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ABSTRACT

Trajectory prediction is an important task in many real-world applications. However, data-driven
approaches typically suffer from dramatic performance degradation when applied to unseen envi-
ronments due to the inevitable domain shift brought by changes in factors such as pedestrian walking
speed and the geometry of the environment. In particular, when a dataset does not contain sufficient
samples to determine prediction rules, the trained model can easily consider some important fea-
tures as domain variant. We propose a framework that integrates a simple motion prior with deep
learning to achieve, for the first time, exceptional single-source domain generalisation for trajectory
prediction, in which deep learning models are only trained using a single domain and then applied
to multiple novel domains. Instead of predicting the exact future positions directly from the model,
we first assign a constant velocity motion prior to each pedestrian and then learn a conditional tra-
jectory prediction model to predict residuals to the motion prior using auxiliary information from
the surrounding environment. This strategy combines deep learning models with knowledge pri-
ors to simultaneously simplify training and enhance generalisation, allowing the model to focus on
disentangling data-driven spatio-temporal factors while not overfitting to individual motions. We
also propose a novel Train-on-Best-Motion strategy that can alleviate the adverse effects of domain
shift, brought on by changes in environment, by exploiting invariances inherent to the choice of mo-
tion prior. Experiments across multiple datasets of different domains demonstrate that our approach
reduces the influence of domain shift and also generalizes better to unseen environments.

1 INTRODUCTION

Trajectory prediction in autonomous systems involves predicting the future movement of agents such as vehicles and
pedestrians. Predicting human trajectories is challenging due to the complex social “forces” (Helbing & Molnár, 1995)
among agents and the high requirement for terrain compliance. Many previous works capture the interactions between
agents using pooling (Alahi et al., 2016; Gupta et al., 2018). More advanced approaches use attention mechanisms
(Sadeghian et al., 2019; Kosaraju et al., 2019; Vemula et al., 2018; Amirian et al., 2019) that assign adaptive attention
weights to neighbours and aggregate them together as new features. Some approaches (Mohamed et al., 2020; Shi
et al., 2021) build graphs as their inputs and manually define connections according to the distances between each pair
of trajectories.

A single trajectory prediction dataset may be biased to certain behaviours, which would lead to incorrect priors that are
implicitly learned when a model overfits a strongly biased training dataset. For example, if all trajectories in a dataset
follow a similar displacement change, the model would have difficulty in learning the speed relationship between the
observed and ground truth paths which can cause significant performance drops in different environments. To tackle
this problem, some recent works attempt to enhance model robustness by obtaining domain-invariant features from
observations. For example, Chen et al. (2021) indicate that performance drops are brought by environmental biases
among different locations and proposes counterfactual inference to alleviate it. Liu et al. (2022) further disentangle this
problem into eliminating spurious features via invariant risk minimisation (Arjovsky et al., 2019) and learning aware-
ness of style shifts among different datasets using contrastive learning. These methods belong to the problem class
of multi-source domain generalisation, which requires more than one domain during training and hence increases the
complexity of data collection and annotation. Another work (Xu et al., 2022b) proposes an unsupervised domain adap-
tation method via the use of a transferable Graph Neural Network (T-GNN) which aligns attention weights between
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Figure 1: Overview of our motion prior approach. We assign a physical motion prior to the pedestrian and predict the
residuals according to the surrounding environment.

source and target domains. Ivanovic et al. (2022) further propose a test-time adaptation strategy by using adaptive
meta-learning (Harrison et al., 2018). However, these methods require the test domain information during training
which is not practical in real settings.

In this work, we explore a more practical problem: single-source domain generalisation. We follow a similar setting
to the single-source domain adaptation study (Xu et al., 2022b) but explore a harder problem in which only a single
training domain is provided but evaluated on multiple testing domains. This thus becomes a domain generalisation
problem with a single source and multiple target domains. This problem becomes more challenging since no other
domains can be used to find domain invariant features. To tackle this problem, we emphasise the role of handcrafted
motion priors when training on a single source where the dataset has an absence of informative data to train the model,
which is neglected in current adaptation works. Firstly, a motion prior can contain basic social rules that may not be
represented in raw observational datasets. Consequently, some domain variant features can be directly handled by the
motion prior and thus reduce the risk of domain shift. Second, using a motion prior constrains the model to update
gradients only when the handcrafted motion rules are not effective which simplifies the training and encourages the
models to search for useful features from the surrounding environment. Third, this strategy can be simply integrated
with any trajectory prediction model and can consistently improve their performance without extra complexity.

We propose a robust trajectory prediction framework that can exploit knowledge from a motion prior model alongside
a learnable data-driven model. Our framework consists of a physical motion model that can predict trajectories using
theoretically justified social rules and a data-driven trajectory prediction model to learn high-level spatio-temporal
interactions and predict residual corrections to the motion prior. A simple physical model for the motion prior is
sufficient in most cases and in this work, we choose the constant velocity motion (CVM) (Schöller et al., 2020), which
encodes the prior knowledge that the future path of a pedestrian follows the same speed and direction of the previous
steps. Then, we use a deep learning model (e.g., Social-STGCNN (Mohamed et al., 2020)) to extract features from the
environment to model the scene and social interactions and predict residuals that can be aggregated on the motion prior
for the prediction. We also find that CVM may not handle the static scene interaction and the scene features become
domain-specific prior. Therefore, we further propose a training strategy called “Train-on-Best-Motion”, which assigns
the motion prior closest to the ground truth as our motion prior during training with the hypothesis that the trajectory
direction can be directly affected by the scene terrains. This strategy successfully alleviates domain shifts due to the
environment without using a scene interaction module, which is useful when no scene image is provided or the scene
interaction module cannot work well.

In our experiments, our method outperforms current state-of-the-art models (Xu et al., 2022b; Ivanovic et al., 2022;
Chen et al., 2021) on multiple pedestrian trajectory prediction datasets, indicating better generalisation than those
models specifically designed for robustness. Furthermore, we build a synthetic dataset containing constant velocity
motions with controlled speed and further demonstrate that our model can be generalisable to environments with dif-
ferent speeds of motion and environmental bias. Finally, we find that our method is also useful for autonomous driving
datasets (NuScenes → Lyft) and dealing with domain shifts due to different sampling frequencies. We summarise our
contributions as follows:

• We propose a single source domain generalisation framework based on physical motion priors, which largely
enhance the model’s generalisation ability. Our method is simple and effective and can be generally integrated
with existing trajectory prediction methods.
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• We propose a “Train-on-Best-Motion” training strategy that alleviates the domain shifts due to scene con-
straints.

• Comprehensive experiments show that our model outperforms many existing trajectory prediction models
and can generalise well in unseen environments even when training on only a single source domain.

2 RELATED WORK

Human Trajectory Prediction. To model human walking behaviour, many approaches have been proposed through-
out the years. Prior to deep learning approaches, the social force model (Helbing & Molnár, 1995) was the main
paradigm in modelling human walking behaviour. It describes social rules as “forces” that make pedestrians change
their routes. Following this, many deep learning-based approaches (Bierlaire, 1998; Lerner et al., 2007; Yang & Pe-
ters, 2019; Yamaguchi et al., 2011) have been proposed to model human motion using public datasets. Social-LSTM
(Alahi et al., 2016) is a Long Short-Term Memory (LSTM) structure with grid-based pooling mechanism to model the
interaction information. Gupta et al. (2018) improve the pooling mechanism using a max operation. Further, SoPhie
Sadeghian et al. (2019) describes the environmental constraints as a combination of scene and social constraints and
applies soft attention to dynamically extract features. Following this strategy, many models (Amirian et al., 2019;
Huang et al., 2019; Kosaraju et al., 2019; Vemula et al., 2018) propose different attention-based mechanisms to learn
to rank the important neighbours. Similarly, Mohamed et al. (2020); Shi et al. (2021) propose a spatial-temporal
graph convolution neural network (STGCN) to model the social interactions directly on graphs. Recent work such
as (Sun et al., 2020; Xu et al., 2022a) design more complex graph models to enhance relationship learning. Mean-
while, many methods are proposed to model the uncertainty of trajectory prediction. For example, Gupta et al. (2018);
Amirian et al. (2019); Kosaraju et al. (2019) propose Generative Adversarial Network (Goodfellow et al., 2014) based
generative models to propose multiple trajectories while Mangalam et al. (2020; 2021) propose endpoint conditioned
predictions. Dendorfer et al. (2021) use multiple decoders to model discontinued manifolds in trajectory prediction.

Robust Trajectory Prediction. In trajectory prediction tasks, we usually follow the “leave-one-out” strategy that uses
multiple datasets for training and an unseen dataset for evaluation. Therefore, most works assume that the distribution
of the training data is consistent with the target domain. However, recent work (Xu et al., 2022b; Chen et al., 2021; Liu
et al., 2022; Ivanovic et al., 2022) demonstrate that the domain difference between the training and testing datasets can
lead to a severe performance drop due to over-fitting on the domain variant features. These works are thus designed
to improve the robustness of the methods and generally belong to two types: domain generalisation and domain
adaptation, differentiated by the usage of testing data.

The domain generalisation approaches include those using causal inference to reduce spurious features. For exam-
ple, Chen et al. (2021) suggest that models learn spurious features in trajectory prediction datasets due to terrain
constraints. Therefore, they use counterfactual learning to eliminate those features independent of the observed trajec-
tories. A further work (Liu et al., 2022) reformulates the causal relationship by reducing the spurious features using
invariance risk minimisation (Arjovsky et al., 2019) and then transferring their styles into target domains. Another ap-
proach called SimAug (Liang et al., 2020a) increases model robustness under different views using simulated scenes
(Liang et al., 2020b) with adversarial data augmentation. Meanwhile, domain adaptation-based methods focus on
aligning the features between source and target domains given target domain data. For example, Transferable GNN
(Xu et al., 2022b) is proposed to align the features while Huang et al. (2021) use adversarial domain adaptation to
discriminate domain variant features. Ivanovic et al. (2022) tackle test-time domain adaptation in trajectory prediction
using adaptive meta-learning and achieves state-of-the-art results in the cross-domain evaluation.

Our work focuses on single-source domain generalisation where only one domain can be seen during training. This
is more challenging than domain adaptation and multi-source generalisation. Also, using only one domain makes
(Liu et al., 2022) not suitable for this task. Counterfactual learning (Chen et al., 2021) can be a solution but our
experiments show that it cannot achieve the desired results. Our solution injects a physically informed motion prior to
a deep learning model and achieves the best result.

Prior Knowledge in Trajectory Prediction. Injecting handcrafted knowledge is an effective way to enhance model
performance and robustness. For example, some models such as (Bansal et al., 2018; Park et al., 2020; van der Heiden
et al., 2019) propose loss functions to constrain the model prediction to follow social or traffic rules. Chai et al.
(2020); Phan-Minh et al. (2020); Zhao & Wildes (2021) inject the knowledge by building a fixed set of trajectories
sampled from the training dataset, named “anchor sets”. Then, they learn to rank top K “anchors” from this set
and regress residuals on each of them along with uncertainties. In human trajectory prediction, Kothari et al. (2021)
explicitly define the social interactions as group following, collision avoidance and leader following and learns to
regress residuals via a discrete choice model (Bierlaire, 1998) on trajectories predicted from (Gupta et al., 2018).
However, we suggest that knowledge priors in the above methods highly depend on the training set where the domain
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Figure 2: An overview of our framework. Given pedestrians’ observed trajectories, we first assign a motion prior
using a physical motion model. Then we send them together with observed trajectories into a deep learning based
trajectory prediction model to predict the residuals. The final prediction is the aggregation between the motion prior
and the residuals.

shift problem cannot be solved. Therefore, our knowledge prior is generated by a pure physical model which is not
tied to the training set. A work similar to ours is (Bahari et al., 2021) which uses the lanes of the road to form
the scene-compliant trajectory. However, human trajectory prediction does not have such information and hence we
choose the constant velocity motion as our motion prior which is suitable for pedestrians and can successfully increase
the robustness of the model across different domains.

3 METHODS

Our approach is a motion prior based deep learning framework that follows two core assumptions for future path
prediction: (1) If there is no information available from either the surrounding environment or pedestrians’ social cues,
pedestrians should follow a motion prior (e.g., constant velocity) in physical space. This is a reasonable assumption
for pedestrian walking behaviour and essential for a model where only the past trajectory is provided, which is also
suggested by Monti et al. (2022). (2) Pedestrians change their routes due to the environment. This assumption is
consistent with the concept of social force (Helbing & Molnár, 1995) and suggests that environmental influence should
directly contribute to the route changing on a motion prior rather than predicting the entire trajectory. We describe the
details in the following sections.

3.1 PROBLEM DEFINITION

Recall that our goal is to generate future paths Ŷ τ
i for agent i using the observed sequence Xτ

i . Mathematically, we
formulate our problem as observing the motion states for N agents in a scene from the timestep t = 1 to tobs as
Xτ

i ∈ {Xt
1, ..., X

t
N |t = 1, 2, ..., tobs}.

We follow previous works (Gupta et al., 2018; Huang et al., 2019; Mohamed et al., 2020; Shi et al., 2021) in using
the vectors at each timestep to normalise the trajectory, each with the source originated at the position at the previous
time-step. Then, we predict the motion states from tobs to a future time step tpred as Ŷ τ

i ∈ {Ŷ T
1 , ..., Ŷ T

N |T = tobs +
1, ..., tpred} Finally, the sequence is evaluated with the ground truth as Y τ

i ∈ {Y T
1 , ..., Y T

N |T = tobs + 1, ..., tpred}.
Both Xt

i and Y t
i are 2D vectors related to the previous positions.

(
xt
i − xt−1

i , yti − yt−1
i

)
.

To avoid ambiguity, we follow Sadeghian et al. (2019) in using social interactions and scene interactions to describe
interactions between dynamic agents and the static objects or terrain in this work. We also use environmental bias in
(Chen et al., 2021) to describe the domain shift problem brought by different environments.

3.2 FRAMEWORK OVERVIEW

Figure 2 shows the overall structure of our approach, which consists of two parts: (1) a physical motion prior FMP ,
and (2) a deep learning based human trajectory prediction model FHTP . Given the observed trajectory Xτ

i , we
first use the physical motion model to assign motion priors Ŷ τ

i,MP as initial predictions to each pedestrian according to
their current speed and direction. Then, we concatenate the motion prior with Xτ

i and feed them into FHTP . FHTP is
expected to extract motion and interaction features from the surrounding agents and the static scene denoted as fenc

i .
The feature extraction process can be defined as follows:

fenc
i = FHTP ([X

τ
i=1..N , Ŷ τ

i,MP ], I), (1)
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where I denotes the scene image if provided and [·, ·] is the concatenation operation. Finally, a trajectory decoder
D takes fenc

i to predict the residuals ∆Ŷ τ
i,MP which are then aggregated with the assigned motion prior to give the

predicted trajectory:
Ŷ τ
i = ∆Ŷ τ

i,MP + Ŷ τ
i,MP = D(fenc

i ) + Ŷ τ
i,MP , (2)

where ∆Ŷ τ
i,MP indicates that the residuals can be predicted by conditioning on the input motion prior. We incor-

porate this data-driven learning process so that different types of motions can be accommodated during inference.
Furthermore, we propose a “Train-on-Best-Motion” training strategy to mitigate any environmental biases.

3.3 METHOD COMPONENTS

Physical Motion Model. Previous works such as (Chai et al., 2020) assume that the training and testing datasets share
similar patterns of motion. Thus, they can cluster the training trajectories as their prototypes and use them as priors
during the inference. However, they suffer from domain shifts from out-of-domain distributions where inconsistent
motion (e.g., speed) can be observed across different environments. Therefore, we require that our motion prior
should estimate such motion shifts under different domains. In this work, we resort to a well-studied constant velocity
model (CVM) (Schöller et al., 2020) which hypothesises that the speed of the predicted trajectory is consistent with
its historical one. Moreover, we suggest that the fundamental assumption taken by the CVM is reasonable as it is
invariant to social cues and environmental factors, which also satisfies our first assumption that our framework follows
and Fig. 3 demonstrates the effectiveness of our proposed CVM-based motion prior. Specifically, given an observed
trajectory Xτ

i , we expand the last observed motion Xtobs
i through all future timesteps and our motion prior becomes

Ŷ τ
i,MP = {Xtobs

i , · · · , Xtobs
i }. Alternatively, as a potential future work, we can explore more advanced motion priors

that can further supplement required rules in trajectory prediction.

Trajectory Prediction Model. Our method presents a generalized framework that is suitable to integrate with most
trajectory prediction models. In this work, our trajectory prediction model builds upon Social-STGCNN (Mohamed
et al., 2020). Social-STGCNN is an advanced trajectory prediction model that can effectively model the social inter-
actions using its spatial temporal GCN module and is a strong baseline used in (Xu et al., 2022b; Shi et al., 2021).
Therefore, given the observed trajectories and corresponding motion priors, we follow Mohamed et al. (2020) to build
the adjacency matrix sequence at each timestep using relative positions and preprocess it using Laplacian normalisa-
tion. Then, Social-STGCNN extracts social features as fenc

i via a spatial temporal graph convolutional neural network,
which are the node embeddings in the output graph.

Social-STGCNN predicts a sequence of bi-variate Gaussian distributions for each future positions, which can alleviate
generation mode collapse as suggested by Mohamed et al. (2020); Chai et al. (2020). To integrate the motion prior,
we build the Gaussian distribution as follows:

Ŷ τ
i ∼ N (Ŷ τ

i,MP +∆µτ
i , σ

τ
i , ρ

τ
i ), (3)

where Ŷ τ
i,MP + ∆µτ

i , στ
i ,ρτi are the mean, variance and correlation coefficient for bi-variate Gaussian distribution at

timestep τ for agent i. Therefore, we expect the Social-STGCNN to predict the ∆µτ
i as the residuals.

To avoid the gradient vanishing problem caused by recurrent neural networks, Social-STGCNN (Mohamed et al.,
2020) uses a time-extrapolator convolutional neural network (TXP-CNN) as its decoder which consists of multiple
3 × 3 Conv2d layers which use the time dimension as the channel dimension and slide kernels to fuse node feature
embeddings from neighbouring agents. However, TXP-CNN suffers from a permutation variance problem where
changing the order of the pedestrians may vary the results, which can be a potential risk for domain shift. We also
argue that interactions among neighbours are not necessary during the decoding. Considering that Social-STGCNN
is a non-autoregressive model that predicts for a very short horizon and its STGCN module already integrates the
neighbour information, we believe that handling social interaction in the decoder is redundant and even increases the
learning complexity. Therefore, we use a 3× 1 Conv2d layer to slide the node feature embedding only:

∆µτ
i , σ

τ
i , ρ

τ
i = TXP-CNN3×1(f

enc
i ). (4)

Our experimental results also indicate that using a 3× 1 can have a better performance. Finally, we learn the residual
regression using the loss function as follows:

l(θ) = − logN (Ŷ τ
i,MP +∆µτ

i , σ
τ
i , ρ

τ
i ) + λ log |Στ

i |, (5)

where θ denotes the learnable weights in our revised Social-STGCNN model. The first part of this loss function is
a standard negative Gaussian log-likelihood loss to search for the optimal Gaussian parameters for each predicted
positions. We also expect the model to predict a low entropy distribution which leverages the term log |Στ

i | scaled by
a coefficient λ, where |Στ

i | is the determinant of the covariance matrix built by στ
i and ρτi .
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Method Year Performance (ADE20) (Source2Target) Avg
A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D

Social-STGCNN (Mohamed et al., 2020) 2020 1.83 1.58 1.30 1.31 3.02 1.38 2.63 1.58 1.16 0.70 0.82 0.54 1.04 1.05 0.73 0.47 0.98 1.09 0.74 0.50 1.22
PECNet (Mangalam et al., 2020) 2020 1.97 1.68 1.24 1.35 3.11 1.35 2.69 1.62 1.39 0.82 0.93 0.57 1.10 1.17 0.92 0.52 1.01 1.25 0.83 0.61 1.31

RSBG (Sun et al., 2020) 2020 2.21 1.59 1.48 1.42 3.18 1.49 2.72 1.73 1.23 0.87 1.04 0.60 1.19 1.21 0.80 0.49 1.09 1.37 1.03 0.78 1.38
Tra2Tra (Xu et al., 2021) 2021 1.72 1.58 1.27 1.37 3.32 1.36 2.67 1.58 1.16 0.70 0.85 0.60 1.09 1.07 0.81 0.52 1.03 1.10 0.75 0.52 1.25
SGCN (Shi et al., 2021) 2021 1.68 1.54 1.26 1.28 3.22 1.38 2.62 1.58 1.14 0.70 0.82 0.52 1.05 0.97 0.80 0.48 0.97 1.08 0.75 0.51 1.22

T-GNN (Xu et al., 2022b) 2022 1.13 1.25 0.94 1.03 2.54 1.08 2.25 1.41 0.97 0.54 0.61 0.23 0.88 0.78 0.59 0.32 0.87 0.72 0.65 0.34 0.96
TTA-GNN (Ivanovic et al., 2022) 2022 0.33 0.56 0.50 0.38 0.80 0.60 0.43 0.31 1.03 0.41 0.41 0.38 0.93 0.32 0.48 0.35 0.91 0.31 0.49 0.44 0.52

Social-STGCNN* 2020 1.06 0.97 1.18 1.03 2.50 0.97 2.06 1.16 0.75 0.45 0.41 0.34 0.66 0.81 0.54 0.30 0.79 0.97 0.57 0.36 0.89
SGCN* 2021 1.01 0.77 0.70 0.55 1.77 0.91 1.63 0.97 0.70 0.37 0.46 0.34 0.84 0.55 0.50 0.26 0.68 0.47 0.53 0.30 0.71

CF-STGCNN* (Chen et al., 2021) 2021 1.14 0.73 0.78 0.63 1.64 0.77 1.44 0.83 0.97 0.58 0.43 0.33 0.90 0.91 0.59 0.31 0.84 1.02 0.63 0.43 0.79

Social-STGCNN + MP - 0.65 0.69 0.69 0.66 0.85 0.41 0.43 0.32 0.72 0.29 0.32 0.26 0.78 0.23 0.39 0.27 0.82 0.32 0.40 0.32 0.49
Social-STGCNN + BMP - 0.41 0.45 0.49 0.43 0.86 0.42 0.41 0.35 0.72 0.23 0.32 0.26 0.78 0.24 0.39 0.28 0.79 0.22 0.38 0.32 0.44

Method Year Performance (FDE20) (Source2Target) Avg
A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D

Social-STGCNN (Mohamed et al., 2020) 2020 3.24 2.86 2.53 2.43 5.16 2.51 4.86 2.88 2.30 1.34 1.74 1.10 2.21 1.99 1.41 0.88 2.10 2.05 1.47 1.01 2.30
PECNet (Mangalam et al., 2020) 2020 3.33 2.83 2.53 2.45 5.23 2.48 4.90 2.86 2.22 1.32 1.68 1.12 2.20 2.05 1.52 0.88 2.10 1.84 1.45 0.98 2.29

RSBG (Sun et al., 2020) 2020 3.42 2.96 2.75 2.50 5.28 2.59 5.19 3.10 2.36 1.55 1.99 1.37 2.28 2.22 1.77 0.97 2.19 2.29 1.81 1.34 2.50
Tra2Tra (Xu et al., 2021) 2021 3.29 2.88 2.66 2.45 5.22 2.50 4.89 2.90 2.29 1.33 1.78 1.09 2.26 2.12 1.63 0.92 2.18 2.06 1.52 1.17 2.34
SGCN (Shi et al., 2021) 2021 3.22 2.81 2.52 2.40 5.18 2.47 4.83 2.85 2.24 1.32 1.71 1.03 2.23 1.90 1.48 0.97 2.10 1.95 1.52 0.99 2.29

T-GNN (Xu et al., 2022b) 2022 2.18 2.25 1.78 1.84 4.15 1.82 4.04 2.53 1.91 1.12 1.30 0.87 1.92 1.46 1.25 0.65 1.86 1.45 1.28 0.72 1.82
TTA-GNN (Ivanovic et al., 2022) 2022 0.65 1.18 1.06 0.81 1.59 1.19 0.89 0.64 1.98 0.81 0.93 0.84 1.81 0.57 1.01 0.70 1.71 0.54 1.02 0.96 1.04

Social-STGCNN* 2020 1.14 1.08 1.66 1.28 4.69 1.82 4.26 2.35 1.27 0.80 0.69 0.57 1.20 1.49 0.88 0.42 1.70 1.74 0.94 0.52 1.53
SGCN* 2021 1.77 1.36 1.27 0.97 2.93 1.68 3.10 1.80 1.16 0.65 0.88 0.64 1.80 1.06 0.89 0.46 1.32 0.84 0.94 0.52 1.30

CF-STGCNN* (Chen et al., 2021) 2021 1.88 1.09 1.28 0.94 2.48 1.29 2.38 1.37 1.75 0.96 0.76 0.58 1.49 1.54 1.08 0.51 1.56 1.75 1.11 0.71 1.32

Social-STGCNN + MP - 0.76 0.89 0.85 0.78 1.66 0.68 0.67 0.54 1.49 0.48 0.53 0.45 1.66 0.35 0.67 0.49 1.75 0.53 0.67 0.52 0.82
Social-STGCNN + BMP - 0.41 0.52 0.56 0.50 1.71 0.60 0.53 0.46 1.48 0.32 0.53 0.44 1.65 0.34 0.66 0.47 1.66 0.32 0.67 0.53 0.72

Table 1: ADE ↓ (top) results of our models with the motion prior in comparison with existing state-of-the-art baselines
on 20 tasks. “2” represents from source domain to target domain. A, B, C, D, and E denote ETH, HOTEL, UNIV,
ZARA1, and ZARA2, respectively. “*” denotes that these results are reproduced by us and methods in bold are our
works: “-MP” denotes the method with the motion prior and “-BMP” denotes the model with motion prior and trained
using Train-on-Best-Motion.

Train-on-Best-Motion. Pedestrians usually change their routes due to terrain constraints such as curved pathways
and obstacles. Ideally, a trajectory prediction model such as (Sadeghian et al., 2019; Dendorfer et al., 2021; Xue et al.,
2018; Manh & Alaghband, 2018) that can handle both social and scene interactions is expected in our framework
since the scene interactions module can encourage the scene features to be domain invariant. However, the scene
information is usually unknown in this work since our baselines only use 2D coordinates in the dataset and querying
the scene features can make our framework less general. Besides, extracting domain invariant features from scene
images is currently impossible in our work as all datasets we used are static scenes and provide only one image or
even motion data only. As a result, these scene features become domain-specific features which are harmful to the
model. To handle this problem, we propose a training trick called “Train-on-Best-Motion” to effectively incorporate
scene features.

We consider that the influence of the scene will directly change the overall trajectory direction and hence we should
select the “best” motion during training. Concretely, we build a motion set by generating several motions, each one
rotated with a distinct degree according to the pedestrians’ heading directions. We search the best one from the set
with the minimum average displacement error to the ground truth as our motion prior during training. Therefore, when
pedestrians change their directions due to the scene constraints, the motion prior can cover this information and let the
model focus on the social interaction on that path and thus predict the offsets without considering the scene interaction.
At inference time, we can either choose the motion with the heading direction as our prior or follow Chai et al. (2020)
to dynamically select a certain number of motion priors as the anchors and predict residuals for each of them.

Model DA MP ADE20 FDE20

Social-STGCNN

0.89 1.53
✓ 0.83 0.93

✓ 0.49 0.82
✓ ✓ 0.40 0.77

SGCN

0.71 1.30
✓ 0.59 1.06

✓ 0.44 0.81
✓ ✓ 0.43 0.78

Table 2: The average performance on 20 tasks of Social-STGCNN and SGCN w/w.o. motion prior (MP) and data
augmentation (DA).
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Model Aug Average Performance (ADE20/FDE20) Avg
0 m/s 1 m/s 2 m/s 3 m/s 4 m/s 5 m/s

Social-STGCNN 0.27/0.23 4.00/7.66 9.04/17.08 14.17/26.60 19.35/36.16 24.13/45.37 11.89/22.25
CF-STGCNN 0.86/1.11 2.25/3.98 5.38/10.06 8.60/16.03 11.41/20.62 14.45/25.40 7.16/12.87

SGCN 0.09/0.10 2.18/4.20 5.52/10.61 9.02/17.26 12.54/23.94 16.08/30.64 7.57/14.46

Social-STGCNN ✓ 0.22/0.23 1.12/1.84 2.76/4.74 4.64/7.95 6.53/11.37 8.42/14.73 3.95/6.81
Social-STGCNN-MP ✓ 0.09/0.13 0.28/0.40 0.58/0.93 1.01/1.56 1.51/2.31 2.08/3.24 0.92/1.43

Social-STGCNN-BMP ✓ 0.07/0.08 0.24/0.23 0.47/0.61 0.81/1.28 1.24/2.13 1.71/3.02 0.76/1.22

Table 3: The average ADE/FDE scores against different training sets and different speed controls using our synthetic
dataset. “Aug” means whether data augmentation is used during training. “-MP“ and “-BMP” denote the model using
the motion prior and trained on Train-on-Best-Motion respectively.

Method Average ADE/FDE

Social-STGCNN 0.89/1.53
+ synthetic data only 0.47/0.87
+ pretrained on synthetic data 0.52/0.97
+ strong augmentation 0.83/0.93

+ pretrain 0.54/0.84
+ augmented on synthetic data 0.46/0.82
+ motion prior 0.40/0.77

Table 4: Average performance on pedestrian tasks using our synthetic data for pretraining and data augmentation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We use well-known pedestrian trajectory prediction datasets ETH (Lerner et al., 2007) & UCY (Pellegrini
et al., 2010) as the main benchmark in our experiment, which contain 5 scenes in total: ETH, HOTEL, UNIV, ZARA1
and ZARA2, abbreviated as A, B, C, D and E respectively, with trajectories sampled every 0.4 seconds and recording
the world coordinates of pedestrians. We also generated a synthetic dataset containing 6 sets of constant velocity
trajectories with controlled velocity as {0, 1, 2, 3, 4, 5} m/s based on the toy model in (Amirian et al., 2019), each
containing motions with 30 different directions. This dataset is used to analyse the extraction of domain invariant
features from the model. We can also use this dataset to augment or pretrain the model to enhance performance.
Finally, we use two autonomous driving datasets named NuScenes (Caesar et al., 2020) and Lyft (Houston et al.,
2020) collected in different cities with trajectories sampled at 2 Hz and 10 Hz respectively.

Evaluation Metrics. In this work, we use standard evaluation metrics including Average Displacement Error (ADEk),
the average L2 distance between ground truth and predictions, Final Displacement Error (FDEk), the distance between
the last predicted positions with ground truth endpoints and, Negative Log-Likelihood (NLL), the probabilities of
ground truth can be sampled from distributions.

Baselines We compare our model with state-of-the-art pedestrian trajectory prediction models including (1) Social-
STGCNN (Mohamed et al., 2020), a well-known social interaction model in trajectory prediction and the baseline for
(Shi et al., 2021; Xu et al., 2022b; Chen et al., 2021); (2) SGCN (Shi et al., 2021), a state-of-the-art social interaction
model which improves Social-STGCNN; (3) CF-STGCNN (Chen et al., 2021), a multi-source domain generalisation
model based on Social-STGCNN that uses counterfactual analysis to alleviate the domain shifts. We adapt the method
for single-source domain adaptation and reproduce the CF-STGCNN by setting the input node features as zeros in
Social-STGCNN as the counterfactual intervention and evaluate it under our evaluation protocol; (4) T-GNN (Xu
et al., 2022b), a single source unsupervised domain adaptation framework built upon Social-STGCNN and using a
transferable attention mechanism to align domains features; (5) Trajectron++ (Salzmann et al., 2020), an CVAE-
based autoregressive model and (6) TTA-GNN (Ivanovic et al., 2022), the most recent test-time domain adaptation
model based on (Salzmann et al., 2020) and adaptive meta-learning (Harrison et al., 2018). We use its k0 and Adaptive
models for comparison, which are two variants of (Salzmann et al., 2020) before the adaptation. These models are not
exposed to the ground truth of the target domains.
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4.2 EXPERIMENTS ON PEDESTRIAN DATA

Evaluation Protocol and Experiment Configuration. In this section, we follow the evaluation protocol in (Xu et al.,
2022b) to conduct 20 tasks in total on ETH & UCY datasets by training our model using one of these scenes as the
source domain data and testing it using the remaining scenes as the target domain data. We observe 3.2 seconds (8
frames) for training and the next 4.8 seconds (12 frames) for testing. To ensure that the target domain is unseen during
training, we use the source domain validation set to select the model during training. We also follow the multi-modal
setting of our baselines (Gupta et al., 2018; Mohamed et al., 2020; Shi et al., 2021; Zhao & Wildes, 2021; Sun et al.,
2020; Xu et al., 2022b) by using the best prediction among k = 20 samples for ADE and FDE metrics. However,
to conduct a fair experiment, we build our environment using Social-STGCNN and further tune hyperparameters of
Social-STGCNN, SGCN and CF-STGCNN to reach the best results in our experiment. All models are trained with
200 epochs and a batch size of 16 and learning rate of 0.001. We also set a gradient clip of 100 to avoid gradient
explosion and coefficient λ is 0.5. Reproduced results can be seen in Table 1 with “*” near the model name. For
“Train-on-Best-Motion” strategy, we select 5 constant velocity motions with rotated degrees of [-60, 30, 0, 30, 60]
respectively from the heading direction as our motion set.

Benchmark Results vs Other Baselines. The performance of our methods against our basesline as shown Table 1.
Our method that integrates a motion prior can outperform all baselines across different datasets, indicating the ef-
fectiveness of integrating motion priors alongside a deep learning model. A better performance of +10.2% can be
achieved when using Train-on-Best-Motion which reaches state-of-the-art in this benchmark. Specifically, our model
outperforms T-GNN by around 50% and the current state-of-the-art model TTA-GNN by around 6%, which validates
that our method can be even better than current single source domain adaptation methods. Domains such as Ho-
tel (B) contain different trajectories to others and hence the performance gaps between D2B and C2B using T-GNN
and TTA-GNN are around 0.24/0.34 and 0.09/0.25 of ADE/FDE respectively. On the other hand, our method only
produces a difference of only 0.06/0.13 in ADE/FDE after adding the motion and 0.01/0.02 after using the “Train-
on-Best-Motion”, which indicates our model can generalise better to unseen domains. We also note that our method
is better than SF-STGCNN. A plausible reason is that the motion prior can be more direct and effective in reducing
model overfitting than counterfactual learning. Finally, we show the visualisation in Figure 3a and 3c that the original
Social-STGCNN and SGCN models can predict incorrect distributions and in Figure 3b and 3d that using a motion
prior can consistently enhance the predictions with matched velocity.

Strong Data Augmentation vs Motion Prior. Strong data augmentation is essential in domain generalisation to
handle out-of-domain data. As suggested by Schöller et al. (2020), we augment rotated trajectories with a degree of
{0, 1/4, 1/2, 3/4, 1}π and their flipped scenes and the reversed trajectories. These data augmentations are applied on
the scene level and therefore, the adjacency matrix remains unchanged. A single augmentation is selected randomly at
each training iteration. Table 2 shows the performance with and without adding the motion prior or data augmentation
on Social-STGCNN and SGCN. Note that SGCN also predicts the bi-variate Gaussian distributions and we can follow
the same way to integrate the motion prior as on Social-STGCNN. As shown in Table 2 adding strong data augmenta-
tion can largely boost the performance. This suggests that data augmentation is essential in trajectory prediction when
environmental differences are large - which has not been explored by Mohamed et al. (2020); Xu et al. (2022b). On the
other hand, we add a motion prior on SGCN and Social-STGCNN and both can enhance the performance and obtain
even better results than using data augmentation only. This implies that using a motion prior can be a more effective
way to boost performance than using the data augmentation on the training set. Finally, we combine the motion prior
with the data augmentation resulting in improved performance of around 6%.

4.3 EXPERIMENTS ON SYNTHETIC DATA

Performance on Different Velocity. We first evaluate Social-STGCNN on our synthetic dataset using models trained
on the UNIV dataset with a strong augmentation mentioned in Section 4.2. Table 3 shows the quantitative results of
this experiment. Firstly, models without data augmentation cannot predict well in a high speed environment which
supports the finding in (Schöller et al., 2020) because pedestrians in each dataset follow either horizontal or vertical
motions. Then, using the augmentation helps the model generalise in different directions, but error still accumulates
through the future timesteps when the speed increases, resulting in a mismatched speed when pedestrians walk at 5
m/s, approximately the maximum speed in the ETH dataset, which is also indicated in Figure 3f. By adding the motion
priors, the model only accumulates slight errors in a high speed environments, which demonstrates the importance of
motion prior. As shown in Figure 3g, the motion matches the speed even in high speed environment but the prediction
is also biased, which may be due to the influence of the environment. Finally, a model using the Train-on-Best-
Motion strategy provides a better result due to the elimination of environment bias, which can be further proven by the
prediction of the straight motion in Figure 3h. All these results strongly illustrate the effectiveness and generalisation
of our model in different domains due to the motion prior and our training strategy.
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(a) B2E: Social-STGCNN (b) B2E: Social-STGCNN+MP (c) D2B: SGCN (d) D2B: SGCN + MP

1 m/s

(e) Social-STGCNN

5 m/s

(f) Social-STGCNN

5 m/s

(g) Social-STGCNN+MP

5 m/s

(h) Social-STGCNN+BMP

Figure 3: Visualisation of trajectory prediction on real world and synthetic dataset with and without using motion
prior (MP) and Train-on-Best-Motion (BMP). Syntheic dataset is tested using the model trained on UNIV. Blue lines
are observation and red lines are ground truth. Predicted distributions are plotted using KDEPlot. Each test trajectory
contain 8 time steps for observation and 12 steps for prediction.

Method ADE1 FDE1 NLL ADE5 ADE10

Base (Salzmann et al., 2020) 85.19 179.69 7.99 48.2 38.24
K0 (Ivanovic et al., 2022) 48.29 89.62 10.90 35.56 25.11

Adaptive (Ivanovic et al., 2022) 107.47 204.99 8.274 41.24 21.03

Base (Salzmann et al., 2020) + MP 25.72 59.31 7.12 22.45 20.61

Table 5: Results of NuScenes → Lyft Task where K0 and Adaptive are two variants of Base (Trajectron++) in (Ivanovic
et al., 2022).

Data Augmentation and Pretraining. We also use our proposed synthetic dataset to pretrain the model or augment
the dataset and test the model on real-world datasets. The quantitative results are shown in Table 4. Using synthetic
data to train the model can have better results than using ETH&UCY only. This suggests that speed diversity is
essential for human trajectory prediction. Then we continue to train on ETH&UCY datasets with and without the data
augmentation described in Section 4.2 and the performance improves. However, the model can forget the pretraining
when it is overfitted to the real-world training set. Therefore, we further train the model with our synthetic data
augmentation and performance largely improves. Finally, the results show that simply adding a motion prior can
further improve the performance.A plausible explanation is that the model is not guaranteed to learn the necessary
motion rules correctly with synthetic data, but the motion prior can.

4.4 EXPERIMENTS ON AUTONOMOUS DRIVING DATA

In this experiment, we perform a transfer from NuScenes to Lyft dataset to illustrate that our method is also useful
in dealing with domain shift in vehicle trajectory prediction datasets. These datasets have different sampling rates
(2 Hz vs 10 Hz) and we observe 2 seconds for training and predict the next 6 seconds. Ideally, an auto-regressive
model such as (Salzmann et al., 2020) can effectively be adapted to inputs and outputs with different frequencies.
However, Ivanovic et al. (2022) show that the model overfits the displacement change between frames and results in
significant performance degradation when applied on Lyft with extremely long predicted distances. We use the same
experimental settings as in (Ivanovic et al., 2022) and let Trajectron++ predict residuals on our motion prior at each
step. Table 5 shows that our model has better performance than our baselines for all metrics. This indicates that our
motion prior approach can also be applied to autoregressive models for dynamic lengths, effectively alleviating domain
shifts caused by different sampling rates without the data from Lyft.
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5 LIMITATIONS AND FUTURE WORK

For the residual prediction part, we expect the model to have the capability to model both social and scene interactions.
However, the scene interaction is difficult to model using only one image. Our Train-on-Best-Motion strategy alleviates
this problem so that models can concentrate on social interaction only but the target domain may also contain complex
terrains. Therefore, our future work will explore more advanced approaches to model scene interactions using a
single image during the training phase, or pretraining techniques to train the scene interaction in a zero-shot manner.
Moreover, we will investigate the improvement of the social interaction module to further overcome the over-fitting
problem such as replacing the graph convolutional mechanism with an inductive learning-based graph neural network.
Finally, our currently used motion prior, the constant velocity motion, is effective especially when speed bias occurs in
different datasets, which is the main problem in most domain shift cases. Future works will focus on more advanced
motion priors to deal with all kinds of domain shifts.

6 CONCLUSIONS

In this work, we tackle single source domain generalisation in trajectory prediction. Specifically, we add the constant
velocity motion priors into trajectory prediction models and then predict the residuals towards the final predictions.
Our experiments illustrate that using this simple strategy can effectively improve generalisation and performance
across unseen domains. It also outperforms current domain generalisation and adaptation approaches even when only
a single domain is used for training without seeing the test domain, highlighting the importance of motion priors in
robust trajectory prediction. We also propose Train-on-Best-Motion strategy that uses the best motion priors during
the training and effectively alleviates the domain shift due to the scene interactions.
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ETH HOTEL UNIV ZARA1 ZARA2

No. of frame sequences 70 301 947 602 921
No. of Pedestrians 181 1053 24334 2253 5833

No. of pedestrians per sequence 2.586 3.498 25.696 3.743 6.333

Average Velocity. (m/s) 2.37 1.15 0.73 1.15 1.12
Min Velocity. (m/s) 0.00 0.00 0.05 0.08 0.07
Max Velocity. (m/s) 5.93 2.22 1.98 1.95 2.14

Table 6: Statistics of five different scenes, ETH, HOTEL, UNIV, ZARA1, and ZARA2. The velocity is calculated
using the instance velocity during each 0.4 seconds.

A APPENDIX: DATASET DESCRIPTION

ETH&UCY We use two real-world datasets: the ETH (Lerner et al., 2007) & UCY (Pellegrini et al., 2010) to evaluate
our methods. These datasets contain 5 different scenes: ETH, HOTEL, UNIV, ZARA1, ZARA2 and each provides
a bird’s-eye view of video and a set of 2D coordinates in a real-world domain to indicate the trajectories. Table 6
shows the statistics of these five datasets. It is worth noting that the speed differences among these datasets are large.
For example, ETH contains higher speed motions while Hotel contains lower speed motions. Note that in the ETH
dataset, the trajectories are accelerated as mentioned by Giuliari et al. (2021) and we consider it as an extreme case in
our baselines. Moreover, ETH and HOTEL only contain 70 and 301 frame sequences respectively, which can result in
strong overfitting when training only on these two datasets. More detailed information for these datasets can be seen
in (Xu et al., 2022b).

Synthetic Dataset We create our synthetic dataset by modifying the code in SocialWays1 (Amirian et al., 2019).
Therefore, we are able to generate K bi-directional trajectories corresponding to 2K trajectories in total for each
speed requirement, where K is a customisable hyper-parameter. In our experiment, we set K = 30 and the overview
of our synthetic data is shown in Fig. 4. This dataset may not be very realistic in the real world, but can provide
a basic indication of how models work in a trivial environment. We further analyse the model behaviour using this
dataset. Since our baselines (Mohamed et al., 2020; Shi et al., 2021) require at least two pedestrians in a scene for
each iteration during the training or testing phase, we combine any two trajectories as a batch with 100 meters away
from each other, assuming that they do not affect each other at such far distances.

NuScenes → Lyft NuScenes (Caesar et al., 2020) and Lyft (Houston et al., 2020) are two large well-known au-
tonomous driving datasets. NuSecenes contains 1000 scenes collected in Boston and Singapore with data sampled at
2 Hz. Lyft (Houston et al., 2020) contains 170K scenes collected in Palo Alto with data sampled at 10 Hz. To fairly
compare with models in (Ivanovic et al., 2022), we use the official trainval set in NuScenes to train the model and
evaluate on the sample set of Lyft in our experiment. As mentioned by Ivanovic et al. (2022), domain shift occurs on
the moving ranges between two frames in these two datasets due to the varying sampling frequencies. More detailed
information for this experiment can be seen in (Ivanovic et al., 2022).

B APPENDIX: EXPERIMENTAL CONFIGURATIONS

We use the experimental environment in Social-STGCNN2 and implement the SGCN baseline using the code in
NPSN3 (Bae et al., 2022). For CF-STGCNN, we follow the implementation in (Chen et al., 2021) and replace all input
nodes as zeros. We use one layer of spatial-temporal graph convolutional neural network (STGCNN) and 5 layers of
time-extrapolator convolutional neural network (TXP-CNN). In addition, during inference, we select the mean values
at all future time-steps as one of the sampled trajectories and randomly sample other trajectories in all experiments for
models including Social-STGCNN, SGCN and CF-STGCNN.

1https://github.com/crowdbotp/socialways/blob/master/create toy.py
2https://github.com/abduallahmohamed/Social-STGCNN
3https://github.com/InhwanBae/NPSN/blob/main/baselines/sgcn/
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Figure 4: An overview of our synthetic data containing constant velocity motions heading 30 directions, with two
trajectories towards and away from the center. Therefore, 60 different trajectories are used to evaluate the model.

Method Performance (ADE20) (Source2Target) Avg
A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D

Social-STGCNN (original) 1.29 1.21 1.74 1.34 3.46 1.20 2.32 1.47 0.47 0.59 0.59 0.98 0.73 0.87 0.54 0.40 0.82 1.01 0.60 0.48 1.11
Social-STGCNN (ours) 1.06 0.97 1.18 1.03 2.50 0.97 2.06 1.16 0.75 0.45 0.41 0.34 0.66 0.81 0.54 0.30 0.79 0.97 0.57 0.36 0.89

Social-STGCNN + MP 0.65 0.69 0.69 0.66 0.85 0.41 0.43 0.32 0.72 0.29 0.32 0.26 0.78 0.23 0.39 0.27 0.82 0.32 0.40 0.32 0.49
Social-STGCNN + MP+Aug 0.28 0.37 0.40 0.31 0.78 0.38 0.31 0.25 0.72 0.24 0.30 0.24 0.87 0.25 0.38 0.27 0.81 0.24 0.37 0.29 0.40
Social-STGCNN + BMP 0.41 0.45 0.49 0.43 0.86 0.42 0.41 0.35 0.72 0.23 0.32 0.26 0.78 0.24 0.39 0.28 0.79 0.22 0.38 0.32 0.44
Social-STGCNN + BMP + Aug 0.41 0.45 0.49 0.43 0.72 0.23 0.33 0.26 0.72 0.23 0.33 0.26 0.77 0.24 0.39 0.28 0.77 0.22 0.38 0.32 0.41

Method Performance (FDE20) (Source2Target) Avg
A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D

Social-STGCNN (original) 1.49 1.31 2.30 1.50 6.94 2.23 4.66 2.77 0.73 1.03 0.90 1.72 1.24 1.52 0.79 0.54 1.43 1.74 0.97 0.76 1.83
Social-STGCNN (ours) 1.14 1.08 1.66 1.28 4.69 1.82 4.26 2.35 1.27 0.80 0.69 0.57 1.20 1.49 0.88 0.42 1.70 1.74 0.94 0.52 1.53

Social-STGCNN + MP 0.76 0.89 0.85 0.78 1.66 0.68 0.67 0.54 1.49 0.48 0.53 0.45 1.66 0.35 0.67 0.49 1.75 0.53 0.67 0.52 0.82
Social-STGCNN + MP + Aug 0.41 0.58 0.60 0.53 1.76 0.77 0.57 0.48 1.45 0.37 0.54 0.44 1.87 0.39 0.74 0.49 1.74 0.39 0.74 0.52 0.77

Social-STGCNN + BMP 0.41 0.52 0.56 0.50 1.71 0.60 0.53 0.46 1.48 0.32 0.53 0.44 1.65 0.34 0.66 0.47 1.66 0.32 0.67 0.53 0.72
Social-STGCNN+ BMP + Aug 0.41 0.52 0.56 0.50 1.49 0.31 0.54 0.44 1.49 0.31 0.54 0.44 1.65 0.34 0.66 0.47 1.63 0.31 0.67 0.53 0.69

Table 7: Full ADE ↓ (top) and FDE ↓ (bottom) results of our ablation study across different training and testing
sets. The first two rows compare the Social-STGCNN with original and our TXP-CNN decoders while the second
and third two rows are results of our models with the motion prior before and after adding data augmentation. “2”
represents from source domain to target domain. A, B, C, D, and E denote ETH, HOTEL, UNIV, ZARA1, and ZARA2,
respectively. “-Aug” denotes the model trained with data augmentation, “-MP” denotes the method with the motion
prior and “-BMP” denotes the model with motion prior and trained using Train-on-Best-Motion.

C APPENDIX: RESULTS ON PEDESTRIAN DATASET

Effectiveness of Our TXP-CNN. Our TXP-CNN is different from the original TXP-CNN in Social-STGCNN. The
results in Table 7 shows that our new TXP-CNN can lead to a higher performance on most scenes, which suggests that
integrating neighbours’ graph embeddings during the decoding is not necessary.

Motion Prior with Data Augmentation. We extend our experiment by adding the data augmentation on our models
with motion priors. As shown in Table 7, adding the data augmentation can consistently improve the performance,
especially on the Hotel dataset. This suggests that data augmentation is essential in single source domain adapta-
tion/generalisation tasks, especially when the dataset is not sufficient or representative enough to train the model.
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ADE (std) FDE (std) KDE-NLL

Social-STGCNN 0.89 (7.12e-4) 1.53 (2.32e-3) 5.28
Social-STGCNN-MP 0.49 (7.06e-4) 0.82 (1.84e-3) 3.16
Social-STGCNN-MP-MA 0.43 (4.68e-4) 0.71 (2.18e-3) 2.68

Table 8: Average ADE and FED results (including standard deviation) and KDE-NLL results on 20 tasks on
ETH&UCY datasets for Social-STGCNN with our motion prior. Note that KDE-NLL does not require standard
deviation due to large number of sampling.

Standard Deviation and KDE-NLL Results We also show the average ADE and FDE results with standard deviation
from 10 runs and KDE-NLL (Ivanovic & Pavone, 2019) results on 1000 samples of our models in Table 8. Apparently,
using motion prior and our Train-on-Best-Motion strategy can stably improve performance across different environ-
ments.

D APPENDIX: RESULTS ON SYNTHETIC DATASET

Quantitative Results. We provide full quantitative results in Table 9 using our synthetic data. It is clear to see that the
model using our motion prior can consistently predict trajectories with matched speed, which strongly illustrates the
effectiveness of using a motion prior across datasets with environments of different speeds. Using the Train-on-Best-
Model strategy can obtain better results and we will further illustrate it in the next section. We also notice that the
model trained on UNIV shows a relatively larger error than HOTEL, ZARA1 and ZARA2 in this experiment, and we
believe this is due to the speed constraint in such high density environment and many turning scenarios when entering
the gate. Then, models trained on ZARA1 and ZARA2 have a similar performance to each other because these two
datasets are quite similar to each other. Finally, we find that training on the ETH dataset does not provide better results
under high speed scenes even when we augment the dataset, which may be due to the non-linear walking paths due to
terrain constraints.

Qualitative Results. We show the full qualitative results in Figure 5 using the Social-STGCNN trained on the UNIV
dataset. We can firstly see that the errors still occur for all models when pedestrians are static, which indicates that
the biases in the model cause a level of uncertainty. Then, at the speed of 1 m/s, which is approximately the average
speed in UNIV dataset, the predicted distribution indicates that the model can predict a matched speed. However, the
speed errors are progressively increased when Social-STGCNN is applied in a higher speed spaces, which illustrates
why these models cannot do well on the ETH dataset, where speeds of most trajectories are around 2-5 m/s or even
higher than 5 m/s. Using the motion prior can predict trajectories with matched speed as shown in Figure 5b, but the
visualisations also show that the model can generate non-straight predictions at the speed from 2 m/s to 5 m/s and the
offset can be the incorrect prior implicit in the datasets, which may be due to the environmental issue. Figure 5c shows
that using Train-on-Best-Motion strategy can alleviate this effect and can predict a straight future path following the
observed trajectory, which largely boosts the performance.
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(a) Social-STGCNN

(b) Social-STGCNN + Motion Prior

(c) Social-STGCNN + Motion Prior + “Training-on-Best-Motion”

Figure 5: The full visualisations of predicted trajectories on our synthetic data using our models. All models are on
trained on UNIV dataset with strong data augmentations. From left to right are predictions with speed of {0, 1, 2, 3, 4,
5} m/s. Blue dots are observed positions, red dots are ground truth future trajectories and green regions are predicted
distributions using KDE plot. Each test trajectory contains 8 time steps of observation and 12 steps for prediction.
Using a motion prior can eliminate the accumulated errors during the training time across the future timesteps and
Train-on-Best-Motion can better eliminate the environmental bias.
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Model Src Full Performance (ADE20/FDE20) Avg
0 m/s 1 m/s 2 m/s 3 m/s 4 m/s 5 m/s

Social-STGCNN

A 0.60/0.46 4.71/8.90 10.89/20.43 17.25/32.21 23.65/44.02 30.10/56.08

11.89/22.25

B 0.19/0.23 4.04/7.82 9.20/17.41 14.52/27.26 19.86/37.10 25.24/47.03
C 0.19/0.16 3.25/6.31 7.54/14.40 11.84/22.42 16.22/30.56 20.55/38.63
D 0.17/0.16 3.84/7.30 8.46/15.88 13.17/24.52 17.87/33.13 22.57/41.73
E 0.19/0.16 4.17/7.98 9.07/17.27 14.08/26.59 19.12/35.99 24.13/45.37

Causal-STGCNN

A 0.68/0.68 2.58/4.61 5.67/10.91 8.90/16.73 11.53/20.74 14.98/25.43

7.16/12.87

B 0.10/0.14 2.16/3.94 5.50/10.38 8.71/16.22 11.35/20.37 14.15/24.56
C 1.72/2.30 1.77/2.98 4.60/8.57 7.82/14.70 10.74/19.63 13.68/25.04
D 0.94/1.05 2.32/4.06 5.63/10.26 9.03/16.41 12.07/21.33 15.08/25.85
E 0.87/1.39 2.44/4.33 5.47/10.14 8.55/16.12 11.38/21.03 14.36/26.10

SGCN

A 0.19/0.21 3.44/6.46 7.69/14.37 12.07/22.54 16.49/30.80 20.99/39.18

7.57/14.46

B 0.07/0.11 3.81/7.13 8.35/15.55 12.90/24.02 17.47/32.46 22.05/40.91
C 0.05/0.05 0.65/1.46 3.10/6.44 5.83/11.73 8.59/17.03 11.34/22.32
D 0.12/0.10 1.45/2.83 3.85/7.51 6.41/12.43 8.98/17.37 11.57/22.32
E 0.02/0.03 1.58/3.12 4.59/9.18 7.87/15.60 11.17/22.03 14.45/28.44

Social-STGCNN-Aug

A 0.54/0.49 2.90/4.97 7.61/13.73 12.60/22.65 17.41/31.28 22.27/39.92

3.95/6.81

B 0.10/0.09 1.06/1.57 2.38/2.97 4.51/5.63 6.85/9.61 9.17/13.51
C 0.11/0.11 0.62/1.23 1.60/3.41 2.60/5.57 3.63/7.72 4.62/9.78
D 0.31/0.41 0.55/0.79 1.12/1.86 1.75/3.05 2.37/4.25 3.00/5.46
E 0.04/0.04 0.45/0.66 1.07/1.72 1.73/2.87 2.40/3.98 3.05/5.00

Social-STGCNN-MP-Aug

A 0.22/0.30 0.44/0.45 0.82/1.40 1.50/2.97 2.36/4.68 3.28/6.38

0.92/1.43

B 0.12/0.12 0.08/0.10 0.18/0.11 0.28/0.13 0.39/0.16 0.50/0.20
C 0.01/0.04 0.31/0.52 0.75/1.29 1.28/1.92 1.95/2.84 2.73/4.24
D 0.06/0.11 0.22/0.34 0.47/0.67 0.72/0.93 0.97/1.05 1.44/1.49
E 0.02/0.06 0.33/0.60 0.71/1.18 1.25/1.84 1.89/2.81 2.44/3.89

Social-STGCNN-BMP-Aug

A 0.13/0.13 0.49/0.47 0.87/1.36 1.49/2.73 2.28/4.28 3.16/5.85

0.75/1.22

B 0.15/0.14 0.31/0.25 0.50/0.49 0.78/0.96 1.19/1.56 1.67/2.21
C 0.02/0.02 0.16/0.19 0.42/0.46 0.83/1.04 1.36/2.26 1.88/3.57
D 0.05/0.04 0.12/0.12 0.24/0.26 0.37/0.51 0.51/0.79 0.65/1.13
E 0.03/0.06 0.11/0.12 0.34/0.49 0.60/1.15 0.87/1.74 1.17/2.34

SGCN-Aug

A 0.05/0.09 3.20/6.08 7.55/14.20 11.95/22.44 16.37/30.67 20.92/39.11

5.02/ 9.55

B 0.11/0.10 0.46/0.77 1.73/3.32 3.47/6.66 5.36/10.23 7.30/13.88
C 0.02/0.04 1.03/2.09 3.97/7.76 7.19/13.84 10.45/19.95 13.69/26.05
D 0.11/0.10 0.16/0.27 1.41/2.65 2.95/5.42 4.52/8.21 6.10/10.99
E 0.03/0.05 0.31/0.61 2.10/4.33 4.08/8.28 6.08/12.19 8.04/16.09

SGCN-MP-Aug

A 0.34/0.45 0.37/0.44 0.44/0.44 0.53/0.49 0.63/0.61 0.68/0.73

0.48/1.20

B 0.08/0.09 0.10/0.13 0.22/0.57 0.45/ 1.53 0.82/ 2.66 1.28/ 3.89
C 0.04/0.06 0.23/0.44 0.46/1.40 0.79/ 2.57 1.15/ 3.74 1.53/ 4.83
D 0.03/0.06 0.10/0.12 0.14/0.26 0.20/0.48 0.28/0.71 0.36/0.94
E 0.01/0.03 0.22/0.48 0.42/1.06 0.62/ 1.68 0.83/ 2.30 1.04/ 2.91

SGCN-BMP-Aug

A 0.74/0.64 0.72/0.63 0.68/0.61 0.63/0.59 0.59/0.54 0.56/0.51

0.42/0.72

B 0.03/0.05 0.10/0.11 0.15/0.19 0.19/0.33 0.26/0.50 0.33/0.68
C 0.02/0.03 0.38/0.88 0.73/ 1.74 1.08/ 2.53 1.38/ 3.24 1.68/ 3.91
D 0.10/0.09 0.08/0.09 0.12/0.24 0.21/0.49 0.32/0.77 0.44/ 1.03
E 0.02/0.03 0.13/0.12 0.18/0.18 0.22/0.21 0.25/0.28 0.28/0.36

Table 9: Full ADE/FDE scores against different training sets and different speed controls using our synthetic dataset.
A, B, C, D, and E denote the model trained on ETH, HOTEL, UNIV, ZARA1, and ZARA2 respectively. “Src”
indicates which training set is used. “-Aug” means data augmentation is used during training. “-MP“ and “-BMP”
denote the model using the motion prior and trained on Train-on-Best-Motion respectively.
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