundaries, corresponding to times when the distribution shifts, are given to the learner (see e.g.,
(Delange et al., 2021; De Lange & Tuytelaars, 2021; Wang et al., 2022; Mai et al., 2022; Mundt et al., 2023; Wang
et al., 2023).) By contrast, we are interested in the continual learning setting where the distribution may change at
unknown times, in a continuous or discontinuous manner (c.f., (Gama et al., 2013)); this is sometimes called the
“task agnostic” or “streaming” setting. Furthermore, our goal is accurate forecasting of the future (which can be
approximated by our estimate of the “current” distribution), so we are less concerned with performance on “past”
distributions that the agent may not encounter again; thus “catastrophic forgetting” (see e.g., (Parisi et al., 2019)) is
not a focus of this work (c.f., (Dohare et al., 2021)).

3 METHODS

In LO-FI, we approximate the belief state by a Gaussian, p(θt|D1:t) = N (µt,Σt), where the posterior precision is
diagonal plus low rank, i.e., it has the form Σ−1

t = Υt +WtW
T
t , where Υt is diagonal and Wt is a P × L matrix.

We denote this class of models by DLR(L), where L is the rank. Below we show how to efficiently update this belief
state in a recursive (online) fashion. This has two main steps — predict (see algorithm 2) and update (see algorithm 3)
— which are called repeatedly, as shown in algorithm 1. The predict step takes O(PL2 + L3) time, and the update
step takes O(P (L+ C)2) time, where C is the number of outputs.

Algorithm 1: LOFI main loop.
1 def lofi(µ0,Υ0,x1:T ,y1:T , γ1:T , q1:T , L, h)
2 W0 = 0
3 foreach t = 1 : T do
4 (µt|t−1,Υt|t−1,Wt|t−1, ŷt) = predict(µt−1,Υt−1,Wt−1,xt, γt, qt, h)
5 (µt,Υt,Wt) = update(µt|t−1,Υt|t−1,Wt|t−1,xt,yt, ŷt, h, L)
6 callback(ŷt,yt)

3.1 PREDICT STEP

Algorithm 2: LO-FI predict step.
1 def predict(µt−1,Υt−1,Wt−1,xt, γt, qt, h):
2 µt|t−1 = γtµt−1 // Predict the mean of the next state

3 Υt|t−1 =
(
γ2
tΥ

−1
t−1 + qtIP

)−1
// Predict the diagonal precision

4 Ct =
(
IL + qtW

T
t−1Υt|t−1Υ

−1
t−1Wt−1

)−1

5 Wt|t−1 = γtΥt|t−1Υ
−1
t−1Wt−1chol(Ct) // Predict the low-rank precision

6 ŷt = h
(
xt,µt|t−1

)
// Predict the mean of the output

7 Return (µt|t−1,Υt|t−1,Wt|t−1, ŷt)

In the predict step, we go from the previous posterior, p(θt−1|D1:t−1) = N (θt−1|µt−1,Σt−1), to the one-step-ahead
predictive distribution, p(θt|D1:t−1) = N (θt|µt|t−1,Σt|t−1). To compute this predictive distribution, we apply the
dynamics in eq. (3) with Qt = qtI to get µt|t−1 = γtµt−1 and Σt|t−1 = γ2

tΣt−1 + qtIP . However, this recursion
is in terms of the covariance matrix, but we need the corresponding result for a DLR precision matrix in order to be
computationally efficient. In appendix A.1 we show how to use the matrix inversion lemma to efficiently compute
Σ−1

t|t−1 = Υt|t−1 + Wt|t−1W
T
t|t−1. The result is shown in the pseudocode in algorithm 2, where A = chol(B)

denotes Cholesky decomposition (i.e., AAT = B). The cost of computing Υt|t−1 is O(P ) since it is diagonal. The
cost of computing Wt|t−1 is O(PL2 + L3). If we use a full-rank approximation, L = P , we recover the standard
EKF predict step.
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3.2 UPDATE STEP

Algorithm 3: LO-FI update step.
1 def update(µt|t−1,Υt|t−1,Wt|t−1,xt,yt, ŷt, h, L):
2 Rt = hV (xt,µt|t−1) // Covariance of predicted output
3 Lt = chol(Rt)

4 At = L−1
t

5 Ht = jac(h(xt, ·))(µt|t−1) // Jacobian of observation model
6 W̃t =

[
Wt|t−1 HT

tA
T
t

]
// Expand low-rank with new observation

7 Gt =
(
IL̃ + W̃T

tΥ
−1
t|t−1W̃t

)−1

8 Ct = HT
tA

T
tAt

9 Kt = Υ−1
t|t−1Ct −Υ−1

t|t−1W̃tGtW̃
T
tΥ

−1
t|t−1Ct // Kalman gain matrix

10 µt = µt|t−1 +Kt(yt − ŷt) // Mean update
11 (Λ̃t, Ũt) = SVD(W̃t) // Take SVD of the expanded low-rank

12 (Λt,Ut) =
(
Λ̃t, Ũt

)
[:, 1:L] // Keep top L most important terms

13 Wt = UtΛt // New low-rank approximation

14 (Λ×
t ,U

×
t ) =

(
Λ̃t, Ũt

)
[:, (L+ 1):L̃] // Extract remaining least important terms

15 W×
t = U×

t Λ
×
t // The low-rank part that is dropped

16 Υt = Υt|t−1 + diag
(
W×

t (W
×
t )

T
)

// Update diagonal to capture variance due to dropped terms
17 Return (µt,Υt,Wt)

In the update step, we go from the prior predictive distribution, p(θt|D1:t−1) = N (θt|µt|t−1,Σt|t−1), to the posterior
distribution, p(θt|D1:t) = N (θt|µt,Σt). Unlike the predict step, this cannot be computed exactly. Instead we will
compute an approximate posterior qt by minimizing the KL objective in eq. (5). One can show (see e.g., Opper &
Archambeau, 2009; Kurle et al., 2020; Lambert et al., 2021b) that the optimum must satisfy the following fixed-point
equations:

µt = µt|t−1 +Σt−1∇µtEqt [log p(yt|θt)] = µt|t−1 +Σt−1Eqt [∇θt
log p(yt|θt)] (6)

Σ−1
t = Σ−1

t|t−1 − 2∇Σt
Eqt [log p(yt|θt)] = Σ−1

t|t−1 − Eqt

[
∇2

θt
log p(yt|θt)

]
(7)

Note that this is an implicit equation, since qt occurs on the left and right hand sides. A common approach to solving
this optimization problem (e.g., used in (Mishkin et al., 2018; Kurle et al., 2020; Lambert et al., 2021b)) is to approx-
imate the expectation with samples from the prior predictive, qt|t−1. In addition, it is common to approximate the
Hessian matrix with the generalized Gauss Newton (GGN) matrix, which is derived from the Jacobian, as we explain
below. In this paper we replace the Monte Carlo expectations with analytic methods, by leveraging the same GGN
approximation. We then generalize to the low-rank setting to make the method efficient.

In more detail, we compute a linear-Gaussian approximation to the likelihood function, after which the KL optimiza-
tion problem can be solved exactly by performing conjugate Bayesian updating. To approximate the likelihood, we
first linearize the observation model about the prior predictive mean:

ĥt(θt) = h(xt,µt|t−1) +Ht(θt − µt|t−1) (8)

where Ht is the C × P Jacobian of h(xt, ·) evaluated at µt|t−1. To handle non-Gaussian outputs, we follow Ol-
livier (2018) and Tronarp et al. (2018), and approximate the output distribution using a Gaussian, whose conditional
moments are given by

ŷt = E
[
yt|xt,θt = µt|t−1

]
= h(xt,µt|t−1) (9)

Rt = Cov
[
yt|xt,θt = µt|t−1

]
= hV (xt,µt|t−1) =

{
Rt IC regression
diag(ŷt)− ŷtŷ

T
t classification

(10)

where ŷt is a vector of C probabilities in the case of classification.2

2In the classification case, Rt has rank C − 1, due to the sum-to-one constraint on ŷt. To avoid numerical problems when
computing R−1

t , we can either drop one of the dimensions, or we can use a pseudoinverse. The pseudoinverse works because the
kernel of Rt is contained in the kernel of HT

t .
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Under the above assumptions, we can use the standard EKF update equations (see e.g., Sarkka, 2013). In appendix A.2
we extend these equations to the case where the precision matrix is DLR; this forms the core of our LO-FI method.
The basic idea is to compute the exact update to get Σ∗−1

t = Υt + W̃tW̃
T
t , where W̃t extends Wt|t−1 with C

additional columns coming from the Jacobian of the observation model, and then to project W̃t back to rank L using
SVD to get Σ−1

t = Υt +WtW
T
t , where Υt is chosen so as to satisfy diag(Σ−1

t ) = diag(Σ∗−1
t ). See algorithm 3

for the resulting pseudocode. The cost is dominated by the O(PL̃2) time needed for the SVD, where L̃ = L+ C.3

To gain some intuition for the method, suppose the output is scalar, with variance R = 1. Then we have At = 1
and HT

t = ∇θt
h(xt,θt) = gt as the approximate linear observation matrix. (Note that, for a linear model, we have

gt = xt.) In this case, we have W̃t =
[
Wt|t−1 gt

]
. Thus W̃t acts like a generalized memory buffer that stores

data using a gradient embedding. This allows an interpretation of our method in terms of the neural tangent kernel
(Jacot et al., 2018), although we leave the details to future work.

3.3 PREDICTING THE OBSERVATIONS

So far we have just described how to recursively update the belief state for the parameters. To predict the output yt

given a test input xt, we need to compute the one-step-ahead predictive distribution

p(yt|xt,D1:t−1) =

∫
p(yt|xt,θt)p(θt|D1:t−1)dθt (11)

The negative log of this, − log p(yt|xt,D1:t−1), is called the negative log predictive density or NLPD. If we ignore
the posterior uncertainty, this integral gives us the following plugin approximation, given by

p(yt|xt,D1:t−1) ≈
∫

p(yt|xt,θt)N (θt|µt|t−1, 0I)dθt = p(yt|xt,µt|t−1) (12)

The negative log of this, − log p(yt|xt,µt|t−1), is called the negative log likelihood or NLL. We report NLL results
in the main paper, since they are easy to compute.

However, we can get better performance by using more accurate approximations to the integral. The simplest approach
is to use Monte Carlo sampling; alternatively we can use deterministic approximations, as discussed in appendix B.
We find that naively passing posterior samples through the model can result in worse performance than using the
plugin approximation, which just uses the posterior mode. However, if we pass the samples through the linearized
observation model, as proposed in (Immer et al., 2021), we find that the NLPD can outperform the NLL, as shown in
appendix D.3 and appendix D.6 in the appendix.

3.4 INITIALIZATION AND HYPER-PARAMETER TUNING

The natural way to initialize the belief state is use a vague Gaussian prior of the form p(θ0) = N (0,Υ0), where
Υ0 = η0IP and η0 is a hyper-parameter that controls the strength of the prior. However, plugging in all 0s for the
weights will result in a prediction of 0, which will result in a zero gradient, and so no learning will take place. (With
µ0 = 0, no deterministic algorithm can ever break the network’s inherent symmetry under permutation of the hidden
units.) So in practice we sample the initial mean weights using a standard neural network initialization procedure,
such as “LeCun-Normal”, which has the form µ0 ∼ N (0,S0), where S0 is diagonal and S0[j, j] = 1/Fj is the fan-in
of weight j. (The bias terms are initialized to 0.) We then set Υ0 = η0IP and W0 = [0]P×L.4

The hyper-parameters of our method are the initial prior precision η0, the dynamics noise q, the dynamics scaling factor
γ, and (for regression problems), the observation variance R. These play a role similar to the hyper-parameters of a
standard neural network, such as degree of regularization and the learning rate. We optimize these hyper-parameters
using Bayesian optimization, where the objective is the validation set NLL for stationary problems, or the average
one-step-ahead NLL (aka prequential loss) for non-stationary problems. For details, see appendix C.

3Computing the SVD takes O(P (L + C)2) time in the update step (for both spherical and diagonal approximations), which
may be too expensive. In appendix F.5.2 we derive a modified update step which takes O(PLC) time, but which is less accurate.
The approach is based on the ORFit method (Min et al., 2022), which uses orthogonal projections to make the SVD fast to compute.
However, we have found its performance to be quite poor (no better than diagonal approximations), so we have omitted its results.

4To make the prior accord with the non-spherical distribution from which we sample µ0, we can scale the parameters by the
fan-in, to convert to a standardized coordinate frame. However we found this did not seem to make any difference in practice, at
least for our classification experiments.
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Figure 1: Test set misclassification rate vs number of observations on (a) the static fashion-MNIST dataset. Figure
generated by generate stationary clf plots.ipynb (b) Gradually rotating fashion-MNIST. Figure generated by gener-
ate rotated clf plots.ipynb (c) Piecewise stationary permuted fashion-MNIST. The task boundaries are denoted by
vertical lines. We show performance on the current task. Figure generated by generate permuted clf plots.ipynb

4 EXPERIMENTS

In this section, we report experimental results on various classification and regression datasets. using the following
approximate inference techniques: LO-FI (this paper); FDEKF (fully decoupled diagonal EKF) (Puskorius & Feld-
kamp, 2003); VDEKF (variational diagonal EKF) (Chang et al., 2022); SGD-RB (stochastic gradient descent with
FIFO replay buffer), with memory buffer of size B, using either sgd or adam as the optimizer; online gradient descent
(OGD), which corresponds to SGD-RB with B = 1; the LRVGA method of (Lambert et al., 2021a) (for the NLPD
results in appendix D.1); and the online Laplace approximation of (Ritter et al., 2018) (for the NLPD results in ap-
pendix D.3 and appendix D.6). For additional results, see appendix D. For the source code to reproduce these results,
see https://github.com/probml/rebayes.

4.1 CLASSIFICATION

In this section, we report results on various image classification datasets. We use a 2-layer MLP (with 500 hidden
units each), which has 648, 010 parameters. (For results using a CNN, see appendix D.3 in the appendix.)

Stationary distribution We start by considering the fashion-MNIST image classification dataset (Xiao et al. (2017)).
For replay-SGD, we use a replay buffer of size 10 and tune the learning rate. In fig. 1a we plot the misclassification
rate on the test set vs number of training samples using the MLP. (We show the mean and standard error over 100
random trials.) We see that LOFI (with L = 10) is the most sample efficient learner, then replay SGD (with B = 10),
then replay Adam; the diagonal EKF versions and OGD are the least sample efficient learners.
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In the appendix we show the following additional results. In fig. 10a we show the results using NLL as the evaluation
metric; in this case, the gap between LOFI and the other methods is similarly noticeable. In fig. 10b we show the
results using NLPD under the generalized probit approximation; the performance gap reduces but LO-FI is still the
best method (see appendix B for discussion on analytical approximations to the NLPD). In fig. 11 we show results
using a CNN (a LeNet-style architecture with 3 hidden layers and 421,641 parameters); trends are similar to the MLP
case. In fig. 12 we show how changing the rank L of LO-FI affects performance within the range 1 to 50. We see that
for both NLL and misclassification rate, larger L is better, with gains plateauing at around L ≈ 10. We also show that
a spherical approximation to LO-FI, discussed in appendix F in the appendix, gives worse results.

Piecewise stationary distribution To evaluate model performance in the non-stationary classification setting, we
perform inference under the incremental domain learning scenario using the permuted-fashion-MNIST dataset (Hsu
et al., 2018). After every 300 training examples, the images are permuted randomly and we compare performances
across 10 consecutive tasks.

In fig. 1c we plot the performance over the current test set for each task (each test size has size 500) as a function of the
number of training samples. (We show mean and standard error across 20 random initializations of the dataset). The
task boundaries are denoted by vertical dotted lines (this boundary information is not available to the learning agents,
and is only used for evaluation). We see that LO-FI rapidly adapts to each new distribution and outperforms all other
methods.

In the appendix we show the following additional results. In fig. 13 we show the results using NLL as the evaluation
metric; in this case, the gap between LOFI and the other methods is even larger. In fig. 14, we show misclassification
for the current task as a function of LO-FI rank; as before, performance increases with rank, and plateaus at L = 10.
In fig. 17, we show results on split fashion MNIST (Hsu et al., 2018), in which each task corresponds to a new pair of
classes. However, since this is such an easy task that all methods are effectively indistinguishable.

Slowly changing distribution The above experiments simulate an unusual form of non-stationarity, corresponding
to a sudden change in the task. In this section, we consider a slowly changing distribution, where the task is to classify
the images as they slowly rotate. The angle of rotation αt gradually drifts according to an Ornstein-Uhlenbeck process,
so dαt = −θ(µ− αt)dt+ σdWt, where Wt is a white noise process, µ = 45, σ = 15, θ = 10 and dt = 1/N , where
N = 2000 is the number of examples. The test-set is modified using the same rotation at each step, perturbed by a
Gaussian noise with standard deviation of 5 degrees. To evaluate performance we use a sliding window of size 200
around the current time point. The misclassification results are shown in fig. 1b. LO-FI adapts to the continuously
changing environment quickly and outperforms the other methods. In fig. 18 in the appendix we show the NLL and
NLPD, which shows a similar trend.

4.2 REGRESSION

In this section, we consider regression tasks using variants of the fashion-MNIST dataset (images from class 2), where
we artificially rotate the images, and seek to predict the angle of rotation. As in the classification setting, we use a
2-hidden layer MLP with 500 units per layer.

Stationary distribution We start by sampling an iid dataset of images, where the angle of rotation at time t is
sampled from a uniform U [0, 180] distribution. In Figure fig. 2a, we show the RMSE over the test set as a function of
the number of trained examples; we see that LOFI outperforms the other methods by a healthy margin. (The NLL and
NLPD results in fig. 19 show a similar trend.)

Piecewise stationary distribution We introduce nonstationarity through discrete task changes: we randomly per-
mute the fashion-MNIST dataset after every 300 training examples, for a total of 10 tasks. This is similar to the
classification setting of section 4.2, except the prediction target is the angle, which is randomly sampled from (0, 180)
degrees. The goal is to predict the rotation angle of test-set images with the same permutation as the current task. The
results are shown in fig. 2c. We see that LO-FI outperforms all other methods.

Slowly changing distribution To simulate an arguably more realistic kind of change, we consider the case where the
rotation angle slowly changes, generated via an Ornstein-Uhlenbeck process as in section 4.1, except with parameters
µ = 90, σ = 30. To evaluate performance we use a sliding window of size 200, applied to the test set whose rotations
are generated by the same rotations as the training set, except perturbed by a Gaussian noise with standard deviation
of 5 degrees. We show the results in fig. 2b. We see that LO-FI outperforms the baseline methods.
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Figure 2: Test set regression error (measured using RMSE), computed using plugin approximation on various datasets.
(a) Static iid distribution of rotated MNIST images. Figure generated by generate iid reg plots.ipynb (b) Slowly
changing version of rotated MNIST. Figure generated by generate rw reg plots.ipynb (c) Piecewise stationary per-
muted roated MNIST. The task boundaries are denoted by vertical lines. We show performance on the current task.
Figure generated by generate permuted reg plots.ipynb

Results on stationary UCI regression benchmark In this section, we evaluate various methods on the UCI tabular
regression benchmarks used in several other BNN papers (e.g., (Hernández-Lobato & Adams, 2015; Gal & Ghahra-
mani, 2016; Mishkin et al., 2018)). We use the same splits as in (Gal & Ghahramani, 2016). As in these prior works,
we consider an MLP with 1 hidden layer of H = 50 units using RELU activation, so the number of parameters is
P = (D + 2)H + 1, where D is the number of input features. In Table 1 in the appendix, we show the number of
features in each dataset, as well as the number of training and testing examples in each of the 20 partitions.

We use these small datasets to compare LO-FI with LRVGA, as well as the other baselines. We show the RMSE vs
number of training examples for the Energy dataset in fig. 3a. In this case, we see that LO-FI (rank 10) outperforms
LRVGA (rank 10), and both outperform diagonal EKF and SGD-RB (buffer size 10). However, full covariance EKF
is the most sample efficient learner. On other UCI datasets, LRVGA can slightly outperform LO-FI (see appendix D.1
for details). However, it is about 20 times slower than LOFI. This is visualized in fig. 3b, which shows RMSE vs
compute time, averaged over the 8 UCI datasets listed in table 1. This shows that, controlling for compute costs,
LO-FI is a more efficient estimator, and both outperform replay SGD.

4.3 CONTEXTUAL BANDITS

In this section, we illustrate the utility of an online Bayesian inference method by applying it to a contextual bandit
problem. Following prior work (e.g., (Duran-Martin et al., 2022)), we convert the MNIST classification problem
into a bandit problem by defining the action space as a label from 0 to 9, and defining the reward to be 1 if the
correct label is predicted, and 0 otherwise. For simplicity, we model this using a nonlinear Gaussian regression model,
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Figure 3: (a) RMSE vs number of examples on the UCI energy dataset. We show the mean and standard error across 20
partitions. Figure generated by plots-xval.ipynb (b) RMSE vs log running time per data point averaged over multiple
UCI regression datasets. The speedup of LOFI compared to LRVGA is about e3 ≈ 20. Figure generated by time-
analysis.ipynb

rather than a nonlinear Bernoulli classification model. To tackle the exploration-exploration tradeoff, we either use
Thompson sampling (TS) or the simpler ϵ-greedy baseline. In TS, we sample a parameter from the posterior, θ̃t ∼
p(θt|a1:t−1,x1:t−1), r1:t−1) and then take the greedy action with this value plugged in, at = argmaxa E[r|xt, θ̃t].
This method is known to obtain optimal regret (Russo et al., 2018), although the guarantees are weaker when using
approximate inference (Phan et al., 2019). Of course, TS requires access to a posterior distribution to sample from. To
compare to methods (such as SGD) that just compute a point estimate, we also use ϵ-greedy; in this approach, with
probability ϵ = 0.1 we try a random action (to encourage exploration), and with probability 1 − ϵ we pick the best
action, as predicted by plugging in the MAP parameters into the reward model.
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Figure 4: Total reward on MNIST bandit problem after
8000 steps vs memory of the posterior approximation. We
show results (averaged over 5 trials) using Thompson sam-
pling or ϵ-greedy with ϵ = 0.1. See text for details. Figure
generated by bandit-vs-memory.ipynb

In section 4.3, we compare these algorithms on the
MNIST bandit problem, where the regression model is
a simple MLP with the same architecture as shown in
Figure 1b of (Duran-Martin et al., 2022). For the ϵ-
greedy exploration policy we use ϵ = 0.1, where the
MAP parameter estimate is either computed using LO-
FI (where the rank is on the x-axis) or using SGD with
replay buffer (where the buffer size is on the x-axis). We
also show results of using TS with LO-FI. We see see
that TS is much better than ϵ-greedy with LOFI MAP
estimate, which in turn is better than ϵ-greedy with SGD
MAP estimate. In fig. 22 in the appendix, we plot reward
vs time for these methods.

5 CONCLUSION AND FUTURE WORK

We have presented an efficient new method of fitting
neural networks online to streaming datasets, using a di-
agonal plus low-rank Gaussian approximation. In the fu-
ture, we are interested in developing online methods for
estimating the hyper-parameters, perhaps by extending
the variational Bayes approach of (Huang et al., 2020; de Vilmarest & Wintenberger, 2021), or the gradient based
method of (Greenberg et al., 2021). We would also like to further explore the predictive uncertainty created by our
posterior approximation, to see if it can be used for sequential decision making tasks, such as Bayesian optimization
or active learning. This may require the use of (online) deep Bayesian ensembles, to capture functional as well as
parametric uncertainty.
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João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A survey on concept drift
adaptation. ACM Comput. Surv., 46(4):1–37, March 2014. URL https://doi.org/10.1145/2523813.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023. URL https://bayesoptbook.
com/.

11

http://arxiv.org/abs/1806.02958
https://www.researchgate.net/profile/Marcello-Sanguineti/publication/225701362_A_recursive_algorithm_for_nonlinear_least-squares_problems/links/02e7e5192991d0e032000000/A-recursive-algorithm-for-nonlinear-least-squares-problems.pdf
https://www.researchgate.net/profile/Marcello-Sanguineti/publication/225701362_A_recursive_algorithm_for_nonlinear_least-squares_problems/links/02e7e5192991d0e032000000/A-recursive-algorithm-for-nonlinear-least-squares-problems.pdf
https://www.researchgate.net/profile/Marcello-Sanguineti/publication/225701362_A_recursive_algorithm_for_nonlinear_least-squares_problems/links/02e7e5192991d0e032000000/A-recursive-algorithm-for-nonlinear-least-squares-problems.pdf
https://www.researchgate.net/profile/Marcello-Sanguineti/publication/225701362_A_recursive_algorithm_for_nonlinear_least-squares_problems/links/02e7e5192991d0e032000000/A-recursive-algorithm-for-nonlinear-least-squares-problems.pdf
https://proceedings.neurips.cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/288cd2567953f06e460a33951f55daaf-Abstract.html
http://arxiv.org/abs/1307.6769
https://openreview.net/forum?id=asgeEt25kk
http://arxiv.org/abs/1703.00091
https://openreview.net/forum?id=gDcaUj4Myhn
https://openreview.net/forum?id=gDcaUj4Myhn
https://openaccess.thecvf.com/content/ICCV2021/papers/De_Lange_Continual_Prototype_Evolution_Learning_Online_From_Non-Stationary_Data_Streams_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/De_Lange_Continual_Prototype_Evolution_Learning_Online_From_Non-Stationary_Data_Streams_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/De_Lange_Continual_Prototype_Evolution_Learning_Online_From_Non-Stationary_Data_Streams_ICCV_2021_paper.pdf
http://arxiv.org/abs/2104.10777
https://arxiv.org/abs/1909.08383
http://dx.doi.org/10.1109/MCI.2015.2471196
http://dx.doi.org/10.1109/MCI.2015.2471196
http://arxiv.org/abs/2108.06325
http://arxiv.org/abs/2112.00195
http://arxiv.org/abs/2002.03704
https://proceedings.mlr.press/v48/gal16.pdf
https://tinyurl.com/mrxfk4ww
https://doi.org/10.1145/2523813
https://bayesoptbook.com/
https://bayesoptbook.com/


Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Soumya Ghosh, Francesco Maria Delle Fave, and Jonathan Yedidia. Assumed density filtering methods for learning
bayesian neural networks. In AAAI, 2016. URL https://jonathanyedidia.files.wordpress.com/
2012/01/assumeddensityfilteringaaai2016final.pdf.

Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Hammoud, Ameya Prabhu,
Philip H S Torr, and Bernard Ghanem. Real-Time evaluation in online continual learning: A new paradigm. Febru-
ary 2023. URL http://arxiv.org/abs/2302.01047.

Mark Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD thesis, U. Cambridge,
1997. URL https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.1130&
rep=rep1&type=pdf.

Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama. Machine learning for streaming
data: state of the art, challenges, and opportunities. SIGKDD Explor. Newsl., 21(2):6–22, November 2019. URL
https://doi.org/10.1145/3373464.3373470.

Ido Greenberg, Shie Mannor, and Netanel Yannay. The fragility of noise estimation in kalman filter: Optimization can
handle Model-Misspecification. April 2021. URL http://arxiv.org/abs/2104.02372.

Manuel Haußmann, Fred A Hamprecht, and Melih Kandemir. Sampling-Free variational inference of bayesian neural
networks by variance backpropagation. In Ryan P Adams and Vibhav Gogate (eds.), Proceedings of The 35th
Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pp.
563–573. PMLR, 2020. URL https://proceedings.mlr.press/v115/haussmann20a.html.

Simon Haykin (ed.). Kalman Filtering and Neural Networks. Wiley, 2001.
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A DERIVATIONS

A.1 PREDICT STEP

We begin with the posterior from the previous time step

p(θt−1|D1:t−1) = N
(
θt−1|µt−1,

(
Υt−1 +Wt−1W

T
t−1

)−1
)

(13)

and the dynamic assumption

p(θt|θt−1) = N (θt|γtθt−1, qtIP ) (14)

These imply the prior on the current time step is p(θt|D1:t−1) = N (θt|µt|t−1,Σt|t−1) with

µt|t−1 = γtµt−1 (15)

Σt|t−1 = γ2
t

(
Υt−1 +Wt−1W

T
t−1

)−1
+ qtIP (16)

Applying the Woodbury identity to eq. (16) gives this expression for the prior covariance:

Σt|t−1 = γ2
t

(
Υ−1

t−1 −Υ−1
t−1Wt−1

(
IL +WT

t−1Υ
−1
t−1Wt−1

)−1
WT

t−1Υ
−1
t−1

)
+ qtIP (17)

= Υ−1
t|t−1 −Υ−1

t−1Wt−1Bt|t−1W
T
t−1Υ

−1
t−1 (18)

where

Υt|t−1 =
(
γ2
tΥ

−1
t−1 + qtIP

)−1
(19)

Bt|t−1 = γ2
t

(
IL +WT

t−1Υ
−1
t−1Wt−1

)−1
(20)

Applying Woodbury again yields this expression for the prior precision:

Σ−1
t|t−1 =

(
Υ−1

t|t−1 −Υ−1
t−1Wt−1Bt|t−1W

T
t−1Υ

−1
t−1

)−1

(21)

= Υt|t−1 +Υt|t−1Υ
−1
t−1Wt−1

(
B−1

t|t−1 −WT
t−1Υ

−1
t−1Υt|t−1Υ

−1
t−1Wt−1

)−1

WT
t−1Υ

−1
t−1Υt|t−1 (22)

= Υt|t−1 +Wt|t−1W
T
t|t−1 (23)

where

Wt|t−1 = Υt|t−1Υ
−1
t−1Wt−1chol

((
B−1

t|t−1 −WT
t−1Υ

−1
t−1Υt|t−1Υ

−1
t−1Wt−1

)−1
)

(24)

= γtΥt|t−1Υ
−1
t−1Wt−1 chol

((
IL + qtW

T
t−1Υt|t−1Υ

−1
t−1Wt−1

)−1
)

(25)

Calculating Υt|t−1 and Wt|t−1 respectively take O(P ) and O(PL2 +L3) time. See algorithm 4 for the pseudocode;
this is the same as algorithm 2 except we replace Wt with UtΛt, as a stepping stone to the spherical version in
appendix F.

A.2 UPDATE STEP

After creating a linear-Gaussian approximation to the likelihood (as explained in the main text), standard results (see
e.g., Sarkka & Svensson, 2023) imply the exact posterior can be written as p(θt|D1:t) = N (θt|µt,Σ

∗
t ), where

Σ∗−1
t = Σ−1

t|t−1 +HT
tR

−1
t Ht (26)

Kt = Σ∗
tH

T
tR

−1
t (27)

et = yt − ŷt (28)
µt = µt|t−1 +Ktet (29)

where Kt is known as the Kalman gain matrix, and et is the innovation vector (i.e., error in the prediction).

We now derive a low-rank version of the above update equations. Because Rt is positive-definite, we can write
R−1

t = AT
tAt. We then define the matrix

W̃t =
[
Wt|t−1 HT

tA
T
t

]
(30)
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Algorithm 4: LO-FI predict step.
1 def predict(µt−1,Υt−1,Λt−1,Ut−1,xt, γt, qt):
2 Wt−1 = Ut−1Λt−1 // Recreate the low-rank precision
3 µt|t−1 = γµt−1 // Predict the mean of the next state

4 Υt|t−1 =
(
γ2
tΥ

−1
t−1 + qtIP

)−1
// Predict the diagonal precision

5 Ct =
(
IL + qtW

T
t−1Υt|t−1Υ

−1
t−1Wt−1

)−1

6 Wt|t−1 = γtΥt|t−1Υ
−1
t−1Wt−1chol(Ct) // Predict the low-rank precision

7 Ut|t−1 = Wt|t−1 // For compatibility with spherical LO-FI
8 Λt|t−1 = 1 // Arbitrary scaling
9 ŷt = h

(
xt,µt|t−1

)
// Predict the mean of the output

10 Return (µt|t−1,Υt|t−1,Λt|t−1,Ut|t−1, ŷt)

This has size P × L̃, where L̃ = L + C. Note that if the output is scalar, with variance R = σ2, we have Ht =
∇θt

h(xt,θt). For a linear model, h(xt,θt) = θTt xt, the gradient equals the data vector xt. In this case, we have

W̃t =
[
Wt|t−1

1
σxt

]
(31)

Thus W̃t acts like a generalized memory buffer that stores data using a gradient embedding.

From eq. (26), the exact Bayesian inference step for the precision is

Σ∗−1
t = Σ−1

t|t−1 +HT
tA

T
tAtHt (32)

= Υt|t−1 +Wt|t−1W
T
t|t−1 +HT

tA
T
tAtHt (33)

= Υt|t−1 + W̃tW̃
T
t (34)

From eqs. (27) to (29), the exact mean update is given by

µt = µt|t−1 +Σ∗
tH

T
tR

−1
t et (35)

Applying the Woodbury identity to eq. (34) and substituting into eq. (35), we obtain an expression that can be computed
in O(PL̃2) time:

µt = µt|t−1 +

(
Υ−1

t|t−1 −Υ−1
t|t−1W̃t

(
IL̃ + W̃T

tΥ
−1
t|t−1W̃t

)−1

W̃T
tΥ

−1
t|t−1

)
HT

tR
−1
t et (36)

Equations (34) and (36) give the exact posterior, given the DLR(L) prior. However, to propagate this posterior to the
next step, we need to project Σ∗−1

t from DLR(L̃) back to DLR(L). To do this, we first perform an SVD of W̃t to get
the new basis:

(Λ̃t, Ũt) = SVD(W̃t) (37)

Wt =
(
ŨtΛ̃t

)
[:, 1:L] (38)

Here, Λ̃t and Ũt are respectively the singular values and left singular vectors of W̃t, assumed to be ordered in
decreasing value of Λ̃t (so Λ̃t is diagonal of size L̃ × L̃, and Ũt is of size P × L̃). Finally, we update the diagonal
term as follows:

Υt = Υt|t−1 + diag
(
W×

t W
×T
t

)
(39)

W×
t =

(
ŨtΛ̃t

)
[:, (L+ 1):L̃] (40)

Adding the diagonal contribution from the remaining C singular vectors to Υt ensures the diagonal portion of the
DLR approximation is exact, i.e.,

diag(Σ−1
t ) = diag(Σ∗−1

t ). (41)

See algorithm 5 for the pseudocode. This is the same as algorithm 3 except we replace Wt with UtΛt. This procedure
takes O(PL̃2) time for the SVD, and O(PC) for calculating diag

(
W×

t W
×T
t

)
.5

5Suppose A ∈ Rn×m and B ∈ Rm×n. Then we can efficiently compute diag(AB) in O(mn) time using (AB)ii =∑M
j=1 AijBji.
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Algorithm 5: LO-FI update step.
1 def update(µt|t−1,Υt|t−1,Λt|t−1,Ut|t−1,xt,yt, ŷt, h, L):
2 Rt = hV (xt,µt|t−1) // Covariance of predicted output
3 Lt = chol(Rt)

4 At = L−1
t

5 Ht = jac(h(xt, ·))(µt|t−1) // Jacobian of observation model
6 Wt|t−1 = Ut|t−1Λt|t−1 // Predicted low-rank precision
7 W̃t =

[
Wt|t−1 HT

tA
T
t

]
// Expand low-rank with new observation

8 Gt =
(
IL̃ + W̃T

tΥ
−1
t|t−1W̃t

)−1

9 Ct = HT
tA

T
tAt

10 Kt = Υ−1
t|t−1Ct −Υ−1

t|t−1W̃tGtW̃
T
tΥ

−1
t|t−1Ct // Kalman gain matrix

11 µt = µt|t−1 +Kt(yt − ŷt) // Mean update
12 (Λ̃t, Ũt) = SVD(W̃t) // Take SVD of the expanded low-rank

13 (Λt,Ut) =
(
Λ̃t, Ũt

)
[:, 1:L] // Keep top L most important terms

14 (Λ×
t ,U

×
t ) =

(
Λ̃t, Ũt

)
[:, (L+ 1):L̃] // Extra least important terms

15 W×
t = U×

t Λ
×
t // The low-rank part that is dropped

16 Υt = Υt|t−1 + diag
(
W×

t (W
×
t )

T
)

// Update diagonal to capture variance due to dropped terms
17 Return (µt,Υt,Λt,Ut)

A.3 ALTERNATIVE DIAGONAL UPDATE

Instead of updating Υt to achieve diag(Σ−1
t ) = diag(Σ∗−1

t ), we can minimize the KL divergence. If we define

Υt = argmin
Υ

DKL

(
N
(
µt,
(
Υ+WtW

T
t

)−1
)
∥ N (µt,Σ

∗
t )
)

(42)

then we get the condition

diag(Σt −ΣtΣ
∗−1
t Σt) = 0 (43)

If instead we use forward KL,

Υt = argmin
Υ

DKL

(
N (µt,Σ

∗
t ) ∥ N

(
µt,
(
Υ+WtW

T
t

)−1
))

(44)

then we get the condition

diag(Σt) = diag(Σ∗
t ) (45)

We leave exploration of possible efficient implementations of these updates to future work.

A.4 ZERO-RANK LO-FI

When L = 0, LO-FI approximates the covariance simply as

Σt = Υ−1
t (46)

Consequently, the predict step comprises only eqs. (15) and (19), repeated here:

µt|t−1 = γtµt−1 (47)

Υt|t−1 =
(
γ2
tΥ

−1
t−1 + qtIP

)−1
(48)

In the update step, Wt|t−1 is empty, so W×
t = W̃t = HT

tA
T
t . Therefore eqs. (36) and (39) become

µt = µt|t−1 +Υ−1
t|t−1H

T
t

(
HtΥ

−1
t|t−1H

T
t +Rt

)−1

et (49)

Υt = Υt|t−1 + diag(HT
tR

−1
t Ht) (50)
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Finally, in the predictive distribution for the observation, the variance in eq. (61) simplifies:

ŷt = h(xt,µt|t−1) (51)

Vt = HtΥ
−1
t|t−1H

T
t +Rt (52)

These equations match those of the VD-EKF (Chang et al., 2022), confirming that LO-FI reduces to VD-EKF when
L = 0.
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B POSTERIOR PREDICTIVE DISTRIBUTION FOR THE OBSERVATIONS

In this section, we discuss how to use the posterior over parameters to approximate the posterior predictive distribution
for the observations:

p(yt|xt,D1:t−1) =

∫
p(yt|xt,θt)p(θt|D1:t−1)dθt (53)

A simple approach is to use a plugin approximation, which arises when we assume the posterior is a point estimate:

p(yt|xt,D1:t−1) ≈
∫

p(yt|xt,θt)δ(θt − θ̂t)dθt (54)

=

{
N (yt|h(xt, θ̂t),Rt) regression
Cat(yt|softmax(h(xt, θ̂t)) classification

(55)

We can capture more uncertainty by sampling parameters from the (Gaussian) posterior, θs
t ∼ N (µt|t−1,Σt|t−1),

which results in the following Monte Carlo approximation:

p(yt|xt,D1:t−1) ≈

{
1
S

∑S
s=1 N (yt|h(xt,θ

s
t ),Rt) regression

1
S

∑S
s=1 Cat(yt|softmax(h(xt,θ

s
t )) classification

(56)

If we have a DLR approximation to the precision matrix, we can use the importance sampling method of Section 6.2 of
(Lambert et al., 2021a) to draw samples in O(PS) time, without needing to create or invert the full precision matrix.

However, as argued in (Immer et al., 2021), it can sometimes be better to approximate the predictive distribution by
first linearizing the observation model, and then passing the samples through the linearized model, to avoid evaluating
the nonlinear function with parameter values that are far from the posterior mode. Once we have linearized the model,
we can further replace the Monte Carlo approximation with a deterministic integral, as we explain below.

B.1 DETERMINISTIC APPROXIMATION FOR REGRESSION

If we linearize the observation model, and assume a Gaussian output, we can compute the posterior predictive distri-
bution analytically, as follows:

p(yt|xt,D1:t−1) =

∫
plin(yt|xt,θt)p(θt|D1:t−1)dθt (57)

=

∫
N (yt|ĥt(θt),Rt)N (θt|µt|t−1,Σt|t−1)dθt (58)

Hence
ŷt = E [yt|xt,D1:t−1] = h(xt,µt|t−1) (59)

Vt = Cov [yt|xt,D1:t−1] = HtΣt|t−1H
T
t +Rt (60)

We can rewrite Vt using Woodbury in a form that can be computed in O(PL2) time:

Vt = Ht

(
Υ−1

t|t−1 −Υ−1
t|t−1Wt|t−1

(
IL +WT

t|t−1Υ
−1
t|t−1Wt|t−1

)−1

WT
t|t−1Υ

−1
t|t−1

)
HT

t +Rt (61)

B.2 DETERMINISTIC APPROXIMATION FOR CLASSIFICATION

In this section, we consider a classification model: h(x,θ) = softmax(f(x,θ)), where f is a neural network that
outputs a vector of C logits. Following (Immer et al., 2021), suppose we linearize f :

f̂t(θ) = f(xt,µt|t−1) + Ft(θ − µt|t−1) (62)

where Ft is the Jacobian of f(xt, ·) at µt|t−1. (This is the analog of ĥt and Ht, except we omit the final softmax
layer.) Let zt = f̂t(θ) be the predicted logits. We can now deterministically approximate the predicted probabilities
by using the generalized probit approximation (Gibbs, 1997; Daunizeau, 2017):

pt =

∫
softmax(zt)N (zt|ẑt,FtΣt|t−1F

T
t )dzt (63)

≈ softmax

({
ẑt,c√
1 + π

8 vc

})
(64)
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where vc = [FtΣt|t−1F
T
t ]cc is the marginal variance for class c. This makes the probabilities “less extreme” (closer

to uniform) when the parameters are uncertain. Alternatively, we can use the “Laplace bridge” method of (Hobbhahn
et al., 2022), which has been shown to be more accurate than the generalized probit approximation.
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C TUNING THE HYPER-PARAMETERS

In this section, we discuss how to estimate the SSM hyper-parameters, namely the system noise q, the system dynamics
γ, and (for regression) the observation noise R. We also need to specify the initial belief state µ0 (which we sample
from a zero-mean Gaussian prior) and Σ0 = (1/η0)I.

C.1 BAYESIAN OPTIMIZATION

We optimize the hyper-parameters using black-box Bayesian optimization, using performance on a validation set as
the metric for static datasets, and the (averaged) one-step-ahead error as the metric for non-stationary datasets.

C.2 ONLINE ADAPTATION OF THE HYPER-PARAMETERS

Offline hyper-parameter tuning using a validation set cannot be applied to non-stationary problems. To tackle this, we
can estimate the SSM parameters online; this approach is called adaptive Kalman filtering. As a simple example, we
implemented a recursive estimate for Rt, based on a running average of the empirical prediction errors, as proposed
in Ljung & Soderstrom (1983) and Iiguni et al. (1992):

R̂t = (1− εt)R̂t−1 + εt(yt − ŷt)(yt − ŷt)
T (65)

where εt > 0 is a learning rate (e.g., εt = max(εmin, 1/t)), and ŷt = h(xt,µt|t−1). If Rt = rtI, this becomes

r̂t = (1− εt)r̂t−1 + εt(yt − ŷt)
T(yt − ŷt) (66)

To estimate the other hyper-parameters, such as Q, in an online way, we may be able to extend the variational Bayes
approach of (Huang et al., 2020; de Vilmarest & Wintenberger, 2021), or the gradient based method of (Greenberg
et al., 2021). However we leave this to future work.
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Figure 5: Error vs number of observations on the energy dataset. We show the mean and standard error across 20
partitions. (a) Curves correspind to the following methods: for FCEKF, FDEKF (similar to VDEKF), LO-FI-10,
LRVGA-10, SGD-RB-10. (b) Curves correspond to LO-FI with different ranks. Figure generated by plots-xval.ipynb.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 UCI REGRESSION

Num. features Num. train Num. test Num. obs. Num. parameters

Boston 13 455 51 506 751
Concrete 8 927 103 1030 501
Energy 8 691 77 768 501
Kin8nm 8 7373 819 8192 501
Naval 16 10741 1193 11934 901
Power 4 8611 957 9568 301
Wine 11 1439 160 1599 651
Yacht 6 277 31 308 401

Table 1: UCI regression dataset summary, and the corresponding number of parameters in a single-layered MLP with
50 hidden units.

In this section, we evaluate various methods on the UCI tabular regression benchmarks used in several other BNN
papers (e.g., (Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016; Mishkin et al., 2018)). We use the same
splits as in (Gal & Ghahramani, 2016). As in these prior works, we consider an MLP with 1 hidden layer of H = 50
units using RELU activation, so the number of parameters is P = (D + 2)H + 1, where D is the number of input
features. In Table 1, we show the number of features in each dataset, as well as the number of training and testing
examples in each of the 20 partitions.

In Figure 5(a) we show the test error vs number of training observations for different estimators on the energy dataset.
We see that LO-FI (rank 10) outperforms LRVGA (rank 10), and both outperform diagonal EKF and SGD-RB (buffer
size 10). However, full covariance EKF is the most sample efficient learner. In Figure 5(b), we show that increasing
the rank of the LO-FI approximation improves performance; by L = 50 it has essentially matched the full rank case,
which uses P = 501 parameters.

Another way to improve performance is to perform multiple passes over the data, by concatenating the data sequence
into a single long stream (shuffling the order at the end of each epoch). The benefits of this approach are shown in
fig. 6. The different colors correspond to 1, 10 and 50 passes over the data. (Note that we only performed one pass
for LRVGA, since it is significantly slower than all other methods, as shown in fig. 7.) We see that multiple passes
consistently improves performance. However this trick can only be used in the offline setting for static distributions.
In fig. 6, we also see that the error vs rank decreases faster for LO-FI than for LRVGA and SGD-RB, meaning that it
makes better use of its increased posterior accuracy to increase the sample efficiency of the learner.

Results for all the UCI regression datasets for different methods are shown in table 2. As in the energy dataset, we
find that increasing the rank helps all low-rank (and memory-based) methods, and increasing the number of passes also
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Figure 6: RMSE boxplot for the energy dataset. We compare the performance of different estimators as a function of
rank and number of passes over the dataset. (Note that VDEKF is very similar to FDEKF so is not shown.) Figure
generated by plots-xval-passes.ipynb

helps. In general FECKF is the best, with LO-FI usually in second place. Interestingly we find that spherical LO-FI
has comparable performance to diagonal LO-FI, but is faster (see table 6 and fig. 7 for a running time comparison).
However, we caution against reading too many conclusions from these results, since the datasets are small, and the
error bars overlap a lot between methods.

dataset Boston Concrete Energy Kin8nm Naval Power Wine Yacht
# passes Rank Method

1

0 fdekf 5.23± 2.19 8.60± 0.63 2.96± 0.25 0.12± 0.01 0.01± 0.00 4.24± 0.16 0.82± 0.05 5.13± 1.30
vdekf 9.03± 1.18 16.35± 0.82 9.44± 0.47 0.14± 0.01 0.01± 0.00 4.25± 0.16 0.66± 0.05 5.60± 1.29

10

lofi-s 5.12± 1.49 7.27± 0.89 2.36± 0.16 0.12± 0.00 0.00± 0.00 4.20± 0.15 0.65± 0.03 4.66± 0.83
lofi-d 4.77± 1.20 7.33± 0.89 2.53± 0.26 0.14± 0.01 0.00± 0.00 4.37± 0.15 0.72± 0.06 4.66± 0.83
lrvga 3.62± 1.02 7.28± 0.73 2.80± 0.22 0.12± 0.00 0.00± 0.00 4.22± 0.15 0.65± 0.04 3.39± 0.79
sgd-rb 4.41± 1.23 8.46± 0.77 3.18± 0.30 0.13± 0.01 0.00± 0.00 4.81± 0.57 0.70± 0.06 7.92± 1.27

full fcekf 4.04± 1.07 6.45± 0.53 1.58± 0.25 0.10± 0.00 0.00± 0.00 4.13± 0.16 0.66± 0.04 3.14± 1.09

10

0 fdekf 3.20± 0.92 6.68± 0.51 2.32± 0.22 0.10± 0.00 0.01± 0.00 4.18± 0.15 0.82± 0.05 1.18± 0.36
vdekf 9.03± 1.18 16.35± 0.82 10.10± 0.47 0.11± 0.00 0.01± 0.00 4.20± 0.16 0.64± 0.04 2.32± 0.54

10
lofi-s 5.38± 1.36 5.63± 0.64 0.88± 0.14 0.10± 0.00 0.00± 0.00 4.14± 0.16 0.64± 0.04 1.51± 0.37
lofi-d 5.08± 1.29 5.86± 0.50 1.36± 0.19 0.09± 0.00 0.00± 0.00 4.13± 0.16 0.64± 0.04 2.26± 0.52
sgd-rb 3.63± 0.84 6.29± 0.68 1.08± 0.18 0.10± 0.01 0.00± 0.00 4.73± 0.38 0.71± 0.05 2.26± 0.56

full fcekf 3.13± 0.89 5.31± 0.48 0.62± 0.09 0.09± 0.00 0.00± 0.00 4.05± 0.17 0.64± 0.05 1.19± 0.27

50

0 fdekf 2.95± 0.71 6.37± 0.52 2.11± 0.21 0.09± 0.00 0.01± 0.00 4.14± 0.16 0.82± 0.05 0.80± 0.26
vdekf 9.03± 1.18 16.35± 0.82 10.10± 0.47 0.10± 0.00 0.01± 0.00 4.17± 0.16 0.63± 0.04 1.62± 0.37

10
lofi-s 5.29± 1.12 5.41± 0.64 0.56± 0.07 0.09± 0.00 0.00± 0.00 4.06± 0.17 0.66± 0.05 0.92± 0.27
lofi-d 4.99± 1.10 5.53± 0.50 0.86± 0.14 0.09± 0.00 0.00± 0.00 4.10± 0.16 0.63± 0.04 1.36± 0.33
sgd-rb 3.52± 0.68 5.78± 0.87 0.60± 0.07 0.10± 0.01 0.00± 0.00 4.74± 0.38 0.79± 0.08 0.81± 0.25

full fcekf 3.62± 1.28 5.12± 0.59 0.52± 0.06 0.09± 0.00 0.00± 0.00 4.00± 0.17 0.68± 0.06 1.12± 0.29

Table 2: RMSE on UCI regression datasets. We report mean and standard error of the mean across 20 splits of the
data. lofi-s is LO-FI spherical, and lofi-d is LO-FI diagonal; LO-FI and LRVGA use a rank 10 approximation to the
posterior precision matrix, whereas SGD-RB uses a replay buffer with 10 examples.
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Figure 7: Running time (in seconds) of a single pass over the Energy dataset for various low-rank methods. Figure
generated by plots-xval-passes.ipynb

dataset Boston Concrete Energy Kin8nm Naval Power Wine Yacht
rank variable

0 fdekf 5.23± 2.19 8.60± 0.63 2.96± 0.25 0.12± 0.01 0.01± 0.00 4.24± 0.16 0.82± 0.05 5.13± 1.30

1

lofi-sph 5.08± 1.27 8.84± 1.23 3.21± 0.36 0.14± 0.01 0.01± 0.00 4.36± 0.15 0.67± 0.05 5.76± 1.52
lofi-diag 5.08± 1.27 9.12± 1.35 3.50± 0.48 0.14± 0.01 0.01± 0.00 5.01± 0.47 0.69± 0.06 5.91± 1.52
lrvga 4.14± 1.03 7.45± 0.75 2.92± 0.22 0.14± 0.01 - 4.25± 0.15 0.65± 0.04 5.06± 1.06
sgd-rb 4.44± 1.20 9.62± 0.63 3.19± 0.30 0.16± 0.01 0.01± 0.00 4.41± 0.18 0.66± 0.04 9.84± 1.94

2

lofi-sph 4.38± 1.10 8.17± 0.90 3.07± 0.30 0.26± 0.02 0.00± 0.00 4.33± 0.16 0.66± 0.04 5.98± 1.45
lofi-diag 5.00± 1.71 8.54± 1.15 3.34± 0.45 0.15± 0.01 0.00± 0.00 4.59± 0.28 0.73± 0.07 5.65± 1.30
lrvga 3.88± 1.03 7.41± 0.90 2.87± 0.22 0.14± 0.01 0.00± 0.00 4.24± 0.14 0.65± 0.04 4.23± 0.91
sgd-rb 4.31± 1.20 9.13± 0.63 3.16± 0.30 0.15± 0.01 0.01± 0.00 4.50± 0.24 0.67± 0.05 9.03± 1.64

5

lofi-sph 4.10± 1.13 7.77± 1.02 2.83± 0.26 0.15± 0.01 0.00± 0.00 4.24± 0.15 0.65± 0.04 5.51± 1.22
lofi-diag 4.75± 1.30 8.46± 1.37 2.87± 0.34 0.13± 0.01 0.00± 0.00 4.56± 0.20 0.74± 0.07 4.30± 0.88
lrvga 3.71± 1.08 6.98± 0.57 2.86± 0.21 0.13± 0.00 0.00± 0.00 4.23± 0.15 0.65± 0.04 3.67± 0.84
sgd-rb 4.29± 1.20 8.72± 0.72 3.18± 0.30 0.14± 0.01 0.01± 0.00 4.72± 0.56 0.68± 0.05 8.36± 1.36

10

lofi-sph 5.12± 1.49 7.27± 0.89 2.36± 0.16 0.12± 0.00 0.00± 0.00 4.20± 0.15 0.65± 0.03 4.66± 0.83
lofi-diag 4.77± 1.20 7.33± 0.89 2.53± 0.26 0.14± 0.01 0.00± 0.00 4.37± 0.15 0.72± 0.06 4.66± 0.83
lrvga 3.62± 1.02 7.28± 0.73 2.80± 0.22 0.12± 0.00 0.00± 0.00 4.22± 0.15 0.65± 0.04 3.39± 0.79
sgd-rb 4.41± 1.23 8.46± 0.77 3.18± 0.30 0.13± 0.01 0.00± 0.00 4.81± 0.57 0.70± 0.06 7.92± 1.27

20

lofi-sph 4.88± 1.49 6.92± 0.60 2.11± 0.28 0.11± 0.01 0.00± 0.00 4.23± 0.15 0.65± 0.03 4.73± 0.99
lofi-diag 4.88± 1.49 8.03± 1.25 2.16± 0.27 0.14± 0.01 0.00± 0.00 4.41± 0.18 0.66± 0.04 2.37± 0.63
lrvga 3.57± 1.07 6.73± 0.60 2.80± 0.22 0.11± 0.00 0.00± 0.00 4.24± 0.16 0.64± 0.04 2.76± 1.08
sgd-rb 4.39± 1.18 8.26± 0.95 3.04± 0.31 0.12± 0.01 0.00± 0.00 4.77± 0.32 0.72± 0.06 7.42± 1.24

50

lofi-sph 4.84± 1.39 6.65± 0.54 1.72± 0.20 0.10± 0.00 0.02± 0.00 4.20± 0.14 0.69± 0.05 2.31± 0.54
lofi-diag 4.84± 1.39 6.70± 0.50 1.84± 0.29 0.11± 0.00 0.00± 0.00 4.30± 0.15 0.64± 0.04 4.85± 0.98
lrvga 3.52± 1.05 6.70± 0.58 2.79± 0.22 0.11± 0.00 0.00± 0.00 4.21± 0.15 0.64± 0.04 3.33± 0.81
sgd-rb 4.19± 1.18 7.71± 0.88 2.73± 0.28 0.12± 0.01 0.00± 0.00 4.81± 0.24 0.76± 0.05 6.62± 1.19

full fcekf 4.04± 1.07 6.45± 0.53 1.58± 0.25 0.10± 0.00 0.00± 0.00 4.13± 0.16 0.66± 0.04 3.14± 1.09

Table 3: RMSE for datasets as a function of method, rank after a single pass over the dataset.

25

https://github.com/probml/rebayes/blob/main/demos/showdown/plots-xval-passes.ipynb


Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

dataset Boston Concrete Energy Kin8nm Naval Power Wine Yacht
rank variable

0 fdekf 3.20± 0.92 6.68± 0.51 2.32± 0.22 0.10± 0.00 0.01± 0.00 4.18± 0.15 0.82± 0.05 1.18± 0.36

1
lofi-sph 5.60± 1.43 6.35± 0.71 1.47± 0.15 0.10± 0.01 0.00± 0.00 4.27± 0.17 0.66± 0.04 2.12± 0.52
lofi-diag 5.21± 1.44 6.24± 0.53 2.22± 0.21 0.11± 0.00 0.01± 0.00 4.17± 0.15 0.64± 0.04 1.76± 0.43
sgd-rb 3.47± 0.98 6.57± 0.47 2.04± 0.22 0.09± 0.00 0.00± 0.00 4.23± 0.20 0.65± 0.04 4.82± 0.81

2
lofi-sph 3.51± 0.94 6.23± 0.64 1.16± 0.18 0.31± 0.05 0.00± 0.00 4.20± 0.15 0.65± 0.04 2.49± 0.51
lofi-diag 5.08± 1.43 6.19± 0.50 1.97± 0.22 0.10± 0.00 0.00± 0.00 4.17± 0.15 0.63± 0.04 1.75± 0.49
sgd-rb 3.50± 0.97 6.41± 0.53 1.86± 0.19 0.09± 0.00 0.00± 0.00 4.27± 0.22 0.65± 0.04 4.31± 0.70

5
lofi-sph 3.47± 1.00 6.02± 0.50 1.36± 0.13 0.14± 0.02 0.00± 0.00 4.17± 0.14 0.65± 0.04 2.44± 0.53
lofi-diag 4.95± 1.31 5.74± 0.48 1.57± 0.19 0.10± 0.00 0.00± 0.00 4.14± 0.15 0.63± 0.04 1.40± 0.39
sgd-rb 3.60± 0.87 6.28± 0.61 1.51± 0.20 0.10± 0.01 0.00± 0.00 4.45± 0.34 0.68± 0.05 3.40± 0.61

10
lofi-sph 5.38± 1.36 5.63± 0.64 0.88± 0.14 0.10± 0.00 0.00± 0.00 4.14± 0.16 0.64± 0.04 1.51± 0.37
lofi-diag 5.08± 1.29 5.86± 0.50 1.36± 0.19 0.09± 0.00 0.00± 0.00 4.13± 0.16 0.64± 0.04 2.26± 0.52
sgd-rb 3.63± 0.84 6.29± 0.68 1.08± 0.18 0.10± 0.01 0.00± 0.00 4.73± 0.38 0.71± 0.05 2.26± 0.56

20
lofi-sph 5.14± 1.35 5.47± 0.67 0.75± 0.17 0.09± 0.00 0.00± 0.00 4.18± 0.17 0.64± 0.04 1.75± 0.42
lofi-diag 5.17± 1.34 5.54± 0.49 0.92± 0.19 0.09± 0.00 0.00± 0.00 4.10± 0.16 0.63± 0.04 1.23± 0.28
sgd-rb 3.60± 0.98 6.08± 0.73 0.83± 0.12 0.10± 0.01 0.00± 0.00 4.80± 0.33 0.77± 0.07 1.32± 0.40

50
lofi-sph 5.18± 1.39 5.35± 0.52 0.59± 0.12 0.09± 0.00 0.02± 0.00 4.12± 0.17 0.66± 0.05 1.03± 0.32
lofi-diag 5.20± 1.37 5.54± 0.52 0.70± 0.12 0.09± 0.00 0.00± 0.00 4.08± 0.17 0.64± 0.04 2.30± 0.46
sgd-rb 3.70± 1.05 5.76± 0.85 0.64± 0.08 0.11± 0.01 0.00± 0.00 4.96± 0.26 0.83± 0.09 0.88± 0.29

full fcekf 3.13± 0.89 5.31± 0.48 0.62± 0.09 0.09± 0.00 0.00± 0.00 4.05± 0.17 0.64± 0.05 1.19± 0.27

Table 4: RMSE for datasets as a function of method, rank after 10 passes over the dataset.

dataset Boston Concrete Energy Kin8nm Naval Power Wine Yacht
rank variable

0 fdekf 2.95± 0.71 6.37± 0.52 2.11± 0.21 0.09± 0.00 0.01± 0.00 4.14± 0.16 0.82± 0.05 0.80± 0.26

1
lofi-sph 5.70± 1.28 5.89± 0.90 0.71± 0.11 0.09± 0.00 0.00± 0.00 4.15± 0.16 0.66± 0.05 0.96± 0.28
lofi-diag 5.48± 1.17 5.88± 0.47 1.96± 0.20 0.10± 0.00 0.00± 0.00 4.15± 0.16 0.63± 0.04 1.19± 0.28
sgd-rb 3.28± 0.85 5.70± 0.76 0.69± 0.11 0.08± 0.00 0.00± 0.00 4.13± 0.20 0.66± 0.05 1.33± 0.35

2
lofi-sph 3.26± 0.85 5.75± 0.74 0.61± 0.09 0.29± 0.05 0.00± 0.00 4.13± 0.15 0.66± 0.05 1.06± 0.28
lofi-diag 5.13± 1.10 5.81± 0.47 1.68± 0.19 0.09± 0.00 0.00± 0.00 4.15± 0.16 0.63± 0.04 1.30± 0.38
sgd-rb 3.27± 0.83 5.74± 0.81 0.64± 0.08 0.09± 0.00 0.00± 0.00 4.20± 0.24 0.69± 0.06 1.13± 0.37

5
lofi-sph 3.10± 0.84 5.82± 0.75 0.67± 0.12 0.19± 0.09 0.00± 0.00 4.13± 0.15 0.65± 0.05 1.05± 0.23
lofi-diag 4.92± 1.13 5.44± 0.46 1.17± 0.17 0.10± 0.00 0.00± 0.00 4.10± 0.17 0.63± 0.04 1.08± 0.29
sgd-rb 3.38± 0.77 6.04± 0.87 0.58± 0.06 0.09± 0.01 0.00± 0.00 4.36± 0.30 0.73± 0.07 0.95± 0.32

10
lofi-sph 5.29± 1.12 5.41± 0.64 0.56± 0.07 0.09± 0.00 0.00± 0.00 4.06± 0.17 0.66± 0.05 0.92± 0.27
lofi-diag 4.99± 1.10 5.53± 0.50 0.86± 0.14 0.09± 0.00 0.00± 0.00 4.10± 0.16 0.63± 0.04 1.36± 0.33
sgd-rb 3.52± 0.68 5.78± 0.87 0.60± 0.07 0.10± 0.01 0.00± 0.00 4.74± 0.38 0.79± 0.08 0.81± 0.25

20
lofi-sph 5.01± 1.09 5.14± 0.69 0.56± 0.07 0.09± 0.00 0.00± 0.00 4.12± 0.19 0.67± 0.04 1.17± 0.23
lofi-diag 5.01± 1.10 5.35± 0.45 0.67± 0.15 0.09± 0.00 0.00± 0.00 4.06± 0.16 0.63± 0.04 1.03± 0.28
sgd-rb 3.76± 0.74 5.86± 0.83 0.56± 0.06 0.10± 0.01 0.00± 0.00 4.89± 0.54 0.85± 0.08 0.78± 0.26

50
lofi-sph 5.00± 1.12 5.09± 0.66 0.48± 0.08 0.08± 0.00 0.02± 0.00 4.05± 0.17 0.68± 0.06 0.93± 0.20
lofi-diag 5.01± 1.11 5.27± 0.58 0.57± 0.08 0.09± 0.00 0.00± 0.00 4.05± 0.17 0.65± 0.04 1.38± 0.25
sgd-rb 4.05± 1.02 5.81± 0.65 0.53± 0.08 0.10± 0.00 0.00± 0.00 4.73± 0.35 0.94± 0.11 0.71± 0.38

full fcekf 3.62± 1.28 5.12± 0.59 0.52± 0.06 0.09± 0.00 0.00± 0.00 4.00± 0.17 0.68± 0.06 1.12± 0.29

Table 5: RMSE for datasets as a function of method, rank after 50 passes over the dataset.
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boston concrete energy kin8nm naval power wine yacht
rank

1

lofi-sph 1.93 2.17 2.10 4.31 5.39 4.60 2.40 1.96
lofi-diag 2.12 2.15 2.08 4.31 6.38 4.61 2.40 1.97

lrvga 31.31 31.44 26.14 194.52 819.99 125.78 69.74 13.88
sgd-rb 1.40 1.04 1.05 1.58 1.86 1.58 1.15 1.02

2

lofi-sph 1.88 2.07 2.00 4.38 5.47 4.70 2.28 1.84
lofi-diag 1.91 2.04 1.98 4.34 5.43 4.68 2.27 1.85

lrvga 32.83 33.90 27.53 215.47 884.71 145.94 75.78 14.30
sgd-rb 1.26 1.31 1.25 2.30 2.77 2.44 2.92 1.19

5

lofi-sph 1.92 2.16 2.07 4.95 6.26 5.34 2.41 3.44
lofi-diag 1.91 2.66 2.08 4.95 6.28 5.34 2.43 1.92

lrvga 33.06 34.19 28.09 219.50 892.29 149.50 76.85 14.43
sgd-rb 1.26 1.28 1.28 2.27 2.81 2.39 1.42 1.20

10

lofi-sph 2.13 2.89 2.31 6.17 8.51 6.65 2.66 2.00
lofi-diag 2.13 2.40 2.28 6.40 8.56 7.95 2.67 1.99

lrvga 32.99 33.91 28.01 218.10 888.80 151.09 75.00 14.37
sgd-rb 1.25 1.26 1.27 2.32 2.93 2.41 2.95 1.19

20

lofi-sph 2.31 2.74 2.64 8.68 12.36 10.29 3.28 2.19
lofi-diag 2.31 2.74 2.70 9.34 12.30 10.30 3.25 3.89

lrvga 34.19 35.90 28.84 234.75 910.09 169.94 77.88 14.92
sgd-rb 1.25 1.27 1.26 2.38 2.89 2.49 1.46 1.22

50

lofi-sph 3.24 4.42 3.81 19.59 39.47 21.43 5.58 2.75
lofi-diag 3.44 4.64 4.08 19.56 26.90 21.50 6.03 2.80

lrvga 36.65 41.84 33.04 280.21 988.45 222.46 88.81 16.80
sgd-rb 1.25 1.35 1.31 2.77 3.52 2.97 1.52 1.24

full fcekf 1.34 1.69 1.24 2.56 5.98 2.34 1.61 1.15

Table 6: Running time (in seconds) for benchmarked methods after a single pass over the UCI datasets.
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D.2 PIECEWISE STATIONARY 1D REGRESSION

Figure 8: Results for piecewise stationary 1d regression. Red dots are from the true function for each task, and the
blue dots are the predictions of the model at the end of each task (after training on 200 examples). Figure generated
by nonstat-1d-regression.ipynb
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Figure 9: RMSE (rolling average) on test data from the current task for the 1d regression benchmark for different
estimators. Vertical lines denote change in the distribution (unknown to the algorithm). Figure generated by nonstat-
1d-regression.ipynb

In this section, we consider a synthetic 1d nonstationary regression problem which exhibits “concept drift” (Gama
et al., 2014). Specifically we define the data generating process at time t to be pt(x, y) = p(x)pd(t)(y|x), where
p(x) = Unif(−2, 2) is the input distribution, d(t) ∈ {1, . . . ,K} specifies which distribution to use at time t, and
pk(y|x) = N (y|fk(x), σ2) is the k’th such distribution, for k = 1 : K. We define fk(x) = x+ 0.3 sin(w0

k + w1
kπx),

where wk are randomly sampled coefficients corresponding to the phase and frequency of the sine wave. We assume

28

https://github.com/probml/rebayes/blob/main/demos/nonstat-1d-regression.ipynb
https://github.com/probml/rebayes/blob/main/demos/nonstat-1d-regression.ipynb
https://github.com/probml/rebayes/blob/main/demos/nonstat-1d-regression.ipynb


Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

d(t) is a staircase function, so d(t) = k for Tk−1 ≤ t ≤ Tk, where Tk −Tk−1 = 250 is the number of steps before the
distribution changes. We visualize these random functions in fig. 8.

Next we fit a one-layer MLP (with 50 hidden units) on this data stream. (The algorithms are unaware of the task
boundaries, corresponding to the change in distribution.) The test error (for the current distribution) vs time is shown
in fig. 9. The “spikes” in the error rate correspond to times when the distribution changes. In some cases the change
in distribution is small (when ft is similar to ft−1), but in other cases there is a large shift. The speed with which an
estimator can adapt to such changes is a critical performance metric in many domains. We see that FCEKF adapts the
fastest, followed by LO-FI and then LRVGA. SGD and the diagonal methods are less sample efficient. However, after
a sufficient number of training examples, most methods converge to a good fit, as shown in fig. 8.
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Figure 10: Test set performance vs number of observations on the fashion-MNIST dataset using MLP. We show
the mean and standard errors across random trials. (a) Negative log likelihood (100 random trials). (b) NLPD
under linearized observation model with probit approximation (20 random trials). Figure generated by gener-
ate stationary clf plots.ipynb

D.3 STATIONARY IMAGE CLASSIFICATION

In this section we report more results on stationary classification experiments.

In fig. 10a we plot the plugin NLL on static fasion MNIST using an MLP with 2 layers with 500 hidden units each,
with 648, 010 parameters. The trends are similar to the misclassification rate in fig. 1a.

In fig. 10b we plot the NLPD results using the linearized likelihood and deterministic probit trick discussed in ap-
pendix B. We see that in general NLPD outperforms the plugin NLL. Furthermore, the posterior from LOFI outper-
forms the posterior from the (diagonal) Laplace approximation.

Next we use a CNN, specifically a LeNet-style architecture with 3 hidden layers and 421,641 parameters. The results
are shown in fig. 11. The trends are similar to the MLP case, except the gaps in performance among the methods are
narrower.

In table 7 we summarize the effects of changing the rank of LO-FI, and of different kinds of inflation (discussed in
appendix E), and of switching from diagonal to spherical covariance (discussed in appendix F) on the static fashion-
MNIST dataset (using the CNN model) after 500 training examples. Not surprisingly, higher rank improves the results,
as does using a diagonal approximation. However, inflation seems to have a negligible effect. In fig. 12, we visualize
these differences as a function of sample size.

spherical diagonal
none bayesian hybrid simple none bayesian hybrid simple

rank

1 42.6 ± 0.9 42.6 ± 0.9 42.6 ± 0.9 41.5 ± 1.2 41.3 ± 1.1 40.1 ± 1.1 40.6 ± 1.2 40.6 ± 1.2
5 37.5 ± 1.1 37.8 ± 1.1 37.6 ± 1.1 38.0 ± 1.1 36.6 ± 1.3 37.0 ± 2.0 37.0 ± 2.0 37.0 ± 2.0
10 31.8 ± 1.0 32.4 ± 1.1 30.8 ± 0.8 31.2 ± 0.8 30.8 ± 1.0 32.5 ± 1.5 31.7 ± 1.1 30.6 ± 0.8
20 31.5 ± 1.0 35.9 ± 1.6 30.1 ± 0.9 30.1 ± 0.8 28.7 ± 0.6 31.1 ± 1.2 32.7 ± 0.9 32.3 ± 1.1
50 28.0 ± 0.7 31.7 ± 1.3 31.7 ± 1.3 31.7 ± 1.3 28.6 ± 0.8 28.4 ± 0.7 29.1 ± 0.6 28.4 ± 0.7

Table 7: Stationary fashion-MNIST test set misclassification rates using LO-FI of various ranks after 500 training
examples. We show results for diagonal vs spherical covariance and different forms of inflation (described in ap-
pendix E). Means and standard errors computed over 10 trials.

D.4 PIECEWISE STATIONARY IMAGE CLASSIFICATION

In this section we report more results on piecewise stationary classification experiments.
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Figure 11: Test set performance vs number of observations on the fashion-MNIST dataset using a CNN. We show
the mean and standard errors across 100 random trials. (a) Negative log-likelihood. (b) Misclassification rate. Figure
generated by generate stationary clf plots.ipynb
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Figure 12: Results on fashion-MNIST classification dataset using a CNN. We visualize the effect of changing rank,
and using diagonal vs spherical LOFI (see appendix F). ”lofi-sph-xx” refers to spherical LO-FI of rank xx (a) negative
log-likelihood; (b) misclassification rate. Figure generated by generate stationary clf plots.py
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Figure 13: Non-stationary permuted fashion-MNIST classification. The task boundaries are denoted by vertical lines.
We report NLL performance on the current task’s test set. Figure generated by generate permuted clf plots.ipynb
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Figure 14: Test set misclassification rates vs number of observations on the permuted fashion-MNIST dataset. We
compare the performance as a function of the rank of LO-FI. Figure generated by generate permuted clf plots.ipynb.

Permuted Fashion-MNIST In fig. 13, we plot the NLL on permuted fashion MNIST. The results are similar to the
misclassification rates in fig. 1c, except now the gap between LOFI and the other methods is even larger. In fig. 14 we
compare the test-set misclassification rates of LO-FI of various ranks. We see that performance improves with rank
and plateaus at about rank 10.

In fig. 15, we show the test-set predictions (plugin approxmation) from a LO-FI-10 estimator on a sample image from
each of the first five tasks at various points during training. Before the model has seen data from a given distribution
(yellow panels), its predictions are mostly uniform; once it encounters data from the distribution, it learns rapidly,
as can be seen by the red NLL bar going down (the model is less surprised when it sees the true label); after the
distribution shifts, we can still assess its performance on past tasks (gray panels), and we see that the model is fairly
good at remembering the past. At the bottom of the plot, we show predictions on an OOD dataset that the model is
never trained on; we see that predictions remain close to uniform, indicating high uncertainty. In fig. 16, we show the
same results using RSGD estimator; we see that it is much less entropic, even when it should be uncertain (e.g. for
OOD).

Split Fashion-MNIST In fig. 17, we evaluate the methods using the split fashion-MNIST dataset. This task seems
so easy that we cannot detect any substantial difference in test-set performance among the different methods.

D.5 SLOWLY CHANGING IMAGE CLASSIFICATION

In fig. 18 we plot NLL and NLPD for the gradually rotating fashion-MNIST experiment. The difference between the
methods is more visible when judged by NLL compared to the misclassification error in fig. 1b. We see that LO-FI
outperforms other methods.
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Figure 15: Test set predictions for non-stationary permuted fashion-MNIST classification problem using LO-FI rank
10. Rows correspond to different distributions / tasks (i.e., different permutations of the data), and columns represent
snapshots of the posterior predictive after every 50 steps of online learning. Thus we can assess the performance of
the model after seeing tasks 1 : t by looking at the t’th column, and reading down across the rows. The first task uses
the identity permutation. The last row corresponds to an out-of-distribution example taken from the MNIST dataset.
The current task is shown in green; previously seen tasks are shown in gray, and future tasks are shown in yellow. The
blue bars are the predicted class probabilities (using plugin estimate), and the red bar is the NLL of the true label. in
red. Figure generated by probe.ipynb
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Figure 16: Same as fig. 15 except using replay-SGD estimator.
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Figure 17: Test set performance vs number of observations on the split fashion-MNIST dataset. (a) negative log-
likelihood; (b) misclassification rate. Figure generated by generate split clf plots.ipynb.
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Figure 18: Gradually rotating fashion-MNIST classification. We evaluate the performance on a test set from the
current distribution (within a window). (a) NLL. (b) NLPD under probit approximation. Figure generated by gener-
ate rotated clf plots.ipynb.
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Figure 19: IID rotated fashion-MNIST regression problem. (a) NLL using MAP plug-in estimate. (b) NLPD under
linearized observation model. Figure generated by generate iid reg plots.ipynb

D.6 STATIONARY IMAGE REGRESSION

In fig. 19a we show the NLL (per example) for the static fashion-MNIST regression problem. This has the same shape
as the RMSE results in fig. 2a, since NLL = RMSE + constant, since we assume the observation noise is fixed.

In fig. 19b we show the NLPD for the same problem, which is approximated using the posterior predictive distribution
under the linearized observation model (see appendix B). We see that the NLPD metric of each method outperforms
its respective NLL metric, and the variance is much lower. We also see that the posterior from LOFI outperforms the
posterior from (diagonal) Laplace.

D.7 PIECEWISE STATIONARY IMAGE REGRESSION

In fig. 20 we show results for a piecewise stationary distribution created by using permuted fashion MNIST with 300
samples per task to create 10 tasks. We see that LO-FI outperforms RSGD by a large margin.

D.8 SLOWLY CHANGING IMAGE REGRESSION

In fig. 21b we show the linearized approximation to the NLPD on the drifting MNIST rotation regression problem.
Note that under the nonstationary setting, the GD-based methods are extremely noisy, whereas LO-FI is much more
stable.
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Figure 20: Permuted rotating Fashion MNIST regression problem using MAP plugin prediction. (a) Negative log-
likelihood; (b) RMSE. Figure generated by generate permuted reg plots.ipynb
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Figure 21: Slowly drifting MNIST regression problem. (a) RMSE using MAP estimate. (b) NLPD using linearized
likelihood. Figure generated by generate rw reg plots.ipynb
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Figure 22: Reward vs time on MNIST bandit problem. We show results (averaged over 5 trials) using Thompson
sampling or ϵ-greedy with ϵ = 0.1. Figure generated by bandit-vs-memory.ipynb

D.9 BANDITS

In fig. 22 we show reward vs time for different methods on the MNIST bandit problem. We see that LOFI with
Thompson sampling beats LOFI with ϵ-greedy, which beats replay SGD with ϵ-greedy.
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D.10 LRVGA IMPLEMENTATION

The orignal numpy code for LRVGA code is at https://github.com/marc-h-lambert/L-RVGA. We
reimeplemented it in JAX and verified that it gives the same results when applied to their linear regression exam-
ples. Specifically we used their source code with initial hyperparameters σ2

0 = 1 and ϵ = 10−3. In fig. 23, we visually
compare the KL between our posterior and theirs, verifying that our implementation is correct. By using JAX, we
gain speed. More importantly we can extend the method to the nonlinear case by using JAX’s autodiff framework to
compute the relevant gradients.
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Figure 23: KL divergence comparison between the original LRVGA implementation (source) and our implementation.
Figure generated by xp-lrvga-linear-regression.ipynb
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E COVARIANCE INFLATION

In this section we derive a modified version of LO-FI where we use a Bayesian version of the covariance inflation
trick of (Ollivier, 2018; Alessandri et al., 2007; Kurle et al., 2020) to account for errors introduced by approximate
inference, such as linearizing the observation model (see (Kulhavý & Zarrop, 1993; Kárný, 2014) for analysis). In
practice this just requires a rescaling of the terms in the posterior precision matrix at the end of each update step
(or equivalently, just before doing a predict step). This rescaling only takes O(P ) time, so is negligible extra cost.
However, we have found it does not seem to improve results (see table 7 for results on UCI regression); thus this
section is just for “historical interest”.

Appendix E.1 derives our Bayesian inflation method, in which discounting is applied only to the likelihood and not to
the prior. This amounts to deflating the entire log posterior and then adding back in the appropriate fraction of the log
prior. Appendix E.2 derives a simpler version of inflation that discounts the entire posterior (i.e., likelihood and prior),
matching past work (Alessandri et al., 2007; Ollivier, 2018). Appendix E.3 derives a hybrid inflation method that uses
the covariance update from Bayesian inflation but, like simple inflation, does not change the mean. This turns out to
be a special case of the regularized forgetting mechanism of Kulhavý & Zarrop (1993), which they derive based on
uncertainty about the system dynamics rather than drift in the observation model.

We derive all three variations for a general state-space model and then show how they specialize to LO-FI. The results
are formulas for going from the parameters of the posterior after step t − 1 (µt−1,Υt−1,Wt−1) to parameters of
an “inflated” posterior (µ́t−1, Ύt−1,Ẃt−1). Applying inflation then amounts to substituting µ́t−1, Ύt−1,Ẃt−1 for
µt−1,Υt−1,Wt−1 in eqs. (15), (19) and (25) in appendix A.1.

E.1 BAYESIAN INFLATION

Consider first the special case of a static parameter (∀t : θt = θ0). The log posterior after step t− 1 is

log p(θ|D1:t−1) = log p(θ) +

t−1∑
i=1

log p(yi|xi,θ) + const (67)

We modify this expression by discounting the likelihood of each past observation by (1 + α)−k, where k = t− 1− i
is the lag. For Gaussian observations, this is equivalent to scaling up the observation covariance Ri by (1 + α)−k.
We indicate this discounting by the subscripted probability pt−1, where time t − 1 is the reference point from which
discounting is applied.

log pt−1(θ|D1:t−1) = log p(θ) +

t−1∑
i=1

(1 + α)−(t−1−i) log p(yi|xi,θ) + const (68)

Passing from pt−1 to pt amounts to applying an additional discount factor to the likelihoods, which is equivalent to
discounting the entire log posterior and adding back a fraction of the log prior so that it is not discounted:

log pt(θ|D1:t−1) = log p(θ) +

t−1∑
i=1

(1 + α)−(t−i) log p(yi|xi,θ) + const (69)

= log p(θ) +
1

1 + α

t−1∑
i=1

(1 + α)−(t−1−i) log p(yi|xi,θ) + const (70)

=
1

1 + α
log pt−1(θ|D1:t−1) +

α

1 + α
log p(θ) (71)

The same reasoning applies in the general case with state dynamics. We expand the log posterior after step t− 1 as

log pt−1(θt−1|D1:t−1) = log p(θt−1) + log pt−1(D1:t−1|θt−1) + const (72)

Passing from pt−1 to pt amounts to discounting the data contribution while preserving the latent predictive prior:

log pt(θt−1|D1:t−1) = log p(θt−1) +
1

1 + α
log pt−1(D1:t−1|θt−1) + const (73)

=
1

1 + α
log pt−1(θt−1|D1:t−1) +

α

1 + α
log p(θt−1) + const (74)
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A similar result was derived in (Kurle et al., 2020).

We now specialize eq. (74) to LO-FI. Given our initial prior p(θ0) = N (θ0|µ0, η
−1
0 IP ) and dynamics p(θt|θt−1) =

N (θt|γtθt−1, qtIP ), the latent unconditional predictive prior of the dynamical system at time t− 1 is

p(θt−1) = N (θt−1|Γt−1µ0, η
−1
t−1IP ) (75)

η−1
t = γ2

t η
−1
t−1 + qt (76)

Γt−1 =

t−1∏
i=1

γi (77)

Substituting this and our posterior pt−1(θt−1|D1:t−1) = N (θt−1|µt−1, (Υt−1+Wt−1W
T
t−1)

−1) into eq. (74) yields

pt(θt−1|D1:t−1) = N
(
θt−1

∣∣∣∣µ́t−1,
(
Ύt−1 + Ẃt−1Ẃ

T
t−1

)−1
)

(78)

with

µ́t−1 = µt−1 +
αηt−1

1 + α

(
Ύt−1 + Ẃt−1Ẃ

T
t−1

)−1

(Γt−1µ0 − µt−1) (79)

Ύt−1 =
1

1 + α
Υt−1 +

αηt−1

1 + α
IP (80)

Ẃt−1 =
1√

1 + α
Wt−1 (81)

Equation (79) implements a form of regularization toward the prior predictive mean Γt−1µ0, which originates in
the log-prior term in eq. (74). Equations (80) and (81) implement inflation of the covariance by a factor of 1 + α,
together with the log-prior correction being added to Ύt−1. Together these expressions show how the parameters of
the distribution change as we pass from pt−1(θt−1|D1:t−1) to pt(θt−1|D1:t−1). Notice that we have incremented the
subscript in pt but the random variable is still θt−1. Thus µ́t−1, Ύt−1,Ẃt−1 define the “post-inflation” posterior that
is passed to the predict step in appendix A.1 to obtain the iterative prior, given by µt|t−1,Υt|t−1,Wt|t−1.

E.2 SIMPLE INFLATION

A simpler version of inflation can be obtained by discounting the prior as well as the likelihood. In that case, passing
from pt−1 to pt amounts to discounting the entire log posterior. Thus instead of eq. (74) we have

log pt(θt−1|D1:t−1) =
1

1 + α
log pt−1(θt−1|D1:t−1) (82)

Substituting pt−1(θt−1|D1:t−1) = N (θt−1|µt−1, (Υt−1 +Wt−1W
T
t−1)

−1) yields

pt(θt−1|D1:t−1) = N
(
θt−1

∣∣∣µt−1, (1 + α)
(
Υt−1 +Wt−1W

T
t−1

)−1
)

(83)

Thus we merely inflate the covariance by 1 + α, as in Alessandri et al. (2007) and Ollivier (2018). This implies the
simple inflation equations

µ́t−1 = µt−1 (84)

Ύt−1 =
1

1 + α
Υt−1 (85)

Ẃt−1 =
1√

1 + α
Wt−1 (86)

E.3 HYBRID INFLATION

Rather than mixing in the latent predictive prior, as in eq. (74), we can mix in a distribution that uses the prior predictive
variance but the posterior mean:

log pt(θt−1|D1:t−1) =
1

1 + α
log pt−1(θt−1|D1:t−1) +

α

1 + α
logN (θt−1|µt−1, η

−1
t−1IP ) + const (87)
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This approach fits into the more general regularized forgetting framework of Kulhavý & Zarrop (1993) and can be
interpreted heuristically as regularizing the covariance but not the mean, which may be preferable since µ0 is sampled
randomly rather than being an informed prior. In this case, substituting LO-FI’s posterior pt−1(θt−1|D1:t−1) =
N (θt−1|µt−1, (Υt−1 +Wt−1W

T
t−1)

−1) yields

pt(θt−1|D1:t−1) = N
(
θt−1

∣∣∣µt−1, (1 + α)
(
Υt−1 + αηt−1IP +Wt−1W

T
t−1

)−1
)

(88)

implying

µ́t−1 = µt−1 (89)

Ύt−1 =
1

1 + α
Υt−1 +

αηt−1

1 + α
IP (90)

Ẃt−1 =
1√

1 + α
Wt−1 (91)

42



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

F SPHERICAL LO-FI

Here we describe a restricted version of LO-FI in which the diagonal part of the precision is isotropic, Υt = ηtIP .
We denote this class of spherical plus low-rank models by SPL(L), and refer to this algorithm as spherical LO-FI, in
contrast to the diagonal LO-FI presented in the main text. Perhaps surprisingly, we find that the spherical restriction
can slightly help predictive performance (see UCI regression results in table 3), which is consistent with the claims in
(Tomczak et al., 2020). However, the gains are not consistent across datasets.

The spherical restriction also allows a more efficient predict step, taking O(P ) instead of O(PL2) as in diagonal LO-
FI, although in practice the running times are indistinguishable (see fig. 7). The update step takes O(PL̃2), matching
diagonal LO-FI, although we present an alternative approximate method in appendix F.5.2 that takes only O(PLC).

F.1 WARMUP

To motivate our approach, consider the case of stationary parameters, where p(θt|θt−1) = δ(θt − θt−1). Then
Σt|t−1 = Σt−1 and hence eq. (26) becomes Σ−1

t = Σ−1
t−1 +HT

tR
−1
t Ht. Hence we can unwind eq. (26) to get

Σ−1
t = η0IP +

t∑
i=1

GiG
T
i (92)

where Gt = HT
tA

T
t ∈ RP×C is the transposed Jacobian of the standardized observation vector Atyt. The data-

driven part of eq. (92) is a sum of outer products of gradients, taken over all time steps and (standardized) outcome
dimensions. We seek a low-rank approximation of this sum,

WtW
T
t ≈

t∑
i=1

GiG
T
i (93)

with Wt ∈ RP×L. LO-FI’s update step uses incremental SVD after each observation to maintain Wt as an approxi-
mation of the top L non-normalized singular vectors of [G1, . . . ,Gt]. Appendix F.5 describes two alternative versions
of incremental SVD, one matching that of diagonal LO-FI (appendix F.5.1) and the other using a more efficient pro-
jection approximation (appendix F.5.2). In both cases we will have Wt = UtΛt, where Λt = diag(λt) is a diagonal
L× L matrix, and UT

tUt = IL. Therefore the approximate posterior is written as

p(θt|D1:t) = N
(
θt

∣∣∣µt,
(
ηtIP +UtΛ

2
tU

T
t

)−1
)

(94)

Unlike in diagonal LO-FI, the spherical part of the precision is data-independent. This is because any data-driven
update, like eq. (39), would make it nonspherical. Therefore η evolves only due to the dynamics in our generative
model, eq. (14).

F.2 STEADY-STATE ASSUMPTION

We find it helpful to make the steady-state assumption that V [θt] = V [θ0] for all t, which is the same as the “variance
preserving” OU process used in diffusion probabilistic models (Song et al., 2021; Ho et al., 2020). Because V [θ0] =
η−1
0 IP , and because V [θt] and η−1

t both evolve according to eq. (14), η−1
t = γ2

t η
−1
t−1 + qt, we have by induction that

V [θt] = η−1
t IP for all t. Therefore the steady-state assumption is equivalent to ηt = η0 and implies the following

constraint for all t:

γ2
t + qtηt−1 = 1 (95)

F.3 NOTATION

We use □ and □̃ to denote objects whose “focal” dimension is grown from L to P and L̃, respectively. For example,
Ut has size P ×L while Ut has size P × P (see eqs. (98) and (99)), and Λt has size L×L while Λ̃t has size P × L̃
(with L̃ nonzero entries; see eqs. (37) and (115)).
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F.4 PREDICT STEP FOR THE PARAMETERS

The predict step for the parameters, p(θt|D1:t−1) = N (θt−1|µt|t−1,Σt|t−1), just requires pushing the previous
posterior through the linear-Gaussian dynamics model in eq. (14):

µt|t−1 = γtµt−1 (96)

Σt|t−1 = γ2
tΣt−1 + qtIP (97)

To efficiently compute Σt−1, let Ut−1 be an orthonormal matrix extending Ut−1 from P × L to P × P , and let
λt−1 ∈ RP be a vector extending λt−1 with zeros:

Ut−1U
T

t−1 = IP (98)

Ut−1[:, 1:L] = Ut−1 (99)

λt−1[1:L] = λt−1 (100)

λt−1[(L+ 1):P ] = 0 (101)

Then we can diagonalize using Ut−1:

Σt−1 =
(
ηt−1IP +Ut−1Λ

2
t−1U

T
t−1

)−1
(102)

=
(
Ut−1diag

(
ηt−1 + λ

2

t−1

)
U

T

t−1

)−1

(103)

= Ut−1diag
(
ηt−1 + λ

2

t−1

)−1

U
T

t−1 (104)

Substituting into eq. (97) gives an efficient expression for the precision:

Σ−1
t|t−1 =

(
γ2
tUt−1diag

(
ηt−1 + λ

2

t−1

)−1

U
T

t−1 + qtIP

)−1

(105)

= Ut−1diag

(
ηt−1 + λ

2

t−1

γ2
t + qtηt−1 + qtλ

2

t−1

)
U

T

t−1 (106)

=
ηt−1

γ2
t + qtηt−1

IP +Ut−1diag

(
γ2
t λ

2
t−1

(γ2
t + qtηt−1)(γ2

t + qtηt−1 + qtλ2
t−1)

)
UT

t−1 (107)

This implies the updates

ηt =
ηt−1

γ2
t + qtηt−1

(108)

λ2
t|t−1 =

γ2
t λ

2
t−1

(γ2
t + qtηt−1)(γ2

t + qtηt−1 + qtλ2
t−1)

(109)

Ut|t−1 = Ut−1 (110)

Under the steady-state assumption, eq. (95), these reduce to

ηt = ηt−1 (111)

λ2
t|t−1 =

γ2
t λ

2
t−1

1 + qtλ2
t−1

(112)

Ut|t−1 = Ut−1 (113)

See algorithm 6 for the pseudocode.

F.5 UPDATE STEP

Algorithm 7 shows the pseudocode for spherical LO-FI’s update step. The mean update is the same as for diagonal
LO-FI, eq. (36). Substituting the spherical part of the precision, Υt|t−1 = ηtIP , yields

µt = µt|t−1 + η−1
t

(
IP − W̃t

(
ηtIL̃ + W̃T

t W̃t

)−1

W̃T
t

)
HT

tR
−1
t et (114)
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Algorithm 6: LO-FI predict step (spherical).
1 def predict(µt−1,λt−1,Ut−1, ηt−1,xt, γt, qt):
2 µt|t−1 = γµt−1

3 λt|t−1 =

√
γ2
t λ

2
t−1

(γ2
t +qtηt−1)(γ2

t +qtηt−1+qtλ2
t−1)

// componentwise

4 Ut|t−1 = Ut−1

5 ηt =
ηt−1

γ2
t +qtηt−1

6 ŷt = h(xt,µt|t−1)
7 Return (ŷt,µt|t−1,λt|t−1,Ut|t−1, ηt)

F.5.1 PRECISION UPDATE: SVD VERSION

Our primary proposed update step for spherical LO-FI is essentially the same as that for diagonal LO-FI. We define
W̃t as in eq. (30), calculate its SVD as in eq. (37), and keep the top L singular values and vectors (mirroring eq. (38)):

λt|t−1 = λ̃t|t−1[1:L] (115)

Ut|t−1 = Ũt|t−1[:, 1:L] (116)

To keep the diagonal part of the precision spherical, we do not update it in response to data (cf. eq. (39)).

Algorithm 7: LO-FI update step (spherical).
1 def update(µt|t−1,λt|t−1,Ut|t−1, ηt,xt,yt, ŷt,V[y|·], L):
2 et = yt − ŷt

3 Rt = V[y|ŷt]

4 AT
t = chol(R−1

t )

5 W̃t =
[
Ut|t−1diag(λt|t−1) HT

tA
T
t

]
6 µt = µt|t−1 + η−1

t

(
IP − W̃t

(
ηtIL̃ + W̃T

t W̃t

)−1

W̃T
t

)
HT

tR
−1
t et

7 if Full-SVD then
8 (λ̃t, Ũt) = SVD(W̃t)

9 (λt,Ut) = top-L(Ũt, λ̃t)
10 else
11 (λt,Ut) = SVD-orth(λt|t−1,Ut|t−1,Ht,At)

12 Return (µt,λt,Ut)

F.5.2 PRECISION UPDATE: ORTHOGONAL PROJECTION VERSION

Computing the SVD takes O(PL̃2) time, which may be expensive. We now present an alternative that takes O(PLC)
time, but which is less accurate. The approach is based on the ORFit method (Min et al., 2022), which uses orthogonal
projections to make the SVD fast to compute.

To explain the method, we start by considering the special case of a linearized scalar output model of the form

N (yt|h(xt,µt|t−1) + gTt (θt − µt|t−1), R) (117)

where gt = ∇θh(xt,θ)µt|t−1
= HT

t is the gradient. So W̃t becomes a P × (L + 1) matrix, given by W̃t =

[ Ut−1Λt−1 gt ]. There is no closed-form method for computing the SVD of this new matrix, because the new
gradient will generally be oblique to the existing vectors. The ORFit method (Min et al., 2022) makes the problem
tractable by replacing the gradient gt by its projection onto the subspace orthogonal to the current basis set. That is, it
replaces gt with

vt =
(
IP −Ut|t−1U

T
t|t−1

)
gt (118)
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Computing the SVD of W̊t =
[
Ut|t−1Λt|t−1 vt

]
is trivial because its columns are orthogonal. First let λt =

λt|t−1 and Ut = Ut|t−1. Now compute v = ||vt|| and let k = argminj′ λt−1[j
′]. If v > λt[k], then we replace λt[k]

with v, and Ut[:, k] with vt/v. That is, we discard an old basis vector if the new observation is more informative, in
the sense of Fisher information with respect to the linearized observation model.

We can generalize to handle C-dimensional outputs, to efficiently compute a truncated rank-L SVD of W̃t in eq. (30),
by incrementally applying the above procedure to each column of the generalized matrix of gradients, HT

tA
T
t . To

reduce the dependence on the order of projection, we visit the columns in a random order. We denote this operation
by

(Ut,Λt) = SVD-orth(Ut|t−1,Λt|t−1,Ht,At, L). (119)

See algorithm 8 for the pseudocode. This takes O(PLC) time.

Algorithm 8: Incremental SVD using orthogonal projection.
1 def SVD-orth(λ,U,H,A):
2 Sample π ∈ perm(C)
3 for j ∈ π do
4 vj =

(
IP −UUT

)
HT
[
AT
]
·j

5 vj = ∥vj∥
6 k = argminλ
7 if vj > λk then
8 U[:, k] =

vj

vj

9 λk = vj

10 Return (λ,U)

F.6 INFLATION

Inflation operates identically in spherical and diagonal LO-FI, up to a change in notation. Because spherical LO-FI
represents the low-rank part of the precision as UtΛt instead of Wt, the update to Wt−1 (rescaling by 1/

√
1 + α as

in eqs. (81), (86) and (91)) becomes a rescaling of Λt−1, with Ut−1 unchanged. Likewise, because spherical LO-FI
represents the diagonal part of the precision as ηtIP instead of Υt, the update to Υt−1 becomes an update to ηt−1.
This update simplifies to ήt−1 = ηt−1 for Bayesian and hybrid inflation (see eqs. (80) and (90) with Υt−1 = ηt−1IP ).
This simplification arises because, in spherical LO-FI, the latent predictive prior exactly coincides with the spherical
part of the precision; therefore discounting the likelihood and not the prior amounts to deflating Λt−1 and leaving
ηt−1 unchanged. Under simple inflation, Λt−1 and ηt−1 are both deflated. To implement inflation, the parameters
computed here (µ́t−1, ήt−1, Λ́t−1) are substituted for the posterior parameters (µt−1, ηt−1,Λt−1) in the predict step
(appendix F.4).

Bayesian inflation:

µ́t−1 = µt−1 +
αηt−1

1 + α

(
ήt−1IP + Út−1Λ́

2
t−1Ú

T
t−1

)−1

(Γt−1µ0 − µt−1) (120)

ήt−1 = ηt−1 (121)

Λ́t−1 =
1√

1 + α
Λt−1 (122)

Simple inflation:

µ́t−1 = µt−1 (123)

ήt−1 =
1

1 + α
ηt−1 (124)

Λ́t−1 =
1√

1 + α
Λt−1 (125)
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Hybrid inflation:

µ́t−1 = µt−1 (126)
ήt−1 = ηt−1 (127)

Λ́t−1 =
1√

1 + α
Λt−1 (128)

In all three cases, Út−1 = Ut−1.
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