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ABSTRACT

A growing body of research in continual learning focuses on the catastrophic forgetting problem.
While many attempts have been made to alleviate this problem, the majority of the methods assume a
single model in the continual learning setup. In this work, we question this assumption and show that
employing ensemble models can be a simple yet effective method to improve continual performance.
However, ensembles’ training and inference costs can increase significantly as the number of models
grows. Motivated by this limitation, we study different ensemble models to understand their benefits
and drawbacks in continual learning scenarios. Finally, to overcome the high compute cost of
ensembles, we leverage recent advances in neural network subspace to propose a computationally
cheap algorithm with similar runtime to a single model yet enjoying the performance benefits of
ensembles.

1 INTRODUCTION

Continual learning (CL) and Lifelong learning (Thrun, 1994) have recently gained popularity since many real-world
applications fall into that setting. It describes the scenario where not only a stream of data arrives sequentially, but
their distribution also changes over time. This setup induces Catastrophic Forgetting (CF) (McCloskey & Cohen, 1989)
which is a degradation of performances on previous data due to distribution shift between tasks (Doan et al., 2021).

One fundamental goal in continual learning is to learn from the new incoming tasks while retaining knowledge from the
past and avoiding interference that can lead to poor performance (Lesort et al., 2021). This becomes particularly chal-
lenging when the stream of data increases because all the burden is left to a single model. A simple yet effective solution
is to rely on an ensemble method that improves performance over a single model. Inspired by bootstrapping (Breiman,
1996), deep ensembles initialize and train multiple neural networks independently (Lakshminarayanan et al., 2017;
Fort et al., 2019). Not only does this improve their robustness, but it also boosts the overall performance thanks to a
higher diversity in the solutions and their de-correlated predictions (Goodfellow et al., 2014b; Havasi et al., 2020).
This simple mechanism allows ensemble methods to improve performance over single models (Huang et al., 2017).
From now on, we will refer to this method as Vanilla Ensemble (VE). It is well known that ensemble methods perform
well in supervised learning (Dietterich, 2000; Fort et al., 2019). However, their functionality has not been fully studied
in continual learning scenarios.
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Figure 1: Split CIFAR-100: As the ensemble
size grows, the continual learning performance
improves.

In the context of continual learning, using an ensemble method and
having diversity in the solutions allows each model to have a good
solution in different tasks and lead to good performance for the
ensemble as shown in Fig. 2. Given that only some of the individual
models may need a drastic or a slight change to learn the incoming
tasks, it leads to an attenuation of forgetting and a boost in the overall
performance (Fig. 1).Recently by Caccia et al. (2022) also showed
empirically good performance of ensemble methods in their “anytime
learning“ framework where data arrive by batches instead of a whole
dataset.

However, the computational cost of ensembles grows linearly with the
number of models. This limits their usage for real-world applications
due to computational or environmental concerns.

∗ Work done at McGill University
corresponding author: thang.doan@mail.mcgill.ca

† Work done at DeepMind.
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Figure 2: Final accuracy of continual learning after finishing all the tasks for each of the 10 members of the ensemble
(blue) and the final ensemble model (gray) for Split CIFAR-100. The final ensemble prediction accuracy is almost
always higher than the accuracy of the best model. Moreover, each model specializes in different tasks throughout the
training contributing to the performance of the ensemble method.

This issue becomes significantly more challenging on resource-
constrained systems such as edge devices (Manolis Savva* et al.,
2019; Szot et al., 2021). While it is possible to focus solely on the
computational cost problem to find an efficient parameter sharing algorithm (Wen et al., 2020), in this work, we focus
on both the computational efficiency and continual learning performance together. Our work is motivated by the recent
advances in the deep learning optimization literature, such as Neural Network Subspace (Wortsman et al., 2021) and
Mode Connectivity (Garipov et al., 2018; Draxler et al., 2018; Mirzadeh et al., 2021).

Contributions. In this work, we study continual learning with various ensemble methods. Our contributions can be
summarized as three-fold: we show a) that ensembling is a simple technique to boost continual learning performance,
but significantly increasing the computation cost. To alleviate this issue, we borrow insights from the recent advances
mode-connectivity to propose b) a method with a similar computation cost to a single model yet enjoys the high-
performance benefits of ensembles. Our proposed efficient ensembling method learns tasks continually in the subpaces
of neural networks (Wortsman et al., 2021) to divide the learning capacity between tasks without causing interference,
and relies on the connectivity of the tasks’ optima (Garipov et al., 2018) for better retention of the previous knowledge.

2 PRELIMINARIES

Notation. Let X be some features and Y the labels space (Y = R for a regression problem and Y ∈ ∆K for
classification problem1). In CL, a stream of supervised learning tasks indexed by τ ∈ [T ], Tτ , ( where T ∈ N∗ is the
total number of tasks) arrives sequentially. The goal is to learn a predictor fω : X × T → Y (where ω ∈ Rp are the
learnable parameters of size p) that performs a prediction as accurate as possible with respect to a loss function Lτ .
We denote the weight learned after task τ as ω∗

τ . In the framework of CL, one cannot recover samples from previous
tasks unless storing them in a replay buffer (Chaudhry et al., 2019b). A pseudo-code of the Vanilla Continual Learning
Algorithm (single model) is provided in Appendix (Alg. 2).

2.1 EXPERIMENTAL SETUP

For our experiments in Sec. 3, we will be using the following setup:
Benchmarks. For this ablation, we use two standard benchmarks following (Goodfellow et al., 2014a), and (Chaudhry
et al., 2019b). Rotated MNIST (Farajtabar et al., 2020) consists of a series of MNIST classification tasks, where the
images are rotated with respect to a fixed angle, monotonically. We increment the rotation angle by 22 degrees at each
new task like in Mirzadeh et al. (2021) to worsen the catastrophic forgetting phenomenon. The task ID does not need to
be provided since it is a domain incremental task. Split CIFAR-100 (Chaudhry et al., 2019b) is constructed by splitting
the original CIFAR-100 dataset (Krizhevsky et al., 2009) into 20 disjoint subsets, where each subset is formed by
sampling without replacement of 5 classes out of 100. For the sake of our experiment, we fine-tune on a sequence of 5
tasks for each benchmark, seeing the tasks only once without relying on a replay buffer. For this dataset, the task ID is
provided to the model. While for brevity, we include the main results in this section, more detailed plots can be found
in Appendix D.
Architectures. The neural network architectures used are respectively fully connected layers with two hidden layers of

1∆K denotes the vertices of the K-dim probability simplex
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100 hidden units (Rotated MNIST) and a reduced Resnet-18 with three times fewer filters map across all layers as in
Mirzadeh et al. (2020b).
Metrics. To assess the performance of each baseline, we report the Final Accuracy and Forgetting Measure defined as
follows. The Final Accuracy after T tasks is the average validation accuracy over all the tasks τ = 1...T defined as:
AT = 1

T

∑T
τ=1 aT,τ where aT,τ is the validation accuracy of task τ after the model finished learning on task T (at

test time). The Learning Accuracy is defined as aτ,τ , this describes how well a model learns a task τ the first time it
sees it. The Forgetting Measure is defined as: FT = 1

T−1

∑T−1
τ=1 maxt={1..T−1}(at,τ − aT,τ ). Finally, we define the

Forgetting Improvement (FI) simply as the difference between the Forgetting Measure of the single model and the
ensemble (or subspace) method as: FIT = FT (single model)− FT (ensemble/subspace model). Intuitively, the higher
this value the less forgetting a method has compared to the single model case.
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Figure 3: Performance of different prediction strategies for Vanilla Ensemble over 5 seeds for n = 1, 2, 3, 5 and 10
models (x axis). Averaging strategy often outperforms the other strategies.

3 CONTINUAL LEARNING WITH ENSEMBLES

This section studies the implications of having multiple models for continual learning. We start by comparing basic
ensembling strategies and then we study more efficient ensembling techniques. For brevity, we postpone detailed
discussion and additional results to Appendix A and D.

Algorithms. For this analysis, we compare Vanilla CL (Alg. 2), Ensemble CL (Alg. 3), Batch Ensemble CL and
Subspace CL (Alg. 4).

3.1 DOES THE ENSEMBLING STRATEGY MATTER?

Ensembles can use various strategies for learning and prediction. Here, we study three common choices:

• Averaging: Average of predictions for each ensemble member.

• Hard Voting: Selecting the label for which a member is the most confident.

• Majority Voting: Label that gathers the most vote among the members.

As shown in Fig. 3, averaging strategy consistently outperforms (slightly) other strategies on both benchmarks. In non
continual learning scenarios this is consistent with previous findings on the benefits of averaging mechanism (Caccia
et al., 2022; Huang et al., 2017; Caruana et al., 2004). In the context of continual learning, we hypothesize that averaging
considers each member’s diversity, which is a good fit for multiple tasks and distribution and can boost performance in
continual learning. Figure 9 provides a visualization of Vanilla ensemble’s prediction evolution throughout the learning
highlighting the diversity in solution.
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3.2 DIFFERENT ENSEMBLING METHODS

Although Vanilla Ensemble (VE)2 shows promising performance benefits, its computation cost grows linearly with the
ensemble size. Both Batch Ensemble (BE (Wen et al., 2020)) and Subspace Ensemble (SE (Wortsman et al., 2021))
provide more efficient ensembling techniques. Hence, for the rest of this section, we study all three methods from
performance and computation perspectives.
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Figure 4: Continual Learning metrics for Rotated MNIST (first row) and Split CIFAR-100 (second row). Having more
models improve the final average accuracy over a single model (left). While SE and BE methods mitigate forgetting
(stability) by tying the weights of its member (middle), the VE method enjoys better learning accuracy (plasticity)
as each model moves independently (right).

Vanilla Ensemble (VE) Given a set of weights {ωi}ni=1, we train independently n models by optimizing
1
n

∑n
i=1 Lτ (fωi

(x), y). Therefore, the models’ training differs only in the weights initialization of each model.
For the prediction we use the average of each member 1

n

∑n
i=1 fωi

(x).

Batch Ensemble (BE) Let’s consider a neural network layer weights W ∈ Rk×l where k and l are the input and
output dimension. BE factorizes the weights ω such that each member of the ensemble i has weights ωi = ω ◦ fi
with fi = ris

T
i , ri ∈ Rk, si ∈ Rl. In other words, while they share a common weights ω they have their own tuple

{ri, si}. During training, each element of the incoming batch (x, y) is shared uniformly among the member of the
ensemble. For the prediction we use the ensemble’s average prediction as suggested in (Wen et al., 2020).

Subspace Ensemble (SE) Given a set of weights {ωi}ni=1, SE trains a predictor fω̂ such that ω̂ =
∑n

i=1 αiωi with∑n
i=1 αi = 1, i.e forming a convex combination of the weight of each member. For the prediction we use the midpoint

defined as 1
N

∑
ωi.

We refer the reader to Appendix A for more details about each of the ensemble methods as well as their pseudo-code in
Appendix B.

2For the rest of the paper, unless otherwise stated, VE employs the averaging strategy.
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Figure 5: (left) The Hessian spectrum of each model for the loss of task 1 for Rotated MNIST. For SE methods, the
more models, the lower the eigenvalues. Lower eigenvalues imply flatter minima which is a proxy to describe how
much forgetting will be incurred when learning subsequent tasks. (right) Accuracy versus cost in x axis (wrt to single
model) for each Ensemble method for Rotated MNIST on 5 tasks. Although VE shows better performance, it also
implies linear growth in cost, unlike SE and BE, which have close to single model compute cost.

3.2.1 PERFORMANCE COMPARISON

We first focus on the continual learning performance of each of the aforementioned methods. More specifically, we
focus on the average accuracy, forgetting improvement, and learning accuracy that provide interesting insights on the
learning and retention capabilities of each ensembling method.

Average Accuracy. Fig. 4a and 4d show the final average accuracy on both Rotated MNIST and Split CIFAR-100
benchmarks for all three methods. We can see the immediate benefits of both ensemble methods compared to the single
model (black dashed line).

Average Forgetting. To better understand these results, we show the forgetting improvement (FI) which describes
how much a model forgets compared to a single model. Overall, all ensembling methods provide a better forgetting
improvement compared to a single model (Fig. 4b and 4e).

Learning Accuracy. Figs. 4c and 4f show the learning accuracy for each method which demonstrate their ability to
learn new tasks. Not surprisingly, ensemble methods with the best forgetting improvement (SE and BE) trade their
stability for less plasticity since the models in the ensemble are tightly tied together. On the other hand, since VE trains
each of its members independently, it enjoys a better learning accuracy and a better final accuracy.

SE mitigates CF by tying the weight of each member (through the weight’s convex combination). This is illustrated by
the eigenvalues of the Hessian of the loss function (Fig. 5). On the other hand, VE trains its member independently. We
believe the power of ensembles and their diversity-enhancing approach (due to random initialization) is very pronounced
in the context of continual learning. For BE, we adapted the algorithm from Wen et al. (2020) where originally one
member is added for each new task (with a total of 250 epochs) to our minimal setting of 1 epoch per task where
members are responsible for all tasks similarly to VE. Since the batch is divided equally among all members, this looks
similar to bagging strategy and finally, each member only gets to see 1/n of the whole dataset.

Given the good performance of ensembles, one may keep adding more models for continued improvement. However, it
is either not always helpful (MNIST dataset) or the marginal improvement is not worth the linear compute cost. See
Figs 4d and 4e for the relevant results. For the subspace method, increasing the number of models (hence the number of
parameters) requires more training epochs to update them. That can explain why after a certain threshold (e.g., n = 5
models for Split CIFAR-100), the accuracy and forgetting metrics degrade or plateau given a fixed training budget. We
now elaborate on the compute cost implied by these additions of models.

3.3 PERFORMANCE-COST TRADE-OFF

Another critical factor for comparing ensembles is their compute cost. For convenience, we will refer to the (Inference)
FLOPS as the compute cost (The backward pass can be approximated as two times the forward pass). The relative
FLOPS is the compute cost ratio wrt to the single model. Table 1 provides the compute cost implication of each
ensemble method for a single layer as a proof of concept. VE requires the most compute cost with linear growth while
SE and BE have an addition and Hadamard product as overhead costs. Fig. 5 (right) shows the accuracy-cost trade-off
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for VE, SE, and BE. We can observe that VE is the least cost-efficient method while SE and BE have roughly similar
costs to a single model. However, SE enjoys higher accuracy compared to BE.

Method Inference Step Overhead Cost
Single Model x · ω N/A
Vanilla Ens. x · ωi,∀i = 1..n (n− 1) forward pass
Subspace Ens. x · (∑n

i=1 αiωi) (n− 1) additions
Batch Ens. ((x ◦R) ·W ) ◦ S 2 Hadamard products

Table 1: Computational cost comparison between different methods for a given layer ω and input x. SE only has
addition operations as an overhead cost, while BE has Hadamard products independently of the size of the ensemble.The
first line corresponds to the single model as a reference.

Overall, each of the above ensembling methods has its own mechanism to mitigate CF (either with diversity enhanced,
tying its member’s weights together). However, VE is not computationally efficient, and BE does not provide strong
performance. For these reasons, we focus in the next section on improving Subspace Ensemble to provide an efficient
alternative approach to the high compute cost of Vanilla Ensemble.

4 IMPROVING SUBSPACE LEARNING WITH CONNECTIVITY

In Sec.3, we observed that although SE enjoys a nice compute cost, it cannot match the performance of the VE method.
In this section, we aim to find out if we can improve the performance of the SE method in continual learning scenarios
while keeping the cost roughly the same.

To improve the performance, Experience Replay (ER) Riemer et al. (2018) is one of the most popular and practical CL
methods that come to mind at first. However, naively adding ER method to subspace will not increase the performance
significantly. To explain, we note that the subspace formed by models of the SE method is subject to drift as the models’
parameters still change as the task changes. As a result, the optimal subspace found by the SE method will drift as the
number of tasks increases. Appendix D.5 provides a more detailed analysis of this subject.

To prevent the subspace drift problem and thus exploit the benefits of the ER method, we note that SE method Wortsman
et al. (2021) is originally motivated by mode connectivity of optima Garipov et al. (2018). In the context of continual
learning, Mirzadeh et al. (2021) has shown that enforcing the linear mode connectivity of each task’s optima is equivalent
to mimicking the multitask (i.e., joint) training and hence, a key factor in preventing forgetting. Given the shared origins
between Wortsman et al. (2021) and Mirzadeh et al. (2021), it is natural to think about both works together to overcome
the drift challenge. However, Mirzadeh et al. (2021) studies continual learning with a “single” model, while here, we
work with “multiple” models that form a convex region. Intuitively, our algorithm is the generalization of the proposed
algorithm by Mirzadeh et al. (2021) where we prevent the drift of an optimal subspace rather than a single optimal (i.e.,
model).

Our Subspace-Connectivity algorithm proceeds in two steps: we first naively finetune to the incoming task to learn a
solution ω∗

τ before creating a low-loss path to the former task’s solutions ω∗
τ−1 that enforces the connectivity between

subspaces found for each task. A pseudo-code can be found in Alg. 1.

(1) Learning a subspace solution for the incoming task: The first step consists in learning a subspace solution by
fine-tuning on task τ leading to the solution Ŵτ = {ŵτ,i}ni=1 obtained by optimizing:

{ω̂τ,i}ni=1 = argmin
W

Eααα∼U [∆n][Lτ (W
Tααα)] (1)

At the end of this step, we save in a buffer memory B, mB samples per class per task that will be used to connect
linearly two subspace’s solutions.

(2) Connecting the new subspace to previous subspaces: This step aims at connecting subspaces from prior task’s
solutions together as in MC-SGD Mirzadeh et al. (2021). First, we use the midpoint of subspace τ denoted ω̂∗

τ,mid as
its proxy since it gives the best performance (Sec. D.6). We then connect ω̂∗

τ,mid and previous tasks midpoint solution
ω∗
τ−1,mid via a low loss path. The loss over the connecting path acts as a penalty or regularizer term. The rationale

behind choosing the middle point as a proxy for subspace is that the middle point is the most stable point of the
subspace (Wortsman et al., 2021). In our experiments in the appendix, we also confirm this observation in the context
of continual learning.
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Algorithm 1 Subspace-Connectivity CL
Input :A task sequence T1, T2, . . . , TT , number of models n , buffer B and memory size mB
Initialize set of weigths Sn = {ω0,i}ni=1, buffer B ← {}

for tasks τ = 1, 2, 3, . . . T do
Get {ω̂∗

τ,i}ni=1 with Eq 1 // Learn subspaces solution for task τ
for (x, y) ∈ Tτ do
B ← B

⋃
{x, y} // Collect 1 sample per class at the end of each class

end for
Get {ω∗

τ,i}ni=1 with Eq 2 using samples from B // Connect previous solution’ subspaces
end for
Output : {ω∗

T,i}ni=1

Thus, for the second step of our algorithm, we optimize the following objective with saved elements from the buffer:

{ω∗
τ,i}ni=1 = argmin

W
Eααα∼U(∆n+1)[

τ−1∑
j=1

Lj(W
Tαααn+ αn+1ω

∗
τ−1,mid)] + Lτ (W

Tαααn + αn+1ω̂τ,mid)] (2)

whereααα = (α1, .., αn︸ ︷︷ ︸
αααn∈Rn

, αn+1) ∈ Rn+1 and Lj corresponds to the loss of task j (using element of task j from the buffer).

The rationale behind this loss function is to create a linear path of low-loss between two subsequent solutions ω∗
τ−1,mid

and ω∗
τ,mid.

A few remarks worth noting here. Intuitively speaking, the subspace method ties the models for a single task, while the
mode connectivity regularization ties the Subspaces together. Note that the original subspace method is only developed
for single-task settings. Although SE is an efficient ensembling technique, it still does not have any mechanism to learn
from a sequence of tasks.

5 EXPERIMENTS AND RESULTS

In this section, before comparing Subspace-Connectivity to Ensemble baselines, we want to address a subsidiary
yet important question: “Will increasing the number of parameters (for instance, the number of hidden units) boost
performance, or is it the way parameters work together as an ensemble that matters?” To address this hypothesis, we
compare the Ensemble model with a Scaled version of a single model where we either increase the number of hidden
units (for dense networks) or the number of filters (for convolutional networks) to match the number of parameters in
Ensemble models. Finally, we compare our algorithm with an Ensemble version of MC-SGD (Mirzadeh et al., 2021)
(dubbed Ens MC-SGD) and provide a discussion between the trade-off accuracy and compute cost. As a note, we use
MC-SGD for the experiments in this section since it is one of the strongest CL methods and shares a similar mechanism
to our proposed method, so the comparison is fairer. Although the main focus of our work is ensemble methods, we
additionally report the results for other ensemble methods (e.g., Batch Ensemble) and also single models with various
learning algorithms (e.g., A-GEM, ER, etc.) in Appendix F. Since we want to simulate an online setting, which is
relevant for small AI embedded devices, we ran all algorithms with only 1 epoch per task.

5.1 DOES INCREASING THE NUMBER OF PARAMETERS HELP?

We first compare Ensemble MC-SGD (with n = 3) to Scaled MC-SGD, where the number of hidden units has been
increased to 600 and the number of kernel filters to 35, to match the parameters and compute cost. Table 2 showcase
the performance of both models. We can observe that across all benchmarks, even with the same number of parameters
and thus computation, the Ensemble MC-SGD model matches or outperforms the Scaled MC-SGD. Similar to our
discussion in Sec. 1, we can see that the benefit of ensembles is not just the increase of parameters but the way the
models communicate with each other, which can lead to more diverse solutions.

Method Permuted MNIST Rotated MNIST Relative FLOPS ratio
Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓

MC-SGD (Mirzadeh et. al Mirzadeh et al. (2021)) 82.9 (±0.40) 0.10 (±0.01) 81.9 (±0.46) 0.08 (±0.01) 1
Scaled MC-SGD 88.03 (±0.36) 0.06 (±0.01) 83.67 (±0.40) 0.07 (±0.01) 3.11
Ensemble MC-SGD 88.30 (±0.48) 0.06 (±0.01) 83.63 (±0.39) 0.07 (±0.01) 3
Subspace-Connectivity 87.8 (±0.30) 0.07 (±0.01) 86.7 (±0.67) 0.07 (±0.01) 1.03
Multitask Learning 89.5 (±0.21) 0.0 89.8(±0.37) 0.0 NA
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Method Split CIFAR-100 Split miniImageNet Relative FLOPS ratio
Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓

MC-SGD (Mirzadeh et. al Mirzadeh et al. (2021)) 58.22 (±0.91) 0.08 (±0.01) 54.80 (±1.04) 0.03 (±0.01) 1
Scaled MC-SGD 60.55 (±0.84) 0.06 (±0.01) 55.44 (±1.36) 0.05 (±0.01) 3.01
Ensemble MC-SGD 64.12 (±1.16) 0.06 (±0.01) 59.10 (±1.1) 0.04 (±0.01) 3
Subspace-Connectivity (ours) 61.7 (±0.80) 0.05 (±0.01) 58.17 (±0.84) 0.03 (±0.01) ≈ 1
Multitask Learning 66.8 (±1.42) 0.0 62.82(±1.77) 0.0 NA

Table 2: Comparison ensemble methods performance with n = 3 models or the equivalent number of parameters for
Scaled MC-SGD. Each benchmark includes 20 tasks.
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Figure 6: Performance of (Scaled) MC-SGD, Ensemble MC-SGD (Ensemble) and Subspace-Connectivity (S-C) with
respect to the inference cost (FLOPS) and number of parameters/models n (circles) on 20 tasks.

5.2 PERFORMANCE VS. COMPUTE TRADE-OFF

Fig. 6 reports the performance versus the relative FLOPS (w.r.t to MC-SGD). We notice that for fully connected models
(MNIST) Subspace-Connectivity is at least on par with Ensemble MC-SGD and Scaled MC-SGD but enjoys a much
better compute cost (close to Single MC-SGD). However, for convolutional models, Ensemble MC-SGD has the best
performance but at a high computational cost. One reason might be due to the small dataset size (500 per task) on
which Subspace models are not performing well. Note that the subspace method incurs almost no computational cost
overhead in this case. This can be explained by the high reuse of kernel filters in convolutional layers (once the weights
convex combination are summed). Note that the Ensemble MC-SGD with computing cost corresponding to 1 on the
x-axis corresponds to the bagging strategy where incoming batches are randomly assigned to 1 one the member of the
ensemble (each of them eventually gets to see 1/n of the total dataset).

Overall, depending on the limiting factor and use case, one can either use Vanilla Ensemble for its simplicity and
performance regardless of the compute cost. However, Subspace-Connectivity has the best cost-performance trade-off
among other methods.

6 RELATED WORK

The methodology to tackle catastrophic forgetting for continual learning has been extensively populated with three
main groups.

Continual learning. Among pioneer methods to alleviate the catastrophic forgetting, we can name regularization-based
methods that limit the drift in important parameters of features of past tasks (Kirkpatrick et al., 2017; Zenke et al., 2017;
Nguyen et al., 2017; Yin et al., 2020). For instance, EWC (Kirkpatrick et al., 2017) uses the Fisher information to
identify the important parameters. A major drawback of the regularization methods is that they often need multiple
passes over data to perform well (Chaudhry et al., 2019a) and when the number of tasks is large, they suffer more from
the feature drift (Titsias et al., 2020).

The second group of methods in continual learning is the memory-based methods that keep a small episodic memory of
data from past tasks to either replay those examples (Chaudhry et al., 2019b; Rebuffi et al., 2017; Riemer et al., 2018;
Lesort, 2020) or use them for improving the optimization procedure such as projection methods (Farajtabar et al., 2020;
Bennani et al., 2020; Saha et al., 2021), or train a generative model to serve that purpose (Shin et al., 2017; Kirichenko
et al., 2021). A-GEM (Chaudhry et al., 2019a) is a notable example of these methods that use gradients of past tasks to
modify the gradients of the new task and alleviate the forgetting.

Finally, parameter isolation methods focus on the neural network modules that can be either be expanded for each
new task (Aljundi et al., 2017) or a sub-network will be allocated for each task (Wortsman et al., 2020; Fernando et al.,
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2017), or create implicit gateways for different tasks (Mirzadeh et al., 2020a). However, the expansion-based methods’
memory and compute requirement grows as the number of tasks grows. In addition, these methods rely on the task
identifiers for selecting the appropriate module for prediction and often cannot operate without this information.

Perhaps our work is mainly related to regularization- and memory-based methods. Our proposed algorithm maintains a
memory of past data for regularization purposes (i.e., encouraging the connectivity between subspaces across tasks).

Ensemble methods for Continual Learning. Ensemble models have been utilized in the literature on continual learning
to mitigate catastrophic forgetting, as demonstrated in studies such as Cano & Krawczyk (2022); Wang et al. (2022); Li
et al. (2020). For instance, Li et al. (2020) utilized distillation to maintain knowledge from previous experiences by
ensembling past predictions with the current model. In Cano & Krawczyk (2022), a module was designed to detect
data drifts, and an ensemble cooperation was used to distribute the data knowledge among each member. Wang et al.
(2022) demonstrated that an ensemble of small models can outperform a larger one, but they mainly concentrated on
parameter efficiency, which still incurs a linear compute cost, whereas our approach focuses on decreasing the compute
cost. Although these studies also utilized ensemble methods, the direct comparison of compute cost is not always
straightforward, and we aim to provide a comprehensive perspective on ensemble models dynamic in continual learning
rather than ensembling specific algorithm.

Mode connectivity. Draxler et al. (2018); Garipov et al. (2018) studied the loss landscape and existence of connectivity
of neural network solutions. They discovered the existence of pathways/curves of non-increasing loss between solutions
optima. In the context of continual learning, Mirzadeh et al. (2021) have recently shown that multitask and continual
minima are connected via low-loss paths and leveraged this property to connect tasks’ minima in continual learning
and proposed the MC-SGD algorithm, which encourages the linear connectivity between tasks’ minima via path
regularization. While our work is inspired by their findings, we note that MC-SGD is developed with a single model
continual learning in mind, while we extend their work for the continual learning setup with multiple models.

Neural network subspaces. Wortsman et al. (2021); Benton et al. (2021) recently proposed to connect solution of
an ensemble of models through a region in the weight space known as subspace. That region is a low loss surface
and shown to outperform the solution of ensemble models. Gaya et al. (2021) learned a subspace of policies in the
reinforcement learning context for fast adaptation. While our work is directly motivated by the subspace literature,
we note that these methods have been studied in single-task settings. In contrast, our work extends them for continual
learning with a sequence of tasks rather than a single task.

7 CONCLUSION

While continual learning literature focuses mainly on studying the problem with a single model, we have extended it
to the multiple models’ case in this work. To the best of our knowledge, we are the first to investigate the behavior
of ensemble methods in continual learning. Due to their enhanced diversity power, vanilla ensemble achieves good
performance, but this comes at the expense of high computational cost growth. To overcome this challenge, and inspired
by the recent advances in the mode connectivity literature, we have proposed a simple yet computationally efficient
algorithm to improve the performance of subspace ensemble method. We believe it is important not to consider this
seemingly simple method as the main contribution of our work but rather the understanding and implication of ensemble
methods for continual learning.

Despite the simplicity, ensemble methods provide a reliable mechanism to mitigate catastrophic forgetting in continual
learning. The choice of an ensemble method for continual learning highly depends on the use case and limiting factors
(e.g., performance and cost trade-off). We believe our work can be a stepping-stone for several future works, such as
further studying the interactions between multiple models in continual learning and designing more efficient ensembling
techniques.

Limitation. One limitation of our work is the dependence on a (small) sample of previous tasks to ensure the
connectivity. Another limitation may arise due to the nature of mode connectivity and subspace methods because
they decrease the capacity of the model for learning new tasks as an expense for increased stability. Finding the
right trade-off between forgetting improvement (aka stability of previous knowledge) and learning accuracy (plasticity
for learning new knowledge) is very interesting line of work for future. In this regard, one may look for explicitly
employing parameter isolation or dynamic expansion methods (like adding new member to the ensemble) to cover for
the decreased capacity of learning combined with a non-forgetting continual learning algorithm.
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APPENDIX

The appendix is organized as follows:

• Appendix A provides details on each of the Ensemble method (Vanilla, Subspace and Batch Ensemble)
• Appendix C compares the computational cost implications of Vanilla and Subspace Ensemble method.
• Appendix B provides pseudo-code of algorithms used in our ablations analysis and final experiments section.
• Appendix D shows setting of our additional ablation analysis and provides additional insights on the diversity

enhanced of Vanilla Ensemble method (Section 3).
• Appendix D.5 provides an in-depth investigation of subspace learning.
• Appendix E.2 provides detailed ablation results and comparison among Ensemble and Scaled models.
• Appendix F details the experimental setup of our final results on 20 tasks for MNIST and CIFAR-100 dataset

(Section E)
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A ENSEMBLE METHODS FOR CONTINUAL LEARNING

A.1 TRAINING VANILLA ENSEMBLE MODELS FOR CONTINUAL LEARNING

In this work, we adapt the learning of ensemble methods to continual learning scenarios. Unless mentioned, we use the
standard training procedure, which consists of training independently each of the n models on the same dataset3. Given
a set of weights {ωi}ni=1, a task τ , when a data batch (x, y) arrives, we optimize 1

n

∑n
i=1 Lτ (fωi

(x), y). Therefore, the
models’ training differs only in the weights initialization of each model. The average prediction of each model is used
as the output of the ensemble for evaluation ( 1n

∑n
i=1 fωi

(.))4. That being said, the training cost simply grows linearly
with the number of models n. A pseudo-code of the Ensemble CL Algorithm is provided in Alg. 3 in the Appendix.

A.2 LEARNING A SUBSPACE SOLUTION FOR CONTINUAL LEARNING

For the subspace method training, we proceed similarly as in Wortsman et al. (2021). Given a predictor f , a set of n
learnable parameters {ωi}ni=1, learning a subspace of dimension n consists in training the predictor fω̄ as accurate as
possible (with ω̄ =

∑n
i=1 αiωi, ααα ∈ ∆n). Simply put, given a task τ , when a data batch (x, y) arrives, we optimize

Lτ (fω̄(x), y) where ω̄ =
∑n

i=1 αiωi, with ααα ∼ U(∆n). Although, one can learn a distribution over the ααα’s, we
consider the standard case like in Wortsman et al. (2020) where we sample it uniformly in the simplex ∆n. The
prediction steps differs only in the choice of ααα and will be discussed in the following sections. A pseudo-code of the
Subspace Continual Learning Algorithm is provided in Alg. 4 in the Appendix.

When it comes to backpropagation, subspace methods enjoy slightly similar computation cost as the single model.
Given a loss L, the update w.r.t. each ωi, is (assuming standard SGD optimizer): ∂L

∂ωi
= ∂L

∂ω̄
∂ω̄
∂ωi

= αi
∂L
∂ω̄ , ∀i = 1...n.

Then, only a unique backpropagation through the model f (w.r.t. to ω̄) is needed. A detailed discussion about the
computational cost implication between ensemble and subspace methods is provided in Appendix C.

A.3 BATCH ENSEMBLE SOLUTION FOR CONTINUAL LEARNING

Let’s denote a weight ω ∈ Rm×p where m and p are respectively the input and output dimension. Wen et al. (2020)
define a (common) slow weights ω and a set of fast weights {si, ri}ni=1 (with si ∈ Rm, ri ∈ Rp,∀i = 1...n. Each
member of the ensemble i = 1...n owns its set of weights ωi = ω ◦ fi with fi = ris

T
i . Whenever an incoming batch

arrive (x, y), each element of the batch is randomly assigned to a member of the ensemble such that the forward pass
(for a given layer) can be vectorized as: ϕ((x ◦ R)ω ◦ S) where rows of R (respectively S) consists of the vector ri
(respectively si) for all examples of the batch x and ϕ the non-linear activation layer. We refer reader to Section 3.1 of
Wen et al. (2020) for more details.

3We also compare against bagging strategy in Appendix E.2.
4Classical majority voting strategies has been tried without significant difference in performance
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B ALGORITHMS PSEUDO-CODE

Algorithm 2 Vanilla Continual Learning (Single Model)
Input :A task sequence T1, T2, . . . , TT , loss function L
Initialize weights ω∗

0

for tasks τ = 1, 2, 3, . . . T do
for (x, y) ∈ Tτ do

Get fωτ−1(x)
Optimize L(fωτ−1(x), y) // Fine-tune on task τ

end for
Return ω∗

τ

end for
Output : ω∗

T

Algorithm 3 Vanilla Ensemble Continual Learning
Input :A task sequence T1, T2, . . . , TT , loss function L, number of models n
Initialize set of weights {ωi,0}ni=1

for tasks τ = 1, 2, 3, . . . T do
for (x, y) ∈ Tτ do

Get fωi,τ−1(x), ∀i = 1...n

Optimize 1
n

∑n
i=1 L(fωi,τ−1(x), y) // Update each model independently: requires n backward passes

end for
Return {ω∗

i,τ}ni=1

end for
Output : {ω∗

i,T }ni=1

Algorithm 4 Subspace Ensemble Continual Learning
Input :A task sequence T1, T2, . . . , TT , loss function L, number of models n
Initialize set of weights {ωi,0}ni=1

for tasks τ = 1, 2, 3, . . . T do
for (x, y) ∈ Tτ do

ααα ∼ U(∆n), ω̄τ−1 =
∑

i αiωi,τ−1 // Sample uniformly convex combination of weights
Get fω̄τ−1(x)
Optimize L(fω̄τ−1(x), y)

end for
Return {ω∗

i,τ}ni=1

end for
Output : {ω∗

i,T }ni=1
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Algorithm 5 Batch Ensemble Continual Learning
Input :A task sequence T1, T2, . . . , TT , loss function L, number of models n
Initialize set of weights {ωi,0}ni=1

for tasks τ = 1, 2, 3, . . . T do
for (x, y) ∈ Tτ do

for eachlayer do
Get R and S using ri and si, i = 1...n // Assign each element of the batch randomly to a member of the ensemble
Compute W = ((xout ◦R)ω ◦ S) // xout being the output of the previous layer

end for
Optimize L(fW (x), y)

end for
Return {ω∗

τ , sτ , rτ}ni=1

end for
Output : {ω∗

i,T }ni=1

Algorithm 6 Subspace + Experience Replay (ER)
Input :A task sequence T1, T2, . . . , TT , loss function L, number of models n, replay buffer B, mB memory size per task
Initialize set of weights {ωi,0}ni=1

for tasks τ = 1, 2, 3, . . . T do
for (x, y) ∈ Tτ do

ααα ∼ U(∆n), ω̄τ−1 =
∑

i αiωi,τ−1 // Sample uniformly convex combination of weights
(x′, y′) ∼ B // Samples elements from the buffer
x← Concat(x, x′)
y ← Concat(y, y′)
Get fω̄τ−1(x)
Optimize L(fω̄τ−1(x), y)

end for
Return {ω∗

i,τ}ni=1

for (x, y) ∈ Tτ do
B ← B

⋃
{x, y} // Store mB elements per class per task in the buffer

end for
end for
Output : {ω∗

i,T }ni=1
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Algorithm 7 Subspace-Connectivity CL
Input :A task sequence T1, T2, . . . , TT , number of models n , buffer B and memory size mB

1. Initialize set of weigths Sn = {ω0,i}ni=1, buffer B ← {}
2. for tasks τ = 1, 2, 3, . . . T do

Get {ω̂∗
τ,i}ni=1 with Eq 1

// Learn subspaces solution for task τ

for (x, y) ∈ Tτ do
B ← B

⋃
{x, y}

end for
Get {ω∗

τ,i}ni=1 with Eq 2 using samples from B
// Connect previous solution’ subspaces

end for

Output : {ω∗
T,i}ni=1
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C COMPUTATIONAL COST IMPLICATIONS FOR ENSEMBLE AND SUBSPACE METHODS

This section discusses the implication cost of Vanilla and Subspace Ensemble methods.

For the ensemble methods, since each model is trained independently on the same dataset, the cost is n times higher (n
times more forward and backward passes).

Compared to the single model, the subspace method contains one additional operation for the inference and backpropa-

gation operation. Before the inference, a convex combination of the weights is sampled: ω̄ =

n∑
i=1

αiωi, α ∼ U(∆n)

(weights mixing). For the backpropagation, only one backward pass is needed (∂L∂ω̄ ) before assigning the new weights
ωi = ωi − lrαi

∂L
∂ω̄ , ∀i = 1...n, lr being the learning rate.

Overall, the subspace method has only two supplementary addition operations as an overhead cost compared to the
single model which is much cheaper than the n− 1 additional forward and backward pass of the ensemble methods.
This makes the subspace method more efficient.

Method forward pass backward pass

Single model 1 inference pass (f(x, ω) 1 backpropagation pass ( ∂L
∂ω )

Ensemble n inference passes (f(x, ωi), ∀i = 1...n) n backpropagations passes ( ∂L
∂ωi

, ∀i = 1...n )

Subspace ω̄ =

n∑
i=1

αiωi 1 backpropagation pass ( ∂L
∂ω̄ )

1 inference pass (f(x, ω̄) ωi ← ωi − lrαi
∂L
∂ω̄ ,∀i = 1...n

Table 3: Computational cost comparison between different methods. In red are the additional operations compared
to the single model. While ensemble methods have (n − 1) additional backward passes (backward pass), subspace
methods only incur addition operations as an overhead cost which are much cheaper.
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D SETUP OF ABLATION AND ADDITIONAL RESULTS

D.1 EXPERIMENTAL PARAMETERS

For the ablation of Section 3, we train on 5 tasks for Rotated MNIST and Split CIFAR-100. The details of the setup are
the following:

Rotated MNIST : The incremental angle is 22.5◦ for a total of 90◦. This made the benchmark more challenging as
done in Mirzadeh et al. (2020b) with one training epoch per task.

Split CIFAR-100 : We use the 25 first tasks of CIFAR-100 and train for 5 epochs per task to highlight the properties
of ensemble methods.

The hyperparameters for each baseline are the following:

NAIVE SGD AND VANILLA ENSEMBLE (VE) AND BATCH ENSEMBLE (BE)

• learning rate: [0.2, 0.15, 0.1 (MNIST), 0.05 (CIFAR-100), 0.01]
• learning rate decay: [1.0 (CIFAR-100)5, 0.95, 0.9, 0.5 (MNIST)]
• batch size: [10,32,64,128]

SUBSPACE ENSEMBLE (SE)

• standardized learning rate6: [0.2, 0.15 (CIFAR-100), 0.1 (MNIST)]
• learning rate decay: [1.0 (CIFAR-100), 0.95, 0.9, 0.5 (MNIST)]
• batch size: 10

An other important aspect of subspace methods are how close each model is initialized. The further away from each
other they are, the more iteration will be needed to update the whole volume. To control this volume, we initialize each
model’s weight with respect to the first one as: ωi = ω1 ∗ N (1, σinit), ∀i = 1...n, ω1 being the initialized weight of
the first model. The variance σinit controls this volume. For MNIST, we use σinit = 1.0 (n = 2, 3) and σinit = 1.5
(n = 5, 10), for CIFAR-100 we use σinit = 0.1 (n = 2, 3, 5, 10).

D.2 METRICS

To quantify the properties of ensemble and subspace methods, we have used the following metrics: Learning

Accuracy LAT = 1
T

T∑
τ=1

aτ,τ , where aτ,τ represents the accuracy on task τ after learning on task τ the first time,

Forgetting FT = 1
T−1

∑T−1
τ=1 maxt={1..T−1}(at,τ −aT,τ ) and Forgetting Improvement FIT = FT (single model)−

FT (ensemble/subspace model)

5A value of 1 means no decay has been applied to the learning rate
6This is an average learning rate per model, i.e we use a learning rate of 0.3 when using n = 3 models for MNIST
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D.3 DIVERSITY OF PERFORMANCE OF THE VANILLA ENSEMBLE METHODS

To measure the diversity of each member in the ensemble method (Ensemble Continual Learning Alg. 3), we show the
boxplot of the final average accuracy for each member of the ensemble (line) on each task (column) in Figure 7. The
x-axis represents each individual in the ensemble while the last index represents the final prediction of the ensemble
(noted "Avg"). As we increase the number of models, the gap between the highest accuracy of each individual and the
final prediction increases (For instance, compare gap between blue and gray boxplot for the 3rd column). The diversity
in each model (initialized differently) might explain good performance of ensemble methods.
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Figure 7: Final accuracy for each model of the ensemble (blue) and the final ensemble prediction (gray) for each task
for Rotated MNIST. The final ensemble prediction accuracy is almost always higher than the best accuracy of the best
model. As we increase the number of models, we can see a diversity in the prediction of each model, each of them
seems to specialize naturally in diverse tasks (look at n = 5, 10). This might contribute to the good performance of the
ensemble method.
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Figure 8: Final accuracy for each model of the ensemble (blue) and the final ensemble prediction (gray) for each task
for Split CIFAR-100. Note how the ensemble accuracy (grey) is almost always much beter than the accuracy of the best
member (blue).

D.4 DIVERSITY IN PREDICTION OF VANILLA ENSEMBLE METHODS

We here provide a visualization of the prediction’s evolution throughout the learning experience for the 5 tasks ablation
on Split CIFAR-100 for Vanilla Ensemble (average prediction). Figure 9 shows the output of each member of an
ensemble for a given sample of task 1 ( the column represents the weights ω∗

i corresponding to the current task i). The
y-axis represents the possible prediction (class 1 to 5) with the Ground truth being highlighted in orange (class 1 here).
The dashed red square is the final prediction made by the ensemble.

Throughout the learning, one can see the forgetting about solution’s 1 prediction that leads to diversity in prediction
(read the 2nd row for instance). This obviously leads to forgetting of former’s solution. The more member an ensemble
has (take last row for instance), the more likely it will be able to keep its former’s solution has a main core member
sticks around the former’s solution (compare 4th column).
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Figure 9: Evolution of prediction for Split CIFAR-100 on one sample of task 1. The y-axis represents the prediction for
each class 1 to 5 while the x-axis represents the behavior of member i. Throughout the training (read from left to right),
predictions of former’s solution is forgotten leading to diversity as well. The more member an ensemble has, the more
likely the former solution’s can be remembered since the average prediction is used as the final output (look at last row
4th and 5th column).
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D.5 UNDERSTANDING SUBSPACE PROPERTIES

This section aims at showing the dynamic of subspace through the training process. We will show that applying naively
Subspace (SE) and adding Experience Replay (ER) still show high forgetting.

To this end, we raise two questions: (1) “What are the interesting properties of the learned subspaces in continual
learning?” and (2) “How do subspaces evolve throughout the learning experience?”. In Sec. D.6, we study the first
question and highlight an important property of the subspace method, that is, the center of the subspace contains more
accurate and robust solutions. To answer the second question, in Sec. D.7, we show the limit of the subspace method
that can still suffer from the forgetting problem when the number of tasks increases.

For this purpose we design Subspace-Connectivity exploits the connectivity of the subspaces throughout the continual
learning. By connectivity, we mean that there is a path between two solutions along which the loss value and the test
error stay low Draxler et al. (2018); Garipov et al. (2018).

D.6 SUBSPACE MIDPOINT GETS THE BEST ACCURACY

In this section, we further investigate the behavior of the learned subspaced ensembles by monitoring the accuracy
within the subspace.
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Figure 10: Rotated MNIST: Learning Accuracy for different tasks inside a subspace region with 3 models. Midpoints
(center) show the best performance as opposed to the endpoints (corners) (left, middle). Robustness to uniform noise
for the case of n = 3 models. Midpoint is more robust to weight perturbation than endpoints (right)

To this end, we use Subspace Continual Learning algorithm (Alg. 4) with n = 3 models. In Figs. 10a and 10b we
show the accuracy across the subspace at the beginning of learning (task 1) and in the middle of learning (task 10),
respectively. The plots illustrate that the center (midpoint) has higher learning accuracy within each region. This also
translates into more robustness of the midpoint versus the endpoints (Fig. 10c).

D.7 SUBSPACES STILL FORGET

Now, we shift our focus on the evolution of the learned subspaces throughout the continual learning experience. To this
end, we compare the subspace method (Alg. 4) with and without Experience Replay, ER Riemer et al. (2018), (Alg. 6)
. Fig. 11 shows snapshots of task 1’s accuracy across different times of the training (task τ = 1, 5, 10) on Rotated
MNIST (20 tasks). We can observe that while adding ER improves the accuracy, over long sequences of tasks, there is
still a degradation of performance. For instance, on task 1 Subspace + ER incurs a performance decrease to 55% (last
column ω∗

10).

To investigate this performance degradation, we employ the recent technique introduced by Mirzadeh et al. (2021) where
the authors show that the linear mode connectivity can explain the performance gap between continual and multitask
solutions. Since the subspace method is inherently motivated by the mode connectivity, we believe investigating the
connectivity across subspaces can explain the performance degradation. Hence, we visualize the mode connectivity
between successive solutions (represented by midpoints) of task 1 and task 2, evaluated on the loss of task 1. In
Fig. 12 we can see that the midpoints of subsequent subspaces’ solutions are not linearly connected meaning the linear
interpolated weights between these two solutions does not stay in a low-loss region Mirzadeh et al. (2021). Fig 13 in
Appendix provides more detailed analysis and metrics (including accuracy) with the same conclusion.

Thus far, we have investigated the properties of the subspaces and their evolution throughout the learning experience.
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Figure 11: Rotated MNIST: The evolution of accuracy of task 1 throughout the training. Even though the subspace
method restricts weight’s movement, there is still a noticeable degradation in performance (hence a large amount of
forgetting).

By tracking the evolution of the subspace, we have also observed a performance degradation, which can be explained
by the lack of connectivity between solutions. These results motivate us to design Subspace-Connectivity that takes
these findings into action. In the next section, we highlight the improve in mode connectivity of our algorithm against
Subspace Ensemble and Subspace + ER.
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Figure 12: Rotated MNIST: The sequential subspace solutions are not linearly connected.
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D.7.1 SUBSPACE CONNECTIVITY

To measure the mode connectivity Mirzadeh et al. (2021) between subsequent solutions, we evaluate the loss function
between interpolated solutions αω∗

i + (1− α)ω∗
i+1, ∀α ∈ [0, 1]. Fig 13 provides a comparison between our method

Subspace-Connectivity against Subspace CL (Alg. 4) and Subspace + ER (Alg. 6). We clearly see that the two latter
incurs a high variation in their loss and accuracy between successive solutions on task 1’loss. As an example, while
Subspace-Connectivity incurs a slight variation of 1% in accuracy when interpolating between ω∗

2 and ω∗
3 (2nd column)

the other methods incur a drop of more than 2% of accuracy. This drop is even larger when interpolating between
ω∗
3 and ω∗

4 (3rd column). Now we are interested to investigate the mode connectivity for further task’s solution of
Subspace-Connectivity .

Figure 14 shows the linear connectivity between solutions more than 5 tasks further in time. Although performance
might have decreased between ω∗

11 and ω∗
2 on task 1, we can see that the linear path between ω∗

11 and ω∗
12 (red line) is

close to horizontal losing roughly 2% of accuracy (first column) and 1% if one considers the path between ω∗
6 and ω∗

7
(green line). Note the high accuracy of ω∗

6 → ω∗
7 on task 1 (first column, green line) which reaches ∼ 94% of accuracy

while the accuracy of the first task (with ω∗
1) was around 96%.
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Figure 13: Connectivity comparison between Subspace-Connectivity and other baselines. Naive and ER+Subspace
incurs high variation when interpolating between successive solutions since they do not enforce mode connectivity.
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Figure 14: Subsequent solutions of Subspace-Connectivity maintain more or less connectivity (horizontality of each
curve).
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Figure 15: While applying naively subspace (Subspace and Subspace + ER) does not allow mode connectivity (loss
function is increasing between two subsequent solutions) (left), our method (denoted "Ours") allows linear mode
connectivty between successive solution’.
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E ADDITIONAL RESULTS AND SETUP DETAILS

In this section, we first provide our experimental setup and benchmarks used. We then check if our method connects the
subspace of previous solutions together and finally compare our algorithm Subspace-Connectivity against the main
baselines of the literature.

E.1 EXPERIMENTAL SETUP

Setup The experimental setup, such as benchmarks, network architectures, continual learning setting (e.g., number of
tasks, episodic memory size, and training epochs per task), hyper-parameters, and evaluation metrics are chosen to be
similar to several other studies Chaudhry et al. (2019a); Mirzadeh et al. (2020b); Chaudhry et al. (2019b); Farajtabar
et al. (2020). For all experiments, we report the average and standard deviation over five runs with different random
seeds.

Benchmarks We use the standard benchmarks similarly to Goodfellow et al. (2014a) and Chaudhry et al. (2019b).
Permuted-MNIST Goodfellow et al. (2014a) consists of a series of MNIST supervised learning tasks, where the pixels
of each task are permuted with respect to a fixed permutation. Rotation-MNIST Farajtabar et al. (2020) consists of a
series of MNIST classification tasks, where the images are rotated with respect to a fixed angle, monotonically. For
both MNIST dataset the task ID does not need to be provided since it is a domain incremental task. We increment
the rotation angle by 9 degrees at each new task. Split CIFAR-100 Chaudhry et al. (2019b) is constructed by splitting
the original CIFAR-100 dataset Krizhevsky et al. (2009) into 20 disjoint subsets. In order to assess the robustness
to catastrophic forgetting over long tasks sequences, all datasets have 20 tasks. Split miniImageNet is a variant of
the ImageNet dataset Russakovsky et al. (2015), also splitted in 20 disjoint subsets where each subset is formed by
sampling without replacement of 5 classes out of 100. Both CIFAR-100 and miniImageNet contains 20 tasks with 500
samples for each of the 5 classes and request the task ID to be provided as input to the model.

Architectures For MNIST dataset, we used a fully connected neural networks with two hidden layers of 256 ReLU
hidden units as in Chaudhry et al. (2019a); Mirzadeh et al. (2020b); Chaudhry et al. (2019b); Farajtabar et al. (2020).
For Split CIFAR-100, we used the same reduced Resnet18 as in Mirzadeh et al. (2020b) (with three times less features
maps accros all layers). For Split miniImageNet, we adapted the network used with CIFAR-100 by adapting the
input dimension of the last fully connected layers since both dataset have different input dimensions ((3,84,84) for
miniImageNet versus (3,32,32) for CIFAR-100).

Evaluation metrics To assess the performance of each baseline, we report two metrics used in the literature which
are the Final Accuracy and Forgetting Measure. The Final Accuracy after T tasks is the average validation accuracy

over all the tasks τ = 1...T defined as: AT =
1

T

T∑
τ=1

aT,τ where aT,τ is the validation accuracy of task τ after the

model finished learning on task T . The Forgetting Measure is defined as: FT = 1
T−1

T−1∑
τ=1

max
t={1..T−1}

(at,τ − aT,τ )

E.2 ENSEMBLE MODEL ABLATIONS

This section provides various ablation experiments between Scaled MC-SGD, Ensemble MCSGD and Subspace-
Connectivity :

• Table 4 shows the performance for Subspace-Connectivity with different number of models n

• Table 5 compare Subspace-Connectivity against Scaled single model and Ensemble MC-SGD varying: number
of models n, parameters and for different level of compute cost (FLOPS) and different strategies for Vanilla
Ensemble (bagging and not bagging).

Scaled MC-SGD In order to compare to the performance on a single model (n = 1), we increase its capacity to
match the number of parameters of the ensemble methods. While fully connected networks (MNIST dataset), we
increase the number of hidden units (h = 256, 450, 600), for the Restnet18 network (Split CIFAR-100), we increase the
number of channels (nf = 20, 29, 35).
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Bagging strategy for Ensemble MC-SGD Every time a data batch arrives, we sample uniformly one model among
the other to receive the data and be updated. This allows to compare Ensemble MC-SGD at the same level of compute
as MC-SGD since each member of the ensemble get to see 1/n of the whole dataset.

Calculation of the FLOPS The Floating Point Operation per Second is a metric to quantify the computational cost
for an algorithm. Our reported FLOPS metric represents a forward pass cost given a batch size of 10. To have an idea
of the total training cost, one can approximate the backward pass as ∼ 2 times the forward pass cost Kaplan (2019).
The relative FLOPS is the ratio between our reported Inference (forward pass) FLOPS for a given algorithm and its
Single version, i.e the reference algorithm is MC-SGD in our case.

Number of model Permuted MNIST Rotated MNIST Split CIFAR-100 Split miniImageNet
Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓

2 87.1 (±0.19) 0.07 (±0.01) 86.6 (±0.45) 0.07 (±0.01) 60.97 (±1.53) 0.05 (±0.01) 57.10 (±1.53) 0.05 (±0.01)
3 87.8 (±0.53) 0.06 (±0.01) 86.7 (±0.67) 0.07 (±0.01) 61.74 ( ±0.80) 0.05 (± 0.01) 58.17 (±0.84) 0.03 (±0.01)
5 87.8 (±0.3) 0.07 (±0.01) 86.8 (±0.46) 0.07 (±0.01) 60.85 (±0.73) 0.05 (± 0.01) 58.11 (±1.23) 0.03 (± 0.01)

Table 4: Final accuracy for subspace method with a different number of models n. For n ≥ 2 models, there is not much
difference in performance for MNIST dataset while for Split CIFAR-100, n = 3 gives the best performance.

Number of model Permuted MNIST Rotated MNIST Relative FLOPS ratioAccuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓
|θ| = 268K
Scaled MC-SGD (256) 83.17 (±0.63) 0.10 (±0.01) 81.70 (±0.43) 0.08 (±0.01) 1
|θ| = 560K
Scaled MC-SGD (450) 86.80 (±0.93) 0.07 (±0.01) 82.67 (±0.20) 0.08 (±0.01 ) 2.1
Ensemble MC-SGD (n = 2, bagging∗) 86.23 (±0.52) 0.06 (±0.01) 80.7 (±0.50) 0.09 (±0.01) 1
Ensemble MC-SGD (n = 2) 86.5 (±0.33) 0.08 (±0.01) 83.00 (±0.45) 0.08 (±0.01) 2
Subspace-Connectivity (n = 2) 87.1 (±0.19) 0.07 (±0.01) 86.6 (±0.45) 0.07 (±0.01) 1.1
|θ| = 836K
Scaled MC-SGD (600) 88.03 (±0.36) 0.06 (±0.01) 83.67 (±0.40) 0.07 (±0.01) 3.1
Ensemble MC-SGD (n = 3, bagging) 86.60 (±0.46) 0.05 (±0.01) 80.00 (±0.24) 0.08 (±0.01) 1
Ensemble MC-SGD (n = 3) 88.30 (±0.48) 0.06 (±0.01) 83.63 (±0.39) 0.07 (±0.01) 3
Subspace-Connectivity (n = 3) 87.8 (±0.30) 0.07 (±0.01) 86.7 (±0.67) 0.07 (±0.01) 1.2

Number of model Split CIFAR-100 Split miniImageNet Relative FLOPS ratioAccuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓
|θ| = 500K
Scaled MC-SGD (nf = 20) 58.22 (±0.91) 0.08 (±0.01) 54.80 (±1.04) 0.05 (±0.01) 1
|θ| = 1M
Scaled MC-SGD (nf = 29) 60.12 (±0.97) 0.07 (±0.01) 55.30 (±0.83) 0.06 (±0.01) 2.08
Ensemble MC-SGD (n = 2, bagging) 56.87 (±0.80) 0.06 (±0.01) 54.00 (±0.77) 0.05 (±0.01) 1
Ensemble MC-SGD (n = 2) 60.83 (±0.99) 0.09 (±0.01) 57.60 (±0.55) 0.04 (±0.01) 2
Subspace-Connectivity (n = 2) 60.97 (±1.53) 0.05 (±0.01) 57.10 (±0.79) 0.05 (±0.01) ≈ 1.00
|θ| = 1.5M
Scaled MC-SGD (nf = 35) 60.50 (±0.84) 0.06 (±0.01) 55.44 (±1.36) 0.05 (±0.01) 3.01
Ensemble MC-SGD (n = 3, bagging) 55.48 (±1.20) 0.06 (±0.01) 52.39 (±0.60) 0.03 (±0.01) 1
Ensemble MC-SGD (n = 3) 64.12 (±1.16) 0.06 (±0.01) 59.1 (±1.1) 0.04 (±0.01) 3
Subspace-Connectivity (n = 3) 61.74 ( ±0.80) 0.05 (± 0.01) 58.17 ( ±0.84) 0.03 (± 0.01) ≈ 1.00

Table 5: Performance comparison against Scaled MC-SGD, Ensemble MC-SGD and Subspace-Connectivity . Ensemble
MC-SGD gets the best performance but at a high compute cost. However, if we compare with a fair compute cost (see
bagging) Ensemble MC-SGD performs worst than Subspace-Connectivity .
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F BASELINES HYPERPARAMETERS

We first enumerate the hyperparameters used for the 20 tasks experiments in Table 6 before describing in detail the
ablation in this section.

F.1 HYPER-PARAMETERS

For the experiment in Section 5, we have used the following grid for each model. We note that for other algorithms
(e.g., A-GEM, and EWC), we ensured that our grid contains the optimal values that the original papers reported. If
applicable, all baselines used a buffer memory of 1 element per class per task (which translates in a total replay buffer
memory of 200 for MNIST dataset and 100 for CIFAR-100 and miniImageNet). We used the same single training
epoch per task setting as in Chaudhry et al. (2019b); Mirzadeh et al. (2020b;a).

NAIVE SGD

• learning rate: [0.25, 0.1 (MNIST), 0.03 (miniImageNet), 0.01 (CIFAR-100), 0.001]
• batch size: 10

EWC

• learning rate: [0.25, 0.1 (MNIST, CIFAR-100), 0.01, 0.001]
• batch size: [64, 10]
• λ (regularization): [100, 10 (MNIST, CIFAR-100), 1]

A-GEM

• learning rate: [0.1, 0.1 (MNIST), 0.01 (CIFAR-100), 0.001]
• batch size: [64, 10]

ER-RESERVOIR

• learning rate: [0.25, 0.1 (MNIST, miniImageNet), 0.01 (CIFAR-100), 0.001]
• batch size: [64, 10]

BATCH ENSEMBLE

Although Wen et al. (2020) reported an optimal value for an ensemble size of n = 4, we found out in our setting that
n = 2 provided the best results.

• learning rate: [0.25, 0.1 (CIFAR-100,miniImageNet, Permuted), 0.01 (Rotated), 0.001]
• learning rate decay: [0.95, 0.9 (CIFAR-100, miniImageNet), 0.85,0.8 (MNIST)]
• batch size: [128, 64, 32, 10]

STABLE SGD

• initial learning rate: [0.25, 0.1 (MNIST, CIFAR-100), 0.01, 0.001]
• learning rate decay: [0.95, 0.9(CIFAR-100), 0.85,0.8 (miniImageNet), 0.6(MNIST)]
• batch size: [64, 10]
• dropout: [0.25 (MNIST), 0.1,0.0 (CIFAR-100, miniImageNet)]
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MODE CONNECTIVITY SGD

To obtain continual minima (i.e., ω̂∗
1 to ω̂∗

20), we use the following hyperparameters:

• initial learning rate: [0.25, 0.1 (MNIST, CIFAR-100), 0.01, 0.001]
• momentum: [0.9, 0.85, 0.8 (MNIST), 0.7 (miniImageNet), 0.4 (CIFAR-100)]
• learning rate decay: [0.95 (Rotated MNIST, CIFAR-100), 0.9 (miniImageNet), 0.85, 0.8 (Permuted MNIST),

0.7 ]
• batch size: [64 (MNIST), 32, 10 (CIFAR-100, miniImageNet)]
• dropout: [0.25 (Permuted MNIST), 0.1, 0.0 ( Rotated MNIST, CIFAR-100, miniImageNet, )]

To obtain ω̄∗
1 to ω̄∗

20, we use the following grid:

• number of samples: [10, 5, 3] for both MNIST and CIFAR experiments.
• learning rate: [0.2, 0.1, 0.05 (MNIST), 0.01 (CIFAR-100, miniImageNet), 0.001].

SUBSPACE-CONNECTIVITY

To obtain the subspace solution from the first step {ω̂∗
i }ni=1 from Eq 1, we used the following hyperparameters:

• initial learning rate: [0.37 (CIFAR-100), 0.2, 0.15 (miniImageNet) , 0.1 (MNIST)]
• momentum: [0.9, 0.85, 0.8 (Rotated MNIST), 0.4 (Permuted MNIST), 0 (CIFAR-100, miniImageNet)]
• learning rate decay: [0.95 (Rotated MNIST, CIFAR-100, miniImageNet), 0.9, 0.8 (Permuted MNIST)]
• batch size: [32, 10 ( MNIST, CIFAR-100, miniImageNet)]
• dropout: [0.25 (Permuted MNIST), 0.1, 0.0 ( Rotated MNIST, CIFAR-100, miniImageNet)]

The subspace connectivity steps leading to {ω∗
i }ni=1 ( Eq 2) used the following hyperparameters:

• number of samples: [10, 5 (MNIST), 3 (CIFAR-100, miniImageNet)]
• learning rate: [0.2, 0.1 (CIFAR-100), 0.05 (MNIST, miniImageNet), ].

Implementation details of Subspace-Connectivity While the first loss (Eq. 1) is a fine-tuning on the incoming
task τ − 1 (Vanilla SGD), the second one (Eq. 2) is done in two steps. First, we initialize the weight using a convex
combination of weights around the two former midpoints as ω̄i = αω∗

τ−1,mid+(1−α)ω̂τ,mid then we add multiplicative
noise ω̄i ∗ ϵ, i = 1...n, ϵ ∼ N (1, σ) (with σ = 0.005 for MNIST and σ = 0.01 for CIFAR-100 and miniImageNet)
where ∗ represents element-wise multiplication. The multiplicative noise has the nice property to scale well with the
weights magnitude. The α values taken are: [0.9, 0.85 (Rotated MNIT), 0.8 (CIFAR-100), 0.7 (miniImageNet), 0.25
(Permuted MNIST),]

Method Permuted MNIST Rotated MNIST Split CIFAR-100
Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓

Naive SGD 44.4 (±2.46) 0.53 (±0.03) 46.3 (±1.37) 0.52 (±0.01) 40.4 (±2.83) 0.31 (±0.02)
EWC (Kirkpatrick et al., 2017) 70.7 (±1.74) 0.23 (±0.01) 48.5 (±1.24) 0.48 (±0.01) 42.7 (±1.89) 0.28 (±0.03)
A-GEM (Chaudhry et al., 2019a) 65.7 (±0.51) 0.29 (±0.01) 55.3 (±1.47) 0.42 (±0.01) 50.7 (±2.32) 0.19 (±0.04)
ER-Reservoir (Chaudhry et al., 2019b) 72.4 (±0.42) 0.16 (±0.01) 69.2 (±1.10) 0.21 (±0.01) 46.9 (±0.76) 0.21 (±0.03)
Stable SGD (Mirzadeh et al., 2020b) 80.1 (±0.51) 0.09 (±0.01) 70.8 (±0.78) 0.10 (±0.02) 56.9 (±1.52) 0.11 (±0.01)
MC-SGD (Mirzadeh et al., 2021) 82.9 (±0.40) 0.10 (±0.01) 81.9 (±0.46) 0.08 (±0.01) 58.2 (±0.91) 0.08 (±0.01)
Ensemble MC-SGD 88.30 (±0.48) 0.06 (±0.01) 83.63 (±0.39) 0.07 (±0.01) 64.12 (±1.16) 0.06 (±0.01)
Batch Ensemble (Wen et al., 2020) 63.37 (±1.32) 0.27 (±0.01) 57.54 (±0.53) 0.17 (±0.01) 53.08 (±1.70) 0.08 (±0.01)
Subspace-Connectivity (ours) 87.8 (±0.53) 0.06 (±0.01) 86.7 (±0.67) 0.07 (±0.01) 61.7 (±0.80) 0.05 (±0.01)
Multitask Learning 89.5 (±0.21) 0.0 89.8(±0.37) 0.0 66.8(±1.42) 0.0

Table 6: Comparison between the proposed method (Subspace-Connectivity ) and other single model baselines on 5
random seeds (± std).

7this value must be multiplied by the number of model n to get the final learning rate used. Same logic is applied for miniImageNet
dataset.
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Figure 16: Evolution of the average accuracy throughout the training.

Method Split miniImageNet
Accuracy ↑ Forgetting ↓

Naive SGD 43.66 (±1.65) 0.22 (±0.02)
ER Reservoir (Chaudhry et al., 2019b) 51.7 (±2.53) 0.11 (±0.02)
Stable SGD (Mirzadeh et al., 2020b) 53.76 (±1.13) 0.07 (±0.01)
MC-SGD (Mirzadeh et al., 2021) 54.80 (±1.04) 0.05 (±0.01)
Ensemble MC-SGD 59.2 (±1.1) 0.04 (±0.01)
Batch Ensemble (Wen et al., 2020) 51.78 (±1.74) 0.05 (±0.01)
Subspace-Connectivity (ours) 58.17 (±0.84) 0.03 (±0.01)
Multitask Learning 62.82 (±1.77) 0.0

Table 7: Comparison between Subspace-Connectivity and other baselines on 5 random seeds for Split miniImageNet.
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