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ABSTRACT

World models power some of the most efficient reinforcement learning algorithms. In this work, we
showcase that they can be harnessed for continual learning – a situation when the agent faces changing
environments. World models typically employ a replay buffer for training, which can be naturally
extended to continual learning. We systematically study how different selective experience replay
methods affect performance, forgetting, and transfer. We also provide recommendations regarding
various modeling options for using world models. The best set of choices is called Continual-Dreamer,
it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is
sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning
methods on Minigrid and Minihack benchmarks.
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CRL with world models.

There have been many recent successes in reinforcement learning (RL),
such as in games (Schrittwieser et al., 2019), robotics (OpenAI et al., 2018)
and in scientific applications (Nguyen et al., 2021; Degrave et al., 2022).
However, these successes showcase methods for solving individual tasks.
Looking beyond, the field of continual reinforcement learning (CRL) aims
to develop agents which can solve many tasks, one after another, continually
while retaining performance on all previously seen ones (Khetarpal et al.,
2020). Such capabilities are conjectured to be essential for truly scalable
intelligent systems, Ring (1994) and Hassabis et al. (2017) conjecture
that truly scalable intelligent systems will additionally need to master
many tasks in a continual manner. The field of continual reinforcement
learning (CRL) aims to develop agents which can solve many tasks, one
after another, continually while retaining performance on all previously
seen ones (Khetarpal et al., 2020).

World models combine generative models with RL and have become one of
the most successful paradigms in single-task RL (Ha & Schmidhuber, 2018).
World models are typically trained iteratively, first, the policy interacts with
the environment, second, the collected experience is used to train the world
model and then the policy is trained using hallucinated experience generated
by the world model (Kaiser et al., 2019). Such approaches are typically
sample efficient, offloading the most data-hungry trial-and-error RL training
to the imagined world. Further, generative models can be used to create
compact representations that facilitate policy training and so obtain very
good results for challenging pixel-based environments Hafner et al. (2023).
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This paper explores using world models for learning tasks sequentially. We showcase a method that satisfies the
traditional CL desiderata: avoids catastrophic forgetting, achieves transfer, high average performance, and is scalable.
The proposed method Continual-Dreamer is built on top of DreamerV2 (Hafner et al., 2020) – an RL algorithm, which
achieves state-of-the-art on a number of benchmarks. We define the Continual-Dreamer configuration in Section 5.
DreamerV2 uses replay buffer (Lin, 1992), which we extend across many tasks to mitigate forgetting akin to (Isele &
Cosgun, 2018; Rolnick et al., 2019). Additionally, we demonstrate that world models are capable to operate without
explicit task identification. This is an important requirement in many CRL scenarios and enables further capabilities. In
particular, we implement an adaptive exploration method similar to (Steinparz et al., 2022), which implicitly adapts to
task changes. Based on our empirical results we argue that world-models offer a potent approach for CRL and should
attract more research attention.

Our contributions are as follows1:

• We present the first approach to task-agnostic model-based CRL. We use DreamerV2 as a backbone, and our
work is transferable to other world models.

• We evaluate our method performance on two challenging CRL benchmarks, Minigrid and Minihack, and show
that it outperforms state-of-the-art task-agnostic methods, demonstrating that the model-based paradigm is a
viable solution to CRL.

• We thoroughly explore different experience replay strategies, which address how we sample from or populate
the experience replay buffer to balance preventing forgetting of previously learned skills while enabling
learning new skills from new tasks.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

A Partially Observable Markov Decision Process (POMDP (Kaelbling et al., 1998)) is the following tuple
(S,A, P,R,Ω,O, γ). Here, S and A are the sets of states and actions respectively, such that for st, st+1 ∈ S
and at ∈ A. P (st+1|st, at) is the transition distribution and R(at, st, st+1) is the reward function. Additionally,
γ ∈ (0, 1) is the discount factor. Since the environments we consider are partially observable, the agent does not
have access to the environment state s ∈ S, but only the observations o ∈ Ω, where Ω is the set of observations and
O : S ×A → P (Ω) is an observation function that defines a distribution over observations. Actions at are chosen using
a policy π that maps observations to actions: Ω→ A. For the purposes of this introduction, let us assume we have access
to the states st and we are working with a finite horizon H . Then the return from a state is Rt =

∑H
i=t γ

(i-t)r(si, ai).
In RL the objective is to maximize the expected return J = Eai∼π,s0∼ρ[R1|s0] where s0 ∼ ρ(s0) and ρ(·) is the initial
state distribution.

One approach to maximizing expected return is to use a model-free approach, to learn a policy πφ : S → A with
a parametric model such as a neural network with parameters φ guided by an action-value function Qθ(st, at) with
parameters θ. Alternatively, instead of learning a policy directly from experience we can employ model-based RL
(MBRL) and learn an intermediate model f , for instance, a transition model st+1 = f(st, at) from experience and
learn our policy with additional experience generated from the model f (Sutton, 1991). Instead of working with the
actual state st, our methods consider the observations ot, we employ recurrent policies, action-value functions, and
models to help better estimate states st (Hausknecht & Stone, 2015).

2.2 CONTINUAL REINFORCEMENT LEARNING

In continual RL the agent has a budget of N interactions with each task environment Tτ The agent is then required to
learn a policy to maximize rewards in this environment, before interacting with a new environment and having to learn
a new policy. Each task is defined as a new POMDP, Tτ = (Sτ ,Aτ , Pτ , Rτ ,Ωτ ,Oτ , γτ ). See Appendix A.1 for a
definition of CL in the supervised learning setting.

The agent is continually evaluated on all past and present tasks and so it is desirable for the agent’s policy to transfer to
new tasks while not forgetting how to perform past tasks. CRL is not a new problem setting (Thrun & Mitchell, 1995),
however, its definition has evolved over time and some settings will differ from paper to paper, we employ the setting
above which is related to previous recent work in CRL (Kirkpatrick et al., 2016; Schwarz et al., 2018; Rolnick et al.,
2019; Wolczyk et al., 2021; Kessler et al., 2021; Powers et al., 2021; Caccia et al., 2022).

1Code available: https://github.com/skezle/continual-dreamer
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Assumption on the task distribution. In this work we set out to study how world models deal with changing states
spaces and transition distributions. We assume that for all pairs of tasks Ti and Tj that the state-spaces between tasks
are disjoint: ∀(Ti, Tj), Si ∩ Sj = ∅.2 This setting is popular for evaluating CRL benchmarks (Wolczyk et al., 2021;
Powers et al., 2021).

3 RELATED WORK

Continual Reinforcement Learning. Seminal work in CRL, EWC (Kirkpatrick et al., 2016) enables DQN (Mnih
et al., 2015) to continually learn to play different Atari games with limited forgetting. EWC learns new Q-functions
by regularizing the parameter-weighted L2 distance between the new task’s current weights and the previous task’s
optimal weights. EWC requires additional supervision informing it of task changes to update its objective, select
specific Q-function head and select a task-specific ε-greedy exploration schedule. Progress and Compress (Schwarz
et al., 2018) applies a regularization to policy and value function feature extractors for an actor-critic approach.
Alternatively, LPG-FTW (Mendez et al., 2020) learns an actor-critic that factorizes into task-specific parameters
and shared parameters. Both methods require task supervision and make use of task-specific parameters and shared
parameters. Task-agnostic methods like CLEAR (Rolnick et al., 2019) do not require task information to perform CRL.
CLEAR leverages experience replay buffers (Lin, 1992) to prevent forgetting: by using an actor-critic with V-trace
importance sampling (Espeholt et al., 2018) of past experiences from the replay buffer. Model-based RL approaches to
CRL have been demonstrated where the model weights are generated from a hypernetwork which itself is conditioned
by a task embedding (Huang et al., 2021). Recent work demonstrates that recurrent policies for POMDPs can obtain
good overall performance on continuous control CRL benchmarks (Caccia et al., 2022). Another task-aware solution
is to expand a subspace of policies, the number of policies scaling sublinearly with the number of tasks (Gaya et al.,
2022). Of the related works presented, only CLEAR is task-agnostic and so is the primary baseline under consideration
when comparing task-agnostic world model approaches to CRL. A number of previous works have studied transfer in
multi-task RL settings where the goals within an environment change (Barreto et al., 2017; Schaul et al., 2015; Barreto
et al., 2019). In particular, incorporating the task definition directly into the value function (Schaul et al., 2015) and
combining this with off-policy learning allows a CRL agent to solve multiple tasks continually, and generalize to new
goals (Mankowitz et al., 2018). Model-based RL mathods have also been assessed by looking at how quickly they
can adapt to changes in reward function (Van Seijen et al., 2020). When only the reward function changes between
tasks then experience from the replay buffer can interfere to prevent learning a new task or cause forgetting (Wan et al.,
2022). The problem of interference can be mitigated by having separate policy heads per task (Kessler et al., 2021).
See Appendix A.2 for related works on continual supervised learning.

Continual Adaptation. Instead of focusing on remembering how to perform all past tasks, another line of research
investigates quick adaptation to changes in the environment. This can be captured by using a latent variable and
off-policy RL (Xie et al., 2020). Alternatively, one can meta-learn a model such that it can then adapt quickly to
new changes in the environment (Nagabandi et al., 2018). All these works use small environment changes such
as modification of the reward function or variations in gravity or mass of certain agent limbs as new tasks. The
tasks which we consider in this work contain substantially different A, S from one task to the next. For example,
skills such as opening doors with keys or avoiding lava, or crossing a river which are quite different in comparison.
Continual exploration strategies which use curiosity (Pathak et al., 2017) can be added as an intrinsic reward in the
face of non-stationary environments in infinite horizon MDPs (Steinparz et al., 2022). The disagreement between an
ensemble of models that predict the next state from the current state and action has been shown to be effective for
exploration (Pathak et al., 2019). Our proposed model uses Plan2Explore which uses forward prediction disagreement
and outperforms curiosity-based methods (Sekar et al., 2020). The tasks themselves can be meta-learned using a latent
variable world model and task similarities can be exploited when learning a new task (Fu et al., 2022).

Curriculum Learning. Another related area of research is open-ended learning which aims to build agents that
generalize to unseen environments through a curriculum that starts off with easy tasks and then progresses to harder
tasks thereby creating agents which can generalize (Wang et al., 2019; Team et al., 2021; Parker-Holder et al., 2022).

4 WORLD MODELS FOR CONTINUAL REINFORCEMENT LEARNING

We leverage world models for learning tasks sequentially without forgetting. We use DreamerV2 (Hafner et al., 2020)
which introduces a discrete stochastic and recurrent world model that is state of the art on numerous single-GPU RL
benchmarks. This is a good choice for CRL since the world model is trained by reconstructing state, action, and reward

2Since we are working with POMDPs certain observations from different tasks might coincide.
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trajectories from experience, we can thus leverage experience replay buffers which persist across tasks to prevent
forgetting in the world model. Additionally, we can train a policy in the imagination or in the generated trajectories of
the world model, similar to generative experience replay methods in supervised CL which remember previous tasks by
replaying generated data (Shin et al., 2017). Thus, using a world model is also sample efficient. Also, world models
are task-agnostic and do not require external supervision about task changes, without signaling to the agent that it is
interacting with a new task. Additionally, by generating rollouts in the world model’s imagination the uncertainty in
the world model’s predictions, more specifically the disagreement between predictions can be used as a task-agnostic
exploration bonus. To summarize, we propose using model-based RL with recurrent world models as a viable method
for CRL, see Algorithm 1 for an overview, with DreamerV2 as the world model. Recently, world models have been
shown to collect diamonds in Minecraft, a very hard skill to achieve which requires the composition of many other
skills with DreamerV3 (Hafner et al., 2023), the ideas introduced in this manuscript are directly applicable to newer
world model methods as well.

Algorithm 1 CRL with World Models

1: Input: Tasks (environments) T1:T , world model M , policy π,
experience replay buffer D.

2: for T1 to TT do
3: Train world model M on D.
4: Train π inside world model M .
5: Execute π in task Tτ to gather episodes and append to D.
6: end for

Learning the World Model. DreamerV2 learns a
recurrent (latent) state-space world model (RSSM)
which predicts the forward dynamics of the environ-
ment. At each time step t the world model receives
an observation ot and is required to reconstruct
the observations, ot conditioned on the previous
actions a<t (in addition to reconstructing rewards
and discounts). The forward dynamics are modeled
using an RNN, ht = GRU(ht−1, zt, at) (Chung
et al., 2014) where ht is the hidden state zt are the
discrete probabilistic latent states (Van Den Oord
et al., 2017) which condition the observation pre-
dictions p(ot|zt, ht). Trajectories are sampled from an experience replay buffer and so persisting the replay buffer
across different tasks should alleviate forgetting in the world model (Rolnick et al., 2019).

Policy Learning inside the World Model. The policy π is learned inside the world model by using an actor-
critic (Sutton & Barto, 2018) while freezing the weights of the RSSM world model. At each step t of the dream inside
the RSSM world model a latent state zt is sampled, zt, and the RNN hidden state condition the actor ât ∼ π( · |zt, ht).
The reward r̂t+1 is predicted by the world model. The policy, π is then used to obtain new trajectories in the real
environment. These trajectories are added to the experience replay buffer. An initial observation o1 is used to start
generating rollouts for policy learning. This training regime ensures that the policy generalizes to previously seen
environments through the world model.

Task-agnostic Exploration. The policy learns using the imagined trajectories from the RSSM world model and the
world model’s predicted rewards are used as a signal for the agent’s policy and critic. The policy is also used to gain
experience inside the real environment. For exploration, the policy prioritizes regions of the state and action space
where the world model produces uncertain predictions. Hence, the uncertainty in the world model’s trajectory prediction
can be used as an additional intrinsic reward. This idea underpins Plan2Explore (Sekar et al., 2020) which naturally fits
with DreamerV2.

The world model quantifies the uncertainty in the next latent state prediction by using a deep ensemble; multiple neural
networks with independent weights. Deep ensembles are a surprisingly robust baseline for uncertainty quantification
(Lakshminarayanan et al., 2017) and the ensemble’s variance is used as an intrinsic reward. The exploration neural
networks in the ensemble are trained to predict the next RSSM latent features [zt+1, ht+1]. The world model is frozen
while the ensemble is trained.

The policy π observes the reward r = αiri + αere, where re is the extrinsic reward predicted by the world model, ri is
the intrinsic reward, the latent disagreement between the next latent state predictions. The coefficients αi and αe are
∈ [0, 1]. Hence the policy π can be trained inside the world model to seek regions in the state-action space that the world
model struggles to predict and hence when the policy is deployed in the environment it will seek these same regions in
the state-action space to obtain new trajectories to train the RSSM world model. The exploration strategy is significant
for CRL since it is not task dependent unlike using DQN where each task needs an ε-greedy schedule (Kirkpatrick et al.,
2016; Kessler et al., 2021) or SAC (Haarnoja et al., 2018) which needs an entropy regularizer per task (Wolczyk et al.,
2021).

4



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Figure 1: Performance of CRL agents on 3 Minigrid tasks. Grey-shaded regions indicate the environment which the
agent is currently interacting with. All learning curves are a median and inter-quartile range across 20 seeds. On the
right, we pick a random instantiation of the Minigrid environments that are being evaluated.

4.1 SELECTIVE EXPERIENCE REPLAY METHODS

To enable Continual-Dreamer to remember how to solve all the previous tasks it has learned with a limited replay buffer
size requires us to select important trajectories to fill the experience replay buffer and selectively choose trajectories to
train the world model. DreamerV2 uses a first-in-first-out (FIFO) replay buffer. It also randomly samples trajectories
from the replay buffer to train the world model on and also randomly samples a trajectory so that the world model can
start dreaming and allow the policy can learn inside the dream. In such a scenario, catastrophic forgetting can occur
due to the loss of experience from previous tasks since the replay buffer is FIFO. There is prior work on managing
experience replay buffers from supervised CL (Caccia et al., 2019) and off-policy RL (Isele & Cosgun, 2018) which we
can systematically study for the application of CRL with world models. To ensure that we have a uniform sample of
experience from all tasks in the replay buffer to sample from we explore the following methods:

• Reservoir Sampling (rs) (Vitter, 1985; Isele & Cosgun, 2018): enables a uniform distribution over all task
experience seen so far. This is achieved by storing new examples in the replay buffer with a decreasing
probability of min(n/t, 1), where t is the number of trajectories seen so far and n is the size of the replay
buffer. This can be paired with any method of sampling from the replay buffer. By default, this is using
random sampling. Reservoir sampling does not check for duplicate examples when storing experience. In
practice, we found no duplicates when checking the episodes in the replay buffer using the experimental setup
in Section 5.1, this is not a surprise since our task environments are procedurally generated, see Section 5 for
further experimental details.

• Coverage Maximization (cm) (Isele & Cosgun, 2018): also attempts to create a uniform distribution of
experience seen so far. Experience is added to the replay buffer by checking how close it is to trajectories already
stored in the replay buffer. Trajectories are embedded using a fixed convolutional LSTM architecture (Shi
et al., 2015) and we can calculate distances using an L2 distance between the LSTM hidden state with respect
to 1000 randomly selected trajectories from the replay buffer. The median distance determines the priority for
the sample to be added to the replay buffer.

In addition to methods that populate the experience replay buffer, we can also consider how we should construct the
mini-batch for world model and policy learning. For instance, we can prioritize more informative samples to help
remembering and help learning new tasks to aid stability and plasticity. We consider 3 approaches:

• Uncertainty sampling (us): we construct a minibatch of experience where the probability of sampling
an episode corresponds to the trajectory’s uncertainty or intrinsic reward from Plan2Explore. Next state
uncertainties are generated for each transition and summed and normalized per trajectory before it is added to
the replay buffer. We only calculate the uncertainty once before it is added to the replay buffer. This is similar
to sampling the replay buffer according to the size of the temporal-difference error, known as sampling via
“surprise” (Isele & Cosgun, 2018). The temporal difference error is also only calculated once when transitions
are added to the experience replay buffer for DQN.

• Reward sampling (rwd) (Isele & Cosgun, 2018): we construct a mini-batch of experience for world model
learning where the probability that an episode is sampled, corresponds to the reward from the environment.

• 50:50 sampling, of past and recent experience. We construct a mini-batch for world model learning based on
a 50:50 ratio of uniform random sampling from the replay buffer and sampling from a triangular distribution
that favors the most recent experience added so far to help learning more recent tasks. This idea is similar to
the on-policy off-policy ratio of learning in CLEAR (Rolnick et al., 2019) which also aims to balance stability
and plasticity.
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Avg. Performance (↑) Avg. Forgetting (↓) Avg. Forward Transfer (↑)
Impala 0.00± 0.00 0.00± 0.00 0.00± 0.00
CLEAR 0.03± 0.05 0.01± 0.06 0.03± 0.03

Impala×10 0.16± 0.16 0.06± 0.13 -
CLEAR×10 0.64± 0.20 0.00± 0.00 -

DreamerV2 0.72± 0.24 −0.11± 0.30 0.49± 0.83
DreamerV2 + p2e 0.46± 0.10 0.05± 0.18 0.43± 0.22

Table 1: Results on 3 Minigrid tasks. All metrics are an average and standard deviation over 20 seeds. We use 0.75M
interactions for each task and 7.5M in methods marked with ×10. ↑ indicates better performance with higher numbers,
and ↓ the opposite.

4.2 TASK-AWARE BASELINE

All replay buffer management techniques presented above are task-agnostic, i.e. operate without explicit task identifi-
cation. We also consider a task-aware baseline for comparison, we use L2 weight regularization with respect to the
weights from the previous task, which is a simple regularization-based approach to CRL. In this scenario, after the first
task, we add to each loss function, an additional objective that minimizes the distance between the current model and
policy weights and the optimal weights from the previous task.

5 EXPERIMENTS

Our results indicate that DreamerV2 and DreamerV2 + Plan2Explore obtain good out-of-the-box performance for CRL
on 3 Minigrid tasks (Chevalier-Boisvert et al., 2018). On a harder Minihack (Samvelyan et al., 2021) tasks from the
CORA suite (Powers et al., 2021), we find that DreamerV2 and DreamerV2 + Plan2Explore exhibit forgetting. To
address forgetting we systematically study various selective experience replay methods. The best configuration uses
reservoir sampling (Vitter, 1985) which we name Continual-Dreamer and Continual-Dreamer + Plan2Explore. We use
two primary baselines. First, Impala which is a powerful deep RL method not designed for CRL (Espeholt et al., 2018).
Second, we consider CLEAR (Rolnick et al., 2019) which uses Impala as a base RL algorithm and leverages experience
replay buffers to prevent forgetting and is task-agnostic.

Throughout our experiments, we use 3 different metrics average performance, average forgetting, and average forward
transfer Appendix B, to assess the effectiveness of each method (Wolczyk et al., 2021) in addition to qualitatively
inspecting the learning curves.

5.1 MINIGRID
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Figure 2: Return averaged over all tasks for
various CRL agents on 4 Minihack tasks. All
learning curves are IQM from the rliable
package across 10 seeds and 1000 bootstrap
samples (Agarwal et al., 2021).

We test the out-of-the-box performance of DreamerV2 and Dream-
erV2 + Plan2Explore as a CRL baseline on 3 sequential Mini-
grid tasks. Minigrid is a challenging image-based, partially ob-
servable, and sparse reward environment. The agent, in red, will
get a reward of +1 when it gets to the green goal Figure 1. The
agent sees a small region of the Minigrid environment as observa-
tion, ot. We use 3 different tasks from Minigrid: DoorKey-9x9,
SimpleCrossing-SN9 and LavaCrossing-9x9. Each en-
vironment has a different skill and so the tasks are diverse. Each
method interacts with each task for 0.75M environment interactions,
as previously proposed in (Kessler et al., 2021).

We evaluate CRL agents on all tasks, see Figure 1. The results in-
dicate that DreamerV2 is able to solve difficult exploration tasks
like the DoorKey-9x9. Additionally, since DreamerV2 trains
its policy inside the world model it is more sample efficient than
CLEAR which needs ×10 more environment interactions to be able
to solve the easier Minigrid tasks SimpleCrossing-SN9 and
LavaCrossing-9x9, Table 1. The addition of Plan2Explore en-
ables DreamerV2 to solve these environments even more quickly,
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see Figure 1. DreamerV2 does exhibit some forgetting of the DoorKey-9x9 task and this indicates that additional
mechanisms to prevent forgetting might be needed.

Figure 3: Metrics on 4 Minihack tasks using interquartile mean with 20 runs with different seeds and 1000 bootstrap
samples from the rliable package (Agarwal et al., 2021).

From the metrics in Table 1 we can see that DreamerV2 has strong forward transfer. From the learning curves for
individual tasks Figure 7 we can see that DreamerV2 struggles with independent task learning over the course of 1M
environment steps. In contrast, when learning continually DreamerV2 is able to solve all tasks indicating that it transfers
knowledge from previous tasks. This is not entirely surprising since the levels look similar and so the world model will
be able to reconstruct observations of a new task more quickly compared to reconstruction from scratch.

For DreamerV2 we use the model and hyperparameters from (Hafner et al., 2020) with an experience replay buffer for
world model learning of size 2M. For DreamerV2 + Plan2Explore we set the reward coefficients to αi = αe = 0.9 which
was found by grid search of various single task Minihack environments over {0.1, 0.5, 0.9} we use the same policy
for exploration and evaluation and learn the world model by observation reconstruction only, rather than observation,
reward, and discount reconstruction. We explore these design decisions using the Minihack benchmark in Appendix D.4.
For CLEAR we also use an experience replay buffer size of 2M like DreamerV2 and DreamerV2 + Plan2Explore.

5.2 MINIHACK
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Figure 4: Proportion of episodes from each task in the
replay buffer for different replay buffer construction
strategies at 2M, 3M, and 4M environment steps on 4
task Minihack. Bar plots are an average of 5 runs.

We test DreamerV2 and DreamerV2 with Plan2Explore on a set
of harder Minihack tasks (Samvelyan et al., 2021). Minihack
is a set of diverse, image-based, and sparse reward tasks based
on the game of Nethack (Küttler et al., 2020) which have larger
state spaces than MiniGrid and require learning more difficult
skills such as crossing rivers by pushing multiple rocks into the
river for instance. This will test the task-agnostic exploration
mechanism from Plan2Explore further. We use 4 tasks
Minihack tasks: in particular, we consider the following tasks
Room-Random-15x15-v0, Room-Trap-15x15-v0,
River-Narrow-v0, and River-Monster-v0 which
are a subset of the 12 Minihack tasks from the CORA CRL
benchmark (Powers et al., 2021). Each task is seen once and
has a budget of 1M environment interactions. We use the same
experimental setup as in Section 5.1, however, we keep the
sizes of the experience replay buffer fixed to 1M for both DreamerV2, its variants, and CLEAR.

We perform a comprehensive evaluation of various replay buffer management and mini-batch selection strategies. We
find that using reservoir sampling together with DreamerV2 and DreamerV2 + Plan2Explore is the best configuration
which we name Continual-Dreamer, see detailed analysis in Section 5.2.1. The results of the Minihack experiment,
as shown in Figure 2, demonstrate that Continual-Dreamer and Continual-Dreamer + Plan2Explore perform better
than the baselines regarding the average return over all tasks and 10 seeds. In particular, Continual-Dreamer and
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Figure 5: Metrics on 8 Minihack tasks using interquartile mean with 10 runs with different seeds and 1000 bootstrap
samples. The results for DreamerV2 + rs + 50:50 with and without Plan2Explore are an interquartile mean with 5 runs
with different seeds and 1000 bootstrap samples.
Continual-Dreamer + Plan2Explore exhibit faster learning on new tasks. Neither task-agnostic continual learning
baselines, Impala and CLEAR, can learn the most difficult task River-Monster-v0, Figure 9. These results
suggest that world models are effective for consolidating knowledge across environments and changing task objectives.
We also compare to a task-aware baseline: an L2 regularization of the world model and actor-critic about the previous
task’s optimal parameters Figure 10. We find that this performs poorly.

5.2.1 EVALUATION OF DIFFERENT SELECTIVE REPLAY METHODS

Figure 3 presents results for different replay strategies. If we consider DreamerV2 and DreamerV2 + Plan2Explore we
can see that there is some forgetting of the first Room tasks, see Figure 9. Our main finding is that reservoir sampling
robustly mitigates forgetting, which gives rise to Continual-Dreamer.

We can increase plasticity by biasing the sampling toward recent experiences. We can see that if we add 50:50 sampling
of the minibatch construction together with reservoir sampling, this causes inconsistent effects. For Continual-Dreamer,
50:50 sampling increases forgetting while the performance remains constant, indicating better learning of harder tasks
and transfer. On the other hand, when 50:50 sampling is applied to Continual-Dreamer + Plan2Explore performance
and forgetting worsen.

We tested DreamerV2’s performance in other variants, including uncertainty sampling (us), coverage maximization
(cm), and reward sampling (rwd). The results we obtained are consistent with prior works (Isele & Cosgun, 2018).
It can be seen that us performed closely to Impala with low performance, forward transfer, and high forgetting.
Using rwd sampling results in performance that does not improve over random sampling of the minibatch. Using
cm with DreamerV2 and DreamerV2 + Plan2Explore results in less forgetting. However, it behaves inconsistently
when observing performance; performance increases when applied to DreamerV2 and it decreases when applied to
DreamerV2 + Plan2Explore. As a baseline, we also tested a naive approach, which is to increase the size of the replay
buffer; this indeed prevents forgetting and increases performance, see Appendix D.5. However, this is at the cost of
making it harder to learn new tasks: the harder exploration Minihack tasks are not solved and forward transfer decreases
as we increase the size of the replay buffer. In Figure 4 we can see the mini-batch task composition at 2M, 3M and
4M steps for 4 task Minihack for various replay buffer management methods. As training progresses the FIFO will
lose experience from earlier tasks, whereas rs and cm are able to retain experience from earlier tasks. rs retains a
more uniform distribution. Whereas cm - which is distance based - retains fewer samples from intermediate tasks, e.g.
Task 1 at 4M steps since embeddings look similar to Task 0. We store entire episodes of state, action, and rewards
in the replay buffer. When a task is mastered shorter episodes where the agent navigates to the goal are stored in the
replay buffer. When adding experience from a new task the episodes are longer (episodes can reach the cut-off of 100
transitions before the episode is ended) and thus require more episodes of past data to be removed to make way for it in
the reservoir sampling update. Due to this phenomenon, there are relatively fewer samples from the earlier tasks in the
replay buffer. We perform a similar analysis for the sampling methods we consider in Appendix D.8.

5.3 SCALING TO MORE TASKS

We scale to 8 Minihack tasks from the CORA suite: Room-Random-15x15-v0, Room-Monster-15x15-v0,
Room-Trap-15x15-v0, Room-Ultimate-15x15-v0, River-Narrow-v0, River-v0,
River-Monster-v0 and HideNSeek-v0. For DreamerV2 and its variants and for CLEAR we set the
size of the experience replay buffer to 2M. We can see that by using reservoir sampling with 50:50 sampling
prevents forgetting and slightly improves performance in DreamerV2 and DreamerV2 + Plan2Explore Figure 5.
Performance over CLEAR is also improved by introducing reservoir sampling and 50:50 sampling. The difficult
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Minihack tasks, such as River-v0, River-Monster-v0 and HideNSeek-v0 are solved by DreamerV2 and its
variants but not by CLEAR Figure 11. We conjecture that warm-starting the world model by solving easier related
tasks enables DreamerV2 to improve its downstream performance. For instance the single-task DreamerV2, see
Figure 8, does not solve River-Monster-v0 as often as continual agent Figure 11. Arguably, the skills learned in
Room-Monster-15x15-v0 and River-v0 enable DreamerV2 to solve River-Monster-v0.

6 LIMITATIONS

Interference. Continual-Dreamer uses a replay buffer of past experience for retaining skills. Interference from past
data is when past samples prevent the learning of new tasks in the face of changing reward functions or goal locations.
This has been shown in world-models (Wan et al., 2022) and off-policy RL (Kessler et al., 2021). Continual-Dreamer
and the selective experience replay methods which are explored are not intended to prevent interference from past
samples. We show interference can affect DreamerV2 on the Minigrid FourRooms-v0 environment with changing
rewards/goals for 2 different tasks in Appendix D.6.

Task data imbalances. The selective experience replay considered for managing experience in the replay buffer are
not designed for keeping an even distribution of task data in the replay buffer in the face of imbalanced tasks. To
illustrate this, we consider a 2 task scenario with 0.4M interactions of Room-Random-15x15-v0 and then 2.4M
interactions of River-Narrow-v0 and a replay buffer of size 0.4M. We see that both rs and cm are unable to retain
the performance of the first Room-Random-15x15-v0 similarly to a FIFO buffer Figure 6. For rs experience from
the longer second task will saturate the replay buffer. While cm is able to retain a small number of samples from the
first task, but not enough to prevent forgetting, since it uses a distanced-based criterion to populate the replay buffer. So
cm-type approaches to replay buffer management could be a fruitful method for managing task imbalances.

7 DISCUSSION AND FUTURE WORKS

Figure 6: Top, learning curves for imbalanced number
of interactions with Room-Random-15x15-v0
and River-Narrow-v0. Bottom, the number of
episodes from each task in the replay buffer for rs and
cm. The grey shaded region indicates which timesteps
the agent interacts with a task. All runs are interquar-
tile ranges over 20 random seeds.

We have explored the use of world models as a task-agnostic
CRL baseline. World models can be powerful CRL agents as
they train the policy inside the world model and can thus be
sample efficient. World models are trained by using experience
replay buffers and so we can prevent forgetting of past tasks by
persisting the replay buffer across from the current task to new
tasks. Importantly, the world model’s prediction uncertainty can
be used as an additional intrinsic task-agnostic reward to help
exploration and solve difficult tasks in a task-agnostic fashion
(Sekar et al., 2020). Previous CRL exploration strategies in
the literature all require an indication of when the agent stops
interacting with a previous task and starts interacting with a
new task to reset an exploration schedule. Our implementation
uses DreamerV2 as the world model (Hafner et al., 2020), and
we demonstrate a selective experience replay setting which we
call Continual-Dreamer which is a powerful CRL method on
two difficult CRL benchmarks.

We show empirically that world models can be a strong task-
agnostic baseline for CRL problems compared to state-of-the-
art task-agnostic methods (Rolnick et al., 2019). DreamerV2
with Plan2Explore outperforms CLEAR on Minigrid. Our
experiments on Minihack test the limits of using world models
for CRL and require us to introduce experience replay buffer management methods to aid in retaining skills in addition
to enabling the learning of new skills. We show that reservoir sampling enables an even coverage of experience in
the replay buffer to mitigate forgetting. We call this configuration of DreamerV2 with reservoir sampling Continual-
Dreamer. Future work will explore continuous control CRL benchmarks, such as ContinualWorld (Wolczyk et al., 2021)
and explore other world-models.
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APPENDIX A CONTINUAL SUPERVISED LEARNING

A.1 DEFINITION

Continual Learning (CL) is a setting whereby a model must master a set of tasks sequentially while maintaining
performance across all previously learned tasks. Other important objectives are to develop scalable CL methods
which are able to transfer knowledge from previous tasks to aid the learning of new tasks, known as forward transfer.
Traditionally, in supervised CL, the model is sequentially shown T tasks, denoted Tτ for τ = 1, . . . , T . Each task, Tτ ,
is comprised of a dataset Dτ = {(xi, yi)}Nτi=1 which a neural network is required to learn from. More generally, a
task is denoted by a tuple comprised of the conditional and marginal distributions, {pτ (y|x), pτ (x)}. After task τ , the
model will lose access to the training dataset for Tτ , however, its performance will be continually evaluated on all tasks
Ti for i ≤ τ . For a comprehensive review of CL scenarios see (Hsu et al., 2018; Van de Ven & Tolias, 2019).

A.2 RELATED WORKS

Here, we briefly describe CL methods. One approach to CL referred to as regularization approaches regularizes a NN’s
weights to ensure that optimizing for a new task finds a solution that is “close” to the previous task’s (Kirkpatrick et al.,
2016; Nguyen et al., 2018; Zenke et al., 2017). Working with functions can be easier than with NN weights and so
task functions can be regularized to ensure that learning new function mappings are “close” across tasks (Li & Hoiem,
2017; Benjamin et al., 2019; Buzzega et al., 2020). By contrast, expansion approaches add new NN components to
enable learning new tasks while preserving components for specific tasks (Rusu et al., 2016; Lee et al., 2020). Memory
approaches replay data from previous tasks when learning the current task. This can be performed with a generative
model (Shin et al., 2017). Or samples from previous tasks (memories) (Lopez-Paz & Ranzato, 2017; Aljundi et al.,
2019; Chaudhry et al., 2019).
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APPENDIX B CONTINUAL REINFORCEMENT LEARNING METRICS

We describe in detail how to calculate the continual reinforcement learning metrics used extensively throughout this
manuscript.

B.1 AVERAGE PERFORMANCE

This measures how well a CRL method performs on all tasks at the end of the task sequence. The task performance
is pτ (t) = [−1, 1] for all τ < T . Since we have a reward of +1 for completing the task and −1 for being killed by a
monster or falling into lava. If each task is seen for N environment steps and we have T tasks and the τ -th task is seen
over the interval of steps [(τ − 1)×N, τ ×N ]. The average final performance metric for our continual learning agent
is defined as:

p(tf ) =
1

T

T∑
τ=1

pτ (tf ), (B.1)

where tf = N × T is the final timestep.

B.2 FORGETTING

The average forgetting is the performance difference after interacting with a task versus the performance at the end of
the final task. The average forgetting across all tasks is defined as:

F =
1

T

T∑
τ=1

Fτ where Fτ = pτ (τ ×N)− pτ (tf ). (B.2)

The forgetting of the final T -th task is FT = 0. If a CRL agent has better performance at the end of the task sequence
compared to after τ -th task at time-step τ ×N then Fτ < 0. Note that both the average performance and the forgetting
metrics are functions of pτ (tf ) so we expect anti-correlation between these two metrics.

B.3 FORWARD TRANSFER

The forward transfer is the difference in task performance during continual learning compared to the single task
performance. The forward transfer is defined:

FT =
1

T

T∑
τ=1

FTτ where FTτ =
AUCτ − AUCrefτ

1− AUCτ
, (B.3)

where AUC denotes the area under the curve and is defined as:

AUCτ =
1

N

∫ τ×N

(τ−1)×N
pτ (t)dt and AUCrefτ =

1

N

∫ N

0

prefτ (t)dt. (B.4)

FTτ > 0 means that the CRL agent achieves better performance on task τ during continual learning versus in isolation.
So this metric measures how well a CRL agent transfers knowledge from previous tasks when learning a new task.

APPENDIX C SINGLE TASK EXPERIMENTS

To assess the forward transfer of DreamerV2 for CRL we need the performance of each task as a reference Equation (B.3).
Single task learning curves for Minigrid are shown in Figure 7 and single task learning curves for all Minihack tasks are
shown in Figure 8.

APPENDIX D FURTHER EXPERIMENTS

We introduce further experiments which are referenced in the main paper. In Appendix D.1 we show learning
curves for each individual task for 4 task Minihack. In Appendix D.2 we show the results of the regulariza-
tion based task-aware world model baseline. In Appendix D.3 we show learning curves for each individual
task from 8 task Minihack experimental setup. In Appendix D.4 we explore various design choices required
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Figure 7: Single task performance of on individual tasks from the Minigrid CRL benchmark. All curves are a median
and inter-quartile range over 20 seeds.
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Figure 8: Single task performance on individual tasks from the Minihack CRL benchmark. All curves are a median and
inter-quartile range over 10 seeds.

for DreamerV2 with Plan2Explore to get the best performance for CRL. In Appendix D.5 we explore how
increasing the size of the experience replay buffer size affects performance in the Minihack CRL bench-
mark. These experiments are on 8 tasks of Minihack. The 8 tasks are a subset of those introduced in the
CORA Minihack suite (Powers et al., 2021) and are a superset of the 4 tasks in the main paper. The 8
tasks, in order, are: Room-Random-15x15-v0, Room-Monster-15x15-v0, Room-Trap-15x15-v0,
Room-Ultimate-15x15-v0, River-Narrow-v0, River-v0, River-Monster-v0, and
HideNSeek-v0.

D.1 4 TASK MINIHACK

Figure 9 shows the success rates of the baseline methods and DreamerV2 variants for each of the four tasks in the
Minihack experiment Section 5.2. Continual Dreamer successfully balances retaining knowledge from previous tasks
and learning new ones. On the other hand, the CLEAR baseline can only learn the first two tasks with a significant
delay, while Impala struggles on all tasks. DreamerV2 and DreamerV2 + Plan2Explore perform poorly on the last task
and exhibit more forgetting than Continual-Dreamer.

D.2 TASK-AWARE WORLD-MODEL BASELINE

Differences for task-agnostic and task-aware variants of DreamerV2 are shown in Figure 10. The task-aware variant
based on L2 regularization, underperforms in comparison to task-agnostic methods. The plausible explanation is that
L2 regularization makes the method too rigid to efficiently learn the two last tasks because of the excessive influence of
the first tasks. We optimize the size of the L2 scaling from the set {10−4, 10−3, 10−2, 10−1, 1, 10, 100}.
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Figure 9: Detailed, per task, comparison of baselines and DreamerV2 variants that are presented in Figure 2 with
average return. All curves are a median and inter-quartile range over 20 seeds.
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Figure 10: Comparison of the average return over all tasks between task-aware and task-agnostic approaches based on
DreamerV2, on 4 Minihack tasks. All curves are IQM from rliable package across 10 seeds and 1000 bootstrap
samples.
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Figure 11: Learning curves for 8 Minihack tasks for DreamerV2 and variants and Impala and CLEAR baselines. All
curves are a median and interquartile range of 10 seeds.

Plan2Explore ô reconstruction only πexp = πeval Avg. Performance (↑) Avg. Forgetting (↓) Avg. Forward Transfer (↑)
- - - 0.09± 0.07 0.37± 0.07 0.56± 0.86
4 - - 0.28± 0.13 0.13± 0.08 0.11± 0.15
4 4 - 0.39± 0.13 0.19± 0.16 0.87± 0.95
4 4 4 0.38± 0.03 0.22± 0.05 0.76± 0.25

Table 2: CRL metrics for different design decisions on DreamerV2 for the Minihack CRL benchmark of 8 tasks. All
metrics are an average and standard deviation over 5 seeds. ↑ indicates better performance with higher numbers, and ↓
the opposite.

D.3 SCALING TO 8 TASKS

The results for 8 Minihack tasks are shown in Figure 11. DreamerV2 variants display strong knowledge retention and
effective learning on almost every task compared to baseline methods. CLEAR method struggle with the last 4 tasks,
whereas Impala’s performance is poor on every task. DreamerV2 and variants displays forgetting of the initial tasks, for
which CLEAR retains the highest performance. However, CLEAR, in contrast to DreamerV2 variants, struggles to
learn novel tasks.

D.4 DREAMERV2 ABLATION EXPERIMENTS

We explore various design choices which come from the implementations of DreamerV2 (Hafner et al., 2020) and
Plan2Explore (Sekar et al., 2020).

1. The use of Plan2Explore as an intrinsic reward.

2. World model learning by reconstructing the observations ôt only and not the observations, rewards, and
discounts altogether.

3. The use of the exploration policy to evaluate the performance on all current and past tasks rather than having a
separate exploration and evaluation policy.

The results are shown in Table 2. We decided to pick the model in the final line in Table 2 to report the results in the
main paper as they produce good results on Minihack with a relatively small standard deviation.
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Figure 12: CRL metric package for DreamerV2 + Plan2Explore for the Minihack benchmark of 8 tasks versus the
experience replay buffer size of the world model for DreamerV2 + Plan2Explore. All metrics are an interquartile mean
(IQM) over 5 seeds with 1000 bootstrap samples from the rliable.

D.5 STABILITY VERSUS PLASTICITY: INCREASING THE SIZE OF THE REPLAY BUFFER

By increasing the replay buffer size for world model learning for DreamerV2 + Plan2Explore we see that forgetting
and average performance increase. However, the forward transfer simultaneously decreases, Figure 12. Additionally,
by inspecting the learning curves we notice that the harder exploration tasks are not learned as the replay buffer size
increases. This is an instance of the stability-plasticity trade-off in continual learning the larger buffer size enables
better remembering but simultaneously prevents quickly learning the new tasks.

D.6 INTERFERENCE

We observe interference explicitly using DreamerV2 with Plan2Explore on the Minigrid FourRooms-v0 environment
where we change the reward function or goal location from one task to another Figure 13. We train for 1M steps on
the first task, then 1M steps on the second task where the goal location has changed with all else the same. From
the learning curves for each individual run, we can see how only one task will ever be solved with simultaneously
poor performance in the second task (with the exception of one seed, in blue, which switches between solving and not
solving each task).

D.7 DECREASING THE REPLAY BUFFER SIZE

Figure 13: Top, 2 FourRooms-v0 environment on
with fixed agent start location, agent start orienta-
tion, and obstacles. Only the goal or reward function
changes from one task to the next. Bottom, 4 sepa-
rate success rate learning curves for different random
seeds in different colours for DreamerV2 + p2e.

We decrease the size of the replay buffer for DreamerV2 and
variants to see how well it is able to manage environment recon-
struction in the face of continual learning and decreasing replay
buffer size. We consider the 3 task Minigrid continual learning
problem and decrease the size of the replay buffer from 2× 106

transitions which is used in Section 5.1 to replay buffers of size
{104, 105, 106} transitions.

From the results in Figure 14, we can see that DreamerV2
and its variants under-perform with small replay buffers of
size 104 and 105. DreamerV2 with Plan2Explore is unable
to learn with such small replay buffers. DreamerV2 by itself
is better at learning under small replay buffers. DreamerV2
with Plan2Explore learns to solve the difficult DoorKey-9x9
problem only when it has a replay buffer size of 106. We
can also see that reservoir sampling helps against catastrophic
forgetting for both Dreamer and DreamerV2 with Plan2Explore
with replay buffer sizes of 105 and 106.

D.8 ANALYSIS OF REPLAY BUFFER SAMPLING METHODS

We analyze the workings of the different minibatch construc-
tion sampling methods: random sampling, us, rwd and 50:50
sampling. For 50 : 50 sampling we also employ reservoir sam-
pling (since in our experiments in Section 5 we employ it to
add plasticity to rs). All other sampling methods use a FIFO replay buffer. We plot histograms of the episode index

19



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
T1: DoorKey-9x9-v0

DreamerV2 DreamerV2 + p2e DreamerV2 +rs DreamerV2 + p2e + rs CLEAR

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

T2: LavaCrossing-S1N9-v0

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

T3: SimpleCrossing-S1N9-v0

Pr
op

or
tio

n 
of

 su
cc

es
se

s

Replay buffer size 104.

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
T1: DoorKey-9x9-v0

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

T2: LavaCrossing-S1N9-v0

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

T3: SimpleCrossing-S1N9-v0

Pr
op

or
tio

n 
of

 su
cc

es
se

s

Replay buffer size 105.

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
T1: DoorKey-9x9-v0

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0 T2: LavaCrossing-S1N9-v0

0.0 0.6 1.2 1.8 2.4 3.0
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

T3: SimpleCrossing-S1N9-v0

Pr
op

or
tio

n 
of

 su
cc

es
se

s

Replay buffer size 106.

Figure 14: Learning curves for continual learning on 3 different Minigrid tasks with 1M environment interactions per
task before changing task. The replay buffer is decreased from the experiments in Section 5.1 to 104 transitions in the
top row, 105 in the middle row, and 106 in the bottom row. All runs are medians and interquartile ranges of over 10
different runs with different seeds.
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Figure 15: Distribution of episode indexes which are sampled to construct a minibatch for various sampling methods
(rows) while the world-model is interacting with each task (columns).

which is sampled for mini-batch construction for world-model learning and initiating the Actor-Critic learning. We
normalized the replay buffer episode indexes, which are sampled so that they lie in the range [0, 4] to indicate which
task the episode corresponds to. So all the episode indexes which were sampled while the agent interacted with a
particular task are visualized in a distinct histogram (columns) for various sampling methods (rows) Figure 15.

We can see from Figure 15 that the sampling from the replay buffer is similar across all sampling methods for the
first task. The distributions for random sampling are not uniform since only episodes which are of length > 50 are
stored in the replay buffer, so the histograms’ first row is not flat since certain indexes will not be sampled as a result.
The distribution for rwd and us is similar to random sampling for the first task. This must mean that the uncertainty
from Plan2Explore is quite uniform for the first task, perhaps even the uncertainty is larger for the earlier episodes in
the replay buffer for the first task (row 4, column 1 Figure 15). As continual learning progresses we can see how the
sampling from the replay buffer becomes more uneven in comparison to random sampling for the next tasks for rwd
and us. In particular, we can see for time-steps 3M to 4M the detrimental effects of rwd, since only previous experience
with high rewards are sampled when learning the final task causing a lack of plasticity for rwd. When looking at the
distributions for 50 : 50 sampling we can see how they are more shifted to the right in comparison to random sampling,
this is to be expected since we are explicitly biasing the sampling to more recent experience to make the world model
learn recent tasks quicker since 50 : 50 is paired with rs.
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