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ABSTRACT

Meta-learning aims to extract common knowledge from similar training tasks in order to facilitate
efficient and effective learning on future tasks. Several recent works have extended PAC-Bayes
generalization error bounds to the meta-learning setting. By doing so, prior knowledge can be
incorporated in the form of a distribution over hypotheses that is expected to lead to low error on
new tasks that are similar to those that have been previously observed. In this work, we develop
novel bounds for the generalization error on test tasks based on recent data-dependent bounds and
provide a novel algorithm for adapting prior knowledge to downstream tasks in a potentially more
effective manner. We demonstrate the effectiveness of our algorithm numerically for few-shot image
classification tasks with deep neural networks and show a significant reduction in generalization
error without any additional adaptation data.

1 INTRODUCTION

Over the last few decades, the field of machine learning has developed rapidly both theoretically and as an engineering
practice. Of particular interest is the field of learning and adapting quickly from only a few examples, which requires
a balance between prior experience and new information in order to solve new tasks effectively without overfitting.
One common approach to tackle this few-shot learning problem is that of meta-learning, where training data is used
to create a prior that is conducive to the downstream task. This approach has shown promising empirical results in a
variety of domains (see survey (Hospedales et al., 2021)), especially for cases with few test examples.

As an illustrative example of the meta-learning problem, we might consider a visual classification system that must
also be capable of identifying new categories of objects with very few examples. In order to achieve this goal, the
system must maintain prior knowledge on similar vision problems, and utilize this prior to adapt quickly to the new
data.

In order to better understand the generalization capabilities of classification methods and give upper bounds on the
gap between the training and test performance, several theoretical frameworks have been devised. Among these
frameworks, methods based on PAC-Bayes bounds (McAllester, 1999) are of particular interest, as they result in
practical optimization algorithms with potentially non-vacuous generalization guarantees with high probability. As
such, it is not surprising that several works have extended the PAC-Bayes framework to the domain of meta-learning,
such as Pentina & Lampert (2014), Amit & Meir (2018), Rothfuss et al. (2021), Liu et al. (2021) and Farid & Majumdar
(2021).

Several recent works have established non-vacuous generalization bounds for practical deep learning problems, such
as the methods suggested by Dziugaite & Roy (2017) and later improved by Pérez-Ortiz et al. (2021). In both cases,
the use of a data-dependent prior was shown to be a major component in achieving these impressive results. As such,
data-dependent PAC-Bayes bounds such as those proposed in Rivasplata et al. (2020) may be of great interest for
meta-learning.

In this work, we utilize data-dependent PAC-Bayes techniques to provide an upper bound on the generalization error
for new tasks by adapting an existing distribution over priors to better fit the given test task. This approach allows us
to use existing methods to meta-learn a distribution over training tasks and provides a potentially tighter guarantee for
the new task. We compare our bounds to known bounds for a simple setting, and develop a practical algorithm based
on our bounds. We demonstrate the effectiveness of this meta-adaptation approach for classification on vision tasks.
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2 BACKGROUND

2.1 PAC-BAYES BOUNDS

The common setting for learning consists of a set of independent examples S = {zi}mi=1 ⊂ Zm, drawn from an
unknown distribution zi ∼ D. We denote S ∼ Dm the distribution over the samples. For the common setting of
classification, each example zi = (xi, yi) is a pair of data and label. Given a space of hypotheses H and a sample S,
we would like to find a hypothesis h ∈ H that minimizes the expected loss Ez∼D [`(h, z)], where ` : Z → [a, b] is
a bounded loss function (some PAC-Bayes bounds apply for unbounded losses with concentration properties such as
sub-gamma and sub-Gaussian distributions, and may be useful for future extensions). Since D is unknown, we must
use the training data S to find a hypothesis that minimizes the expected loss with high probability, based on the sample
of size m.

The PAC-Bayes framework, as formulated by McAllester (1999), takes as input the training data S as well as an
inductive bias in the form of a prior distribution P overH. These are then used to construct a posterior distribution Q
overH, and h ∼ Q is then sampled. We define the expected and empirical errors

L(h,D) , Ez∼D [`(h, z)] ; L̂(h, S) ,
1

m

m∑
i=1

`(h, zi).

In the PAC-Bayes setting we sample h ∼ Q and estimate the expected performance over the posterior Q ∈ M(H)
(the set of distributions over hypotheses). This process results in a randomized algorithm that enables the estimation
of the expected and empirical errors for the posterior distributions,

L(Q,D) , Eh∼Q [L(h,D)] ; L̂(Q,S) , Eh∼Q
[
L̂(h, S)

]
.

Following these definitions, one can derive a PAC-Bayes theorem for the single task setting, as formulated by
McAllester (1999).
Theorem 2.1. (McAllester’s single task bound) Let P ∈ M(H) be some prior distribution over H. Then, for any
δ ∈ (0, 1), with probability at least 1− δ over the choice of S, uniformly for all posteriors Q ∈M(H),

L(Q,D) ≤ L̂(Q,S) +

√
DKL(Q||P ) + log m

δ

2(m− 1)
,

where DKL(Q||P ) , Eh∼Q
[
log Q(h)

P (h)

]
is the Kullback-Leibler divergence.

This theorem is commonly interpreted as the expected error being upper bounded by the empirical error plus a com-
plexity term that depends on the probability parameter δ, the sample size m, and the divergence of the posterior from
the prior. Since this theorem holds uniformly over all Q, we can derive a practical learning algorithm that chooses Q
such that it minimizes the right-hand-side of this bound. Naturally, this bound is affected by the choice of P , the prior
over H, as ideally we would like to have a prior that is close to posteriors that achieve low empirical error, thereby
motivating the notion of data-dependent priors.

2.2 PAC-BAYES BOUNDS FOR META-LEARNING

The basic meta-learning setting assumes an input comprised of several training tasks from a single task environment.
A meta-learning algorithm must extract the necessary common knowledge (in the form of a prior) to efficiently learn
new tasks in the same environment. Following the formulation of PAC-Bayes bounds for lifelong learning (Pentina
& Lampert, 2014) and meta-learning (Amit & Meir, 2018), we assume a shared sample space Z , hypothesis space H
and loss function ` : Z × H → [a, b], and a set of training datasets {S1, ..., SN} of size m each (we assume equal
sizes for simplicity of analysis). Each training dataset Si is assumed to come from an unknown distribution Si ∼ Dmi ,
and these distributions are sampled i.i.d. from a shared (and also unknown) task distribution Di ∼ τ .

The goal of a meta-learning algorithm is to construct a prior P such that given samples ST from a new task DT ∼ τ ,
the base learner uses both to construct a posterior Q(P, ST ) over the hypothesis space H. In order to evaluate our
constructed prior, we can consider its expected error

L(P, τ) , ED∼τ
[
ES∼Dm

[
Eh∼Q(P,S) [L(h,D)]

]]
. (1)

The meta-learning PAC-Bayes framework can thus be seen as learning a hyper-posterior distributionQ ∈M(M(H))
over priors. Similarly to the single task setting, we assume access to a hyper-prior distribution P ∈ M(M(H)), as
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well as training datasets {S1, ..., SN}. We would like to optimize over Q in order to minimize the expected transfer
error

L(Q, τ) , EP∼Q [L(P, τ)] .

Since the true task distribution τ is unknown, we can use an estimate in the form of the empirical multi-task error

L̂(Q, S1, ..., SN ) , EP∼H

[
1

N

N∑
i=1

L̂(Q(P, Si), Si)

]
.

A similar approach to the single task case leads us to PAC-Bayes bounds on the transfer error, such as the following.
Theorem 2.2. (Meta-learning bound (Amit & Meir, 2018)) Let P ∈ M(M(H)) be some hyper-prior distribution,
and let Q : Zm ×M(H) → M(H) be a given base learner. Let ` : H × Z → [0, 1] be a bounded loss function.
Then, for any δ ∈ (0, 1), with probability at least 1 − δ over the choice of D1, ...,DN ∼ τ, Si ∼ Di, uniformly over
all hyper-posteriors Q ∈M(M(H)),

L(Q, τ) ≤ L̂(Q, S1, ..., SN ) +

√
DKL(Q||P) + log 2N

δ

2(N − 1)
+

1

N

N∑
i=1

√
DKL(Q||P) + EP∼Q [DKL(Qi||P )] + φ

2(m− 1)

where Qi , Q(P, Si) and φ , log 2Nm
δ .

This bound on the transfer error contains two complexity terms: an environment-level term that decreases as N →∞,
and a second task-level term that decreases as m→∞.

3 ADAPTIVE META-LEARNING

In this section we go beyond standard meta-learning bounds that use a hyper-posterior formed from previous tasks as
a hyper-prior for a new test task. To do so we allow the new hyper-prior to depend both on the learned hyper-posterior
and on the new test data, implying that it is now data-dependent (with respect to the test data). We refer to this setup as
adaptive, see Figure 1b. In order to deal with the added technical complexity, we make use of recent data-dependent
PAC-Bayes bounds from Rivasplata et al. (2020), and provide novel meta PAC-Bayes bounds and algorithms in this
augmented setting. The bounds display interesting tradeoffs between the empirical and complexity terms that go
beyond standard results.

Unlike existing meta-learning bounds, our bounds depend on the empirical error on the available adaptation data from
the new task, and do not depend on the number of training tasks, but rather on the quality of the learned hyper-prior. In
particular, equation (7) implies that if the hyper-prior achieves poor empirical performance for the test task, it is wise
to ignore it and effectively learn from scratch using the adaptation data. On the other hand, if the hyper-prior provides
us with low empirical loss, using complexity terms that encourage remaining near said hyper-prior is beneficial.

3.1 META-ADAPTATION BOUNDS FOR META-LEARNING

While these bounds provide us with useful and practical approaches to use the available training data for meta-learning,
we have seen that they provide guarantees in expectation for a newly sampled task. In pursuit of tighter bounds for
specific downstream tasks, we introduce the idea of meta-adaptation, illustrated in Figure 1b. Using the meta-learned
hyper-posterior as a hyper-prior for the downstream task, we derive a high-probability bound on the expected loss for
a specific downstream task.

As we have seen, the meta-learning framework provides us with an informative hyper-posterior from which a good
prior (i.e. one with low expected error) can be sampled. Given a specific downstream task DT ∼ τ and a sample
ST ∼ Dm, we would like to provide a bound on the performance of any hyper-posterior that uses ST , and the given
hyper-prior Q1:N that we previously meta-learned. In order to do so, we make use of PAC-Bayes bounds for data-
dependent priors as the i.i.d. assumption common to PAC-Bayes bounds may not apply. As such, we re-state a known
inequality from Rivasplata et al. (2020) and adapt it to the meta-learning setting
Theorem 3.1. (PAC-Bayes for stochastic kernels - adapted from Theorem 2 in Rivasplata et al. (2020)) Let P ∈
K(Zm,H) be a stochastic kernel (namely, this means P may depend on the sampled data S), let A : Zm ×H → Rk
be a measurable function for some positive integer k and F : Rk → R be a convex function. Define f , F ◦A, and

ξ(PS ,D, f) =

∫
Zm

∫
H
ef(S,h)PS(dh)D(dS),
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(a) Standard meta-learning. A hyper-
prior P is adapted using training data
S1, . . . , SN to construct a hyper-posterior
Q. This hyper-posterior is used to facili-
tate fast learning on the test task.

(b) Flowchart of meta-adaptation. A hyper-prior Q1:N is learned from the training
data. Standard meta-learning bounds use the test data to adapt the sampled prior be-
fore sampling a specific hypothesis. Our approach using data-dependent bounds also
applies ST to the hyper-prior, resulting in a data-dependent hyper-posteriorQ1:N,T .

Figure 1: Standard meta-learning and meta-adaptation.

such that the data-dependent PS is the distribution over H corresponding to the sampled S. Assuming ξ(PS ,D, f) is
finite (see below), then for any posterior Q ∈ K(Zm,H), with probability at least 1− δ over the choice of S ∼ D

Eh∼QS [f(S, h)] ≤ DKL(QS ||PS) + log (ξ(PS ,D, f)/δ) . (2)

An important but subtle distinguishing factor between this bound and classical PAC-Bayes bounds is that this bound
applies to each individual posteriorQS , but does not apply uniformly to all posteriors. This seemingly minor difference
means that the bound of (2) is not applicable for optimization over posteriors. Taking this limitation into account, this
Theorem still provides an applicable upper bound on the expected loss for a given trained posterior.

The term ξ(PS ,D, f) is known as the moment-generating function, and, when it exists, it is an alternative specification
of the probability distribution for f . This moment-generating function intuitively quantifies the concentration of the
function f in the stochastic kernel P ∈ K(Zm,H), and will be low if f is well-concentrated. The term log ξ(PS ,D, f)
is commonly referred to as the log-moment and we will also do so throughout the rest of this paper for convenience.
One simple setting where this term can be upper bounded is when the prior PS is data-free and f(·) ∈ [a, b]. By
switching the order of expectations (Fubini’s theorem) and using Hoeffding’s lemma, an upper bound for f(S, h) =

λ(L(h,D)− L̂(h, S)) for any λ ∈ R would be

Eh∼QS
[
λ(L(h,D)− L̂(h, S))

]
≤ DKL(QS ||PS) + log

(
1

δ

)
+
λ2(b− a)2

8
.

Notably, this bound is similar to that of Catoni (2004). Other choices of f result in other traditional PAC-Bayes bounds
such as that of McAllester (1999) via similar methods (see Rivasplata et al. (2020) for further detail). One particularly
appealing application of this general bound is for data-dependent priors with bounded log-moment terms, for example
by conforming to certain algorithmic stability properties As an example for this notion, Rivasplata et al. (2020) show
that for any prior satisfying the differential privacy property DP (ε), the log-moment can be upper bounded by the
log-moment of a data-free prior plus a term that depends on the privacy parameter ε.

These data-dependent bounds can be applied to the meta-learning setting, giving us the following general result.

Theorem 3.2. Let Q1:N ∈ M(M(H)) be a meta-learned hyper-posterior (e.g. the result of meta-training on
{S1, ..., SN}), and let DT ∼ τ be a given test task. Let Q : Zm × M(H) → M(H) be a given base learner.
Let ` : H × Z → [0, 1] be a bounded loss function. For any δT ∈ (0, 1), for any hyper-posterior Q ∈ M(M(H)),
and for all λ > 0, with probability at least 1− δT over the draw of ST ∼ DT :

L(Q,DT ) ≤ L̂(Q, ST ) +
1

λ
DKL(Q||Q1:N ) +

1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
, (3)

ξ̃(λ,Q1:N ,DT ) , ES∼DT ,P∼Q1:N ,h∼Q(P,S)

[
eλ(L(h,DT )−L̂(h,S))

]
.
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The full proof of Theorem 3.2 is in Appendix A.2, and follows from Theorem 3.1 using a two-level prior hypothesis
(Q1:N , Q). Concretely, we first sample P ∼ Q1:N and then sample h ∼ Q(P, ST ) to arrive at a hypothesis ,namely Q
is data-dependent. This two-level prior is compared to a two-level posterior (Q, Q), for anyQ. The proof itself applies
even if the loss function l is not bounded, but this assumption is useful for providing bounds on the log-moment term.

This bound differs significantly from more traditional bounds that utilize a data-free two-level prior (Q1:N , P ). Such
bounds apply uniformly over hyper-posteriors and are therefore suitable for optimization, but refer to the average loss
on training tasks and contain additional complexity terms compared to (3) that result from using a data-free prior. An
example of such a bound using Hoeffding’s inequality is

L(Q,DT ) ≤ L̂(Q, ST ) +
1

λ
DKL(Q||Q1:N ) +

1

λ
EP∼Q [DKL(Q(P, ST )||P )] +

1

λ
log

1

δT
+

λ

8m
. (4)

One immediate result of (3) is a bound on the expected error of the hyper-prior for the downstream task, achieved by
picking Q = Q1:N , and appears in Corollary A.3.

It is important to note that the log-moment term log ξ̃(λ,Q1:N ,DT ) is a key term in both cases. It will be low if the
empirical losses are well concentrated around the expected loss for our data-dependent prior. One possible method
of achieving this is by choosing a base learner Q with algorithmic stability properties such as the empirical Gibbs
posterior, as we will see in the next subsection.

3.2 META-ADAPTATION WITH GIBBS POSTERIORS

One class of hyper-posteriors that is especially appealing for analysis given Theorem 3.2 is the class of Gibbs posteri-
ors.

Definition 3.1. The Gibbs distribution with parameter β > 0 is defined as

Qβ(P, S)(h) =
P (h)e−βL̂(h,S)

Eh∼P
[
e−βL̂(h,S)

] . (5)

It is well-known (Catoni, 2004) that given a specific value for λ, using Donsker and Varadhan’s variational formula
(Donsker & Varadhan, 1975) provides the hyper-posterior that minimizes the right-hand side of (3), given by

Qλ1:N,T =
Q1:Ne

−λL̂(Q,ST )

EP∼Q1:N

[
e−λL̂(Q,ST )

] .
The meaning of this result is that given that we know the relative importance of the empirical loss and the KL-
divergence, the optimal hyper-posterior that minimizes (3) is the Gibbs hyper-posterior Qλ1:N,T .

This property encourages further exploration of the Gibbs hyper-posterior for meta-adaptation. Using (5), we define

Qγ1:N,T ,
Q1:Ne

−γL̂(Qβ(P,ST ),ST )

Zγ(ST ,Q1:N )
; Zγ(ST ,Q1:N ) , EP∼Q1:N

[
e−γL̂(Q

β(P,ST ),ST )
]

(6)

as the Gibbs posterior for the meta-learned problem. Qγ1:N,T is a specific case of Qλ1:N,T where the base learner is a
Gibbs posterior. We have

DKL(Qγ1:N,T ||Q1:N ) = −γL̂(Q1:N,T , ST )− logZγ(ST ,Q1:N ).

So plugging these values in (3) gives us

L(Qγ1:N,T ,DT ) ≤ L̂(Qγ1:N,T , ST )− γ

λ
L̂(Qγ1:N,T , ST )− 1

λ
logZγ(ST ,Q1:N ) +

1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
.

In order to clarify this expression, we will use more intuitive definitions for our empirical losses.

Definition 3.2. The adapted meta-loss (AML) is

L̂aml(Qγ1:N,T , ST ) = EP∼Qγ1:N,TEh∼Qβ(P,ST )
[
L̂(h, ST )

]
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meaning that ST is used to adapt both the hyper-prior (Q1:N ) and the sampled prior that depends on ST . L̂aml is a
function of both γ and β. The standard meta-loss

L̂ml(Q1:N , ST ) = EP∼Q1:N
Eh∼Qβ(P,ST )

[
L̂(h, ST )

]
,

is the empirical loss of the base learner using the meta-learning hyper-prior Q1:N . L̂ml depends on β, but not on γ.

Using these definitions, we have:

L(Qγ1:N,T ,DT ) ≤ (1− γ

λ
)L̂aml(Qγ1:N,T , ST )− 1

λ
logEP∼Q1:N

[
e−γL̂(Q

β(P,ST ),ST )
]

+
1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
.

By simplifying the second term using Jensen’s inequality, we arrive at the following theorem.

Corollary 3.3. Let Q1:N be a hyper-posterior (e.g. the result of meta-training on {S1, ..., SN}), and let DT ∼ τ be
a given test task. Define Qγ1:N,T as in (6). For all λ > 0, γ > 0, with probability at least 1 − δT over the draw of
ST ∼ DT :

L(Qγ1:N,T ,DT ) ≤ (1− γ

λ
)L̂aml(Qγ1:N,T , ST ) +

γ

λ
L̂ml(Q1:N , ST ) +

1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
. (7)

In order to better understand the impact of the log-moment term, we remark that Rivasplata et al. (2020) have shown
that for λ =

√
m and given that the base learner is the empirical Gibbs posterior Qβ and the loss is bounded,

log ξ̃(
√
m,Q1:N ,DT ) ≤ 2 + log(1 +

√
e) +

2β√
m
.

As a consequence of this, choosing β =
√
m would result in the log-moment to be bounded by a constant C. Conse-

quentially, the bound takes the form

L(Qγ1:N,T ,DT ) ≤ (1− γ√
m

)L̂aml(Qγ1:N,T , ST ) +
γ√
m
L̂ml(Q1:N , ST ) +

1√
m

log
1

δT
+

C√
m
.

To simplify, this implies that if L̂ml is low (meaning the hyper-prior has low empirical error), we would like to choose
a high value for γ in order to balance the first two terms. In other words, if the hyper-prior performs well empirically,
there is little harm in adapting it to the new task. If the hyper-prior performs poorly, our bound becomes more complex,
as we would like γ to be high enough so that L̂aml is low but doing so weakens the remaining terms. Choosing a high
value for λ in (7) would allow us to effectively ignore the poorly performing hyper-prior.

3.3 TIGHTER BOUNDS FOR THE LOW ERROR SETTING

Theorem 3.2 is the result of applying the generic data-dependent bound (Theorem 3.1) with the measurement function
f = λ(L(Q,DT )− L̂(Q, ST )). For cases where L̂(Q, ST ) is low, it may be better to use a bound based on the binary
KL-divergence f = λkl(L̂(Q, ST )||L(Q,DT )),

kl(q||p) = q log
q

p
+ (1− q) log

1− q
1− p

, q, p ∈ [0, 1]

Doing so gives the upper bound

kl(L̂(Q, ST )||L(Q,DT )) ≤ 1

λ
DKL(Q||Q1:N ) +

1

λ
log
(
ξ̄kl/δT

)
(8)

where ξ̄kl , ξ̄(Q1:N ,DT , λ, kl).

If the base learner Q is the Gibbs posterior ((5)), the moment term of (8) can be meaningfully bounded. To do so, we
make use of the notion of differential privacy at scale ε, DP (ε) (see Definition A.4 in the appendix).

It has been proven (McSherry & Talwar, 2007; Rivasplata et al., 2020) that the Gibbs posterior Q(P, S)(h) ∝
P (h)e−βL̂(h,S) is DP

(
2β
m

)
. This result can be extended to the meta-learning setting as follows.
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Proposition 3.4. Let P ∈ M(M(H)) be a hyper-prior. Let ` : H × Z → [0, 1] be a bounded loss function. If the
base learner Q ∈ M(H) is the Gibbs posterior Q(P, S)(h) ∝ P (h)e−βL̂(h,S), then the pair hypothesis (P, Q) that
samples P ∼ P and h ∼ Q(P, S) satisfies DP

(
2β
m

)
.

The proof of Proposition 3.4 is in Appendix A.4. This allows us to extend an existing result for PAC-Bayes with
private data-dependent priors. By making use of Theorem 4.2 in Dziugaite & Roy (2018) as well as (8) with λ = m,
we get the following Theorem.

Theorem 3.5. Let ` : H × Z → [0, 1] be a bounded loss function. Let Q1:N be a hyper-posterior (e.g. the result
of meta-training on {S1, ..., SN}), and let DT ∼ τ be a given test task. If the base learner Q ∈ M(H) is the Gibbs
posterior Q(P, S)(h) ∝ P (h)e−βL̂(h,S), for any δ ∈ (0, 1), uniformly for all hyper-posteriors Q ∈M(M(H)), with
probability at least 1− δ over the draw of ST ∼ DT ,

kl(L̂(Q, ST )||L(Q,DT )) ≤ 2β2

m2
+
β

m

√
2 log(4/δT )

m
+

1

m

(
DKL(Q||Q1:N ) + log

4
√
m

δT

)
.

3.4 EMPIRICAL EVALUATION

Since Theorem 3.2 does not apply uniformly over hyper-posteriors, we cannot derive a practical optimization algorithm
just by minimizing the right-hand side of (3). One way to resolve this issue is to add a base-learner complexity
term 1

λEP∼Q [DKL(Q||P )] to (3), thus arriving at (4) that applies to data-free priors, and derive optimizable meta-
adaptation bounds based on it. Another method to address this issue is to use bounds such as Theorem 4.2 of Dziugaite
& Roy (2018) that apply uniformly for all posteriors, but only for specific classes of data-dependent priors, in this
case differentially-private ones. Another potential solution to this issue is to split the provided data ST into disjoint
adaptation and evaluation sets, Sadapt and Seval, during the meta-adaptation phase, and learn the posterior Q based
on the adaptation set Sadapt alone. Since this is already common practice in meta-learning algorithms (e.g. sampling
different data points for the meta-update step Finn et al. (2017)), we chose to do so for our empirical evaluation.

We use stochastic neural networks (Graves, 2011; Blundell et al., 2015) similarly to the MLAP (Amit & Meir, 2018)
algorithm, and consider meta-adaptation with three different hyper-priors. (i) The meta-learned hyper-prior Q1:N .
(ii) A zero-centered stochastic neural network. (iii) An adaptive hyper-prior based on the last optimization loop, as
described in algorithm 1, and in more detail in Appendix A.1.

Algorithm 1 describes the meta-adaptation algorithm for stochastic neural networks using θ to mark the meta-learner
parameters and φ to mark the base learner parameters. The standard meta-testing algorithm that is used to adapt a
sampled prior to a given task is described in Appendix A.1. We use a slight abuse of notation φ ∼ θ to denote
sampling according to the parametric distribution defined by the stochastic neural network.

Algorithm 1 Meta-adaptation
function META-ADAPT(θ1:N , ST ∼ DT )

Choose algorithmic parameters ηα,K, λ,NMC

Initialize θ̂1:N,T ← θ1:N
while Not converged do . Or limit number of epochs

Sample φ̂1, . . . , φ̂K ∼ θ̂1:N,T
for each meta-batch k from 1 to K do

Set Sk ← ST
Split Sk to Sk,adapt, Sk,eval
for each Monte-Carlo estimation j from 1 to NMC do

Sample hj ∼ φ̂k,
Calculate Lkj(hj , Sk,eval) = L̂(hj , Sk,eval)

Jk(Lkj , θ̂1:N,T , λ, φ̂k) =
1

NMC

∑NMC
j=1 Lkj +

1
λ
DKL(φ̂k||θ̂1:N,T ) . Sk,adapt can be used to optimize λ w.r.t. Jk

J(θ̂1:N,T , φ̂1, . . . , φ̂K , λ, J1, . . . , JK) = 1
K

∑K
k=1 Jk +

1
λ
DKL(θ̂1:N,T ||θ̂1:N )

Run SGD step w.r.t θ̂1:N,T , φ̂1, . . . , φ̂K on J
return θ̂1:N,T

Since we tested our approach on neural networks, the hypothesis space is defined as {h(w)|w ∈ Rd}, where the
weights w serve as the parameters of each hypothesis. For image classification tasks, x represents an image, and y

7
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a class label. We use the cross-entropy loss during adaptation, despite the fact that it is not bounded. We note that a
clipped variation of this loss does exist, and conforms to theoretical guarantees (Dziugaite & Roy, 2018), and that in
practice the cross-entropy loss tends to be low.

We first conduct experiments on a task environment based on the MNIST dataset (LeCun et al., 1998), where each task
was created by performing a random permutation on some of the image pixels. The number of pixels to be shuffled
and the total number of classes (referred to as “ways”) was chosen in advance. In order to obtain a reasonable hyper-
prior Q1:N on downstream tasks, it makes sense to run standard meta-training methods on the training data. We used
the MLAP (Amit & Meir, 2018) algorithm to do so. We ran MLAP-M for 100 meta-training iterations on randomly
sampled training tasks, with 100 examples from each class. The resulting network means and variances were then
used as the final meta-training hyper-prior Q1:N . We used the same convolutional neural network (CNN) architecture
used by Vinyals et al. (2016) for the Omniglot dataset.

We perform tests on two sets of problems, tasks with 100 shuffled pixels, and tasks with permuted labels instead of
pixels. For standard meta-testing, we sample a prior P ∼ Q1:N and perform 1000 adaptation steps given the labeled
adaptation dataset ST in order to achieve convergence. For our meta-adaptation method, we initialize the hyper-
posterior as the meta-training hyper-priorQ1:N and perform several steps of meta-adaptation as detailed in Algorithm
1. Following that, we sample a prior P ∼ Q1:N,T and perform 50 SGD steps of standard meta-testing. Since the
meta-adaptation process itself includes computational costs, we use far fewer update steps for the sampled prior in
order to have a fairer comparison. See appendix A.1 for a full list of hyper-parameters and implementation details.

Figure 2 shows the test accuracy averaged over 10 meta-testing seeds for both tasks. Numerical values for both tasks as
well as standard error are reported in Table 1. Significant improvements for the Wilcoxon test (p < 0.05) are marked
with *. Empirical results for the MNIST tasks show that meta-adaptation is preferable to standard meta-testing for
relatively small adaptation set sizes by a notable margin.

(a) Meta Adaptation - shuffled pixels (b) Meta Adaptation - permuted labels

Figure 2: Average test accuracies on both MNIST tasks, for meta-adaptation with varying gradient updates. Error bars
represent standard errors from the mean over 10 runs.

(a) DKL(Q1:N,T ||Q1:N ) over training epochs, smoothed. (b) DKL(Q1:N,T ||N (0, Id)) over training epochs.

Figure 3: KL-divergences during the meta-adaptation process for the mini-Imagenet dataset.

Table 2 compares test accuracies for the well-known mini-Imagenet (Vinyals et al., 2016) dataset. Results for MAML
(Finn et al., 2017) and VAMPIRE (Nguyen et al., 2020) are from their respective papers, results for Bayesian varia-
tional inference (VI) and meta-adaptation are averaged over 5 seeds with standard error reported. Since fewer seeds
were used, results have a higher standard error. While our empirical results are not better than existing SoTA meta-
learning algorithms, they are comparable and show an improvement beyond standard meta-testing for relatively low
adaptation set size |ST |. Better hyper-parameter tuning may be needed in order to achieve improved results. As |ST |

8
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Table 1: Test accuracies for the meta-MNIST dataset.

Method N shots Shuffled-pixels Permuted-labels

MLAP-M 5 0.53± 0.04 0.2± 0
Meta-adaptation 5 0.68∗ ± 0.06 0.51∗ ± 0.1

MLAP-M 20 0.79± 0.02 0.2± 0.0
Meta-adaptation 20 0.9∗ ± 0.01 0.75∗ ± 0.09

MLAP-M 50 0.87± 0.01 0.48± 0.11
Meta-adaptation 50 0.93∗ ± 0.01 0.86∗ ± 0.07

Table 2: Test accuracies for the mini-Imagenet dataset.

Method N shots Test accuracy %

MAML (Finn et al., 2017) 5 63.15± 0.91
VAMPIRE (Nguyen et al., 2020) 5 64.31± 0.74
Bayesian-VI 5 52.8± 3.6
Meta-adaptation 5 60± 2.6

Bayesian-VI 20 61.7± 2.2
Meta-adaptation 20 64.9∗ ± 1.7

increases, the training loss becomes a better estimate of the expected loss for the task, leading to a better base learner
as well as more reliable improvements from meta-adaptation.

Figure 3 shows the typical progression of KL-divergence during the meta-adaptation fitting process. We see that
DKL(Q1:N,T ||N (0, Id)) decreases (alongside the training loss on the adaptation data), resulting in lower overall
variance in network weights as well as a shift in the means. DKL(Q1:N,T ||Q1:N ) tends to increase slowly during
meta-adaptation, resulting in a hyper-posterior that diverges from the original meta-learned hyper-prior as the training
loss decreases. A different choice of hyper-parameters for λ may cause this term to diverge more slowly, leaving us
with a more similar hyper-posterior.

4 DISCUSSION AND FUTURE WORK

We have derived several PAC-Bayes generalization bounds for meta-testing based on data-dependent bounds, and have
demonstrated the efficacy of using the adaptation data in order to create a more appropriate hyper-posterior for a new
test task. We have implemented a practical algorithm based on the derived bounds and have demonstrated its efficacy
in few-shot image classification. To the best of our knowledge, our approach is the first meta-learning algorithm to
consider adapting a learned hyper-prior in a principled approach.

While our experimental results are preliminary, they clearly demonstrate an improvement in terms of generalization
error for the MNIST dataset, and results comparable to other well-known meta-learning algorithms (MAML, VAM-
PIRE) for the Omniglot and mini-Imagenet datasets with similar hypothesis classes. Future work should evaluate
whether better parameter tuning can bridge the gap between meta-adaptation and SoTA results, as well as considering
results for datasets with more pronounced distirbution shifts between training and testing.

There are two main open issues to be addressed in future work. The first issue is that our approach requires the use of
stochastic models, which may lead to high-variance gradients and are therefore non-trivial to optimize. One potential
method to address this issue is to make use of PAC-Bayes bounds with different complexity measures such as Wasser-
stein distance (Ohnishi & Honorio, 2021; Amit et al., 2022). The second issue is to consider our meta-adaptation
algorithm in the context of continual learning (Kirkpatrick et al., 2017). Recent work by Haddouche & Guedj (2022)
used data-dependent PAC-Bayes bounds in the context of online learning, and it would be of interest to extend these
results to the continual setting and derive bounds that provide a clearer tradeoff between low generalization error and
avoiding catastrophic forgetting.

9



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

ACKNOWLEDGEMENTS

This work was supported by the Israel Science Foundation grant number 1693/22.

REFERENCES

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended PAC-bayes theory. 35th International
Conference on Machine Learning, ICML 2018, 1:310–326, 2018.

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral probability metrics pac-bayes bounds. arXiv preprint
arXiv:2207.00614, 2022.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural network.
In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Olivier Catoni. A PAC-Bayesian approach to adaptive classification. preprint 840, 2004.

Monroe D Donsker and SR Srinivasa Varadhan. On a variational formula for the principal eigenvalue for operators
with maximum principle. Proceedings of the National Academy of Sciences, 72(3):780–783, 1975.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for deep (stochastic)
neural networks with many more parameters than training data. In Uncertainty in Artificial Intelligence - Proceed-
ings of the 33rd Conference, UAI 2017, 2017.

Gintare Karolina Dziugaite and Daniel M. Roy. Data-dependent PAC-Bayes priors via differential privacy. Advances
in Neural Information Processing Systems, 2018-Decem(NeurIPS):8430–8441, 2018. ISSN 10495258.

Alec Farid and Anirudha Majumdar. Generalization bounds for meta-learning via pac-bayes and uniform stability.
Advances in Neural Information Processing Systems, 34:2173–2186, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
34th International Conference on Machine Learning, ICML 2017, volume 3, pp. 1856–1868. International Machine
Learning Society (IMLS), mar 2017. ISBN 9781510855144. URL http://arxiv.org/abs/1703.03400.

Alex Graves. Practical variational inference for neural networks. Advances in neural information processing systems,
24, 2011.

Maxime Haddouche and Benjamin Guedj. Online PAC-Bayes Learning. arXiv preprint arXiv:2206.00024,
may 2022. doi: 10.48550/arxiv.2206.00024. URL https://arxiv.org/abs/2206.00024v1http:
//arxiv.org/abs/2206.00024.

Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J. Storkey. Meta-Learning in Neural Networks:
A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. ISSN 19393539. doi: 10.1109/
TPAMI.2021.3079209.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.
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A APPENDIX

A.1 HYPER-PARAMETERS AND IMPLEMENTATION DETAILS

Algorithm 2 Standard Meta-testing
function META-TEST(θ, ST ∼ DT )

Choose algorithmic parameters ηα,# steps, c
Sample φ ∼ N (θ)
while test step <# steps do . Proxy to convergence

J(φ, ST , θ) = L̂(φ, ST ) +DKL(φ||θ) + c ·DKL(φ||(0, σ2I)) . DKL(φ||(0, σ2I)) is a low-norm condition on φ
Take gradient step of size ηα w.r.t.φ on∇J

return φ

In the adaptive hyper-posterior version of the meta-adaptation algorithm, we first initialize the hyper-posterior Q̂1:N,T

to the meta-training hyper-prior Q1:N . In each adaptation step, we optimize (4) w.r.t. Q̂1:N,T , Q̂ and perform gradient
updates on the hyper-posterior. We then set the hyper-prior for the next adaptation step as the current hyper-posterior.
In the constant hyper-prior version of the meta-adaptation algorithm, the hyper-prior remains the same throughout the
meta-adaptation process.

The network architecture used for classification on the permuted MNIST dataset is identical to that used for the
Omniglot dataset by Vinyals et al. (2016): 4 layers of 2D 3 × 3 convolution layers followed by batch norm and max
pooling each. These are followed by a linear classification layer with 5 classes (commonly referred to as number of
ways). The training loss used was standard cross-entropy loss. We used the Adam optimizer (Kingma & Ba, 2015)
for meta-training and meta-testing. Code to reproduce the experiments is available at https://github.com/
lioritan/meta-adapt-pb.

Table 3: Hyper-parameter choices, MNIST

Notation Description Value/s

#Training epochs Number of training epochs for hyper-prior 100

Train Sample size # of training examples per class per epoch 100

#Test epochs Number of base learner gradient updates 50, 1000

ηα Learning rate for the meta-learner 0.01

ηβ Learning rate for the base learner 0.1

#Adaptation steps Number of training epochs for hyper-posterior 5, 40

MC-iterations Number of Monte-Carlo samples to average 3

Test permutations Number of pixels permuted on each test image 100

#ways Number of classes in classification 5

#shots Number of samples per class in ST 2, 5, 10, 15, 20, 30, 40, 50

seed Random seed, chosen arbitrarily 42, 1337, 7, 13, 999, 752, 56789, 145790, 11, 306050

A.2 PROOF OF THE GENERIC META-ADAPTATION BOUND

We restate Theorem 3.1 for stochastic kernels.

Theorem A.1. (PAC-Bayes for stochastic kernels - adapted from Theorem 2 in Rivasplata et al. (2020)) Let P ∈
K(Zm,H) be a stochastic kernel (namely, the prior may depend on the sample data S), let A : Zm ×H → Rk be a
measurable function for some positive integer k and F : Rk → R be a convex function. Define f , F ◦A, and

ξ(PS ,D, f) =

∫
Zm

∫
H
ef(S,h)PS(dh)D(dS),
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Table 4: Hyper-parameter choices, mini-Imagenet

Notation Description Value/s

#Training epochs Number of training epochs for hyper-prior 20000

Train Sample size # of training examples per class per epoch 20

#Test epochs Number of base learner gradient updates 5

ηα Learning rate for the meta-learner 0.001

ηβ Learning rate for the base learner 0.01

#Adaptation steps Number of training epochs for hyper-posterior 1000, 2000

MC-iterations Number of Monte-Carlo samples to average 10

#ways Number of classes in classification 5

#shots Number of samples per class in ST 5, 20

seed Random seed, chosen arbitrarily 11, 13, 999, 56789, 306050

such that PS is the distribution over H corresponding to the sampled S. Assuming ξ(PS ,D, f) is finite, then for any
δ ∈ (0, 1) and any posterior Q ∈ K(Zm,H), with probability at least 1− δ over the choice of S ∼ D,

Eh∼QS [f(S, h)] ≤ DKL(QS ||PS) + log (ξ(PS ,D, f)/δ) . (9)

Next, we restate and prove Theorem 3.2.
Theorem A.2. Let Q1:N ∈ M(M(H)) be a meta-learned hyper-posterior (e.g. the result of meta-training on
{S1, ..., SN}), and let DT ∼ τ be a given test task. Let Q : Zm × M(H) → M(H) be a given base learner.
Let ` : H × Z → [0, 1] be a bounded loss function. For any δT ∈ (0, 1), any hyper-posterior Q ∈ M(M(H)), and
for all λ > 0, with probability at least 1− δT over the draw of ST ∼ DT

L(Q,DT ) ≤ L̂(Q, ST ) +
1

λ
DKL(Q||Q1:N )

+
1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
,

(10)

where
ξ̃(λ,Q1:N ,DT ) ,

ES∼DT ,P∼Q1:N ,h∼Q(P,S)

[
eλ(L(h,DT )−L̂(h,S))

]
.

(11)

Proof. First, we consider the setting of Theorem A.1 and extend it to meta-learning. We define a stochastic kernel for
the 2-level hypothesis case as a pair (P, P ) ∈ K(Zm,M(H)×H) such that for a given sample S ∈ Zm, (P, P ′)(S)
is the distribution over H corresponding to sampling from the hyper-prior P ∼ P(S) corresponding to S and then
sampling from h ∼ P ′(S, P ). For clarity, we denote these as distributions as PS and P ′S,P .

Let A : Zm × H → Rk be a measurable function for some positive integer k, and F : Rk → R a convex function.
For f , F ◦A let

ξ((PS , P ′S),D, f) =∫
Zm

∫
M(H)×H

ef(S,h)
(
PS × P ′S,P

)
(dP, dh)D(dS).

Using (9) with f(S, (P, h)) = λ(L(h,D) − L̂(h, S)), a 2-level posterior (QS , QS) and a 2-level prior (Q1:N , QS),
we have that for any δT ∈ (0, 1), the following inequality holds uniformly for all posteriors Q ∈ K(Zm,H) with
probability at least 1− δT over the choice of ST ∼ DT ,

Eh∼(QST ,QST )

[
λ(L(h,DT )− L̂(h, ST ))

]
≤

DKL((QST , QST )||(Q1:N , QST ))

+ log
(
ξ
(

(Q1:N , QS),DT , λ(L(h,D)− L̂(h, S))
)
/δT

) (12)
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It is important to note that the only assumption we make here is that the hyper-prior Q1:N is data-free with respect to
the new data ST ∼ DT . Since we consider meta-learned distributions over priors, this is a reasonable assumption, as
it is satisfied if we have not seen ST during meta-training.

First, let us make sure that the moment terms are equivalent. We note here that since the hyper-prior Q1:N does not
depend on ST , the expectation can be easily decomposed.

ξ
(

(Q1:N , QS),DT , f = λ(L(h,D)− L̂(h, S))
)

=

∫
Zm

∫
H
ef(S,h)Q1:N (dP )Q(P, S)(dh)DT (dS),

= ES∼DT ,P∼Q1:N ,h∼Q(P,S)

[
eλ(L(h,DT )−L̂(h,S))

]
,

, ξ̃(λ,Q1:N ,DT ).

Substituting this in (12) and moving terms, we get (with probability at least 1− δT over the draw of ST ∼ DT ),

Eh∼(QST ,QST ) [L(h,DT )] ≤ Eh∼(QST ,QST )

[
L̂(h, ST )

]
+

1

λ
DKL((QST , QST )||(Q1:N , QST ))

+
1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

) (13)

By definition, this is equivalent to writing

L(QST ,DT ) ≤ L̂(QST , ST )

+
1

λ
DKL((QST , QST )||(Q1:N , QST ))

+
1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
.

(14)

For the KL-divergence expression, we apply a standard KL decomposition

DKL((QST , QST )||(Q1:N , QST ))

= E(P,h)∼(QST ,QST )

[
log
QST (P )Q(P, ST )(h)

Q1:N (P )Q(P, ST )(h)

]
= EP∼QST Eh∼Q(P,ST )

[
log
QST (P )

Q1:N (P )

]
= EP∼QST

[
log
QST (P )

Q1:N (P )

]
= DKL(QST ||Q1:N ).

Finally, combining this result with (14) gives us the final inequality:

For any δT ∈ (0, 1), the following holds uniformly for all hyper-posteriors QST ∈ M(M(H)) with probability at
least 1− δT over the draw of ST ∼ DT :

L(QST ,DT )) ≤ L̂(QST , ST ) +
1

λ
DKL(QST ||Q1:N )

+
1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
.
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A.3 TEST TASK BOUND FOR A META-LEARNED HYPER-PRIOR

Corollary A.3. Under the same conditions as Theorem 3.2, for any δT ∈ (0, 1), and for all λ > 0, with probability at
least 1− δT over the draw of ST ∼ DT

L(Q1:N ,DT ) ≤ L̂(Q1:N , ST )

+
1

λ
log
(
ξ̃(λ,Q1:N ,DT )/δT

)
,

(15)

where ξ̃(λ,Q1:N ,DT ) is as defined in Theorem 3.2.

Proof. Since Theorem 3.2 applies for any hyper-posterior, it specifically applies forQ = Q1:N . Making this substitu-
tion in (3) arrives at (15).

A.4 HYPER-PRIORS WITH GIBBS BASE LEARNERS ARE DIFFERENTIALLY-PRIVATE

Definition A.1. (Differential privacy) (Dwork et al., 2006) Let S, S′ ∈ Zm be datasets that differ by a single element.
A randomized algorithm A is called ε-differentially private, denoted DP (ε), if for any I ⊂ image(A)

Pr(A(S) ∈ I) ≤ eεPr(A(S′) ∈ I).

An equivalent definition for stochastic kernels that is easier to understand for our setting is the following.
Definition A.2. (Differential privacy) Let S, S′ ∈ Zm be datasets that differ by a single element. Let Q ∈
K(Zm,M(H)) be a stochastic kernel. Q is DP (ε) if

Q(S,A)

Q(S′, A)
≤ eε, ∀A ∈M(H).

Proposition A.4. Let P ∈ M(M(H)) be a hyper-prior. Let ` : H × Z → [0, 1] be a bounded loss function. If
the base learner Q ∈ M(H) is the Gibbs posterior Q(P, S)(h) ∝ P (h)e−βL̂(h,S), then the pair hypothesis (P, Q)

satisfies DP
(

2β
m

)
.

Proof. From Theorem 6 in McSherry & Talwar (2007), the Gibbs posterior Q(P, S)(h) satisfies DP (2β∆L), where
∆L is the the largest possible difference suph∈H[L̂(h, S) − L̂(h, S′)] for S, S′ that differ by one example. Since the
loss is bounded in [0, 1] and S, S′ are of size m, we have ∆L ≤ 1

m , and so the base learner Q(P, S)(h) satisfies

DP
(

2β
m

)
.

It remains to prove that for all (A1, A2) ∈ (M(M(H)),M(H)),

P(S,A1)Q(S,A2)

P(S′, A1)Q(S′, A2)
≤ e

2β
m .

From the DP property,
P(S,A1)Q(S,A2)

P(S′, A1)Q(S′, A2)
≤ P(S,A1)

P(S′, A1)
e

2β
m .

Since P is a hyper-prior, we assume it is data-free with respect to S, and so

P(S,A1) = P(S′, A1) = P(A1).
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