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ABSTRACT

Multi-task learning (MTL) has been increasingly recognized as an effective paradigm in time-series
analysis for forecasting multiple related tasks concurrently. Prior MTL frameworks for time-series
forecasting have typically been devised for tasks that share the same regular time frequencies. How-
ever, numerous real-world scenarios entail tasks measured at mixed, and often irregular, time fre-
quencies. We propose a multi-task mixed-frequency (MultiMix) learning framework for time-series
forecasting that addresses the challenges of mixed-frequency scenarios where tasks are measured
at different and/or irregular time intervals. Our proposed framework leverages the relationships be-
tween mixed-frequency tasks to improve accuracy and robustness of time-series forecasting across
tasks. The MultiMix framework is implemented using the state-of-the-art Temporal Fusion Trans-
former (TFT) and is evaluated on smart irrigation, where predicting mid-day stem water potential
and soil water potential pose critical challenges. The MultiMix TFT enables joint forecasting of stem
water potential, measured sparsely on irregular and infrequent time intervals, and soil water poten-
tial, measured on a daily time interval. The results show substantial improvements in stem water
potential prediction over state-of-the-art baselines while achieving comparable performance for soil
water potential. These results confirm the effectiveness of the proposed framework for addressing
the mixed-frequency time-series forecasting problem in real-world settings.

1 INTRODUCTION

Multi-task learning (MTL) is a machine learning approach that aims to improve the performance of prediction tasks
by leveraging potential cross-task relationships. It has emerged as a powerful approach for solving multiple related
tasks simultaneously, especially when dealing with sparsely labeled data (Zhang & Yang, 2022). By utilizing the
relationships between tasks, MTL has shown its capability to improve the quality of predictions in various domains,
with impressive results in computer vision (Dvornik et al., 2017), natural language processing, and speech recognition
(Aghajanyan et al., 2021); see Zhang & Yang (2022) for a comprehensive survey.

Recently, the domain of time-series forecasting has made significant progress across various industries by leveraging
MTL (Chen et al., 2020; Deng et al., 2022). However, existing MTL frameworks for time-series forecasting have
primarily focused on addressing single-frequency problems. That is, the different tasks are restricted to a fixed and
shared time interval. This limitation renders conventional MTL approaches in time-series forecasting less effective
for real-world scenarios where multiple tasks are often measured at different and/or irregular time intervals (see e.g.
Jiang et al. (2017) and Yang et al. (2022)). In such scenarios, one of the tasks is typically measured at fixed and
regular intervals (e.g., every hour) while the other task usually contains fewer measurements captured at lower –
and often irregular – intervals. We refer to such combination of tasks as mixed-frequency tasks. To overcome this
challenge, we propose a multi-task mixed-frequency (MultiMix) learning framework that leverages the relationships
between mixed-frequency tasks to enhance the accuracy and robustness of time-series forecasting across tasks (see
Figure 1). Practically, this is achieved through a flexible MultiMix head that can be placed on top of an existing neural
net architecture, allowing the model to learn from all available measurements across multiple tasks. By allowing
the model to learn from all available measurements for both tasks, our framework offers an effective solution for the
mixed-frequency problem. The proposed MultiMix framework presents a promising avenue for advancing the state-
of-the-art in multi-task mixed-frequency time-series forecasting and has potential applications in various domains.

In this paper, we evaluate the developed MultiMix framework in the domain of smart irrigation. Smart irrigation
represents a real-world mixed-frequency scenario where predicting mid-day stem water potential (ψstem) and soil
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Figure 1: A comparison of conventional MTL approaches for time-series forecasting and our proposed MultiMix
approach. In a), all tasks share the same frequency (e.g. daily) while in b), one or more tasks are captured at a different
frequency than the other tasks, rendering conventional MTL approaches infeasible.

water potential (ψsoil) pose critical challenges. ψstem and ψsoil represent measures of the amount of water in the
stem and soil, respectively. Especially ψstem is one of the best indicators on whether plants are getting enough water
or are under drought stress. In turn, this information can lead to more efficient irrigation systems with freshwater
savings of up to ∼30% (Martı́nez-Gimeno et al., 2018). While ψsoil can already be measured by sensors at a high
time-frequency at regular intervals, ψstem can only be reliably measured manually in specific weather conditions, and
therefore typically at irregular and infrequent time intervals. As such, the available ψstem-measurements are limited.
Moreover, the prediction of ψstem is non-trivial due to the influence of numerous factors such as ψsoil, root system
distribution, soil characteristics, atmospheric conditions, and many more (Janssens et al., 2011). This poses significant
challenges in accurately forecasting ψstem using single-task models.

To solve this challenge, we apply our proposed MultiMix framework to predict both ψstem and ψsoil simultaneously.
We implement the MultiMix framework using the state-of-the-art Temporal Fusion Transformer (TFT) (Lim et al.,
2021). The MultiMix TFT incorporates ψsoil-information – measured on a daily time interval – into the prediction of
ψstem – measured on irregular and infrequent time intervals – achieving a substantial improvement in the accuracy of
ψstem-prediction over baseline state-of-the-art methods without compromising the performance of ψsoil-prediction.

The contribution of this paper is three-fold: (i) we present the MultiMix framework; (ii) implement it with the state-
of-the-art TFT; and (iii) demonstrate the empirical superiority and usefulness of the MultiMix TFT for the real-world
problem of ψstem- and ψsoil-prediction. Note that while we applied the model to the problem of water potential
prediction, the model can be applied to any combination of tasks that are measured at mixed frequencies and/or at
irregular time intervals.

2 RELATED WORK

Substantial performance gains have been achieved by using an MTL set-up in various domains, ranging from computer
vision to natural language processing, as well as cross-domain combinations of those (see Al-Rawi & Valveny (2019)
and Zhang & Yang (2022) for some examples). The advantages of MTL in an environmental setting have been shown
by Qiu et al. (2017) where they utilized a convolutional neural network architecture with hard parameter sharing to
forecast rainfall across multiple regions. The MTL objective allowed them to exploit multi-site features. Cirstea et al.
(2018) propose a convolutional recurrent neural network with an auto-encoder to forecast correlated time-series in
a sensor context. Their MTL set-up consists of a forecasting objective and a reconstruction objective. The latter
objective instills the learning of robust features – useful when dealing with noisy sensor data. Mahmoud et al. (2020)
propose a systematic approach for MTL in time series and apply it on personalized human activity recognition.

Notably, all MTL approaches developed so far assume (some explicitly, e.g. Mahmoud et al. (2020)) alignment in
time of the multiple tasks. However, this assumption breaks down in many real-life scenarios. For example, Jiang
et al. (2017) show the difficulties of dealing with mixed-frequency data in GDP forecasting and propose the use of
MIDAS regression (Ghysels et al., 2004) preceded by a dynamic factor model. Note, that MIDAS regression assumes
a consistent frequency ratio between tasks, making this infeasible for scenarios where a lower frequency tasks is also
of an irregular nature. In the domain of water status in fruit crops, ψstem is typically measured at irregular intervals
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of 7 to 14 days, while ψsoil is typically available on a daily or hourly timescale with fixed intervals (Janssens et al.,
2011).

By incorporating mixed-frequency data into an MTL framework, it becomes possible to capitalize on the benefits of
MTL, even in scenarios where the tasks are only available at different and possibly irregular frequencies. Ultimately,
this results in a more flexible and adaptive training process. Recently, the work of Toda et al. (2022) has combined a
mixed-frequency objective with a similar – yet different – learning paradigm, namely aggregate learning. They propose
a mixed-frequency aggregate learning (MF-AGL) model capable of predicting regional heterogeneity of economic
indicators in real-time. However, aggregate learning focuses on updating the model at an aggregate level using a
specific set of sources while MTL focuses on learning shared representations across tasks to improve performance on
each individual task. Here, we are interested in the latter. To the best of our knowledge, we are the first to combine a
mixed-frequency objective with an MTL paradigm.

Finally, note that so far, ψstem has only been predicted using traditional single-task approaches, with limited success in
accurately capturing the dynamic changes over time. As an illustration, Ohana-Levi et al. (2022) use gradient boosted
regression trees and González-Teruel et al. (2022) suggest the use of random forests. MTL has never been applied in
smart irrigation.

3 PROBLEM FORMULATION

We consider a multi-task mixed-frequency time-series problem with inputs containing multivariate time-series along
with potential metadata, where the goal is to learn a function that performs well on all tasks. For clarity, we limit
ourselves to two tasks in what follows. Let D = (si,xi,y

(reg)
i ,y

(mf)
i )ni=1 be a dataset of n observations, where

xi ∈ RT×D is a multivariate time-series input with T time-steps and D features, si ∈ RP represents static metadata
with P features, y(reg)

i ∈ RH1 is the output for the first task with forecast-horizonH1, measured at a regular frequency,
and y

(mf)
i ∈ RH2 is the output for the second task with forecast-horizon H2 measured at a lower and potentially

irregular frequency. Note that, as a result of the mixed frequency between tasks: ∃ i : y(mf)
i is undefined.

Our goal is to learn a function f(S,X) that maps the inputs X and S to the outputs Y(reg) and Y(mf) such that it
performs well on both tasks. More formally, we seek to find the parameters θ of the function f(·; θ) that minimize the
following objective function – Eq. (1):

θ∗ = argmin
θ

n∑
i=1

(
α · Lreg(f(si,xi; θ),y

(reg)
i ) + (1− α) · [y(mf)

i ̸= NA]Lmf (f(si,xi; θ),y
(mf)
i )

)
(1)

where Lreg and Lmf are task-specific loss functions. [y ̸= NA] is an indicator function that returns 1 if y is not
missing, and 0 otherwise which allows the training process to deal with data measured at mixed frequencies. The
weighting factor α controls the relative importance of the tasks in the optimization problem.

The choice of α is important as it balances the relative contribution of each task in the learning process. In the case of
the mixed-frequency task, a larger value1 of α might be appropriate to ensure that the model is not overly influenced
by the less frequently updated data. On the other hand, if the lower-frequency task is more important or contains more
informative data, a lower value of α might be more appropriate with α ∈ [0, 1]. Ultimately, the choice of weighting
factor can be driven by domain knowledge or can be obtained through a hyperparameter search. Note that Eq. (1)
describes the case for two tasks. This can easily be extended to M tasks by adding a term for each task, weighted by
a weighting factor βm, and normalized across tasks by

∑M
m=1 βm.

4 THE MULTIMIX TFT

The MultiMix TFT consists of two main components: (i) the multi-task mixed-frequency framework and (ii) the
Temporal Fusion Transformer.

1Note that a larger value of α results in a lower weight on the mixed-frequency task.

3



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Shared Dense

  

Temporal Fusion Transformer

Historical inputs

MixFreq Dense Dense

Static metadata Known future inputs

Figure 2: The architecture for the MultiMix TFT. The TFT can take as input: static metadata, historical inputs, and
known future inputs (for more details see Lim et al. (2021)). The output of the TFT is then fed to the multi-task
mixed-frequency head.

4.1 MULTI-TASK MIXED-FREQUENCY FRAMEWORK

We propose a Multi-task Mixed-frequency (MultiMix) learning approach to modeling time-series data that leverages
the relationships between mixed-frequency tasks to enhance the accuracy and robustness of time-series forecasting
across tasks. For simplicity, we will explain the framework for two tasks, but this can easily be generalized to m tasks.
The approach is particularly useful in situations where one of the tasks is measured at fixed and regular intervals (e.g.,
every hour) while the other task contains fewer measurements captured at irregular and less frequent intervals. As such,
the main goal is to improve the accuracy of the lower-frequency task by leveraging potential cross-task relationships
with the higher and regular frequency task.

The key idea behind the MultiMix learning framework is to design a neural network architecture that can handle the
different frequencies of the tasks and the interaction between them. To this end, we introduce a MultiMix head which
can be placed on top of existing neural network architectures as a final output layer. Note that we use a hard parameter-
sharing multi-task model due to its proven efficacy in the context of limited data (Ruder, 2017). Here, we suggest the
use of the Temporal Fusion Transformer (Lim et al., 2021) as the base (see Section 4.2) – followed by the MultiMix
head. A full schematic overview of the architecture is shown in Figure 2. The outputs of the MultiMix head are then
fused into a single objective function (see Eq. (1)).

The presence of mixed-frequency tasks in time-series forecasting poses a unique challenge in multi-task learning, as
not all tasks may have corresponding values for each sample within a batch. Traditional multi-task learning training
schemes are not equipped to handle such scenarios. Consequently, MultiMix employs a custom training scheme that
incorporates a masking mechanism to exclude tasks from the training step when the target value is non-existent when
no values are available due to the mixed-frequency nature. Such training scheme is provided in Algorithm 1. Note
that the algorithm takes as input – amongst others – a mask for the mixed-frequency task to account for non-existent
values due to the lower frequency of said task. Within a given batch, the algorithm first applies the mask to the true
values of the low-frequency task and checks if all values within the batch are missing. If so, the loss for this task at the
current training step is set to zero. Otherwise, the mask is also applied to the predicted values for the mixed-frequency
task for the given batch. As a result, the loss function at the current training step is computed only on the remaining
non-missing values for that task. Additionally, a mask for backpropagation at the current training step is computed as
the complement of the mask for the mixed-frequency task such that only valid gradients are propagated back through
the model during training.

4



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Algorithm 1 Calculate multi-task mixed-frequency loss with masking over a given batch

Input: Predicted values ŷ(reg) and ŷ(mf), true values y(reg) and y(mf), mask for mixed-frequency taskmaskmf , loss
functions Lreg and Lmf , weighting factor α

Output: Loss value LMultiMix, maskbackprop
1: y(mf)

masked ← y(mf) ⊙maskmf ▷ Apply mask to target
2: if maskmf = 0 then ▷ All values are missing
3: ℓmf ← 0
4: else
5: ŷ

(mf)
masked ← ŷ(mf) ⊙maskmf ▷ Apply mask to prediction

6: ℓmf ← Lmf (ŷ
(mf), y(mf)) ▷ Compute loss on non-missing values

7: end if
8: ℓreg ← Lreg(ŷ

(reg), y(reg)) ▷ Compute loss on regular task
9: LMultiMix ← αLreg + (1− α)Lmf ▷ Compute weighted sum of losses (cf. Eq. (1))

10: mbackprop ← 1−maskmf ▷ Mask for backpropagation
11: return LMultiMix, maskbackprop

4.2 TEMPORAL FUSION TRANSFORMER

The Temporal Fusion Transformer is a state-of-the-art deep learning architecture designed specifically for time-series
modelling (Lim et al., 2021). It combines the strengths of two well-known neural network architectures: the Trans-
former (Vaswani et al., 2017) and the Long Short-Term Memory network (LSTM) (Hochreiter & Schmidhuber, 1997).
The Transformer architecture is widely acknowledged for its ability to effectively handle sequential data through par-
allel processing, with applications ranging from text (Vaswani et al., 2017), images (Dosovitskiy et al., 2021), to
time-series (Lim et al., 2021). Despite its proficiency, the Transformer architecture has limitations in capturing local
patterns that are crucial for precise forecasting of time-series data. Conversely, LSTMs excel at capturing local patterns
in sequential data but lack the ability for parallel processing of extended sequences.

The TFT addresses these limitations by incorporating the Transformer and LSTM architectures into a single network.
The TFT can include temporal information of historic and known future inputs, as well as static information. The
temporal information propagates through the LSTM layer(s) for local extraction after which the resulting embeddings
are fed to the transformer component – enriched with static information. This symbiosis allows the TFT to seamlessly
extract both local and global patterns from time-series data, while conditioning on static information. Lastly, the
TFT contains variable selection networks and gated residual networks (GRNs). The former utilize learned gating
mechanisms with softmax to selectively weigh and combine the input features at each time-step, effectively modeling
the relevance of each feature and allowing for a measure of variable importance (see also Section 7). Meanwhile, the
GRNs equip the TFT with the capacity to adapt its complexity dynamically to a given dataset. These sub-networks play
a pivotal role in positioning the TFT as the backbone for the MultiMix framework, particularly due to their inherent
capability to accommodate diverse dataset scenarios, ranging from small to large scales, with remarkable flexibility.
The results are a noticeable enhancement in forecasting accuracy in different domains ranging from traffic prediction
(Zhang et al., 2022) to wind speed prediction (Wu et al., 2022) and ψsoil-prediction (Deforce et al., 2022). For full
details on the TFT we refer to the original work of Lim et al. (2021).

5 MULTIMIX TFT APPLICATION TO SMART IRRIGATION

We utilize a challenging dataset obtained from Janssens et al. (2011) containing the two targets of interest: (i) ψsoil

and (ii) ψstem along with many other environmental and plant-physiological variables. The data was collected from
2007-2009. ψsoil is available at daily frequencies, while ψstem is expensive and complex to measure, resulting in
limited data availability captured at irregular intervals and at a lower frequency than ψsoil. To this end, our MultiMix
TFT can be used to model both tasks simultaneously, leveraging the higher-frequency ψsoil-information to improve
the accuracy of the irregular lower-frequency ψstem-predictions.

5.1 SOIL WATER POTENTIAL

The ψsoil-measurements were measured by Watermark soil moisture sensors (Irrometer Company, Inc., USA) located
in three pear orchards in Belgium. Its values, expressed in pressure units (in kPa), are negative and reflect the strength
of the forces holding water in the soil pores. The drier the soil, the more negative the value, and the harder it becomes
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Table 1: Overview of variables in the model with their type and a brief description.

Variable Type Description
Soil water potential (ψsoil) Target The ψsoil-values averaged per day and per plot at a depth of 30cm
Stem water potential (ψstem) Target The mid-day ψstem-values per plot measured at irregular time-intervals

Orchard name Static categorical Orchard name differentiates between orchards and (implicitly) their characteristics
Soil texture Static categorical The texture of the soil at a 0-30cm depth
Pruning treatment Static categorical Whether roots were pruned or not
Irrigation treatment Static categorical Whether deficit irrigation was applied or not
Measurement year Static categorical Measurement year

Measurement month Temporal known categorical Measurement month

Precipitation Temporal known numeric Daily total precipitation
Reference evapotranspiration Temporal known numeric The reference evapotranspiration (ETo), same for all fields here
Relative time index Temporal known numeric Time index (in days) since k (see Section 6.1)

Soil water potential Temporal historic numeric History of ψsoil

Irrigation amount Temporal historic numeric Amount of irrigation applied to a specific plot
Precipitation Temporal historic numeric Daily precipitation
Soil temperature Temporal historic numeric Daily mean soil temperature around soil moisture sensors (measured by soil moisture sensor)
Reference evapotranspiration Temporal historic numeric The reference evapotranspiration (ETo), same for all fields here

for plant roots to extract water. ψsoil was measured every four hours during the months of June to August over three
years. The discontinuity in time led to a separate time-series for each year instead of one time-series over the three
years. To reduce volatility, the daily average of ψsoil was calculated for all sensors for a given year, yielding time-
series with an average length of 80 ψsoil-measurements. Additionally, each field was divided into several plots, each
containing six sensors at different depths (30cm, 60cm, and 90cm) to capture information at different levels. Knowing
that the sensors at a depth of 30 are most representative for the second task, ψstem-prediction, the sensors at depth 60
and 90 were discarded and the average per plot across the sensors at depth 30 was calculated.

5.2 STEM WATER POTENTIAL

The ψstem was measured on a plot level using a Scholander pressure chamber (Cochard et al., 2001). These mea-
surements were conducted approximately every 10 to 14 days at mid-day during sunny days, providing valuable
information about the water status of the plants. The ψstem, which reflects the water status in the plant stem, is
a critical factor in determining plant water stress and, thus, plant growth and productivity (Martı́nez-Gimeno et al.,
2018). The lower-frequency of the ψstem data – with measurements taken only every 10 to 14 days – compared to the
higher-frequency regular ψsoil data, signifies that this is a mixed-frequency problem. This poses a unique challenge in
terms of modeling and prediction. However, incorporating the forecast of ψstem into irrigation management systems
can provide a more complete model of the plant water status, contributing to the advancement of precision agriculture.

5.3 INPUT VARIABLES

The prediction of ψstem and ψsoil in multiple orchards is influenced by a wide range of variables. Here, we have
grouped the variables by plot, and per year – corresponding to the structure of ψstem and ψsoil. An overview of all
variables and their type is provided in Table 1.

6 TRAINING PROCEDURE

The training procedure is a critical component in the development of an accurate forecasting model. In this section,
we discuss the measures taken in the training of our forecasting model utilizing the MultiMix TFT architecture (see
Figure 2), as well as the benchmarks adopted for comparative analysis.

6.1 MULTIMIX TFT

At a given time-step t, the objective is to forecast ψsoil and ψstem for τmax steps ahead using a window of historical
observations of size k. This historical information can encompass multivariate exogenous time-series xi,t−k:t as well
as the target variable yi,t−k:t. Note that the history of the lower-frequency task is not included , primarily due to
its restricted availability within the selected window of size k. Furthermore, the TFT also allows for the inclusion
of known future inputs (numerical or categorical) as xi,t+1:t+τmax. The TFT architecture can also leverage static
information S to enhance its predictive capabilities based on static information such as e.g. orchard location. Hence,
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Figure 3: Train-Val-Test split. Note that each year for
a given sensor per orchard is considered as a unique
time-series as described in Section 5.1.

Table 2: Train-val-test split for each task.

Subset ψsoil ψstem

Train 5576 (≈ 65%) 140 (≈ 60%)
Validation 1254 (≈ 15%) 48 (≈ 20%)
Test 1942 (≈ 20%) 43 (≈ 20%)

Total 8772 231

our goal is to learn a mapping f(S,xi,t−k:t,yi,t−k:t,xi,t+1:t+τmax; θ) = (y
(reg)
t+1:t+τmax

, y
(mf)
t+1:t+τmax

). A detailed
account of the input variables and their respective types for each model is provided in Table 1. For our case, τmax = 1
or a one-day ahead forecast, with k = 7 or a one-week look-back window as advised by agricultural experts.

Given that ψsoil and ψstem contain large variations in their measurements, a loss is chosen that can effectively balance
the impact of outliers and inliers in the data during training. As such, the Huber loss (Huber, 1964) was chosen for
both Lreg and Lmf (cf. Eq. (1)) and is shown in Eq. (2) – Appendix A. Further, we use multi-headed attention2

as it enables the allocation of at least one attention-head to each task. This allows the model to learn task-specific
representations by focusing on the pertinent input information for each task separately.

To ensure a reliable evaluation of the model performance, the dataset is partitioned into a training, validation and test
set across tasks. Herein, the temporal and grouped structure of the data was respected in order to prevent information
leakage between the training, validation and test sets. A visual representation of the data partitioning is presented in
Figure 3. Note that all time-series observations from 2007 and 2008 are exclusively used for training. This guarantees
that the model is exposed to two complete growing seasons across years during training, ensuring that the model is
able to capture the seasonal variations in the data. Due to the mixed-frequency data, the final sizes of datasets differ
for each task as presented in Table 2. Lastly, incorporating temporal and group attributes in data splitting results in
non-uniform partitioning of the datasets, thereby producing splits of varying sizes.

To optimize the model parameters, we use the Ranger optimizer (Wright, 2019), a combination of the successful
RAdam (Liu et al., 2020) and LookAhead (Zhang et al., 2019). During training, we randomly sample subsequences of
length k from each multivariate training sequence along with corresponding static data s and use them as inputs to the
model. Hyperparameters of the MultiMix TFT were selected using Bayesian hyperparameter optimization (Bergstra
& Bengio, 2012). Bayesian hyperparameter optimization is a model-based approach to hyperparameter optimization
that aims to efficiently explore the hyperparameter space and find the set of hyperparameters that optimizes the target
metric with demonstrated benefits over its peers such as random search or grid search (Turner et al., 2020). In our
case, the target metric was a uniformly weighted sum of the validation MAE (see Eq. (3) – Appendix B) for each
task, with each task normalized to a range of [0,1]. By using a uniformly weighted sum across normalized tasks,
we prevent Bayesian optimization from favoring one task over the other. We defined a range and/or distribution of

2In a multi-horizon forecast, we advise the use of causal attention to prevent information leakage

2008−06−25 2008−07−25 2008−08−24

Fold 1

Fold 2

Fold 3

Train

Test

Remainder

Figure 4: An example of group-aware time-series cross-validation for a single group (i.e. plot) and a single year. The
same CV-strategy is then applied across groups to obtain the necessary CV-splits.
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hyperparameters to search over, including the learning rate, batch size, number of LSTM layers, dropout rate, and
others – for a full overview see Table 4 in Appendix C.2.1. We also included hyperparameters specific to the TFT,
such as the size of the continuous hidden layers (e.g. for the LSTM-layers), the size of the hidden layers (e.g. for the
variable selection networks – see Section 4.2) and the number of attention heads. While Lim et al. (2021) originally
suggested to average across attention heads, we propose a summation across attention heads in an attempt to preserve
potential fine-grained information. The underlying rationale for this modification is the conjecture that averaging might
inadvertently diminish the granularity of the aggregated representation, whereas summation preserves the individual
contributions from each attention head, thereby preserving subtler details which could be useful for the separate tasks.
In an endeavor to rigorously examine the efficacy of both techniques, we have incorporated mean and summation
as variants of the MultiMiX TFT in our final evaluation, facilitating an exhaustive comparison of their respective
influences on the model’s performance. A full overview of the hyperparameters, their priors, and the posteriors is
shown in Table 4 in Appendix C.2.1. Note that the search space for the network is constrained due to the relatively
small size of the data to prevent the generation of excessively large networks during the Bayesian hyperparameter
optimization. An early-stopping criterion was used with a patience of 20 epochs after which the training is stopped
and the model with the best validation loss is selected. The MultiMix TFT is trained for 150 epochs on a single
NVIDIA Tesla V100 GPU. The training takes approximately one hour to complete. The learning curves are presented
in Appendix C.1.

6.2 MULTIMIX LSTM

To further emphasize the effectiveness of the TFT as an architectural choice, we allow for a comprehensive evaluation
by creating a baseline model using the MultiMix framework in combination with a vanilla LSTM architecture. This
baseline model, referred to as the MultiMix LSTM, serves as a point of comparison, illustrating the differences in
performance when the MultiMix framework is paired with various architectures. By comparing the MultiMix TFT
with the MultiMix LSTM, we aim to highlight the substantial improvement in performance achieved by utilizing the
TFT architecture within the MultiMix framework, while demonstrating the limitations of the LSTM in this context.
Basic hyperparameters such as the loss function, k, etc. are set to the same values as the MultiMix TFT. Other
hyperparameters – as with the MultiMix TFT – are chosen using Bayesian hyperparameter optimization (Bergstra
& Bengio, 2012). A full overview of the search space and final hyperparameters is presented in Table 5, Appendix
C.2.2. An implementation of the MultiMix TFT and MultiMix LSTM is available at https://github.com/
B-Deforce/multimix_tft.

6.3 GENERAL BASELINES

Our primary objective is to improve the prediction of ψstem. However, ψstem is a challenging variable to predict when
considered as a single-task due to limited available data (see also Table 2). As such, the limited data in the single-task
context necessitates the use of smaller models as baselines, as opposed to other deep learning models.

We use several well-established methods as baselines, including linear regression and its Lasso variant, decision trees,
random forest, gradient boosting, and Gaussian process regression (GPR) (Hastie et al., 2009; Sipper, 2022; Ras-
mussen & Williams, 2006). Note that GPR was not applied on ψsoil due to its high computational cost and since our
interest is primarily in improving ψstem-prediction. By comparing the performance of our MultiMix TFT model to
these baseline models, we can demonstrate its ability to substantially improve ψstem-predictions while maintaining
strong performance on ψsoil. To fine-tune the baseline methods, we employ a group-aware time-series cross-validation
(GATS-CV) as shown in Figure 4. GATS-CV preserves the temporal dependencies between data points and across
groups, thereby avoiding leakage of future information into the training set. The small size of the baseline models
permits to perform a full grid search for hyperparameter tuning. By using GATS-CV with grid search, we ensure that
our models are trained and validated on representative subsets of the data, while enabling us to assess the general-
ization performance of the chosen hyperparameters on unseen data and select the best set of hyperparameters. A full
overview of the search space and final hyperparameters is presented in Table 6, Appendix C.2.3. For GPR, a separate
overview is presented in Table 7, Appendix C.2.4, with multiple kernels over which the full grid search with GATS-CV
is performed.

6.4 PERFORMANCE EVALUATION

To evaluate the final performance of all methods on the unseen test data, the mean absolute error (MAE) and the
root mean squared error (RMSE) are computed following Eq. (3) – Appendix B. Furthermore, the mean absolute
percentage error (MAPE) and its median counterpart (MdAPE) are also given (see Eq. (4) – Appendix B) to better
understand the relative performance. Lastly, Pearson’s correlation coefficient is used to assess the linear relationship

8

https://github.com/B-Deforce/multimix_tft
https://github.com/B-Deforce/multimix_tft


Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Table 3: Comparison of ψstem- and ψsoil-prediction between MultiMix TFT and single-task baselines.

Model ψstem ψsoil

MAE RMSE MAPE MdAPE Pearson’s Corr MAE RMSE MAPE MdAPE Pearson’s Corr
Linear Regression 0.204 0.064 58.794 42.729 0.499 0.024 0.001 4.488 2.463 0.986
Lasso Regression 0.197 0.049 92.993 29.416 0.408 0.024 0.001 4.592 2.513 0.986
Decision Tree 0.193 0.057 100.844 45.453 0.284 0.027 0.002 4.82 2.665 0.984
Random Forest 0.155 0.037 88.994 20.788 0.718 0.035 0.002 7.54 3.478 0.978
Gradient Boosting 0.162 0.041 92.264 24.197 0.444 0.041 0.003 8.732 4.454 0.968
Gaussian Process Reg. 0.197 0.051 98.445 32.372 0.224 - - - - -

MultiMix LSTM 0.15 0.035 38.158 23.677 0.481 0.047 0.005 8.831 5.324 0.956
MultiMix TFT - Mean 0.093 0.013 20.909 16.767 0.774 0.035 0.003 7.259 3.723 0.975
MultiMix TFT - Sum 0.078 0.009 17.226 14.736 0.859 0.024 0.001 4.244 2.466 0.986

between predictions and truth. These metrics, respectively, give insight into overall absolute performance, larger
errors, and relative performance – with MdAPE the robust relative performance – of the model. The final reported
metrics are aggregated across all forecasts to obtain global metrics.

7 RESULTS

The experimental results, as summarized in Table 3, reveal that the MultiMix TFT outperforms the baseline mod-
els across all performance metrics in the mixed-frequency task of ψstem-prediction. The MultiMix TFT notably
achieves a ∼50% improvement in terms of MAE and a ∼20% gain in Pearson’s correlation compared to the best
baseline. Also observe how the gap between MAPE and MdAPE is small for the MultiMix TFT compared to all
baseline models. This shows that the MultiMix TFT is consistent and does not make excessively large errors as
opposed to the baselines. The gap between sum-based aggregation and mean-based aggregation across attention
heads (cf. Section 6.1), indeed suggests that summation is beneficial within the context of the MultiMix frame-
work. It is important to note that the MultiMix LSTM exhibits inferior performance when compared to the Mul-
tiMix TFT, highlighting the effectiveness of the latter architecture. While the random forest obtains slightly bet-
ter results for Pearson’s correlation, such performance is not consistently observed across other metrics. Further,
GPR demonstrated suboptimal performance, which could be attributed to several factors. For example, the inherent
noise present in (agricultural) sensor data may impede the model’s ability to discern the true underlying relationships.
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Figure 5: Boxplot of means across all three attention heads
of the MultiMix TFT for all training samples

Moreover, GPR’s reliance on a fixed kernel function
might limit its capability to accurately capture complex
interactions or non-stationary patterns in the multivari-
ate time-series data. We note that GPR could poten-
tially improve with further kernel engineering (beyond
the current kernels considered in Appendix C.2.4). Upon
further investigation, almost all baselines show strong
signs of overfitting, highlighting the difficulty of ψstem-
prediction in relation to the available data. We’d like
to emphasize that the MultiMix TFT does not suffer
from this issue thanks to the hard parameter sharing
with ψsoil-prediction. As such, these findings provide
compelling evidence that the MultiMix TFT successfully
leverages the concurring regular-frequency task, ψsoil,
to improve the prediction of the mixed-frequency task
of ψstem prediction, thereby establishing its superiority
over the baseline models.

After examining the results of ψsoil, it initially appears that both the baseline models and the MultiMix TFT obtained
strong skills. However, upon further analysis, it becomes apparent that there exists a high correlation between the last
known value of ψsoil (i.e. ψsoil,t−1) and ψsoil,t, thereby suggesting that all models essentially learn a trivial naive
forecast as the optimal model for ψsoil-prediction. Nonetheless, while the MultiMix TFT exploits this information as
well, it simultaneously succeeds in learning a representation that is both useful for predicting ψsoil as well as ψstem.
This is also illustrated in Figure 5 where we visualized the average attention across all attention heads. From this, we
derive that the MultiMix TFT pays attention to more than just the last known value. Furthermore, it is important to note
that baselines which learn a trivial naive forecast may not be generalizable when expanding the forecasts to a multi-
horizon setting, due to its inherent simplicity and lack of consideration for the complexities of the underlying data.
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Figure 6: Overview of the variable importance obtained through the variable selection networks from the TFT

In contrast, the underlying TFT is known to perform well in a multi-horizon setup, owing to its ability to effectively
model and account for the intricacies of the multivariate data (Lim et al., 2021).

Figure 6 shows the variable importance obtained from the variable selection networks (see Section 4.2). Note that
each type of data (i.e. static metadata, temporal historic inputs, temporal known inputs) shares a unique set of weights
per variable across time-steps. As a result, we obtain three distinct (one per data type) variable importance overviews
scaled to [0,1]. We note resemblance with expert knowledge as soil texture and orchard name both receive high
importance as static metadata. Intuitively, this makes sense as orchard name and soil texture are essentially a proxy
for orchard-specific characteristics. For historical information, the disproportionate importance of ψsoil stands out.
Presumably, this is a result of the model exploiting the high correlation between ψsoil,t and ψsoil,t−1 for predicting
ψsoil. ψsoil – a measure of soil moisture (cf. Section 5.1) – is of course also a good indicator for plant water stress
ψstem. Interestingly, the runner-up – ETo – corresponds to domain knowledge as well. ETo can be considered a proxy
for water demand. Hence, the combination of ψsoil and ETo can act like a supply-and-demand mechanism. Lastly, the
known future inputs also correspond well with expert knowledge. As such, these observations confirm that the TFT –
underlying the MultiMix framework – effectively aligns with expert knowledge.

8 CONCLUSION

We proposed the MultiMix framework, a novel approach for multi-task mixed-frequency learning for time-series fore-
casting. This framework addresses the challenge of forecasting multiple tasks containing different and/or irregular
measurement frequencies. To do this, the MultiMix framework uses hard parameter sharing to capture the common-
ality between the tasks, followed by a customized MultiMix head that can effectively deal with mixed-frequency data
during training through a masking mechanism and custom loss function.

We implemented the framework using the state-of-the-art TFT, and applied it to a real-world dataset in the agricultural
domain. Specifically, the framework was used to forecast ψsoil and ψstem, two tasks that are measured at different
frequencies. Our experimental results showed that our proposed approach outperforms several state-of-the-art base-
lines in terms of various metrics, especially for the task with the lower measurement frequency, i.e. ψstem. This
demonstrates the effectiveness of our proposed framework in a setting with multiple tasks at hand, where one of the
tasks is measured at a lower and/or irregular frequency. The variable selection networks, inherent to the TFT, show
resemblance with expert knowledge. However, due to their location in the TFT, they cannot be interpreted for each
task separately. An interesting future direction would be to adapt the TFT so that each variable selection network can
be assigned to one task.

We believe that our proposed framework can be applied to a wide range of domains, where data is collected at different
frequencies, such as e.g. finance, energy, and health. As such, exploring the generalizability of the approach on
additional datasets from diverse domains can provide further insights into its applicability. In this work, the framework
was only applied on a dual task problem. To further test the scalability of the model, testing it in a set-up with more than
two tasks would be beneficial. Lastly, extending the framework for multi-horizon forecasts can be a useful addition
for some domains such as e.g. economic forecasting, smart agriculture, and more.
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Hervé Cochard, Sébastien Forestier, and Thierry Améglio. A new validation of the Scholander pressure chamber
technique based on stem diameter variations. Journal of Experimental Botany, 52(359):1361–1365, 06 2001. ISSN
0022-0957.

Boje Deforce, Bart Baesens, Jan Diels, and Estefanı́a Serral Asensio. Forecasting sensor-data in smart agriculture with
temporal fusion transformers. In Transactions on Computational Science & Computational Intelligence. Las Vegas
(USA), Springer Nature, 2022.

Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W. Tsang. A multi-view multi-task learning framework
for multi-variate time series forecasting. IEEE Transactions on Knowledge and Data Engineering, pp. 1–16, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Nikita Dvornik, Konstantin Shmelkov, Julien Mairal, and Cordelia Schmid. Blitznet: A real-time deep network for
scene understanding. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pp. 4174–4182. IEEE Computer Society, 2017.

Eric Ghysels, Pedro Santa-Clara, and Rossen Valkanov. The midas touch: Mixed data sampling regression models.
2004.
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A HUBER LOSS

LHuber(ŷ, y) =

{
1
2 (ŷ − y)2, for |ŷ − y| ≤ δ
δ(|ŷ − y| − 1

2δ), otherwise
(2)

Where δ represents the threshold parameter which is obtained through hyperparameter tuning.

B EVALUATION METRICS

MAE =

∑τmax

t=1 |yi,t − ŷi,t|
τmax

RMSE =

√∑τmax

t=1 (yi,t − ŷi,t)2
τmax

(3)

MAPE =
100%

τmax

τmax∑
t=1

∣∣∣∣yi,t − ŷi,tyi,t

∣∣∣∣ MdAPE = 100% ·median
(∣∣∣∣yi,t − ŷi,tyi,t

∣∣∣∣ , ..., ∣∣∣∣yi,τmax − ŷi,τmax

yi,τmax

∣∣∣∣) (4)

Where yi,t represents the measurement for a given task at time t and τmax the length of the forecasting horizon. ŷi,t
is the estimated forecast by the model.

C DETAILS OF TRAINING

Below, we provide some extra details on the training process for different models.

C.1 MULTIMIX TFT - LEARNING CURVE

Figure 7 shows the learning curves of the final selected MultiMix TFT for the training and validation set. The best
model was chosen based on the validation loss, which was after 30 epochs.
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Figure 7: Learning curves of the final selected MultiMix TFT
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C.2 HYPERPARAMETER SET-UP

C.2.1 MULTIMIX TFT

Table 4: MultiMix TFT hyperparameters, search spaces for Bayesian hyperopt, and final selection

Hyperparameter Prior Final
Number of Attention Heads 2, 3, 4 3
Aggregation Method Mean, Sum Sum
Dropout Rate Uniform(0.1, 0.8) 0.489
Hidden Continuous Size 8, 16 8
Hidden Size 8, 16 16
LSTM Layers 1, 2, 3 3
Batch Size 32, 64, 128 128
Learning Rate LogUniform(1e-5, 1e-1) 0.039
δLreg

and δLmf
, see Eq. (2) Uniform(0.05,0.8) 0.451 – 0.194

α, see Eq. (1) Uniform(0.05, 0.95) 0.766

C.2.2 MULTIMIX LSTM

Table 5: MultiMix LSTM hyperparameters, search spaces for Bayesian hyperopt, and final selection

Hyperparameter Prior Final
Batch Size 32, 64, 128 32
Dropout Rate Uniform(0.1, 0.8) 0.696
Hidden Size 8, 16, 32 16
Learning Rate LogUniform(1e-5, 1e-1) 0.0003
Number of Layers 1, 2, 3, 4 2
δLreg and δLmf

, see Eq. (2) Uniform(0.05, 0.8) 0.174 – 0.364
α, see Eq. (1) Uniform(0.05, 0.95) 0.719

C.2.3 GENERAL BASELINES

Table 6: Other baseline hyperparameters, search spaces for full grid search, and final selection

Model Hyperparameters Values Final
Lasso α 0.0001-0.1 0.0011

Decision Tree
Depth 3, 5, 7, 9, 11 11

Min samples split 1, 3, 5, 10, 15, 20 15
Min samples leaf 1, 2, 4, 8, 16 2

Gradient boosting

N estimators 5, 10, 15, 25, 50, 75 25
Depth 2, 3, 4, 5, 10 5

Min samples split 2, 3, 4, 5 5
Min samples leaf 1, 2, 3, 4, 5 2

Max features Sqrt, log2 Sqrt

Random forest

N estimators 5, 10, 15, 25, 50, 75 75
Depth 2, 3, 4, 5, 10 4

Min samples split 2, 3, 4, 5 2
Min samples leaf 1, 2, 3, 4, 5 3

Max features Sqrt, log2 log2
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C.2.4 GAUSSIAN PROCESS REGRESSION

After a full grid search on the hyperparameters and kernels presented in Table 7, the following kernel was selected:

0.3162 ∗Matérn(length scale = 5.6, ν = 0.5)

Table 7: GPR hyperparameters, Kernel functions, and search space for full grid search.

Kernel Hyperparameters Values
RBF Length Scale 0.1, 1.2, . . . , 10

Matérn Length Scale 0.1, 1.2, . . . , 10
ν 0.5, 1.5, 2.5, 3.5

WhiteKernel Noise Level 0.1, 0.2, . . . , 1

ConstantKernel * RBF Constant Value 0.1, 1.2, . . . , 10
Length Scale 0.1, 1.2, . . . , 10

ConstantKernel * Matérn
Constant Value 0.1, 1.2, . . . , 10
Length Scale 0.1, 1.2, . . . , 10

ν 0.5, 1.5, 2.5, 3.5

DotProduct σ0 0.1, 1.2, . . . , 10

ExpSineSquared Length Scale 0.1, 1.2, . . . , 10
Periodicity 1, 2, . . . , 10

RationalQuadratic Length Scale 0.1, 1.2, . . . , 10
α 0.1, 1.2, . . . , 10

ConstantKernel * RationalQuadratic
Constant Value 0.1, 1.2, . . . , 10
Length Scale 0.1, 1.2, . . . , 10

α 0.1, 1.2, . . . , 10
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